drm/nouveau/tegra: Fix error handling
[linux/fpc-iii.git] / drivers / remoteproc / remoteproc_core.c
blobc6bfb3496684efde7dc55d777e392445490db585
1 /*
2 * Remote Processor Framework
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #define pr_fmt(fmt) "%s: " fmt, __func__
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/crc32.h>
41 #include <linux/virtio_ids.h>
42 #include <linux/virtio_ring.h>
43 #include <asm/byteorder.h>
45 #include "remoteproc_internal.h"
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
51 struct resource_table *table, int len);
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 void *, int offset, int avail);
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index);
58 static const char * const rproc_crash_names[] = {
59 [RPROC_MMUFAULT] = "mmufault",
60 [RPROC_WATCHDOG] = "watchdog",
61 [RPROC_FATAL_ERROR] = "fatal error",
64 /* translate rproc_crash_type to string */
65 static const char *rproc_crash_to_string(enum rproc_crash_type type)
67 if (type < ARRAY_SIZE(rproc_crash_names))
68 return rproc_crash_names[type];
69 return "unknown";
73 * This is the IOMMU fault handler we register with the IOMMU API
74 * (when relevant; not all remote processors access memory through
75 * an IOMMU).
77 * IOMMU core will invoke this handler whenever the remote processor
78 * will try to access an unmapped device address.
80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81 unsigned long iova, int flags, void *token)
83 struct rproc *rproc = token;
85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
87 rproc_report_crash(rproc, RPROC_MMUFAULT);
90 * Let the iommu core know we're not really handling this fault;
91 * we just used it as a recovery trigger.
93 return -ENOSYS;
96 static int rproc_enable_iommu(struct rproc *rproc)
98 struct iommu_domain *domain;
99 struct device *dev = rproc->dev.parent;
100 int ret;
102 if (!rproc->has_iommu) {
103 dev_dbg(dev, "iommu not present\n");
104 return 0;
107 domain = iommu_domain_alloc(dev->bus);
108 if (!domain) {
109 dev_err(dev, "can't alloc iommu domain\n");
110 return -ENOMEM;
113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
115 ret = iommu_attach_device(domain, dev);
116 if (ret) {
117 dev_err(dev, "can't attach iommu device: %d\n", ret);
118 goto free_domain;
121 rproc->domain = domain;
123 return 0;
125 free_domain:
126 iommu_domain_free(domain);
127 return ret;
130 static void rproc_disable_iommu(struct rproc *rproc)
132 struct iommu_domain *domain = rproc->domain;
133 struct device *dev = rproc->dev.parent;
135 if (!domain)
136 return;
138 iommu_detach_device(domain, dev);
139 iommu_domain_free(domain);
143 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
144 * @rproc: handle of a remote processor
145 * @da: remoteproc device address to translate
146 * @len: length of the memory region @da is pointing to
148 * Some remote processors will ask us to allocate them physically contiguous
149 * memory regions (which we call "carveouts"), and map them to specific
150 * device addresses (which are hardcoded in the firmware). They may also have
151 * dedicated memory regions internal to the processors, and use them either
152 * exclusively or alongside carveouts.
154 * They may then ask us to copy objects into specific device addresses (e.g.
155 * code/data sections) or expose us certain symbols in other device address
156 * (e.g. their trace buffer).
158 * This function is a helper function with which we can go over the allocated
159 * carveouts and translate specific device addresses to kernel virtual addresses
160 * so we can access the referenced memory. This function also allows to perform
161 * translations on the internal remoteproc memory regions through a platform
162 * implementation specific da_to_va ops, if present.
164 * The function returns a valid kernel address on success or NULL on failure.
166 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
167 * but only on kernel direct mapped RAM memory. Instead, we're just using
168 * here the output of the DMA API for the carveouts, which should be more
169 * correct.
171 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
173 struct rproc_mem_entry *carveout;
174 void *ptr = NULL;
176 if (rproc->ops->da_to_va) {
177 ptr = rproc->ops->da_to_va(rproc, da, len);
178 if (ptr)
179 goto out;
182 list_for_each_entry(carveout, &rproc->carveouts, node) {
183 int offset = da - carveout->da;
185 /* try next carveout if da is too small */
186 if (offset < 0)
187 continue;
189 /* try next carveout if da is too large */
190 if (offset + len > carveout->len)
191 continue;
193 ptr = carveout->va + offset;
195 break;
198 out:
199 return ptr;
201 EXPORT_SYMBOL(rproc_da_to_va);
203 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
205 struct rproc *rproc = rvdev->rproc;
206 struct device *dev = &rproc->dev;
207 struct rproc_vring *rvring = &rvdev->vring[i];
208 struct fw_rsc_vdev *rsc;
209 dma_addr_t dma;
210 void *va;
211 int ret, size, notifyid;
213 /* actual size of vring (in bytes) */
214 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
217 * Allocate non-cacheable memory for the vring. In the future
218 * this call will also configure the IOMMU for us
220 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
221 if (!va) {
222 dev_err(dev->parent, "dma_alloc_coherent failed\n");
223 return -EINVAL;
227 * Assign an rproc-wide unique index for this vring
228 * TODO: assign a notifyid for rvdev updates as well
229 * TODO: support predefined notifyids (via resource table)
231 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
232 if (ret < 0) {
233 dev_err(dev, "idr_alloc failed: %d\n", ret);
234 dma_free_coherent(dev->parent, size, va, dma);
235 return ret;
237 notifyid = ret;
239 dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
240 i, va, &dma, size, notifyid);
242 rvring->va = va;
243 rvring->dma = dma;
244 rvring->notifyid = notifyid;
247 * Let the rproc know the notifyid and da of this vring.
248 * Not all platforms use dma_alloc_coherent to automatically
249 * set up the iommu. In this case the device address (da) will
250 * hold the physical address and not the device address.
252 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
253 rsc->vring[i].da = dma;
254 rsc->vring[i].notifyid = notifyid;
255 return 0;
258 static int
259 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
261 struct rproc *rproc = rvdev->rproc;
262 struct device *dev = &rproc->dev;
263 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
264 struct rproc_vring *rvring = &rvdev->vring[i];
266 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
267 i, vring->da, vring->num, vring->align);
269 /* verify queue size and vring alignment are sane */
270 if (!vring->num || !vring->align) {
271 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
272 vring->num, vring->align);
273 return -EINVAL;
276 rvring->len = vring->num;
277 rvring->align = vring->align;
278 rvring->rvdev = rvdev;
280 return 0;
283 void rproc_free_vring(struct rproc_vring *rvring)
285 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
286 struct rproc *rproc = rvring->rvdev->rproc;
287 int idx = rvring->rvdev->vring - rvring;
288 struct fw_rsc_vdev *rsc;
290 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
291 idr_remove(&rproc->notifyids, rvring->notifyid);
293 /* reset resource entry info */
294 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
295 rsc->vring[idx].da = 0;
296 rsc->vring[idx].notifyid = -1;
300 * rproc_handle_vdev() - handle a vdev fw resource
301 * @rproc: the remote processor
302 * @rsc: the vring resource descriptor
303 * @avail: size of available data (for sanity checking the image)
305 * This resource entry requests the host to statically register a virtio
306 * device (vdev), and setup everything needed to support it. It contains
307 * everything needed to make it possible: the virtio device id, virtio
308 * device features, vrings information, virtio config space, etc...
310 * Before registering the vdev, the vrings are allocated from non-cacheable
311 * physically contiguous memory. Currently we only support two vrings per
312 * remote processor (temporary limitation). We might also want to consider
313 * doing the vring allocation only later when ->find_vqs() is invoked, and
314 * then release them upon ->del_vqs().
316 * Note: @da is currently not really handled correctly: we dynamically
317 * allocate it using the DMA API, ignoring requested hard coded addresses,
318 * and we don't take care of any required IOMMU programming. This is all
319 * going to be taken care of when the generic iommu-based DMA API will be
320 * merged. Meanwhile, statically-addressed iommu-based firmware images should
321 * use RSC_DEVMEM resource entries to map their required @da to the physical
322 * address of their base CMA region (ouch, hacky!).
324 * Returns 0 on success, or an appropriate error code otherwise
326 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
327 int offset, int avail)
329 struct device *dev = &rproc->dev;
330 struct rproc_vdev *rvdev;
331 int i, ret;
333 /* make sure resource isn't truncated */
334 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
335 + rsc->config_len > avail) {
336 dev_err(dev, "vdev rsc is truncated\n");
337 return -EINVAL;
340 /* make sure reserved bytes are zeroes */
341 if (rsc->reserved[0] || rsc->reserved[1]) {
342 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
343 return -EINVAL;
346 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
347 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
349 /* we currently support only two vrings per rvdev */
350 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
351 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
352 return -EINVAL;
355 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
356 if (!rvdev)
357 return -ENOMEM;
359 rvdev->rproc = rproc;
361 /* parse the vrings */
362 for (i = 0; i < rsc->num_of_vrings; i++) {
363 ret = rproc_parse_vring(rvdev, rsc, i);
364 if (ret)
365 goto free_rvdev;
368 /* remember the resource offset*/
369 rvdev->rsc_offset = offset;
371 list_add_tail(&rvdev->node, &rproc->rvdevs);
373 /* it is now safe to add the virtio device */
374 ret = rproc_add_virtio_dev(rvdev, rsc->id);
375 if (ret)
376 goto remove_rvdev;
378 return 0;
380 remove_rvdev:
381 list_del(&rvdev->node);
382 free_rvdev:
383 kfree(rvdev);
384 return ret;
388 * rproc_handle_trace() - handle a shared trace buffer resource
389 * @rproc: the remote processor
390 * @rsc: the trace resource descriptor
391 * @avail: size of available data (for sanity checking the image)
393 * In case the remote processor dumps trace logs into memory,
394 * export it via debugfs.
396 * Currently, the 'da' member of @rsc should contain the device address
397 * where the remote processor is dumping the traces. Later we could also
398 * support dynamically allocating this address using the generic
399 * DMA API (but currently there isn't a use case for that).
401 * Returns 0 on success, or an appropriate error code otherwise
403 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
404 int offset, int avail)
406 struct rproc_mem_entry *trace;
407 struct device *dev = &rproc->dev;
408 void *ptr;
409 char name[15];
411 if (sizeof(*rsc) > avail) {
412 dev_err(dev, "trace rsc is truncated\n");
413 return -EINVAL;
416 /* make sure reserved bytes are zeroes */
417 if (rsc->reserved) {
418 dev_err(dev, "trace rsc has non zero reserved bytes\n");
419 return -EINVAL;
422 /* what's the kernel address of this resource ? */
423 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
424 if (!ptr) {
425 dev_err(dev, "erroneous trace resource entry\n");
426 return -EINVAL;
429 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
430 if (!trace)
431 return -ENOMEM;
433 /* set the trace buffer dma properties */
434 trace->len = rsc->len;
435 trace->va = ptr;
437 /* make sure snprintf always null terminates, even if truncating */
438 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
440 /* create the debugfs entry */
441 trace->priv = rproc_create_trace_file(name, rproc, trace);
442 if (!trace->priv) {
443 trace->va = NULL;
444 kfree(trace);
445 return -EINVAL;
448 list_add_tail(&trace->node, &rproc->traces);
450 rproc->num_traces++;
452 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
453 name, ptr, rsc->da, rsc->len);
455 return 0;
459 * rproc_handle_devmem() - handle devmem resource entry
460 * @rproc: remote processor handle
461 * @rsc: the devmem resource entry
462 * @avail: size of available data (for sanity checking the image)
464 * Remote processors commonly need to access certain on-chip peripherals.
466 * Some of these remote processors access memory via an iommu device,
467 * and might require us to configure their iommu before they can access
468 * the on-chip peripherals they need.
470 * This resource entry is a request to map such a peripheral device.
472 * These devmem entries will contain the physical address of the device in
473 * the 'pa' member. If a specific device address is expected, then 'da' will
474 * contain it (currently this is the only use case supported). 'len' will
475 * contain the size of the physical region we need to map.
477 * Currently we just "trust" those devmem entries to contain valid physical
478 * addresses, but this is going to change: we want the implementations to
479 * tell us ranges of physical addresses the firmware is allowed to request,
480 * and not allow firmwares to request access to physical addresses that
481 * are outside those ranges.
483 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
484 int offset, int avail)
486 struct rproc_mem_entry *mapping;
487 struct device *dev = &rproc->dev;
488 int ret;
490 /* no point in handling this resource without a valid iommu domain */
491 if (!rproc->domain)
492 return -EINVAL;
494 if (sizeof(*rsc) > avail) {
495 dev_err(dev, "devmem rsc is truncated\n");
496 return -EINVAL;
499 /* make sure reserved bytes are zeroes */
500 if (rsc->reserved) {
501 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
502 return -EINVAL;
505 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
506 if (!mapping)
507 return -ENOMEM;
509 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
510 if (ret) {
511 dev_err(dev, "failed to map devmem: %d\n", ret);
512 goto out;
516 * We'll need this info later when we'll want to unmap everything
517 * (e.g. on shutdown).
519 * We can't trust the remote processor not to change the resource
520 * table, so we must maintain this info independently.
522 mapping->da = rsc->da;
523 mapping->len = rsc->len;
524 list_add_tail(&mapping->node, &rproc->mappings);
526 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
527 rsc->pa, rsc->da, rsc->len);
529 return 0;
531 out:
532 kfree(mapping);
533 return ret;
537 * rproc_handle_carveout() - handle phys contig memory allocation requests
538 * @rproc: rproc handle
539 * @rsc: the resource entry
540 * @avail: size of available data (for image validation)
542 * This function will handle firmware requests for allocation of physically
543 * contiguous memory regions.
545 * These request entries should come first in the firmware's resource table,
546 * as other firmware entries might request placing other data objects inside
547 * these memory regions (e.g. data/code segments, trace resource entries, ...).
549 * Allocating memory this way helps utilizing the reserved physical memory
550 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
551 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
552 * pressure is important; it may have a substantial impact on performance.
554 static int rproc_handle_carveout(struct rproc *rproc,
555 struct fw_rsc_carveout *rsc,
556 int offset, int avail)
558 struct rproc_mem_entry *carveout, *mapping;
559 struct device *dev = &rproc->dev;
560 dma_addr_t dma;
561 void *va;
562 int ret;
564 if (sizeof(*rsc) > avail) {
565 dev_err(dev, "carveout rsc is truncated\n");
566 return -EINVAL;
569 /* make sure reserved bytes are zeroes */
570 if (rsc->reserved) {
571 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
572 return -EINVAL;
575 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
576 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
578 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
579 if (!carveout)
580 return -ENOMEM;
582 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
583 if (!va) {
584 dev_err(dev->parent,
585 "failed to allocate dma memory: len 0x%x\n", rsc->len);
586 ret = -ENOMEM;
587 goto free_carv;
590 dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
591 va, &dma, rsc->len);
594 * Ok, this is non-standard.
596 * Sometimes we can't rely on the generic iommu-based DMA API
597 * to dynamically allocate the device address and then set the IOMMU
598 * tables accordingly, because some remote processors might
599 * _require_ us to use hard coded device addresses that their
600 * firmware was compiled with.
602 * In this case, we must use the IOMMU API directly and map
603 * the memory to the device address as expected by the remote
604 * processor.
606 * Obviously such remote processor devices should not be configured
607 * to use the iommu-based DMA API: we expect 'dma' to contain the
608 * physical address in this case.
610 if (rproc->domain) {
611 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
612 if (!mapping) {
613 ret = -ENOMEM;
614 goto dma_free;
617 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
618 rsc->flags);
619 if (ret) {
620 dev_err(dev, "iommu_map failed: %d\n", ret);
621 goto free_mapping;
625 * We'll need this info later when we'll want to unmap
626 * everything (e.g. on shutdown).
628 * We can't trust the remote processor not to change the
629 * resource table, so we must maintain this info independently.
631 mapping->da = rsc->da;
632 mapping->len = rsc->len;
633 list_add_tail(&mapping->node, &rproc->mappings);
635 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
636 rsc->da, &dma);
640 * Some remote processors might need to know the pa
641 * even though they are behind an IOMMU. E.g., OMAP4's
642 * remote M3 processor needs this so it can control
643 * on-chip hardware accelerators that are not behind
644 * the IOMMU, and therefor must know the pa.
646 * Generally we don't want to expose physical addresses
647 * if we don't have to (remote processors are generally
648 * _not_ trusted), so we might want to do this only for
649 * remote processor that _must_ have this (e.g. OMAP4's
650 * dual M3 subsystem).
652 * Non-IOMMU processors might also want to have this info.
653 * In this case, the device address and the physical address
654 * are the same.
656 rsc->pa = dma;
658 carveout->va = va;
659 carveout->len = rsc->len;
660 carveout->dma = dma;
661 carveout->da = rsc->da;
663 list_add_tail(&carveout->node, &rproc->carveouts);
665 return 0;
667 free_mapping:
668 kfree(mapping);
669 dma_free:
670 dma_free_coherent(dev->parent, rsc->len, va, dma);
671 free_carv:
672 kfree(carveout);
673 return ret;
676 static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
677 int offset, int avail)
679 /* Summarize the number of notification IDs */
680 rproc->max_notifyid += rsc->num_of_vrings;
682 return 0;
686 * A lookup table for resource handlers. The indices are defined in
687 * enum fw_resource_type.
689 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
690 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
691 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
692 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
693 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
696 static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
697 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
700 /* handle firmware resource entries before booting the remote processor */
701 static int rproc_handle_resources(struct rproc *rproc, int len,
702 rproc_handle_resource_t handlers[RSC_LAST])
704 struct device *dev = &rproc->dev;
705 rproc_handle_resource_t handler;
706 int ret = 0, i;
708 for (i = 0; i < rproc->table_ptr->num; i++) {
709 int offset = rproc->table_ptr->offset[i];
710 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
711 int avail = len - offset - sizeof(*hdr);
712 void *rsc = (void *)hdr + sizeof(*hdr);
714 /* make sure table isn't truncated */
715 if (avail < 0) {
716 dev_err(dev, "rsc table is truncated\n");
717 return -EINVAL;
720 dev_dbg(dev, "rsc: type %d\n", hdr->type);
722 if (hdr->type >= RSC_LAST) {
723 dev_warn(dev, "unsupported resource %d\n", hdr->type);
724 continue;
727 handler = handlers[hdr->type];
728 if (!handler)
729 continue;
731 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
732 if (ret)
733 break;
736 return ret;
740 * rproc_resource_cleanup() - clean up and free all acquired resources
741 * @rproc: rproc handle
743 * This function will free all resources acquired for @rproc, and it
744 * is called whenever @rproc either shuts down or fails to boot.
746 static void rproc_resource_cleanup(struct rproc *rproc)
748 struct rproc_mem_entry *entry, *tmp;
749 struct rproc_vdev *rvdev, *rvtmp;
750 struct device *dev = &rproc->dev;
752 /* clean up debugfs trace entries */
753 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
754 rproc_remove_trace_file(entry->priv);
755 rproc->num_traces--;
756 list_del(&entry->node);
757 kfree(entry);
760 /* clean up iommu mapping entries */
761 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
762 size_t unmapped;
764 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
765 if (unmapped != entry->len) {
766 /* nothing much to do besides complaining */
767 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
768 unmapped);
771 list_del(&entry->node);
772 kfree(entry);
775 /* clean up carveout allocations */
776 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
777 dma_free_coherent(dev->parent, entry->len, entry->va,
778 entry->dma);
779 list_del(&entry->node);
780 kfree(entry);
783 /* clean up remote vdev entries */
784 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
785 rproc_remove_virtio_dev(rvdev);
789 * take a firmware and boot a remote processor with it.
791 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
793 struct device *dev = &rproc->dev;
794 const char *name = rproc->firmware;
795 struct resource_table *table, *loaded_table;
796 int ret, tablesz;
798 ret = rproc_fw_sanity_check(rproc, fw);
799 if (ret)
800 return ret;
802 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
805 * if enabling an IOMMU isn't relevant for this rproc, this is
806 * just a nop
808 ret = rproc_enable_iommu(rproc);
809 if (ret) {
810 dev_err(dev, "can't enable iommu: %d\n", ret);
811 return ret;
814 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
815 ret = -EINVAL;
817 /* look for the resource table */
818 table = rproc_find_rsc_table(rproc, fw, &tablesz);
819 if (!table) {
820 dev_err(dev, "Failed to find resource table\n");
821 goto clean_up;
825 * Create a copy of the resource table. When a virtio device starts
826 * and calls vring_new_virtqueue() the address of the allocated vring
827 * will be stored in the cached_table. Before the device is started,
828 * cached_table will be copied into device memory.
830 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
831 if (!rproc->cached_table)
832 goto clean_up;
834 rproc->table_ptr = rproc->cached_table;
836 /* reset max_notifyid */
837 rproc->max_notifyid = -1;
839 /* look for virtio devices and register them */
840 ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
841 if (ret) {
842 dev_err(dev, "Failed to handle vdev resources: %d\n", ret);
843 goto clean_up;
846 /* handle fw resources which are required to boot rproc */
847 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
848 if (ret) {
849 dev_err(dev, "Failed to process resources: %d\n", ret);
850 goto clean_up_resources;
853 /* load the ELF segments to memory */
854 ret = rproc_load_segments(rproc, fw);
855 if (ret) {
856 dev_err(dev, "Failed to load program segments: %d\n", ret);
857 goto clean_up_resources;
861 * The starting device has been given the rproc->cached_table as the
862 * resource table. The address of the vring along with the other
863 * allocated resources (carveouts etc) is stored in cached_table.
864 * In order to pass this information to the remote device we must copy
865 * this information to device memory. We also update the table_ptr so
866 * that any subsequent changes will be applied to the loaded version.
868 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
869 if (loaded_table) {
870 memcpy(loaded_table, rproc->cached_table, tablesz);
871 rproc->table_ptr = loaded_table;
874 /* power up the remote processor */
875 ret = rproc->ops->start(rproc);
876 if (ret) {
877 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
878 goto clean_up_resources;
881 rproc->state = RPROC_RUNNING;
883 dev_info(dev, "remote processor %s is now up\n", rproc->name);
885 return 0;
887 clean_up_resources:
888 rproc_resource_cleanup(rproc);
889 clean_up:
890 kfree(rproc->cached_table);
891 rproc->cached_table = NULL;
892 rproc->table_ptr = NULL;
894 rproc_disable_iommu(rproc);
895 return ret;
899 * take a firmware and look for virtio devices to register.
901 * Note: this function is called asynchronously upon registration of the
902 * remote processor (so we must wait until it completes before we try
903 * to unregister the device. one other option is just to use kref here,
904 * that might be cleaner).
906 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
908 struct rproc *rproc = context;
910 /* if rproc is marked always-on, request it to boot */
911 if (rproc->auto_boot)
912 rproc_boot_nowait(rproc);
914 release_firmware(fw);
915 /* allow rproc_del() contexts, if any, to proceed */
916 complete_all(&rproc->firmware_loading_complete);
919 static int rproc_add_virtio_devices(struct rproc *rproc)
921 int ret;
923 /* rproc_del() calls must wait until async loader completes */
924 init_completion(&rproc->firmware_loading_complete);
927 * We must retrieve early virtio configuration info from
928 * the firmware (e.g. whether to register a virtio device,
929 * what virtio features does it support, ...).
931 * We're initiating an asynchronous firmware loading, so we can
932 * be built-in kernel code, without hanging the boot process.
934 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
935 rproc->firmware, &rproc->dev, GFP_KERNEL,
936 rproc, rproc_fw_config_virtio);
937 if (ret < 0) {
938 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
939 complete_all(&rproc->firmware_loading_complete);
942 return ret;
946 * rproc_trigger_recovery() - recover a remoteproc
947 * @rproc: the remote processor
949 * The recovery is done by resetting all the virtio devices, that way all the
950 * rpmsg drivers will be reseted along with the remote processor making the
951 * remoteproc functional again.
953 * This function can sleep, so it cannot be called from atomic context.
955 int rproc_trigger_recovery(struct rproc *rproc)
957 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
959 init_completion(&rproc->crash_comp);
961 /* shut down the remote */
962 /* TODO: make sure this works with rproc->power > 1 */
963 rproc_shutdown(rproc);
965 /* wait until there is no more rproc users */
966 wait_for_completion(&rproc->crash_comp);
969 * boot the remote processor up again
971 rproc_boot(rproc);
973 return 0;
977 * rproc_crash_handler_work() - handle a crash
979 * This function needs to handle everything related to a crash, like cpu
980 * registers and stack dump, information to help to debug the fatal error, etc.
982 static void rproc_crash_handler_work(struct work_struct *work)
984 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
985 struct device *dev = &rproc->dev;
987 dev_dbg(dev, "enter %s\n", __func__);
989 mutex_lock(&rproc->lock);
991 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
992 /* handle only the first crash detected */
993 mutex_unlock(&rproc->lock);
994 return;
997 rproc->state = RPROC_CRASHED;
998 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
999 rproc->name);
1001 mutex_unlock(&rproc->lock);
1003 if (!rproc->recovery_disabled)
1004 rproc_trigger_recovery(rproc);
1008 * __rproc_boot() - boot a remote processor
1009 * @rproc: handle of a remote processor
1010 * @wait: wait for rproc registration completion
1012 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1014 * If the remote processor is already powered on, this function immediately
1015 * returns (successfully).
1017 * Returns 0 on success, and an appropriate error value otherwise.
1019 static int __rproc_boot(struct rproc *rproc, bool wait)
1021 const struct firmware *firmware_p;
1022 struct device *dev;
1023 int ret;
1025 if (!rproc) {
1026 pr_err("invalid rproc handle\n");
1027 return -EINVAL;
1030 dev = &rproc->dev;
1032 ret = mutex_lock_interruptible(&rproc->lock);
1033 if (ret) {
1034 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1035 return ret;
1038 /* skip the boot process if rproc is already powered up */
1039 if (atomic_inc_return(&rproc->power) > 1) {
1040 ret = 0;
1041 goto unlock_mutex;
1044 dev_info(dev, "powering up %s\n", rproc->name);
1046 /* load firmware */
1047 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1048 if (ret < 0) {
1049 dev_err(dev, "request_firmware failed: %d\n", ret);
1050 goto downref_rproc;
1053 /* if rproc virtio is not yet configured, wait */
1054 if (wait)
1055 wait_for_completion(&rproc->firmware_loading_complete);
1057 ret = rproc_fw_boot(rproc, firmware_p);
1059 release_firmware(firmware_p);
1061 downref_rproc:
1062 if (ret)
1063 atomic_dec(&rproc->power);
1064 unlock_mutex:
1065 mutex_unlock(&rproc->lock);
1066 return ret;
1070 * rproc_boot() - boot a remote processor
1071 * @rproc: handle of a remote processor
1073 int rproc_boot(struct rproc *rproc)
1075 return __rproc_boot(rproc, true);
1077 EXPORT_SYMBOL(rproc_boot);
1080 * rproc_boot_nowait() - boot a remote processor
1081 * @rproc: handle of a remote processor
1083 * Same as rproc_boot() but don't wait for rproc registration completion
1085 int rproc_boot_nowait(struct rproc *rproc)
1087 return __rproc_boot(rproc, false);
1091 * rproc_shutdown() - power off the remote processor
1092 * @rproc: the remote processor
1094 * Power off a remote processor (previously booted with rproc_boot()).
1096 * In case @rproc is still being used by an additional user(s), then
1097 * this function will just decrement the power refcount and exit,
1098 * without really powering off the device.
1100 * Every call to rproc_boot() must (eventually) be accompanied by a call
1101 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1103 * Notes:
1104 * - we're not decrementing the rproc's refcount, only the power refcount.
1105 * which means that the @rproc handle stays valid even after rproc_shutdown()
1106 * returns, and users can still use it with a subsequent rproc_boot(), if
1107 * needed.
1109 void rproc_shutdown(struct rproc *rproc)
1111 struct device *dev = &rproc->dev;
1112 int ret;
1114 ret = mutex_lock_interruptible(&rproc->lock);
1115 if (ret) {
1116 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1117 return;
1120 /* if the remote proc is still needed, bail out */
1121 if (!atomic_dec_and_test(&rproc->power))
1122 goto out;
1124 /* power off the remote processor */
1125 ret = rproc->ops->stop(rproc);
1126 if (ret) {
1127 atomic_inc(&rproc->power);
1128 dev_err(dev, "can't stop rproc: %d\n", ret);
1129 goto out;
1132 /* clean up all acquired resources */
1133 rproc_resource_cleanup(rproc);
1135 rproc_disable_iommu(rproc);
1137 /* Free the copy of the resource table */
1138 kfree(rproc->cached_table);
1139 rproc->cached_table = NULL;
1140 rproc->table_ptr = NULL;
1142 /* if in crash state, unlock crash handler */
1143 if (rproc->state == RPROC_CRASHED)
1144 complete_all(&rproc->crash_comp);
1146 rproc->state = RPROC_OFFLINE;
1148 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1150 out:
1151 mutex_unlock(&rproc->lock);
1153 EXPORT_SYMBOL(rproc_shutdown);
1156 * rproc_get_by_phandle() - find a remote processor by phandle
1157 * @phandle: phandle to the rproc
1159 * Finds an rproc handle using the remote processor's phandle, and then
1160 * return a handle to the rproc.
1162 * This function increments the remote processor's refcount, so always
1163 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1165 * Returns the rproc handle on success, and NULL on failure.
1167 #ifdef CONFIG_OF
1168 struct rproc *rproc_get_by_phandle(phandle phandle)
1170 struct rproc *rproc = NULL, *r;
1171 struct device_node *np;
1173 np = of_find_node_by_phandle(phandle);
1174 if (!np)
1175 return NULL;
1177 mutex_lock(&rproc_list_mutex);
1178 list_for_each_entry(r, &rproc_list, node) {
1179 if (r->dev.parent && r->dev.parent->of_node == np) {
1180 /* prevent underlying implementation from being removed */
1181 if (!try_module_get(r->dev.parent->driver->owner)) {
1182 dev_err(&r->dev, "can't get owner\n");
1183 break;
1186 rproc = r;
1187 get_device(&rproc->dev);
1188 break;
1191 mutex_unlock(&rproc_list_mutex);
1193 of_node_put(np);
1195 return rproc;
1197 #else
1198 struct rproc *rproc_get_by_phandle(phandle phandle)
1200 return NULL;
1202 #endif
1203 EXPORT_SYMBOL(rproc_get_by_phandle);
1206 * rproc_add() - register a remote processor
1207 * @rproc: the remote processor handle to register
1209 * Registers @rproc with the remoteproc framework, after it has been
1210 * allocated with rproc_alloc().
1212 * This is called by the platform-specific rproc implementation, whenever
1213 * a new remote processor device is probed.
1215 * Returns 0 on success and an appropriate error code otherwise.
1217 * Note: this function initiates an asynchronous firmware loading
1218 * context, which will look for virtio devices supported by the rproc's
1219 * firmware.
1221 * If found, those virtio devices will be created and added, so as a result
1222 * of registering this remote processor, additional virtio drivers might be
1223 * probed.
1225 int rproc_add(struct rproc *rproc)
1227 struct device *dev = &rproc->dev;
1228 int ret;
1230 ret = device_add(dev);
1231 if (ret < 0)
1232 return ret;
1234 dev_info(dev, "%s is available\n", rproc->name);
1236 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1237 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1239 /* create debugfs entries */
1240 rproc_create_debug_dir(rproc);
1241 ret = rproc_add_virtio_devices(rproc);
1242 if (ret < 0)
1243 return ret;
1245 /* expose to rproc_get_by_phandle users */
1246 mutex_lock(&rproc_list_mutex);
1247 list_add(&rproc->node, &rproc_list);
1248 mutex_unlock(&rproc_list_mutex);
1250 return 0;
1252 EXPORT_SYMBOL(rproc_add);
1255 * rproc_type_release() - release a remote processor instance
1256 * @dev: the rproc's device
1258 * This function should _never_ be called directly.
1260 * It will be called by the driver core when no one holds a valid pointer
1261 * to @dev anymore.
1263 static void rproc_type_release(struct device *dev)
1265 struct rproc *rproc = container_of(dev, struct rproc, dev);
1267 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1269 rproc_delete_debug_dir(rproc);
1271 idr_destroy(&rproc->notifyids);
1273 if (rproc->index >= 0)
1274 ida_simple_remove(&rproc_dev_index, rproc->index);
1276 kfree(rproc);
1279 static struct device_type rproc_type = {
1280 .name = "remoteproc",
1281 .release = rproc_type_release,
1285 * rproc_alloc() - allocate a remote processor handle
1286 * @dev: the underlying device
1287 * @name: name of this remote processor
1288 * @ops: platform-specific handlers (mainly start/stop)
1289 * @firmware: name of firmware file to load, can be NULL
1290 * @len: length of private data needed by the rproc driver (in bytes)
1292 * Allocates a new remote processor handle, but does not register
1293 * it yet. if @firmware is NULL, a default name is used.
1295 * This function should be used by rproc implementations during initialization
1296 * of the remote processor.
1298 * After creating an rproc handle using this function, and when ready,
1299 * implementations should then call rproc_add() to complete
1300 * the registration of the remote processor.
1302 * On success the new rproc is returned, and on failure, NULL.
1304 * Note: _never_ directly deallocate @rproc, even if it was not registered
1305 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1307 struct rproc *rproc_alloc(struct device *dev, const char *name,
1308 const struct rproc_ops *ops,
1309 const char *firmware, int len)
1311 struct rproc *rproc;
1312 char *p, *template = "rproc-%s-fw";
1313 int name_len = 0;
1315 if (!dev || !name || !ops)
1316 return NULL;
1318 if (!firmware)
1320 * Make room for default firmware name (minus %s plus '\0').
1321 * If the caller didn't pass in a firmware name then
1322 * construct a default name. We're already glomming 'len'
1323 * bytes onto the end of the struct rproc allocation, so do
1324 * a few more for the default firmware name (but only if
1325 * the caller doesn't pass one).
1327 name_len = strlen(name) + strlen(template) - 2 + 1;
1329 rproc = kzalloc(sizeof(*rproc) + len + name_len, GFP_KERNEL);
1330 if (!rproc)
1331 return NULL;
1333 if (!firmware) {
1334 p = (char *)rproc + sizeof(struct rproc) + len;
1335 snprintf(p, name_len, template, name);
1336 } else {
1337 p = (char *)firmware;
1340 rproc->firmware = p;
1341 rproc->name = name;
1342 rproc->ops = ops;
1343 rproc->priv = &rproc[1];
1344 rproc->auto_boot = true;
1346 device_initialize(&rproc->dev);
1347 rproc->dev.parent = dev;
1348 rproc->dev.type = &rproc_type;
1350 /* Assign a unique device index and name */
1351 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1352 if (rproc->index < 0) {
1353 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1354 put_device(&rproc->dev);
1355 return NULL;
1358 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1360 atomic_set(&rproc->power, 0);
1362 /* Set ELF as the default fw_ops handler */
1363 rproc->fw_ops = &rproc_elf_fw_ops;
1365 mutex_init(&rproc->lock);
1367 idr_init(&rproc->notifyids);
1369 INIT_LIST_HEAD(&rproc->carveouts);
1370 INIT_LIST_HEAD(&rproc->mappings);
1371 INIT_LIST_HEAD(&rproc->traces);
1372 INIT_LIST_HEAD(&rproc->rvdevs);
1374 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1375 init_completion(&rproc->crash_comp);
1377 rproc->state = RPROC_OFFLINE;
1379 return rproc;
1381 EXPORT_SYMBOL(rproc_alloc);
1384 * rproc_free() - unroll rproc_alloc()
1385 * @rproc: the remote processor handle
1387 * This function decrements the rproc dev refcount.
1389 * If no one holds any reference to rproc anymore, then its refcount would
1390 * now drop to zero, and it would be freed.
1392 void rproc_free(struct rproc *rproc)
1394 put_device(&rproc->dev);
1396 EXPORT_SYMBOL(rproc_free);
1399 * rproc_put() - release rproc reference
1400 * @rproc: the remote processor handle
1402 * This function decrements the rproc dev refcount.
1404 * If no one holds any reference to rproc anymore, then its refcount would
1405 * now drop to zero, and it would be freed.
1407 void rproc_put(struct rproc *rproc)
1409 module_put(rproc->dev.parent->driver->owner);
1410 put_device(&rproc->dev);
1412 EXPORT_SYMBOL(rproc_put);
1415 * rproc_del() - unregister a remote processor
1416 * @rproc: rproc handle to unregister
1418 * This function should be called when the platform specific rproc
1419 * implementation decides to remove the rproc device. it should
1420 * _only_ be called if a previous invocation of rproc_add()
1421 * has completed successfully.
1423 * After rproc_del() returns, @rproc isn't freed yet, because
1424 * of the outstanding reference created by rproc_alloc. To decrement that
1425 * one last refcount, one still needs to call rproc_free().
1427 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1429 int rproc_del(struct rproc *rproc)
1431 struct rproc_vdev *rvdev, *tmp;
1433 if (!rproc)
1434 return -EINVAL;
1436 /* if rproc is just being registered, wait */
1437 wait_for_completion(&rproc->firmware_loading_complete);
1439 /* if rproc is marked always-on, rproc_add() booted it */
1440 /* TODO: make sure this works with rproc->power > 1 */
1441 if (rproc->auto_boot)
1442 rproc_shutdown(rproc);
1444 /* clean up remote vdev entries */
1445 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1446 rproc_remove_virtio_dev(rvdev);
1448 /* the rproc is downref'ed as soon as it's removed from the klist */
1449 mutex_lock(&rproc_list_mutex);
1450 list_del(&rproc->node);
1451 mutex_unlock(&rproc_list_mutex);
1453 device_del(&rproc->dev);
1455 return 0;
1457 EXPORT_SYMBOL(rproc_del);
1460 * rproc_report_crash() - rproc crash reporter function
1461 * @rproc: remote processor
1462 * @type: crash type
1464 * This function must be called every time a crash is detected by the low-level
1465 * drivers implementing a specific remoteproc. This should not be called from a
1466 * non-remoteproc driver.
1468 * This function can be called from atomic/interrupt context.
1470 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1472 if (!rproc) {
1473 pr_err("NULL rproc pointer\n");
1474 return;
1477 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1478 rproc->name, rproc_crash_to_string(type));
1480 /* create a new task to handle the error */
1481 schedule_work(&rproc->crash_handler);
1483 EXPORT_SYMBOL(rproc_report_crash);
1485 static int __init remoteproc_init(void)
1487 rproc_init_debugfs();
1489 return 0;
1491 module_init(remoteproc_init);
1493 static void __exit remoteproc_exit(void)
1495 ida_destroy(&rproc_dev_index);
1497 rproc_exit_debugfs();
1499 module_exit(remoteproc_exit);
1501 MODULE_LICENSE("GPL v2");
1502 MODULE_DESCRIPTION("Generic Remote Processor Framework");