2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
75 * Add isolated pages on the list back to the LRU under page lock
76 * to avoid leaking evictable pages back onto unevictable list.
78 void putback_lru_pages(struct list_head
*l
)
83 list_for_each_entry_safe(page
, page2
, l
, lru
) {
85 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
86 page_is_file_cache(page
));
87 putback_lru_page(page
);
92 * Put previously isolated pages back onto the appropriate lists
93 * from where they were once taken off for compaction/migration.
95 * This function shall be used instead of putback_lru_pages(),
96 * whenever the isolated pageset has been built by isolate_migratepages_range()
98 void putback_movable_pages(struct list_head
*l
)
103 list_for_each_entry_safe(page
, page2
, l
, lru
) {
104 if (unlikely(PageHuge(page
))) {
105 putback_active_hugepage(page
);
108 list_del(&page
->lru
);
109 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
110 page_is_file_cache(page
));
111 if (unlikely(isolated_balloon_page(page
)))
112 balloon_page_putback(page
);
114 putback_lru_page(page
);
119 * Restore a potential migration pte to a working pte entry
121 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
122 unsigned long addr
, void *old
)
124 struct mm_struct
*mm
= vma
->vm_mm
;
130 if (unlikely(PageHuge(new))) {
131 ptep
= huge_pte_offset(mm
, addr
);
134 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, ptep
);
136 pmd
= mm_find_pmd(mm
, addr
);
139 if (pmd_trans_huge(*pmd
))
142 ptep
= pte_offset_map(pmd
, addr
);
145 * Peek to check is_swap_pte() before taking ptlock? No, we
146 * can race mremap's move_ptes(), which skips anon_vma lock.
149 ptl
= pte_lockptr(mm
, pmd
);
154 if (!is_swap_pte(pte
))
157 entry
= pte_to_swp_entry(pte
);
159 if (!is_migration_entry(entry
) ||
160 migration_entry_to_page(entry
) != old
)
164 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
165 if (pte_swp_soft_dirty(*ptep
))
166 pte
= pte_mksoft_dirty(pte
);
167 if (is_write_migration_entry(entry
))
168 pte
= pte_mkwrite(pte
);
169 #ifdef CONFIG_HUGETLB_PAGE
171 pte
= pte_mkhuge(pte
);
172 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
175 flush_dcache_page(new);
176 set_pte_at(mm
, addr
, ptep
, pte
);
180 hugepage_add_anon_rmap(new, vma
, addr
);
183 } else if (PageAnon(new))
184 page_add_anon_rmap(new, vma
, addr
);
186 page_add_file_rmap(new);
188 /* No need to invalidate - it was non-present before */
189 update_mmu_cache(vma
, addr
, ptep
);
191 pte_unmap_unlock(ptep
, ptl
);
197 * Get rid of all migration entries and replace them by
198 * references to the indicated page.
200 static void remove_migration_ptes(struct page
*old
, struct page
*new)
202 rmap_walk(new, remove_migration_pte
, old
);
206 * Something used the pte of a page under migration. We need to
207 * get to the page and wait until migration is finished.
208 * When we return from this function the fault will be retried.
210 static void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
219 if (!is_swap_pte(pte
))
222 entry
= pte_to_swp_entry(pte
);
223 if (!is_migration_entry(entry
))
226 page
= migration_entry_to_page(entry
);
229 * Once radix-tree replacement of page migration started, page_count
230 * *must* be zero. And, we don't want to call wait_on_page_locked()
231 * against a page without get_page().
232 * So, we use get_page_unless_zero(), here. Even failed, page fault
235 if (!get_page_unless_zero(page
))
237 pte_unmap_unlock(ptep
, ptl
);
238 wait_on_page_locked(page
);
242 pte_unmap_unlock(ptep
, ptl
);
245 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
246 unsigned long address
)
248 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
249 pte_t
*ptep
= pte_offset_map(pmd
, address
);
250 __migration_entry_wait(mm
, ptep
, ptl
);
253 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
254 struct mm_struct
*mm
, pte_t
*pte
)
256 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
257 __migration_entry_wait(mm
, pte
, ptl
);
261 /* Returns true if all buffers are successfully locked */
262 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
263 enum migrate_mode mode
)
265 struct buffer_head
*bh
= head
;
267 /* Simple case, sync compaction */
268 if (mode
!= MIGRATE_ASYNC
) {
272 bh
= bh
->b_this_page
;
274 } while (bh
!= head
);
279 /* async case, we cannot block on lock_buffer so use trylock_buffer */
282 if (!trylock_buffer(bh
)) {
284 * We failed to lock the buffer and cannot stall in
285 * async migration. Release the taken locks
287 struct buffer_head
*failed_bh
= bh
;
290 while (bh
!= failed_bh
) {
293 bh
= bh
->b_this_page
;
298 bh
= bh
->b_this_page
;
299 } while (bh
!= head
);
303 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
304 enum migrate_mode mode
)
308 #endif /* CONFIG_BLOCK */
311 * Replace the page in the mapping.
313 * The number of remaining references must be:
314 * 1 for anonymous pages without a mapping
315 * 2 for pages with a mapping
316 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
318 int migrate_page_move_mapping(struct address_space
*mapping
,
319 struct page
*newpage
, struct page
*page
,
320 struct buffer_head
*head
, enum migrate_mode mode
,
323 int expected_count
= 1 + extra_count
;
327 /* Anonymous page without mapping */
328 if (page_count(page
) != expected_count
)
330 return MIGRATEPAGE_SUCCESS
;
333 spin_lock_irq(&mapping
->tree_lock
);
335 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
338 expected_count
+= 1 + page_has_private(page
);
339 if (page_count(page
) != expected_count
||
340 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
341 spin_unlock_irq(&mapping
->tree_lock
);
345 if (!page_freeze_refs(page
, expected_count
)) {
346 spin_unlock_irq(&mapping
->tree_lock
);
351 * In the async migration case of moving a page with buffers, lock the
352 * buffers using trylock before the mapping is moved. If the mapping
353 * was moved, we later failed to lock the buffers and could not move
354 * the mapping back due to an elevated page count, we would have to
355 * block waiting on other references to be dropped.
357 if (mode
== MIGRATE_ASYNC
&& head
&&
358 !buffer_migrate_lock_buffers(head
, mode
)) {
359 page_unfreeze_refs(page
, expected_count
);
360 spin_unlock_irq(&mapping
->tree_lock
);
365 * Now we know that no one else is looking at the page.
367 get_page(newpage
); /* add cache reference */
368 if (PageSwapCache(page
)) {
369 SetPageSwapCache(newpage
);
370 set_page_private(newpage
, page_private(page
));
373 radix_tree_replace_slot(pslot
, newpage
);
376 * Drop cache reference from old page by unfreezing
377 * to one less reference.
378 * We know this isn't the last reference.
380 page_unfreeze_refs(page
, expected_count
- 1);
383 * If moved to a different zone then also account
384 * the page for that zone. Other VM counters will be
385 * taken care of when we establish references to the
386 * new page and drop references to the old page.
388 * Note that anonymous pages are accounted for
389 * via NR_FILE_PAGES and NR_ANON_PAGES if they
390 * are mapped to swap space.
392 __dec_zone_page_state(page
, NR_FILE_PAGES
);
393 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
394 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
395 __dec_zone_page_state(page
, NR_SHMEM
);
396 __inc_zone_page_state(newpage
, NR_SHMEM
);
398 spin_unlock_irq(&mapping
->tree_lock
);
400 return MIGRATEPAGE_SUCCESS
;
404 * The expected number of remaining references is the same as that
405 * of migrate_page_move_mapping().
407 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
408 struct page
*newpage
, struct page
*page
)
414 if (page_count(page
) != 1)
416 return MIGRATEPAGE_SUCCESS
;
419 spin_lock_irq(&mapping
->tree_lock
);
421 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
424 expected_count
= 2 + page_has_private(page
);
425 if (page_count(page
) != expected_count
||
426 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
427 spin_unlock_irq(&mapping
->tree_lock
);
431 if (!page_freeze_refs(page
, expected_count
)) {
432 spin_unlock_irq(&mapping
->tree_lock
);
438 radix_tree_replace_slot(pslot
, newpage
);
440 page_unfreeze_refs(page
, expected_count
- 1);
442 spin_unlock_irq(&mapping
->tree_lock
);
443 return MIGRATEPAGE_SUCCESS
;
447 * Gigantic pages are so large that we do not guarantee that page++ pointer
448 * arithmetic will work across the entire page. We need something more
451 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
455 struct page
*dst_base
= dst
;
456 struct page
*src_base
= src
;
458 for (i
= 0; i
< nr_pages
; ) {
460 copy_highpage(dst
, src
);
463 dst
= mem_map_next(dst
, dst_base
, i
);
464 src
= mem_map_next(src
, src_base
, i
);
468 static void copy_huge_page(struct page
*dst
, struct page
*src
)
475 struct hstate
*h
= page_hstate(src
);
476 nr_pages
= pages_per_huge_page(h
);
478 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
479 __copy_gigantic_page(dst
, src
, nr_pages
);
484 BUG_ON(!PageTransHuge(src
));
485 nr_pages
= hpage_nr_pages(src
);
488 for (i
= 0; i
< nr_pages
; i
++) {
490 copy_highpage(dst
+ i
, src
+ i
);
495 * Copy the page to its new location
497 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
501 if (PageHuge(page
) || PageTransHuge(page
))
502 copy_huge_page(newpage
, page
);
504 copy_highpage(newpage
, page
);
507 SetPageError(newpage
);
508 if (PageReferenced(page
))
509 SetPageReferenced(newpage
);
510 if (PageUptodate(page
))
511 SetPageUptodate(newpage
);
512 if (TestClearPageActive(page
)) {
513 VM_BUG_ON(PageUnevictable(page
));
514 SetPageActive(newpage
);
515 } else if (TestClearPageUnevictable(page
))
516 SetPageUnevictable(newpage
);
517 if (PageChecked(page
))
518 SetPageChecked(newpage
);
519 if (PageMappedToDisk(page
))
520 SetPageMappedToDisk(newpage
);
522 if (PageDirty(page
)) {
523 clear_page_dirty_for_io(page
);
525 * Want to mark the page and the radix tree as dirty, and
526 * redo the accounting that clear_page_dirty_for_io undid,
527 * but we can't use set_page_dirty because that function
528 * is actually a signal that all of the page has become dirty.
529 * Whereas only part of our page may be dirty.
531 if (PageSwapBacked(page
))
532 SetPageDirty(newpage
);
534 __set_page_dirty_nobuffers(newpage
);
538 * Copy NUMA information to the new page, to prevent over-eager
539 * future migrations of this same page.
541 cpupid
= page_cpupid_xchg_last(page
, -1);
542 page_cpupid_xchg_last(newpage
, cpupid
);
544 mlock_migrate_page(newpage
, page
);
545 ksm_migrate_page(newpage
, page
);
547 * Please do not reorder this without considering how mm/ksm.c's
548 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
550 ClearPageSwapCache(page
);
551 ClearPagePrivate(page
);
552 set_page_private(page
, 0);
555 * If any waiters have accumulated on the new page then
558 if (PageWriteback(newpage
))
559 end_page_writeback(newpage
);
562 /************************************************************
563 * Migration functions
564 ***********************************************************/
566 /* Always fail migration. Used for mappings that are not movable */
567 int fail_migrate_page(struct address_space
*mapping
,
568 struct page
*newpage
, struct page
*page
)
572 EXPORT_SYMBOL(fail_migrate_page
);
575 * Common logic to directly migrate a single page suitable for
576 * pages that do not use PagePrivate/PagePrivate2.
578 * Pages are locked upon entry and exit.
580 int migrate_page(struct address_space
*mapping
,
581 struct page
*newpage
, struct page
*page
,
582 enum migrate_mode mode
)
586 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
588 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
590 if (rc
!= MIGRATEPAGE_SUCCESS
)
593 migrate_page_copy(newpage
, page
);
594 return MIGRATEPAGE_SUCCESS
;
596 EXPORT_SYMBOL(migrate_page
);
600 * Migration function for pages with buffers. This function can only be used
601 * if the underlying filesystem guarantees that no other references to "page"
604 int buffer_migrate_page(struct address_space
*mapping
,
605 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
607 struct buffer_head
*bh
, *head
;
610 if (!page_has_buffers(page
))
611 return migrate_page(mapping
, newpage
, page
, mode
);
613 head
= page_buffers(page
);
615 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
617 if (rc
!= MIGRATEPAGE_SUCCESS
)
621 * In the async case, migrate_page_move_mapping locked the buffers
622 * with an IRQ-safe spinlock held. In the sync case, the buffers
623 * need to be locked now
625 if (mode
!= MIGRATE_ASYNC
)
626 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
628 ClearPagePrivate(page
);
629 set_page_private(newpage
, page_private(page
));
630 set_page_private(page
, 0);
636 set_bh_page(bh
, newpage
, bh_offset(bh
));
637 bh
= bh
->b_this_page
;
639 } while (bh
!= head
);
641 SetPagePrivate(newpage
);
643 migrate_page_copy(newpage
, page
);
649 bh
= bh
->b_this_page
;
651 } while (bh
!= head
);
653 return MIGRATEPAGE_SUCCESS
;
655 EXPORT_SYMBOL(buffer_migrate_page
);
659 * Writeback a page to clean the dirty state
661 static int writeout(struct address_space
*mapping
, struct page
*page
)
663 struct writeback_control wbc
= {
664 .sync_mode
= WB_SYNC_NONE
,
667 .range_end
= LLONG_MAX
,
672 if (!mapping
->a_ops
->writepage
)
673 /* No write method for the address space */
676 if (!clear_page_dirty_for_io(page
))
677 /* Someone else already triggered a write */
681 * A dirty page may imply that the underlying filesystem has
682 * the page on some queue. So the page must be clean for
683 * migration. Writeout may mean we loose the lock and the
684 * page state is no longer what we checked for earlier.
685 * At this point we know that the migration attempt cannot
688 remove_migration_ptes(page
, page
);
690 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
692 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
693 /* unlocked. Relock */
696 return (rc
< 0) ? -EIO
: -EAGAIN
;
700 * Default handling if a filesystem does not provide a migration function.
702 static int fallback_migrate_page(struct address_space
*mapping
,
703 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
705 if (PageDirty(page
)) {
706 /* Only writeback pages in full synchronous migration */
707 if (mode
!= MIGRATE_SYNC
)
709 return writeout(mapping
, page
);
713 * Buffers may be managed in a filesystem specific way.
714 * We must have no buffers or drop them.
716 if (page_has_private(page
) &&
717 !try_to_release_page(page
, GFP_KERNEL
))
720 return migrate_page(mapping
, newpage
, page
, mode
);
724 * Move a page to a newly allocated page
725 * The page is locked and all ptes have been successfully removed.
727 * The new page will have replaced the old page if this function
732 * MIGRATEPAGE_SUCCESS - success
734 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
735 int remap_swapcache
, enum migrate_mode mode
)
737 struct address_space
*mapping
;
741 * Block others from accessing the page when we get around to
742 * establishing additional references. We are the only one
743 * holding a reference to the new page at this point.
745 if (!trylock_page(newpage
))
748 /* Prepare mapping for the new page.*/
749 newpage
->index
= page
->index
;
750 newpage
->mapping
= page
->mapping
;
751 if (PageSwapBacked(page
))
752 SetPageSwapBacked(newpage
);
754 mapping
= page_mapping(page
);
756 rc
= migrate_page(mapping
, newpage
, page
, mode
);
757 else if (mapping
->a_ops
->migratepage
)
759 * Most pages have a mapping and most filesystems provide a
760 * migratepage callback. Anonymous pages are part of swap
761 * space which also has its own migratepage callback. This
762 * is the most common path for page migration.
764 rc
= mapping
->a_ops
->migratepage(mapping
,
765 newpage
, page
, mode
);
767 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
769 if (rc
!= MIGRATEPAGE_SUCCESS
) {
770 newpage
->mapping
= NULL
;
773 remove_migration_ptes(page
, newpage
);
774 page
->mapping
= NULL
;
777 unlock_page(newpage
);
782 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
783 int force
, enum migrate_mode mode
)
786 int remap_swapcache
= 1;
787 struct mem_cgroup
*mem
;
788 struct anon_vma
*anon_vma
= NULL
;
790 if (!trylock_page(page
)) {
791 if (!force
|| mode
== MIGRATE_ASYNC
)
795 * It's not safe for direct compaction to call lock_page.
796 * For example, during page readahead pages are added locked
797 * to the LRU. Later, when the IO completes the pages are
798 * marked uptodate and unlocked. However, the queueing
799 * could be merging multiple pages for one bio (e.g.
800 * mpage_readpages). If an allocation happens for the
801 * second or third page, the process can end up locking
802 * the same page twice and deadlocking. Rather than
803 * trying to be clever about what pages can be locked,
804 * avoid the use of lock_page for direct compaction
807 if (current
->flags
& PF_MEMALLOC
)
813 /* charge against new page */
814 mem_cgroup_prepare_migration(page
, newpage
, &mem
);
816 if (PageWriteback(page
)) {
818 * Only in the case of a full synchronous migration is it
819 * necessary to wait for PageWriteback. In the async case,
820 * the retry loop is too short and in the sync-light case,
821 * the overhead of stalling is too much
823 if (mode
!= MIGRATE_SYNC
) {
829 wait_on_page_writeback(page
);
832 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
833 * we cannot notice that anon_vma is freed while we migrates a page.
834 * This get_anon_vma() delays freeing anon_vma pointer until the end
835 * of migration. File cache pages are no problem because of page_lock()
836 * File Caches may use write_page() or lock_page() in migration, then,
837 * just care Anon page here.
839 if (PageAnon(page
) && !PageKsm(page
)) {
841 * Only page_lock_anon_vma_read() understands the subtleties of
842 * getting a hold on an anon_vma from outside one of its mms.
844 anon_vma
= page_get_anon_vma(page
);
849 } else if (PageSwapCache(page
)) {
851 * We cannot be sure that the anon_vma of an unmapped
852 * swapcache page is safe to use because we don't
853 * know in advance if the VMA that this page belonged
854 * to still exists. If the VMA and others sharing the
855 * data have been freed, then the anon_vma could
856 * already be invalid.
858 * To avoid this possibility, swapcache pages get
859 * migrated but are not remapped when migration
868 if (unlikely(balloon_page_movable(page
))) {
870 * A ballooned page does not need any special attention from
871 * physical to virtual reverse mapping procedures.
872 * Skip any attempt to unmap PTEs or to remap swap cache,
873 * in order to avoid burning cycles at rmap level, and perform
874 * the page migration right away (proteced by page lock).
876 rc
= balloon_page_migrate(newpage
, page
, mode
);
881 * Corner case handling:
882 * 1. When a new swap-cache page is read into, it is added to the LRU
883 * and treated as swapcache but it has no rmap yet.
884 * Calling try_to_unmap() against a page->mapping==NULL page will
885 * trigger a BUG. So handle it here.
886 * 2. An orphaned page (see truncate_complete_page) might have
887 * fs-private metadata. The page can be picked up due to memory
888 * offlining. Everywhere else except page reclaim, the page is
889 * invisible to the vm, so the page can not be migrated. So try to
890 * free the metadata, so the page can be freed.
892 if (!page
->mapping
) {
893 VM_BUG_ON(PageAnon(page
));
894 if (page_has_private(page
)) {
895 try_to_free_buffers(page
);
901 /* Establish migration ptes or remove ptes */
902 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
905 if (!page_mapped(page
))
906 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
908 if (rc
&& remap_swapcache
)
909 remove_migration_ptes(page
, page
);
911 /* Drop an anon_vma reference if we took one */
913 put_anon_vma(anon_vma
);
916 mem_cgroup_end_migration(mem
, page
, newpage
,
917 (rc
== MIGRATEPAGE_SUCCESS
||
918 rc
== MIGRATEPAGE_BALLOON_SUCCESS
));
925 * Obtain the lock on page, remove all ptes and migrate the page
926 * to the newly allocated page in newpage.
928 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
929 struct page
*page
, int force
, enum migrate_mode mode
)
933 struct page
*newpage
= get_new_page(page
, private, &result
);
938 if (page_count(page
) == 1) {
939 /* page was freed from under us. So we are done. */
943 if (unlikely(PageTransHuge(page
)))
944 if (unlikely(split_huge_page(page
)))
947 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
949 if (unlikely(rc
== MIGRATEPAGE_BALLOON_SUCCESS
)) {
951 * A ballooned page has been migrated already.
952 * Now, it's the time to wrap-up counters,
953 * handle the page back to Buddy and return.
955 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
956 page_is_file_cache(page
));
957 balloon_page_free(page
);
958 return MIGRATEPAGE_SUCCESS
;
963 * A page that has been migrated has all references
964 * removed and will be freed. A page that has not been
965 * migrated will have kepts its references and be
968 list_del(&page
->lru
);
969 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
970 page_is_file_cache(page
));
971 putback_lru_page(page
);
974 * Move the new page to the LRU. If migration was not successful
975 * then this will free the page.
977 putback_lru_page(newpage
);
982 *result
= page_to_nid(newpage
);
988 * Counterpart of unmap_and_move_page() for hugepage migration.
990 * This function doesn't wait the completion of hugepage I/O
991 * because there is no race between I/O and migration for hugepage.
992 * Note that currently hugepage I/O occurs only in direct I/O
993 * where no lock is held and PG_writeback is irrelevant,
994 * and writeback status of all subpages are counted in the reference
995 * count of the head page (i.e. if all subpages of a 2MB hugepage are
996 * under direct I/O, the reference of the head page is 512 and a bit more.)
997 * This means that when we try to migrate hugepage whose subpages are
998 * doing direct I/O, some references remain after try_to_unmap() and
999 * hugepage migration fails without data corruption.
1001 * There is also no race when direct I/O is issued on the page under migration,
1002 * because then pte is replaced with migration swap entry and direct I/O code
1003 * will wait in the page fault for migration to complete.
1005 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1006 unsigned long private, struct page
*hpage
,
1007 int force
, enum migrate_mode mode
)
1011 struct page
*new_hpage
= get_new_page(hpage
, private, &result
);
1012 struct anon_vma
*anon_vma
= NULL
;
1015 * Movability of hugepages depends on architectures and hugepage size.
1016 * This check is necessary because some callers of hugepage migration
1017 * like soft offline and memory hotremove don't walk through page
1018 * tables or check whether the hugepage is pmd-based or not before
1019 * kicking migration.
1021 if (!hugepage_migration_support(page_hstate(hpage
)))
1029 if (!trylock_page(hpage
)) {
1030 if (!force
|| mode
!= MIGRATE_SYNC
)
1035 if (PageAnon(hpage
))
1036 anon_vma
= page_get_anon_vma(hpage
);
1038 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1040 if (!page_mapped(hpage
))
1041 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
1044 remove_migration_ptes(hpage
, hpage
);
1047 put_anon_vma(anon_vma
);
1050 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1055 putback_active_hugepage(hpage
);
1056 put_page(new_hpage
);
1061 *result
= page_to_nid(new_hpage
);
1067 * migrate_pages - migrate the pages specified in a list, to the free pages
1068 * supplied as the target for the page migration
1070 * @from: The list of pages to be migrated.
1071 * @get_new_page: The function used to allocate free pages to be used
1072 * as the target of the page migration.
1073 * @private: Private data to be passed on to get_new_page()
1074 * @mode: The migration mode that specifies the constraints for
1075 * page migration, if any.
1076 * @reason: The reason for page migration.
1078 * The function returns after 10 attempts or if no pages are movable any more
1079 * because the list has become empty or no retryable pages exist any more.
1080 * The caller should call putback_lru_pages() to return pages to the LRU
1081 * or free list only if ret != 0.
1083 * Returns the number of pages that were not migrated, or an error code.
1085 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1086 unsigned long private, enum migrate_mode mode
, int reason
)
1090 int nr_succeeded
= 0;
1094 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1098 current
->flags
|= PF_SWAPWRITE
;
1100 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1103 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1107 rc
= unmap_and_move_huge_page(get_new_page
,
1108 private, page
, pass
> 2, mode
);
1110 rc
= unmap_and_move(get_new_page
, private,
1111 page
, pass
> 2, mode
);
1119 case MIGRATEPAGE_SUCCESS
:
1123 /* Permanent failure */
1129 rc
= nr_failed
+ retry
;
1132 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1134 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1135 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1138 current
->flags
&= ~PF_SWAPWRITE
;
1145 * Move a list of individual pages
1147 struct page_to_node
{
1154 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1157 struct page_to_node
*pm
= (struct page_to_node
*)private;
1159 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1162 if (pm
->node
== MAX_NUMNODES
)
1165 *result
= &pm
->status
;
1168 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1171 return alloc_pages_exact_node(pm
->node
,
1172 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
1176 * Move a set of pages as indicated in the pm array. The addr
1177 * field must be set to the virtual address of the page to be moved
1178 * and the node number must contain a valid target node.
1179 * The pm array ends with node = MAX_NUMNODES.
1181 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1182 struct page_to_node
*pm
,
1186 struct page_to_node
*pp
;
1187 LIST_HEAD(pagelist
);
1189 down_read(&mm
->mmap_sem
);
1192 * Build a list of pages to migrate
1194 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1195 struct vm_area_struct
*vma
;
1199 vma
= find_vma(mm
, pp
->addr
);
1200 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1203 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1205 err
= PTR_ERR(page
);
1213 /* Use PageReserved to check for zero page */
1214 if (PageReserved(page
))
1218 err
= page_to_nid(page
);
1220 if (err
== pp
->node
)
1222 * Node already in the right place
1227 if (page_mapcount(page
) > 1 &&
1231 if (PageHuge(page
)) {
1232 isolate_huge_page(page
, &pagelist
);
1236 err
= isolate_lru_page(page
);
1238 list_add_tail(&page
->lru
, &pagelist
);
1239 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1240 page_is_file_cache(page
));
1244 * Either remove the duplicate refcount from
1245 * isolate_lru_page() or drop the page ref if it was
1254 if (!list_empty(&pagelist
)) {
1255 err
= migrate_pages(&pagelist
, new_page_node
,
1256 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1258 putback_movable_pages(&pagelist
);
1261 up_read(&mm
->mmap_sem
);
1266 * Migrate an array of page address onto an array of nodes and fill
1267 * the corresponding array of status.
1269 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1270 unsigned long nr_pages
,
1271 const void __user
* __user
*pages
,
1272 const int __user
*nodes
,
1273 int __user
*status
, int flags
)
1275 struct page_to_node
*pm
;
1276 unsigned long chunk_nr_pages
;
1277 unsigned long chunk_start
;
1281 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1288 * Store a chunk of page_to_node array in a page,
1289 * but keep the last one as a marker
1291 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1293 for (chunk_start
= 0;
1294 chunk_start
< nr_pages
;
1295 chunk_start
+= chunk_nr_pages
) {
1298 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1299 chunk_nr_pages
= nr_pages
- chunk_start
;
1301 /* fill the chunk pm with addrs and nodes from user-space */
1302 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1303 const void __user
*p
;
1307 if (get_user(p
, pages
+ j
+ chunk_start
))
1309 pm
[j
].addr
= (unsigned long) p
;
1311 if (get_user(node
, nodes
+ j
+ chunk_start
))
1315 if (node
< 0 || node
>= MAX_NUMNODES
)
1318 if (!node_state(node
, N_MEMORY
))
1322 if (!node_isset(node
, task_nodes
))
1328 /* End marker for this chunk */
1329 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1331 /* Migrate this chunk */
1332 err
= do_move_page_to_node_array(mm
, pm
,
1333 flags
& MPOL_MF_MOVE_ALL
);
1337 /* Return status information */
1338 for (j
= 0; j
< chunk_nr_pages
; j
++)
1339 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1347 free_page((unsigned long)pm
);
1353 * Determine the nodes of an array of pages and store it in an array of status.
1355 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1356 const void __user
**pages
, int *status
)
1360 down_read(&mm
->mmap_sem
);
1362 for (i
= 0; i
< nr_pages
; i
++) {
1363 unsigned long addr
= (unsigned long)(*pages
);
1364 struct vm_area_struct
*vma
;
1368 vma
= find_vma(mm
, addr
);
1369 if (!vma
|| addr
< vma
->vm_start
)
1372 page
= follow_page(vma
, addr
, 0);
1374 err
= PTR_ERR(page
);
1379 /* Use PageReserved to check for zero page */
1380 if (!page
|| PageReserved(page
))
1383 err
= page_to_nid(page
);
1391 up_read(&mm
->mmap_sem
);
1395 * Determine the nodes of a user array of pages and store it in
1396 * a user array of status.
1398 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1399 const void __user
* __user
*pages
,
1402 #define DO_PAGES_STAT_CHUNK_NR 16
1403 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1404 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1407 unsigned long chunk_nr
;
1409 chunk_nr
= nr_pages
;
1410 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1411 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1413 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1416 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1418 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1423 nr_pages
-= chunk_nr
;
1425 return nr_pages
? -EFAULT
: 0;
1429 * Move a list of pages in the address space of the currently executing
1432 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1433 const void __user
* __user
*, pages
,
1434 const int __user
*, nodes
,
1435 int __user
*, status
, int, flags
)
1437 const struct cred
*cred
= current_cred(), *tcred
;
1438 struct task_struct
*task
;
1439 struct mm_struct
*mm
;
1441 nodemask_t task_nodes
;
1444 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1447 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1450 /* Find the mm_struct */
1452 task
= pid
? find_task_by_vpid(pid
) : current
;
1457 get_task_struct(task
);
1460 * Check if this process has the right to modify the specified
1461 * process. The right exists if the process has administrative
1462 * capabilities, superuser privileges or the same
1463 * userid as the target process.
1465 tcred
= __task_cred(task
);
1466 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1467 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1468 !capable(CAP_SYS_NICE
)) {
1475 err
= security_task_movememory(task
);
1479 task_nodes
= cpuset_mems_allowed(task
);
1480 mm
= get_task_mm(task
);
1481 put_task_struct(task
);
1487 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1488 nodes
, status
, flags
);
1490 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1496 put_task_struct(task
);
1501 * Call migration functions in the vma_ops that may prepare
1502 * memory in a vm for migration. migration functions may perform
1503 * the migration for vmas that do not have an underlying page struct.
1505 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1506 const nodemask_t
*from
, unsigned long flags
)
1508 struct vm_area_struct
*vma
;
1511 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1512 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1513 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);
1521 #ifdef CONFIG_NUMA_BALANCING
1523 * Returns true if this is a safe migration target node for misplaced NUMA
1524 * pages. Currently it only checks the watermarks which crude
1526 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1527 unsigned long nr_migrate_pages
)
1530 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1531 struct zone
*zone
= pgdat
->node_zones
+ z
;
1533 if (!populated_zone(zone
))
1536 if (!zone_reclaimable(zone
))
1539 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1540 if (!zone_watermark_ok(zone
, 0,
1541 high_wmark_pages(zone
) +
1550 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1554 int nid
= (int) data
;
1555 struct page
*newpage
;
1557 newpage
= alloc_pages_exact_node(nid
,
1558 (GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
|
1559 __GFP_NOMEMALLOC
| __GFP_NORETRY
|
1563 page_cpupid_xchg_last(newpage
, page_cpupid_last(page
));
1569 * page migration rate limiting control.
1570 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1571 * window of time. Default here says do not migrate more than 1280M per second.
1572 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1573 * as it is faults that reset the window, pte updates will happen unconditionally
1574 * if there has not been a fault since @pteupdate_interval_millisecs after the
1575 * throttle window closed.
1577 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1578 static unsigned int pteupdate_interval_millisecs __read_mostly
= 1000;
1579 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1581 /* Returns true if NUMA migration is currently rate limited */
1582 bool migrate_ratelimited(int node
)
1584 pg_data_t
*pgdat
= NODE_DATA(node
);
1586 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
+
1587 msecs_to_jiffies(pteupdate_interval_millisecs
)))
1590 if (pgdat
->numabalancing_migrate_nr_pages
< ratelimit_pages
)
1596 /* Returns true if the node is migrate rate-limited after the update */
1597 bool numamigrate_update_ratelimit(pg_data_t
*pgdat
, unsigned long nr_pages
)
1599 bool rate_limited
= false;
1602 * Rate-limit the amount of data that is being migrated to a node.
1603 * Optimal placement is no good if the memory bus is saturated and
1604 * all the time is being spent migrating!
1606 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1607 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1608 pgdat
->numabalancing_migrate_nr_pages
= 0;
1609 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1610 msecs_to_jiffies(migrate_interval_millisecs
);
1612 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
)
1613 rate_limited
= true;
1615 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1616 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1618 return rate_limited
;
1621 int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1625 VM_BUG_ON(compound_order(page
) && !PageTransHuge(page
));
1627 /* Avoid migrating to a node that is nearly full */
1628 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1631 if (isolate_lru_page(page
))
1635 * migrate_misplaced_transhuge_page() skips page migration's usual
1636 * check on page_count(), so we must do it here, now that the page
1637 * has been isolated: a GUP pin, or any other pin, prevents migration.
1638 * The expected page count is 3: 1 for page's mapcount and 1 for the
1639 * caller's pin and 1 for the reference taken by isolate_lru_page().
1641 if (PageTransHuge(page
) && page_count(page
) != 3) {
1642 putback_lru_page(page
);
1646 page_lru
= page_is_file_cache(page
);
1647 mod_zone_page_state(page_zone(page
), NR_ISOLATED_ANON
+ page_lru
,
1648 hpage_nr_pages(page
));
1651 * Isolating the page has taken another reference, so the
1652 * caller's reference can be safely dropped without the page
1653 * disappearing underneath us during migration.
1659 bool pmd_trans_migrating(pmd_t pmd
)
1661 struct page
*page
= pmd_page(pmd
);
1662 return PageLocked(page
);
1665 void wait_migrate_huge_page(struct anon_vma
*anon_vma
, pmd_t
*pmd
)
1667 struct page
*page
= pmd_page(*pmd
);
1668 wait_on_page_locked(page
);
1672 * Attempt to migrate a misplaced page to the specified destination
1673 * node. Caller is expected to have an elevated reference count on
1674 * the page that will be dropped by this function before returning.
1676 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1679 pg_data_t
*pgdat
= NODE_DATA(node
);
1682 LIST_HEAD(migratepages
);
1685 * Don't migrate file pages that are mapped in multiple processes
1686 * with execute permissions as they are probably shared libraries.
1688 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1689 (vma
->vm_flags
& VM_EXEC
))
1693 * Rate-limit the amount of data that is being migrated to a node.
1694 * Optimal placement is no good if the memory bus is saturated and
1695 * all the time is being spent migrating!
1697 if (numamigrate_update_ratelimit(pgdat
, 1))
1700 isolated
= numamigrate_isolate_page(pgdat
, page
);
1704 list_add(&page
->lru
, &migratepages
);
1705 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1706 node
, MIGRATE_ASYNC
, MR_NUMA_MISPLACED
);
1708 putback_lru_pages(&migratepages
);
1711 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1712 BUG_ON(!list_empty(&migratepages
));
1719 #endif /* CONFIG_NUMA_BALANCING */
1721 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1723 * Migrates a THP to a given target node. page must be locked and is unlocked
1726 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1727 struct vm_area_struct
*vma
,
1728 pmd_t
*pmd
, pmd_t entry
,
1729 unsigned long address
,
1730 struct page
*page
, int node
)
1733 pg_data_t
*pgdat
= NODE_DATA(node
);
1735 struct page
*new_page
= NULL
;
1736 struct mem_cgroup
*memcg
= NULL
;
1737 int page_lru
= page_is_file_cache(page
);
1738 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
1739 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
1743 * Rate-limit the amount of data that is being migrated to a node.
1744 * Optimal placement is no good if the memory bus is saturated and
1745 * all the time is being spent migrating!
1747 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
1750 new_page
= alloc_pages_node(node
,
1751 (GFP_TRANSHUGE
| GFP_THISNODE
) & ~__GFP_WAIT
, HPAGE_PMD_ORDER
);
1755 page_cpupid_xchg_last(new_page
, page_cpupid_last(page
));
1757 isolated
= numamigrate_isolate_page(pgdat
, page
);
1763 if (mm_tlb_flush_pending(mm
))
1764 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1766 /* Prepare a page as a migration target */
1767 __set_page_locked(new_page
);
1768 SetPageSwapBacked(new_page
);
1770 /* anon mapping, we can simply copy page->mapping to the new page: */
1771 new_page
->mapping
= page
->mapping
;
1772 new_page
->index
= page
->index
;
1773 migrate_page_copy(new_page
, page
);
1774 WARN_ON(PageLRU(new_page
));
1776 /* Recheck the target PMD */
1777 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1778 ptl
= pmd_lock(mm
, pmd
);
1779 if (unlikely(!pmd_same(*pmd
, entry
) || page_count(page
) != 2)) {
1782 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1784 /* Reverse changes made by migrate_page_copy() */
1785 if (TestClearPageActive(new_page
))
1786 SetPageActive(page
);
1787 if (TestClearPageUnevictable(new_page
))
1788 SetPageUnevictable(page
);
1789 mlock_migrate_page(page
, new_page
);
1791 unlock_page(new_page
);
1792 put_page(new_page
); /* Free it */
1794 /* Retake the callers reference and putback on LRU */
1796 putback_lru_page(page
);
1797 mod_zone_page_state(page_zone(page
),
1798 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
1804 * Traditional migration needs to prepare the memcg charge
1805 * transaction early to prevent the old page from being
1806 * uncharged when installing migration entries. Here we can
1807 * save the potential rollback and start the charge transfer
1808 * only when migration is already known to end successfully.
1810 mem_cgroup_prepare_migration(page
, new_page
, &memcg
);
1813 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
1814 entry
= pmd_mkhuge(entry
);
1815 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1818 * Clear the old entry under pagetable lock and establish the new PTE.
1819 * Any parallel GUP will either observe the old page blocking on the
1820 * page lock, block on the page table lock or observe the new page.
1821 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1822 * guarantee the copy is visible before the pagetable update.
1824 flush_cache_range(vma
, mmun_start
, mmun_end
);
1825 page_add_new_anon_rmap(new_page
, vma
, mmun_start
);
1826 pmdp_clear_flush(vma
, mmun_start
, pmd
);
1827 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1828 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1829 update_mmu_cache_pmd(vma
, address
, &entry
);
1831 if (page_count(page
) != 2) {
1832 set_pmd_at(mm
, mmun_start
, pmd
, orig_entry
);
1833 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1834 update_mmu_cache_pmd(vma
, address
, &entry
);
1835 page_remove_rmap(new_page
);
1839 page_remove_rmap(page
);
1842 * Finish the charge transaction under the page table lock to
1843 * prevent split_huge_page() from dividing up the charge
1844 * before it's fully transferred to the new page.
1846 mem_cgroup_end_migration(memcg
, page
, new_page
, true);
1848 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1850 unlock_page(new_page
);
1852 put_page(page
); /* Drop the rmap reference */
1853 put_page(page
); /* Drop the LRU isolation reference */
1855 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
1856 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
1858 mod_zone_page_state(page_zone(page
),
1859 NR_ISOLATED_ANON
+ page_lru
,
1864 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1866 ptl
= pmd_lock(mm
, pmd
);
1867 if (pmd_same(*pmd
, entry
)) {
1868 entry
= pmd_mknonnuma(entry
);
1869 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1870 update_mmu_cache_pmd(vma
, address
, &entry
);
1879 #endif /* CONFIG_NUMA_BALANCING */
1881 #endif /* CONFIG_NUMA */