2 * Copyright (C) 2013 Broadcom Corporation
3 * Copyright 2013 Linaro Limited
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
17 #include <linux/delay.h>
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
22 * "Policies" affect the frequencies of bus clocks provided by a
23 * CCU. (I believe these polices are named "Deep Sleep", "Economy",
24 * "Normal", and "Turbo".) A lower policy number has lower power
25 * consumption, and policy 2 is the default.
27 #define CCU_POLICY_COUNT 4
29 #define CCU_ACCESS_PASSWORD 0xA5A500
30 #define CLK_GATE_DELAY_LOOP 2000
32 /* Bitfield operations */
34 /* Produces a mask of set bits covering a range of a 32-bit value */
35 static inline u32
bitfield_mask(u32 shift
, u32 width
)
37 return ((1 << width
) - 1) << shift
;
40 /* Extract the value of a bitfield found within a given register value */
41 static inline u32
bitfield_extract(u32 reg_val
, u32 shift
, u32 width
)
43 return (reg_val
& bitfield_mask(shift
, width
)) >> shift
;
46 /* Replace the value of a bitfield found within a given register value */
47 static inline u32
bitfield_replace(u32 reg_val
, u32 shift
, u32 width
, u32 val
)
49 u32 mask
= bitfield_mask(shift
, width
);
51 return (reg_val
& ~mask
) | (val
<< shift
);
54 /* Divider and scaling helpers */
56 /* Convert a divider into the scaled divisor value it represents. */
57 static inline u64
scaled_div_value(struct bcm_clk_div
*div
, u32 reg_div
)
59 return (u64
)reg_div
+ ((u64
)1 << div
->u
.s
.frac_width
);
63 * Build a scaled divider value as close as possible to the
64 * given whole part (div_value) and fractional part (expressed
67 u64
scaled_div_build(struct bcm_clk_div
*div
, u32 div_value
, u32 billionths
)
72 BUG_ON(billionths
>= BILLION
);
74 combined
= (u64
)div_value
* BILLION
+ billionths
;
75 combined
<<= div
->u
.s
.frac_width
;
77 return DIV_ROUND_CLOSEST_ULL(combined
, BILLION
);
80 /* The scaled minimum divisor representable by a divider */
82 scaled_div_min(struct bcm_clk_div
*div
)
84 if (divider_is_fixed(div
))
85 return (u64
)div
->u
.fixed
;
87 return scaled_div_value(div
, 0);
90 /* The scaled maximum divisor representable by a divider */
91 u64
scaled_div_max(struct bcm_clk_div
*div
)
95 if (divider_is_fixed(div
))
96 return (u64
)div
->u
.fixed
;
98 reg_div
= ((u32
)1 << div
->u
.s
.width
) - 1;
100 return scaled_div_value(div
, reg_div
);
104 * Convert a scaled divisor into its divider representation as
105 * stored in a divider register field.
108 divider(struct bcm_clk_div
*div
, u64 scaled_div
)
110 BUG_ON(scaled_div
< scaled_div_min(div
));
111 BUG_ON(scaled_div
> scaled_div_max(div
));
113 return (u32
)(scaled_div
- ((u64
)1 << div
->u
.s
.frac_width
));
116 /* Return a rate scaled for use when dividing by a scaled divisor. */
118 scale_rate(struct bcm_clk_div
*div
, u32 rate
)
120 if (divider_is_fixed(div
))
123 return (u64
)rate
<< div
->u
.s
.frac_width
;
128 /* Read a 32-bit register value from a CCU's address space. */
129 static inline u32
__ccu_read(struct ccu_data
*ccu
, u32 reg_offset
)
131 return readl(ccu
->base
+ reg_offset
);
134 /* Write a 32-bit register value into a CCU's address space. */
136 __ccu_write(struct ccu_data
*ccu
, u32 reg_offset
, u32 reg_val
)
138 writel(reg_val
, ccu
->base
+ reg_offset
);
141 static inline unsigned long ccu_lock(struct ccu_data
*ccu
)
145 spin_lock_irqsave(&ccu
->lock
, flags
);
149 static inline void ccu_unlock(struct ccu_data
*ccu
, unsigned long flags
)
151 spin_unlock_irqrestore(&ccu
->lock
, flags
);
155 * Enable/disable write access to CCU protected registers. The
156 * WR_ACCESS register for all CCUs is at offset 0.
158 static inline void __ccu_write_enable(struct ccu_data
*ccu
)
160 if (ccu
->write_enabled
) {
161 pr_err("%s: access already enabled for %s\n", __func__
,
165 ccu
->write_enabled
= true;
166 __ccu_write(ccu
, 0, CCU_ACCESS_PASSWORD
| 1);
169 static inline void __ccu_write_disable(struct ccu_data
*ccu
)
171 if (!ccu
->write_enabled
) {
172 pr_err("%s: access wasn't enabled for %s\n", __func__
,
177 __ccu_write(ccu
, 0, CCU_ACCESS_PASSWORD
);
178 ccu
->write_enabled
= false;
182 * Poll a register in a CCU's address space, returning when the
183 * specified bit in that register's value is set (or clear). Delay
184 * a microsecond after each read of the register. Returns true if
185 * successful, or false if we gave up trying.
187 * Caller must ensure the CCU lock is held.
190 __ccu_wait_bit(struct ccu_data
*ccu
, u32 reg_offset
, u32 bit
, bool want
)
193 u32 bit_mask
= 1 << bit
;
195 for (tries
= 0; tries
< CLK_GATE_DELAY_LOOP
; tries
++) {
199 val
= __ccu_read(ccu
, reg_offset
);
200 bit_val
= (val
& bit_mask
) != 0;
205 pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__
,
206 ccu
->name
, reg_offset
, bit
, want
? "set" : "clear");
211 /* Policy operations */
213 static bool __ccu_policy_engine_start(struct ccu_data
*ccu
, bool sync
)
215 struct bcm_policy_ctl
*control
= &ccu
->policy
.control
;
221 /* If we don't need to control policy for this CCU, we're done. */
222 if (!policy_ctl_exists(control
))
225 offset
= control
->offset
;
226 go_bit
= control
->go_bit
;
228 /* Ensure we're not busy before we start */
229 ret
= __ccu_wait_bit(ccu
, offset
, go_bit
, false);
231 pr_err("%s: ccu %s policy engine wouldn't go idle\n",
232 __func__
, ccu
->name
);
237 * If it's a synchronous request, we'll wait for the voltage
238 * and frequency of the active load to stabilize before
239 * returning. To do this we select the active load by
240 * setting the ATL bit.
242 * An asynchronous request instead ramps the voltage in the
243 * background, and when that process stabilizes, the target
244 * load is copied to the active load and the CCU frequency
245 * is switched. We do this by selecting the target load
246 * (ATL bit clear) and setting the request auto-copy (AC bit
249 * Note, we do NOT read-modify-write this register.
251 mask
= (u32
)1 << go_bit
;
253 mask
|= 1 << control
->atl_bit
;
255 mask
|= 1 << control
->ac_bit
;
256 __ccu_write(ccu
, offset
, mask
);
258 /* Wait for indication that operation is complete. */
259 ret
= __ccu_wait_bit(ccu
, offset
, go_bit
, false);
261 pr_err("%s: ccu %s policy engine never started\n",
262 __func__
, ccu
->name
);
267 static bool __ccu_policy_engine_stop(struct ccu_data
*ccu
)
269 struct bcm_lvm_en
*enable
= &ccu
->policy
.enable
;
274 /* If we don't need to control policy for this CCU, we're done. */
275 if (!policy_lvm_en_exists(enable
))
278 /* Ensure we're not busy before we start */
279 offset
= enable
->offset
;
280 enable_bit
= enable
->bit
;
281 ret
= __ccu_wait_bit(ccu
, offset
, enable_bit
, false);
283 pr_err("%s: ccu %s policy engine already stopped\n",
284 __func__
, ccu
->name
);
288 /* Now set the bit to stop the engine (NO read-modify-write) */
289 __ccu_write(ccu
, offset
, (u32
)1 << enable_bit
);
291 /* Wait for indication that it has stopped. */
292 ret
= __ccu_wait_bit(ccu
, offset
, enable_bit
, false);
294 pr_err("%s: ccu %s policy engine never stopped\n",
295 __func__
, ccu
->name
);
301 * A CCU has four operating conditions ("policies"), and some clocks
302 * can be disabled or enabled based on which policy is currently in
303 * effect. Such clocks have a bit in a "policy mask" register for
304 * each policy indicating whether the clock is enabled for that
305 * policy or not. The bit position for a clock is the same for all
306 * four registers, and the 32-bit registers are at consecutive
309 static bool policy_init(struct ccu_data
*ccu
, struct bcm_clk_policy
*policy
)
316 if (!policy_exists(policy
))
320 * We need to stop the CCU policy engine to allow update
321 * of our policy bits.
323 if (!__ccu_policy_engine_stop(ccu
)) {
324 pr_err("%s: unable to stop CCU %s policy engine\n",
325 __func__
, ccu
->name
);
330 * For now, if a clock defines its policy bit we just mark
331 * it "enabled" for all four policies.
333 offset
= policy
->offset
;
334 mask
= (u32
)1 << policy
->bit
;
335 for (i
= 0; i
< CCU_POLICY_COUNT
; i
++) {
338 reg_val
= __ccu_read(ccu
, offset
);
340 __ccu_write(ccu
, offset
, reg_val
);
341 offset
+= sizeof(u32
);
344 /* We're done updating; fire up the policy engine again. */
345 ret
= __ccu_policy_engine_start(ccu
, true);
347 pr_err("%s: unable to restart CCU %s policy engine\n",
348 __func__
, ccu
->name
);
353 /* Gate operations */
355 /* Determine whether a clock is gated. CCU lock must be held. */
357 __is_clk_gate_enabled(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
)
362 /* If there is no gate we can assume it's enabled. */
363 if (!gate_exists(gate
))
366 bit_mask
= 1 << gate
->status_bit
;
367 reg_val
= __ccu_read(ccu
, gate
->offset
);
369 return (reg_val
& bit_mask
) != 0;
372 /* Determine whether a clock is gated. */
374 is_clk_gate_enabled(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
)
379 /* Avoid taking the lock if we can */
380 if (!gate_exists(gate
))
383 flags
= ccu_lock(ccu
);
384 ret
= __is_clk_gate_enabled(ccu
, gate
);
385 ccu_unlock(ccu
, flags
);
391 * Commit our desired gate state to the hardware.
392 * Returns true if successful, false otherwise.
395 __gate_commit(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
)
399 bool enabled
= false;
401 BUG_ON(!gate_exists(gate
));
402 if (!gate_is_sw_controllable(gate
))
403 return true; /* Nothing we can change */
405 reg_val
= __ccu_read(ccu
, gate
->offset
);
407 /* For a hardware/software gate, set which is in control */
408 if (gate_is_hw_controllable(gate
)) {
409 mask
= (u32
)1 << gate
->hw_sw_sel_bit
;
410 if (gate_is_sw_managed(gate
))
417 * If software is in control, enable or disable the gate.
418 * If hardware is, clear the enabled bit for good measure.
419 * If a software controlled gate can't be disabled, we're
420 * required to write a 0 into the enable bit (but the gate
423 mask
= (u32
)1 << gate
->en_bit
;
424 if (gate_is_sw_managed(gate
) && (enabled
= gate_is_enabled(gate
)) &&
425 !gate_is_no_disable(gate
))
430 __ccu_write(ccu
, gate
->offset
, reg_val
);
432 /* For a hardware controlled gate, we're done */
433 if (!gate_is_sw_managed(gate
))
436 /* Otherwise wait for the gate to be in desired state */
437 return __ccu_wait_bit(ccu
, gate
->offset
, gate
->status_bit
, enabled
);
441 * Initialize a gate. Our desired state (hardware/software select,
442 * and if software, its enable state) is committed to hardware
443 * without the usual checks to see if it's already set up that way.
444 * Returns true if successful, false otherwise.
446 static bool gate_init(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
)
448 if (!gate_exists(gate
))
450 return __gate_commit(ccu
, gate
);
454 * Set a gate to enabled or disabled state. Does nothing if the
455 * gate is not currently under software control, or if it is already
456 * in the requested state. Returns true if successful, false
457 * otherwise. CCU lock must be held.
460 __clk_gate(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
, bool enable
)
464 if (!gate_exists(gate
) || !gate_is_sw_managed(gate
))
465 return true; /* Nothing to do */
467 if (!enable
&& gate_is_no_disable(gate
)) {
468 pr_warn("%s: invalid gate disable request (ignoring)\n",
473 if (enable
== gate_is_enabled(gate
))
474 return true; /* No change */
476 gate_flip_enabled(gate
);
477 ret
= __gate_commit(ccu
, gate
);
479 gate_flip_enabled(gate
); /* Revert the change */
484 /* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */
485 static int clk_gate(struct ccu_data
*ccu
, const char *name
,
486 struct bcm_clk_gate
*gate
, bool enable
)
492 * Avoid taking the lock if we can. We quietly ignore
493 * requests to change state that don't make sense.
495 if (!gate_exists(gate
) || !gate_is_sw_managed(gate
))
497 if (!enable
&& gate_is_no_disable(gate
))
500 flags
= ccu_lock(ccu
);
501 __ccu_write_enable(ccu
);
503 success
= __clk_gate(ccu
, gate
, enable
);
505 __ccu_write_disable(ccu
);
506 ccu_unlock(ccu
, flags
);
511 pr_err("%s: failed to %s gate for %s\n", __func__
,
512 enable
? "enable" : "disable", name
);
517 /* Hysteresis operations */
520 * If a clock gate requires a turn-off delay it will have
521 * "hysteresis" register bits defined. The first, if set, enables
522 * the delay; and if enabled, the second bit determines whether the
523 * delay is "low" or "high" (1 means high). For now, if it's
524 * defined for a clock, we set it.
526 static bool hyst_init(struct ccu_data
*ccu
, struct bcm_clk_hyst
*hyst
)
532 if (!hyst_exists(hyst
))
535 offset
= hyst
->offset
;
536 mask
= (u32
)1 << hyst
->en_bit
;
537 mask
|= (u32
)1 << hyst
->val_bit
;
539 reg_val
= __ccu_read(ccu
, offset
);
541 __ccu_write(ccu
, offset
, reg_val
);
546 /* Trigger operations */
549 * Caller must ensure CCU lock is held and access is enabled.
550 * Returns true if successful, false otherwise.
552 static bool __clk_trigger(struct ccu_data
*ccu
, struct bcm_clk_trig
*trig
)
554 /* Trigger the clock and wait for it to finish */
555 __ccu_write(ccu
, trig
->offset
, 1 << trig
->bit
);
557 return __ccu_wait_bit(ccu
, trig
->offset
, trig
->bit
, false);
560 /* Divider operations */
562 /* Read a divider value and return the scaled divisor it represents. */
563 static u64
divider_read_scaled(struct ccu_data
*ccu
, struct bcm_clk_div
*div
)
569 if (divider_is_fixed(div
))
570 return (u64
)div
->u
.fixed
;
572 flags
= ccu_lock(ccu
);
573 reg_val
= __ccu_read(ccu
, div
->u
.s
.offset
);
574 ccu_unlock(ccu
, flags
);
576 /* Extract the full divider field from the register value */
577 reg_div
= bitfield_extract(reg_val
, div
->u
.s
.shift
, div
->u
.s
.width
);
579 /* Return the scaled divisor value it represents */
580 return scaled_div_value(div
, reg_div
);
584 * Convert a divider's scaled divisor value into its recorded form
585 * and commit it into the hardware divider register.
587 * Returns 0 on success. Returns -EINVAL for invalid arguments.
588 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
590 static int __div_commit(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
,
591 struct bcm_clk_div
*div
, struct bcm_clk_trig
*trig
)
598 BUG_ON(divider_is_fixed(div
));
601 * If we're just initializing the divider, and no initial
602 * state was defined in the device tree, we just find out
603 * what its current value is rather than updating it.
605 if (div
->u
.s
.scaled_div
== BAD_SCALED_DIV_VALUE
) {
606 reg_val
= __ccu_read(ccu
, div
->u
.s
.offset
);
607 reg_div
= bitfield_extract(reg_val
, div
->u
.s
.shift
,
609 div
->u
.s
.scaled_div
= scaled_div_value(div
, reg_div
);
614 /* Convert the scaled divisor to the value we need to record */
615 reg_div
= divider(div
, div
->u
.s
.scaled_div
);
617 /* Clock needs to be enabled before changing the rate */
618 enabled
= __is_clk_gate_enabled(ccu
, gate
);
619 if (!enabled
&& !__clk_gate(ccu
, gate
, true)) {
624 /* Replace the divider value and record the result */
625 reg_val
= __ccu_read(ccu
, div
->u
.s
.offset
);
626 reg_val
= bitfield_replace(reg_val
, div
->u
.s
.shift
, div
->u
.s
.width
,
628 __ccu_write(ccu
, div
->u
.s
.offset
, reg_val
);
630 /* If the trigger fails we still want to disable the gate */
631 if (!__clk_trigger(ccu
, trig
))
634 /* Disable the clock again if it was disabled to begin with */
635 if (!enabled
&& !__clk_gate(ccu
, gate
, false))
636 ret
= ret
? ret
: -ENXIO
; /* return first error */
642 * Initialize a divider by committing our desired state to hardware
643 * without the usual checks to see if it's already set up that way.
644 * Returns true if successful, false otherwise.
646 static bool div_init(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
,
647 struct bcm_clk_div
*div
, struct bcm_clk_trig
*trig
)
649 if (!divider_exists(div
) || divider_is_fixed(div
))
651 return !__div_commit(ccu
, gate
, div
, trig
);
654 static int divider_write(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
,
655 struct bcm_clk_div
*div
, struct bcm_clk_trig
*trig
,
662 BUG_ON(divider_is_fixed(div
));
664 previous
= div
->u
.s
.scaled_div
;
665 if (previous
== scaled_div
)
666 return 0; /* No change */
668 div
->u
.s
.scaled_div
= scaled_div
;
670 flags
= ccu_lock(ccu
);
671 __ccu_write_enable(ccu
);
673 ret
= __div_commit(ccu
, gate
, div
, trig
);
675 __ccu_write_disable(ccu
);
676 ccu_unlock(ccu
, flags
);
679 div
->u
.s
.scaled_div
= previous
; /* Revert the change */
685 /* Common clock rate helpers */
688 * Implement the common clock framework recalc_rate method, taking
689 * into account a divider and an optional pre-divider. The
690 * pre-divider register pointer may be NULL.
692 static unsigned long clk_recalc_rate(struct ccu_data
*ccu
,
693 struct bcm_clk_div
*div
, struct bcm_clk_div
*pre_div
,
694 unsigned long parent_rate
)
696 u64 scaled_parent_rate
;
700 if (!divider_exists(div
))
703 if (parent_rate
> (unsigned long)LONG_MAX
)
704 return 0; /* actually this would be a caller bug */
707 * If there is a pre-divider, divide the scaled parent rate
708 * by the pre-divider value first. In this case--to improve
709 * accuracy--scale the parent rate by *both* the pre-divider
710 * value and the divider before actually computing the
711 * result of the pre-divider.
713 * If there's only one divider, just scale the parent rate.
715 if (pre_div
&& divider_exists(pre_div
)) {
718 scaled_rate
= scale_rate(pre_div
, parent_rate
);
719 scaled_rate
= scale_rate(div
, scaled_rate
);
720 scaled_div
= divider_read_scaled(ccu
, pre_div
);
721 scaled_parent_rate
= DIV_ROUND_CLOSEST_ULL(scaled_rate
,
724 scaled_parent_rate
= scale_rate(div
, parent_rate
);
728 * Get the scaled divisor value, and divide the scaled
729 * parent rate by that to determine this clock's resulting
732 scaled_div
= divider_read_scaled(ccu
, div
);
733 result
= DIV_ROUND_CLOSEST_ULL(scaled_parent_rate
, scaled_div
);
735 return (unsigned long)result
;
739 * Compute the output rate produced when a given parent rate is fed
740 * into two dividers. The pre-divider can be NULL, and even if it's
741 * non-null it may be nonexistent. It's also OK for the divider to
742 * be nonexistent, and in that case the pre-divider is also ignored.
744 * If scaled_div is non-null, it is used to return the scaled divisor
745 * value used by the (downstream) divider to produce that rate.
747 static long round_rate(struct ccu_data
*ccu
, struct bcm_clk_div
*div
,
748 struct bcm_clk_div
*pre_div
,
749 unsigned long rate
, unsigned long parent_rate
,
752 u64 scaled_parent_rate
;
758 BUG_ON(!divider_exists(div
));
760 BUG_ON(parent_rate
> (u64
)LONG_MAX
);
763 * If there is a pre-divider, divide the scaled parent rate
764 * by the pre-divider value first. In this case--to improve
765 * accuracy--scale the parent rate by *both* the pre-divider
766 * value and the divider before actually computing the
767 * result of the pre-divider.
769 * If there's only one divider, just scale the parent rate.
771 * For simplicity we treat the pre-divider as fixed (for now).
773 if (divider_exists(pre_div
)) {
777 scaled_rate
= scale_rate(pre_div
, parent_rate
);
778 scaled_rate
= scale_rate(div
, scaled_rate
);
779 scaled_pre_div
= divider_read_scaled(ccu
, pre_div
);
780 scaled_parent_rate
= DIV_ROUND_CLOSEST_ULL(scaled_rate
,
783 scaled_parent_rate
= scale_rate(div
, parent_rate
);
787 * Compute the best possible divider and ensure it is in
788 * range. A fixed divider can't be changed, so just report
789 * the best we can do.
791 if (!divider_is_fixed(div
)) {
792 best_scaled_div
= DIV_ROUND_CLOSEST_ULL(scaled_parent_rate
,
794 min_scaled_div
= scaled_div_min(div
);
795 max_scaled_div
= scaled_div_max(div
);
796 if (best_scaled_div
> max_scaled_div
)
797 best_scaled_div
= max_scaled_div
;
798 else if (best_scaled_div
< min_scaled_div
)
799 best_scaled_div
= min_scaled_div
;
801 best_scaled_div
= divider_read_scaled(ccu
, div
);
804 /* OK, figure out the resulting rate */
805 result
= DIV_ROUND_CLOSEST_ULL(scaled_parent_rate
, best_scaled_div
);
808 *scaled_div
= best_scaled_div
;
813 /* Common clock parent helpers */
816 * For a given parent selector (register field) value, find the
817 * index into a selector's parent_sel array that contains it.
818 * Returns the index, or BAD_CLK_INDEX if it's not found.
820 static u8
parent_index(struct bcm_clk_sel
*sel
, u8 parent_sel
)
824 BUG_ON(sel
->parent_count
> (u32
)U8_MAX
);
825 for (i
= 0; i
< sel
->parent_count
; i
++)
826 if (sel
->parent_sel
[i
] == parent_sel
)
828 return BAD_CLK_INDEX
;
832 * Fetch the current value of the selector, and translate that into
833 * its corresponding index in the parent array we registered with
834 * the clock framework.
836 * Returns parent array index that corresponds with the value found,
837 * or BAD_CLK_INDEX if the found value is out of range.
839 static u8
selector_read_index(struct ccu_data
*ccu
, struct bcm_clk_sel
*sel
)
846 /* If there's no selector, there's only one parent */
847 if (!selector_exists(sel
))
850 /* Get the value in the selector register */
851 flags
= ccu_lock(ccu
);
852 reg_val
= __ccu_read(ccu
, sel
->offset
);
853 ccu_unlock(ccu
, flags
);
855 parent_sel
= bitfield_extract(reg_val
, sel
->shift
, sel
->width
);
857 /* Look up that selector's parent array index and return it */
858 index
= parent_index(sel
, parent_sel
);
859 if (index
== BAD_CLK_INDEX
)
860 pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
861 __func__
, parent_sel
, ccu
->name
, sel
->offset
);
867 * Commit our desired selector value to the hardware.
869 * Returns 0 on success. Returns -EINVAL for invalid arguments.
870 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
873 __sel_commit(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
,
874 struct bcm_clk_sel
*sel
, struct bcm_clk_trig
*trig
)
881 BUG_ON(!selector_exists(sel
));
884 * If we're just initializing the selector, and no initial
885 * state was defined in the device tree, we just find out
886 * what its current value is rather than updating it.
888 if (sel
->clk_index
== BAD_CLK_INDEX
) {
891 reg_val
= __ccu_read(ccu
, sel
->offset
);
892 parent_sel
= bitfield_extract(reg_val
, sel
->shift
, sel
->width
);
893 index
= parent_index(sel
, parent_sel
);
894 if (index
== BAD_CLK_INDEX
)
896 sel
->clk_index
= index
;
901 BUG_ON((u32
)sel
->clk_index
>= sel
->parent_count
);
902 parent_sel
= sel
->parent_sel
[sel
->clk_index
];
904 /* Clock needs to be enabled before changing the parent */
905 enabled
= __is_clk_gate_enabled(ccu
, gate
);
906 if (!enabled
&& !__clk_gate(ccu
, gate
, true))
909 /* Replace the selector value and record the result */
910 reg_val
= __ccu_read(ccu
, sel
->offset
);
911 reg_val
= bitfield_replace(reg_val
, sel
->shift
, sel
->width
, parent_sel
);
912 __ccu_write(ccu
, sel
->offset
, reg_val
);
914 /* If the trigger fails we still want to disable the gate */
915 if (!__clk_trigger(ccu
, trig
))
918 /* Disable the clock again if it was disabled to begin with */
919 if (!enabled
&& !__clk_gate(ccu
, gate
, false))
920 ret
= ret
? ret
: -ENXIO
; /* return first error */
926 * Initialize a selector by committing our desired state to hardware
927 * without the usual checks to see if it's already set up that way.
928 * Returns true if successful, false otherwise.
930 static bool sel_init(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
,
931 struct bcm_clk_sel
*sel
, struct bcm_clk_trig
*trig
)
933 if (!selector_exists(sel
))
935 return !__sel_commit(ccu
, gate
, sel
, trig
);
939 * Write a new value into a selector register to switch to a
940 * different parent clock. Returns 0 on success, or an error code
941 * (from __sel_commit()) otherwise.
943 static int selector_write(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
,
944 struct bcm_clk_sel
*sel
, struct bcm_clk_trig
*trig
,
951 previous
= sel
->clk_index
;
952 if (previous
== index
)
953 return 0; /* No change */
955 sel
->clk_index
= index
;
957 flags
= ccu_lock(ccu
);
958 __ccu_write_enable(ccu
);
960 ret
= __sel_commit(ccu
, gate
, sel
, trig
);
962 __ccu_write_disable(ccu
);
963 ccu_unlock(ccu
, flags
);
966 sel
->clk_index
= previous
; /* Revert the change */
971 /* Clock operations */
973 static int kona_peri_clk_enable(struct clk_hw
*hw
)
975 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
976 struct bcm_clk_gate
*gate
= &bcm_clk
->u
.peri
->gate
;
978 return clk_gate(bcm_clk
->ccu
, bcm_clk
->init_data
.name
, gate
, true);
981 static void kona_peri_clk_disable(struct clk_hw
*hw
)
983 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
984 struct bcm_clk_gate
*gate
= &bcm_clk
->u
.peri
->gate
;
986 (void)clk_gate(bcm_clk
->ccu
, bcm_clk
->init_data
.name
, gate
, false);
989 static int kona_peri_clk_is_enabled(struct clk_hw
*hw
)
991 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
992 struct bcm_clk_gate
*gate
= &bcm_clk
->u
.peri
->gate
;
994 return is_clk_gate_enabled(bcm_clk
->ccu
, gate
) ? 1 : 0;
997 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw
*hw
,
998 unsigned long parent_rate
)
1000 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
1001 struct peri_clk_data
*data
= bcm_clk
->u
.peri
;
1003 return clk_recalc_rate(bcm_clk
->ccu
, &data
->div
, &data
->pre_div
,
1007 static long kona_peri_clk_round_rate(struct clk_hw
*hw
, unsigned long rate
,
1008 unsigned long *parent_rate
)
1010 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
1011 struct bcm_clk_div
*div
= &bcm_clk
->u
.peri
->div
;
1013 if (!divider_exists(div
))
1014 return clk_hw_get_rate(hw
);
1016 /* Quietly avoid a zero rate */
1017 return round_rate(bcm_clk
->ccu
, div
, &bcm_clk
->u
.peri
->pre_div
,
1018 rate
? rate
: 1, *parent_rate
, NULL
);
1021 static int kona_peri_clk_determine_rate(struct clk_hw
*hw
,
1022 struct clk_rate_request
*req
)
1024 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
1025 struct clk_hw
*current_parent
;
1026 unsigned long parent_rate
;
1027 unsigned long best_delta
;
1028 unsigned long best_rate
;
1034 * If there is no other parent to choose, use the current one.
1035 * Note: We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1037 WARN_ON_ONCE(bcm_clk
->init_data
.flags
& CLK_SET_RATE_NO_REPARENT
);
1038 parent_count
= (u32
)bcm_clk
->init_data
.num_parents
;
1039 if (parent_count
< 2) {
1040 rate
= kona_peri_clk_round_rate(hw
, req
->rate
,
1041 &req
->best_parent_rate
);
1049 /* Unless we can do better, stick with current parent */
1050 current_parent
= clk_hw_get_parent(hw
);
1051 parent_rate
= clk_hw_get_rate(current_parent
);
1052 best_rate
= kona_peri_clk_round_rate(hw
, req
->rate
, &parent_rate
);
1053 best_delta
= abs(best_rate
- req
->rate
);
1055 /* Check whether any other parent clock can produce a better result */
1056 for (which
= 0; which
< parent_count
; which
++) {
1057 struct clk_hw
*parent
= clk_hw_get_parent_by_index(hw
, which
);
1058 unsigned long delta
;
1059 unsigned long other_rate
;
1062 if (parent
== current_parent
)
1065 /* We don't support CLK_SET_RATE_PARENT */
1066 parent_rate
= clk_hw_get_rate(parent
);
1067 other_rate
= kona_peri_clk_round_rate(hw
, req
->rate
,
1069 delta
= abs(other_rate
- req
->rate
);
1070 if (delta
< best_delta
) {
1072 best_rate
= other_rate
;
1073 req
->best_parent_hw
= parent
;
1074 req
->best_parent_rate
= parent_rate
;
1078 req
->rate
= best_rate
;
1082 static int kona_peri_clk_set_parent(struct clk_hw
*hw
, u8 index
)
1084 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
1085 struct peri_clk_data
*data
= bcm_clk
->u
.peri
;
1086 struct bcm_clk_sel
*sel
= &data
->sel
;
1087 struct bcm_clk_trig
*trig
;
1090 BUG_ON(index
>= sel
->parent_count
);
1092 /* If there's only one parent we don't require a selector */
1093 if (!selector_exists(sel
))
1097 * The regular trigger is used by default, but if there's a
1098 * pre-trigger we want to use that instead.
1100 trig
= trigger_exists(&data
->pre_trig
) ? &data
->pre_trig
1103 ret
= selector_write(bcm_clk
->ccu
, &data
->gate
, sel
, trig
, index
);
1104 if (ret
== -ENXIO
) {
1105 pr_err("%s: gating failure for %s\n", __func__
,
1106 bcm_clk
->init_data
.name
);
1107 ret
= -EIO
; /* Don't proliferate weird errors */
1108 } else if (ret
== -EIO
) {
1109 pr_err("%s: %strigger failed for %s\n", __func__
,
1110 trig
== &data
->pre_trig
? "pre-" : "",
1111 bcm_clk
->init_data
.name
);
1117 static u8
kona_peri_clk_get_parent(struct clk_hw
*hw
)
1119 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
1120 struct peri_clk_data
*data
= bcm_clk
->u
.peri
;
1123 index
= selector_read_index(bcm_clk
->ccu
, &data
->sel
);
1125 /* Not all callers would handle an out-of-range value gracefully */
1126 return index
== BAD_CLK_INDEX
? 0 : index
;
1129 static int kona_peri_clk_set_rate(struct clk_hw
*hw
, unsigned long rate
,
1130 unsigned long parent_rate
)
1132 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
1133 struct peri_clk_data
*data
= bcm_clk
->u
.peri
;
1134 struct bcm_clk_div
*div
= &data
->div
;
1138 if (parent_rate
> (unsigned long)LONG_MAX
)
1141 if (rate
== clk_hw_get_rate(hw
))
1144 if (!divider_exists(div
))
1145 return rate
== parent_rate
? 0 : -EINVAL
;
1148 * A fixed divider can't be changed. (Nor can a fixed
1149 * pre-divider be, but for now we never actually try to
1150 * change that.) Tolerate a request for a no-op change.
1152 if (divider_is_fixed(&data
->div
))
1153 return rate
== parent_rate
? 0 : -EINVAL
;
1156 * Get the scaled divisor value needed to achieve a clock
1157 * rate as close as possible to what was requested, given
1158 * the parent clock rate supplied.
1160 (void)round_rate(bcm_clk
->ccu
, div
, &data
->pre_div
,
1161 rate
? rate
: 1, parent_rate
, &scaled_div
);
1164 * We aren't updating any pre-divider at this point, so
1165 * we'll use the regular trigger.
1167 ret
= divider_write(bcm_clk
->ccu
, &data
->gate
, &data
->div
,
1168 &data
->trig
, scaled_div
);
1169 if (ret
== -ENXIO
) {
1170 pr_err("%s: gating failure for %s\n", __func__
,
1171 bcm_clk
->init_data
.name
);
1172 ret
= -EIO
; /* Don't proliferate weird errors */
1173 } else if (ret
== -EIO
) {
1174 pr_err("%s: trigger failed for %s\n", __func__
,
1175 bcm_clk
->init_data
.name
);
1181 struct clk_ops kona_peri_clk_ops
= {
1182 .enable
= kona_peri_clk_enable
,
1183 .disable
= kona_peri_clk_disable
,
1184 .is_enabled
= kona_peri_clk_is_enabled
,
1185 .recalc_rate
= kona_peri_clk_recalc_rate
,
1186 .determine_rate
= kona_peri_clk_determine_rate
,
1187 .set_parent
= kona_peri_clk_set_parent
,
1188 .get_parent
= kona_peri_clk_get_parent
,
1189 .set_rate
= kona_peri_clk_set_rate
,
1192 /* Put a peripheral clock into its initial state */
1193 static bool __peri_clk_init(struct kona_clk
*bcm_clk
)
1195 struct ccu_data
*ccu
= bcm_clk
->ccu
;
1196 struct peri_clk_data
*peri
= bcm_clk
->u
.peri
;
1197 const char *name
= bcm_clk
->init_data
.name
;
1198 struct bcm_clk_trig
*trig
;
1200 BUG_ON(bcm_clk
->type
!= bcm_clk_peri
);
1202 if (!policy_init(ccu
, &peri
->policy
)) {
1203 pr_err("%s: error initializing policy for %s\n",
1207 if (!gate_init(ccu
, &peri
->gate
)) {
1208 pr_err("%s: error initializing gate for %s\n", __func__
, name
);
1211 if (!hyst_init(ccu
, &peri
->hyst
)) {
1212 pr_err("%s: error initializing hyst for %s\n", __func__
, name
);
1215 if (!div_init(ccu
, &peri
->gate
, &peri
->div
, &peri
->trig
)) {
1216 pr_err("%s: error initializing divider for %s\n", __func__
,
1222 * For the pre-divider and selector, the pre-trigger is used
1223 * if it's present, otherwise we just use the regular trigger.
1225 trig
= trigger_exists(&peri
->pre_trig
) ? &peri
->pre_trig
1228 if (!div_init(ccu
, &peri
->gate
, &peri
->pre_div
, trig
)) {
1229 pr_err("%s: error initializing pre-divider for %s\n", __func__
,
1234 if (!sel_init(ccu
, &peri
->gate
, &peri
->sel
, trig
)) {
1235 pr_err("%s: error initializing selector for %s\n", __func__
,
1243 static bool __kona_clk_init(struct kona_clk
*bcm_clk
)
1245 switch (bcm_clk
->type
) {
1247 return __peri_clk_init(bcm_clk
);
1254 /* Set a CCU and all its clocks into their desired initial state */
1255 bool __init
kona_ccu_init(struct ccu_data
*ccu
)
1257 unsigned long flags
;
1259 struct kona_clk
*kona_clks
= ccu
->kona_clks
;
1260 bool success
= true;
1262 flags
= ccu_lock(ccu
);
1263 __ccu_write_enable(ccu
);
1265 for (which
= 0; which
< ccu
->clk_num
; which
++) {
1266 struct kona_clk
*bcm_clk
= &kona_clks
[which
];
1271 success
&= __kona_clk_init(bcm_clk
);
1274 __ccu_write_disable(ccu
);
1275 ccu_unlock(ccu
, flags
);