Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux/fpc-iii.git] / mm / migrate.c
blob9194375b230729fead356e8dd3c8f6bb951415ab
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
46 #include "internal.h"
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
61 lru_add_drain_all();
63 return 0;
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
69 lru_add_drain();
71 return 0;
75 * Add isolated pages on the list back to the LRU under page lock
76 * to avoid leaking evictable pages back onto unevictable list.
78 void putback_lru_pages(struct list_head *l)
80 struct page *page;
81 struct page *page2;
83 list_for_each_entry_safe(page, page2, l, lru) {
84 list_del(&page->lru);
85 dec_zone_page_state(page, NR_ISOLATED_ANON +
86 page_is_file_cache(page));
87 putback_lru_page(page);
92 * Put previously isolated pages back onto the appropriate lists
93 * from where they were once taken off for compaction/migration.
95 * This function shall be used instead of putback_lru_pages(),
96 * whenever the isolated pageset has been built by isolate_migratepages_range()
98 void putback_movable_pages(struct list_head *l)
100 struct page *page;
101 struct page *page2;
103 list_for_each_entry_safe(page, page2, l, lru) {
104 if (unlikely(PageHuge(page))) {
105 putback_active_hugepage(page);
106 continue;
108 list_del(&page->lru);
109 dec_zone_page_state(page, NR_ISOLATED_ANON +
110 page_is_file_cache(page));
111 if (unlikely(isolated_balloon_page(page)))
112 balloon_page_putback(page);
113 else
114 putback_lru_page(page);
119 * Restore a potential migration pte to a working pte entry
121 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
122 unsigned long addr, void *old)
124 struct mm_struct *mm = vma->vm_mm;
125 swp_entry_t entry;
126 pmd_t *pmd;
127 pte_t *ptep, pte;
128 spinlock_t *ptl;
130 if (unlikely(PageHuge(new))) {
131 ptep = huge_pte_offset(mm, addr);
132 if (!ptep)
133 goto out;
134 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
135 } else {
136 pmd = mm_find_pmd(mm, addr);
137 if (!pmd)
138 goto out;
139 if (pmd_trans_huge(*pmd))
140 goto out;
142 ptep = pte_offset_map(pmd, addr);
145 * Peek to check is_swap_pte() before taking ptlock? No, we
146 * can race mremap's move_ptes(), which skips anon_vma lock.
149 ptl = pte_lockptr(mm, pmd);
152 spin_lock(ptl);
153 pte = *ptep;
154 if (!is_swap_pte(pte))
155 goto unlock;
157 entry = pte_to_swp_entry(pte);
159 if (!is_migration_entry(entry) ||
160 migration_entry_to_page(entry) != old)
161 goto unlock;
163 get_page(new);
164 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
165 if (pte_swp_soft_dirty(*ptep))
166 pte = pte_mksoft_dirty(pte);
167 if (is_write_migration_entry(entry))
168 pte = pte_mkwrite(pte);
169 #ifdef CONFIG_HUGETLB_PAGE
170 if (PageHuge(new)) {
171 pte = pte_mkhuge(pte);
172 pte = arch_make_huge_pte(pte, vma, new, 0);
174 #endif
175 flush_dcache_page(new);
176 set_pte_at(mm, addr, ptep, pte);
178 if (PageHuge(new)) {
179 if (PageAnon(new))
180 hugepage_add_anon_rmap(new, vma, addr);
181 else
182 page_dup_rmap(new);
183 } else if (PageAnon(new))
184 page_add_anon_rmap(new, vma, addr);
185 else
186 page_add_file_rmap(new);
188 /* No need to invalidate - it was non-present before */
189 update_mmu_cache(vma, addr, ptep);
190 unlock:
191 pte_unmap_unlock(ptep, ptl);
192 out:
193 return SWAP_AGAIN;
197 * Get rid of all migration entries and replace them by
198 * references to the indicated page.
200 static void remove_migration_ptes(struct page *old, struct page *new)
202 rmap_walk(new, remove_migration_pte, old);
206 * Something used the pte of a page under migration. We need to
207 * get to the page and wait until migration is finished.
208 * When we return from this function the fault will be retried.
210 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
211 spinlock_t *ptl)
213 pte_t pte;
214 swp_entry_t entry;
215 struct page *page;
217 spin_lock(ptl);
218 pte = *ptep;
219 if (!is_swap_pte(pte))
220 goto out;
222 entry = pte_to_swp_entry(pte);
223 if (!is_migration_entry(entry))
224 goto out;
226 page = migration_entry_to_page(entry);
229 * Once radix-tree replacement of page migration started, page_count
230 * *must* be zero. And, we don't want to call wait_on_page_locked()
231 * against a page without get_page().
232 * So, we use get_page_unless_zero(), here. Even failed, page fault
233 * will occur again.
235 if (!get_page_unless_zero(page))
236 goto out;
237 pte_unmap_unlock(ptep, ptl);
238 wait_on_page_locked(page);
239 put_page(page);
240 return;
241 out:
242 pte_unmap_unlock(ptep, ptl);
245 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
246 unsigned long address)
248 spinlock_t *ptl = pte_lockptr(mm, pmd);
249 pte_t *ptep = pte_offset_map(pmd, address);
250 __migration_entry_wait(mm, ptep, ptl);
253 void migration_entry_wait_huge(struct vm_area_struct *vma,
254 struct mm_struct *mm, pte_t *pte)
256 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
257 __migration_entry_wait(mm, pte, ptl);
260 #ifdef CONFIG_BLOCK
261 /* Returns true if all buffers are successfully locked */
262 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
263 enum migrate_mode mode)
265 struct buffer_head *bh = head;
267 /* Simple case, sync compaction */
268 if (mode != MIGRATE_ASYNC) {
269 do {
270 get_bh(bh);
271 lock_buffer(bh);
272 bh = bh->b_this_page;
274 } while (bh != head);
276 return true;
279 /* async case, we cannot block on lock_buffer so use trylock_buffer */
280 do {
281 get_bh(bh);
282 if (!trylock_buffer(bh)) {
284 * We failed to lock the buffer and cannot stall in
285 * async migration. Release the taken locks
287 struct buffer_head *failed_bh = bh;
288 put_bh(failed_bh);
289 bh = head;
290 while (bh != failed_bh) {
291 unlock_buffer(bh);
292 put_bh(bh);
293 bh = bh->b_this_page;
295 return false;
298 bh = bh->b_this_page;
299 } while (bh != head);
300 return true;
302 #else
303 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
304 enum migrate_mode mode)
306 return true;
308 #endif /* CONFIG_BLOCK */
311 * Replace the page in the mapping.
313 * The number of remaining references must be:
314 * 1 for anonymous pages without a mapping
315 * 2 for pages with a mapping
316 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
318 int migrate_page_move_mapping(struct address_space *mapping,
319 struct page *newpage, struct page *page,
320 struct buffer_head *head, enum migrate_mode mode,
321 int extra_count)
323 int expected_count = 1 + extra_count;
324 void **pslot;
326 if (!mapping) {
327 /* Anonymous page without mapping */
328 if (page_count(page) != expected_count)
329 return -EAGAIN;
330 return MIGRATEPAGE_SUCCESS;
333 spin_lock_irq(&mapping->tree_lock);
335 pslot = radix_tree_lookup_slot(&mapping->page_tree,
336 page_index(page));
338 expected_count += 1 + page_has_private(page);
339 if (page_count(page) != expected_count ||
340 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
341 spin_unlock_irq(&mapping->tree_lock);
342 return -EAGAIN;
345 if (!page_freeze_refs(page, expected_count)) {
346 spin_unlock_irq(&mapping->tree_lock);
347 return -EAGAIN;
351 * In the async migration case of moving a page with buffers, lock the
352 * buffers using trylock before the mapping is moved. If the mapping
353 * was moved, we later failed to lock the buffers and could not move
354 * the mapping back due to an elevated page count, we would have to
355 * block waiting on other references to be dropped.
357 if (mode == MIGRATE_ASYNC && head &&
358 !buffer_migrate_lock_buffers(head, mode)) {
359 page_unfreeze_refs(page, expected_count);
360 spin_unlock_irq(&mapping->tree_lock);
361 return -EAGAIN;
365 * Now we know that no one else is looking at the page.
367 get_page(newpage); /* add cache reference */
368 if (PageSwapCache(page)) {
369 SetPageSwapCache(newpage);
370 set_page_private(newpage, page_private(page));
373 radix_tree_replace_slot(pslot, newpage);
376 * Drop cache reference from old page by unfreezing
377 * to one less reference.
378 * We know this isn't the last reference.
380 page_unfreeze_refs(page, expected_count - 1);
383 * If moved to a different zone then also account
384 * the page for that zone. Other VM counters will be
385 * taken care of when we establish references to the
386 * new page and drop references to the old page.
388 * Note that anonymous pages are accounted for
389 * via NR_FILE_PAGES and NR_ANON_PAGES if they
390 * are mapped to swap space.
392 __dec_zone_page_state(page, NR_FILE_PAGES);
393 __inc_zone_page_state(newpage, NR_FILE_PAGES);
394 if (!PageSwapCache(page) && PageSwapBacked(page)) {
395 __dec_zone_page_state(page, NR_SHMEM);
396 __inc_zone_page_state(newpage, NR_SHMEM);
398 spin_unlock_irq(&mapping->tree_lock);
400 return MIGRATEPAGE_SUCCESS;
404 * The expected number of remaining references is the same as that
405 * of migrate_page_move_mapping().
407 int migrate_huge_page_move_mapping(struct address_space *mapping,
408 struct page *newpage, struct page *page)
410 int expected_count;
411 void **pslot;
413 if (!mapping) {
414 if (page_count(page) != 1)
415 return -EAGAIN;
416 return MIGRATEPAGE_SUCCESS;
419 spin_lock_irq(&mapping->tree_lock);
421 pslot = radix_tree_lookup_slot(&mapping->page_tree,
422 page_index(page));
424 expected_count = 2 + page_has_private(page);
425 if (page_count(page) != expected_count ||
426 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
427 spin_unlock_irq(&mapping->tree_lock);
428 return -EAGAIN;
431 if (!page_freeze_refs(page, expected_count)) {
432 spin_unlock_irq(&mapping->tree_lock);
433 return -EAGAIN;
436 get_page(newpage);
438 radix_tree_replace_slot(pslot, newpage);
440 page_unfreeze_refs(page, expected_count - 1);
442 spin_unlock_irq(&mapping->tree_lock);
443 return MIGRATEPAGE_SUCCESS;
447 * Gigantic pages are so large that we do not guarantee that page++ pointer
448 * arithmetic will work across the entire page. We need something more
449 * specialized.
451 static void __copy_gigantic_page(struct page *dst, struct page *src,
452 int nr_pages)
454 int i;
455 struct page *dst_base = dst;
456 struct page *src_base = src;
458 for (i = 0; i < nr_pages; ) {
459 cond_resched();
460 copy_highpage(dst, src);
462 i++;
463 dst = mem_map_next(dst, dst_base, i);
464 src = mem_map_next(src, src_base, i);
468 static void copy_huge_page(struct page *dst, struct page *src)
470 int i;
471 int nr_pages;
473 if (PageHuge(src)) {
474 /* hugetlbfs page */
475 struct hstate *h = page_hstate(src);
476 nr_pages = pages_per_huge_page(h);
478 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
479 __copy_gigantic_page(dst, src, nr_pages);
480 return;
482 } else {
483 /* thp page */
484 BUG_ON(!PageTransHuge(src));
485 nr_pages = hpage_nr_pages(src);
488 for (i = 0; i < nr_pages; i++) {
489 cond_resched();
490 copy_highpage(dst + i, src + i);
495 * Copy the page to its new location
497 void migrate_page_copy(struct page *newpage, struct page *page)
499 int cpupid;
501 if (PageHuge(page) || PageTransHuge(page))
502 copy_huge_page(newpage, page);
503 else
504 copy_highpage(newpage, page);
506 if (PageError(page))
507 SetPageError(newpage);
508 if (PageReferenced(page))
509 SetPageReferenced(newpage);
510 if (PageUptodate(page))
511 SetPageUptodate(newpage);
512 if (TestClearPageActive(page)) {
513 VM_BUG_ON(PageUnevictable(page));
514 SetPageActive(newpage);
515 } else if (TestClearPageUnevictable(page))
516 SetPageUnevictable(newpage);
517 if (PageChecked(page))
518 SetPageChecked(newpage);
519 if (PageMappedToDisk(page))
520 SetPageMappedToDisk(newpage);
522 if (PageDirty(page)) {
523 clear_page_dirty_for_io(page);
525 * Want to mark the page and the radix tree as dirty, and
526 * redo the accounting that clear_page_dirty_for_io undid,
527 * but we can't use set_page_dirty because that function
528 * is actually a signal that all of the page has become dirty.
529 * Whereas only part of our page may be dirty.
531 if (PageSwapBacked(page))
532 SetPageDirty(newpage);
533 else
534 __set_page_dirty_nobuffers(newpage);
538 * Copy NUMA information to the new page, to prevent over-eager
539 * future migrations of this same page.
541 cpupid = page_cpupid_xchg_last(page, -1);
542 page_cpupid_xchg_last(newpage, cpupid);
544 mlock_migrate_page(newpage, page);
545 ksm_migrate_page(newpage, page);
547 * Please do not reorder this without considering how mm/ksm.c's
548 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
550 ClearPageSwapCache(page);
551 ClearPagePrivate(page);
552 set_page_private(page, 0);
555 * If any waiters have accumulated on the new page then
556 * wake them up.
558 if (PageWriteback(newpage))
559 end_page_writeback(newpage);
562 /************************************************************
563 * Migration functions
564 ***********************************************************/
566 /* Always fail migration. Used for mappings that are not movable */
567 int fail_migrate_page(struct address_space *mapping,
568 struct page *newpage, struct page *page)
570 return -EIO;
572 EXPORT_SYMBOL(fail_migrate_page);
575 * Common logic to directly migrate a single page suitable for
576 * pages that do not use PagePrivate/PagePrivate2.
578 * Pages are locked upon entry and exit.
580 int migrate_page(struct address_space *mapping,
581 struct page *newpage, struct page *page,
582 enum migrate_mode mode)
584 int rc;
586 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
588 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
590 if (rc != MIGRATEPAGE_SUCCESS)
591 return rc;
593 migrate_page_copy(newpage, page);
594 return MIGRATEPAGE_SUCCESS;
596 EXPORT_SYMBOL(migrate_page);
598 #ifdef CONFIG_BLOCK
600 * Migration function for pages with buffers. This function can only be used
601 * if the underlying filesystem guarantees that no other references to "page"
602 * exist.
604 int buffer_migrate_page(struct address_space *mapping,
605 struct page *newpage, struct page *page, enum migrate_mode mode)
607 struct buffer_head *bh, *head;
608 int rc;
610 if (!page_has_buffers(page))
611 return migrate_page(mapping, newpage, page, mode);
613 head = page_buffers(page);
615 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
617 if (rc != MIGRATEPAGE_SUCCESS)
618 return rc;
621 * In the async case, migrate_page_move_mapping locked the buffers
622 * with an IRQ-safe spinlock held. In the sync case, the buffers
623 * need to be locked now
625 if (mode != MIGRATE_ASYNC)
626 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
628 ClearPagePrivate(page);
629 set_page_private(newpage, page_private(page));
630 set_page_private(page, 0);
631 put_page(page);
632 get_page(newpage);
634 bh = head;
635 do {
636 set_bh_page(bh, newpage, bh_offset(bh));
637 bh = bh->b_this_page;
639 } while (bh != head);
641 SetPagePrivate(newpage);
643 migrate_page_copy(newpage, page);
645 bh = head;
646 do {
647 unlock_buffer(bh);
648 put_bh(bh);
649 bh = bh->b_this_page;
651 } while (bh != head);
653 return MIGRATEPAGE_SUCCESS;
655 EXPORT_SYMBOL(buffer_migrate_page);
656 #endif
659 * Writeback a page to clean the dirty state
661 static int writeout(struct address_space *mapping, struct page *page)
663 struct writeback_control wbc = {
664 .sync_mode = WB_SYNC_NONE,
665 .nr_to_write = 1,
666 .range_start = 0,
667 .range_end = LLONG_MAX,
668 .for_reclaim = 1
670 int rc;
672 if (!mapping->a_ops->writepage)
673 /* No write method for the address space */
674 return -EINVAL;
676 if (!clear_page_dirty_for_io(page))
677 /* Someone else already triggered a write */
678 return -EAGAIN;
681 * A dirty page may imply that the underlying filesystem has
682 * the page on some queue. So the page must be clean for
683 * migration. Writeout may mean we loose the lock and the
684 * page state is no longer what we checked for earlier.
685 * At this point we know that the migration attempt cannot
686 * be successful.
688 remove_migration_ptes(page, page);
690 rc = mapping->a_ops->writepage(page, &wbc);
692 if (rc != AOP_WRITEPAGE_ACTIVATE)
693 /* unlocked. Relock */
694 lock_page(page);
696 return (rc < 0) ? -EIO : -EAGAIN;
700 * Default handling if a filesystem does not provide a migration function.
702 static int fallback_migrate_page(struct address_space *mapping,
703 struct page *newpage, struct page *page, enum migrate_mode mode)
705 if (PageDirty(page)) {
706 /* Only writeback pages in full synchronous migration */
707 if (mode != MIGRATE_SYNC)
708 return -EBUSY;
709 return writeout(mapping, page);
713 * Buffers may be managed in a filesystem specific way.
714 * We must have no buffers or drop them.
716 if (page_has_private(page) &&
717 !try_to_release_page(page, GFP_KERNEL))
718 return -EAGAIN;
720 return migrate_page(mapping, newpage, page, mode);
724 * Move a page to a newly allocated page
725 * The page is locked and all ptes have been successfully removed.
727 * The new page will have replaced the old page if this function
728 * is successful.
730 * Return value:
731 * < 0 - error code
732 * MIGRATEPAGE_SUCCESS - success
734 static int move_to_new_page(struct page *newpage, struct page *page,
735 int remap_swapcache, enum migrate_mode mode)
737 struct address_space *mapping;
738 int rc;
741 * Block others from accessing the page when we get around to
742 * establishing additional references. We are the only one
743 * holding a reference to the new page at this point.
745 if (!trylock_page(newpage))
746 BUG();
748 /* Prepare mapping for the new page.*/
749 newpage->index = page->index;
750 newpage->mapping = page->mapping;
751 if (PageSwapBacked(page))
752 SetPageSwapBacked(newpage);
754 mapping = page_mapping(page);
755 if (!mapping)
756 rc = migrate_page(mapping, newpage, page, mode);
757 else if (mapping->a_ops->migratepage)
759 * Most pages have a mapping and most filesystems provide a
760 * migratepage callback. Anonymous pages are part of swap
761 * space which also has its own migratepage callback. This
762 * is the most common path for page migration.
764 rc = mapping->a_ops->migratepage(mapping,
765 newpage, page, mode);
766 else
767 rc = fallback_migrate_page(mapping, newpage, page, mode);
769 if (rc != MIGRATEPAGE_SUCCESS) {
770 newpage->mapping = NULL;
771 } else {
772 if (remap_swapcache)
773 remove_migration_ptes(page, newpage);
774 page->mapping = NULL;
777 unlock_page(newpage);
779 return rc;
782 static int __unmap_and_move(struct page *page, struct page *newpage,
783 int force, enum migrate_mode mode)
785 int rc = -EAGAIN;
786 int remap_swapcache = 1;
787 struct mem_cgroup *mem;
788 struct anon_vma *anon_vma = NULL;
790 if (!trylock_page(page)) {
791 if (!force || mode == MIGRATE_ASYNC)
792 goto out;
795 * It's not safe for direct compaction to call lock_page.
796 * For example, during page readahead pages are added locked
797 * to the LRU. Later, when the IO completes the pages are
798 * marked uptodate and unlocked. However, the queueing
799 * could be merging multiple pages for one bio (e.g.
800 * mpage_readpages). If an allocation happens for the
801 * second or third page, the process can end up locking
802 * the same page twice and deadlocking. Rather than
803 * trying to be clever about what pages can be locked,
804 * avoid the use of lock_page for direct compaction
805 * altogether.
807 if (current->flags & PF_MEMALLOC)
808 goto out;
810 lock_page(page);
813 /* charge against new page */
814 mem_cgroup_prepare_migration(page, newpage, &mem);
816 if (PageWriteback(page)) {
818 * Only in the case of a full synchronous migration is it
819 * necessary to wait for PageWriteback. In the async case,
820 * the retry loop is too short and in the sync-light case,
821 * the overhead of stalling is too much
823 if (mode != MIGRATE_SYNC) {
824 rc = -EBUSY;
825 goto uncharge;
827 if (!force)
828 goto uncharge;
829 wait_on_page_writeback(page);
832 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
833 * we cannot notice that anon_vma is freed while we migrates a page.
834 * This get_anon_vma() delays freeing anon_vma pointer until the end
835 * of migration. File cache pages are no problem because of page_lock()
836 * File Caches may use write_page() or lock_page() in migration, then,
837 * just care Anon page here.
839 if (PageAnon(page) && !PageKsm(page)) {
841 * Only page_lock_anon_vma_read() understands the subtleties of
842 * getting a hold on an anon_vma from outside one of its mms.
844 anon_vma = page_get_anon_vma(page);
845 if (anon_vma) {
847 * Anon page
849 } else if (PageSwapCache(page)) {
851 * We cannot be sure that the anon_vma of an unmapped
852 * swapcache page is safe to use because we don't
853 * know in advance if the VMA that this page belonged
854 * to still exists. If the VMA and others sharing the
855 * data have been freed, then the anon_vma could
856 * already be invalid.
858 * To avoid this possibility, swapcache pages get
859 * migrated but are not remapped when migration
860 * completes
862 remap_swapcache = 0;
863 } else {
864 goto uncharge;
868 if (unlikely(balloon_page_movable(page))) {
870 * A ballooned page does not need any special attention from
871 * physical to virtual reverse mapping procedures.
872 * Skip any attempt to unmap PTEs or to remap swap cache,
873 * in order to avoid burning cycles at rmap level, and perform
874 * the page migration right away (proteced by page lock).
876 rc = balloon_page_migrate(newpage, page, mode);
877 goto uncharge;
881 * Corner case handling:
882 * 1. When a new swap-cache page is read into, it is added to the LRU
883 * and treated as swapcache but it has no rmap yet.
884 * Calling try_to_unmap() against a page->mapping==NULL page will
885 * trigger a BUG. So handle it here.
886 * 2. An orphaned page (see truncate_complete_page) might have
887 * fs-private metadata. The page can be picked up due to memory
888 * offlining. Everywhere else except page reclaim, the page is
889 * invisible to the vm, so the page can not be migrated. So try to
890 * free the metadata, so the page can be freed.
892 if (!page->mapping) {
893 VM_BUG_ON(PageAnon(page));
894 if (page_has_private(page)) {
895 try_to_free_buffers(page);
896 goto uncharge;
898 goto skip_unmap;
901 /* Establish migration ptes or remove ptes */
902 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
904 skip_unmap:
905 if (!page_mapped(page))
906 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
908 if (rc && remap_swapcache)
909 remove_migration_ptes(page, page);
911 /* Drop an anon_vma reference if we took one */
912 if (anon_vma)
913 put_anon_vma(anon_vma);
915 uncharge:
916 mem_cgroup_end_migration(mem, page, newpage,
917 (rc == MIGRATEPAGE_SUCCESS ||
918 rc == MIGRATEPAGE_BALLOON_SUCCESS));
919 unlock_page(page);
920 out:
921 return rc;
925 * Obtain the lock on page, remove all ptes and migrate the page
926 * to the newly allocated page in newpage.
928 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
929 struct page *page, int force, enum migrate_mode mode)
931 int rc = 0;
932 int *result = NULL;
933 struct page *newpage = get_new_page(page, private, &result);
935 if (!newpage)
936 return -ENOMEM;
938 if (page_count(page) == 1) {
939 /* page was freed from under us. So we are done. */
940 goto out;
943 if (unlikely(PageTransHuge(page)))
944 if (unlikely(split_huge_page(page)))
945 goto out;
947 rc = __unmap_and_move(page, newpage, force, mode);
949 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
951 * A ballooned page has been migrated already.
952 * Now, it's the time to wrap-up counters,
953 * handle the page back to Buddy and return.
955 dec_zone_page_state(page, NR_ISOLATED_ANON +
956 page_is_file_cache(page));
957 balloon_page_free(page);
958 return MIGRATEPAGE_SUCCESS;
960 out:
961 if (rc != -EAGAIN) {
963 * A page that has been migrated has all references
964 * removed and will be freed. A page that has not been
965 * migrated will have kepts its references and be
966 * restored.
968 list_del(&page->lru);
969 dec_zone_page_state(page, NR_ISOLATED_ANON +
970 page_is_file_cache(page));
971 putback_lru_page(page);
974 * Move the new page to the LRU. If migration was not successful
975 * then this will free the page.
977 putback_lru_page(newpage);
978 if (result) {
979 if (rc)
980 *result = rc;
981 else
982 *result = page_to_nid(newpage);
984 return rc;
988 * Counterpart of unmap_and_move_page() for hugepage migration.
990 * This function doesn't wait the completion of hugepage I/O
991 * because there is no race between I/O and migration for hugepage.
992 * Note that currently hugepage I/O occurs only in direct I/O
993 * where no lock is held and PG_writeback is irrelevant,
994 * and writeback status of all subpages are counted in the reference
995 * count of the head page (i.e. if all subpages of a 2MB hugepage are
996 * under direct I/O, the reference of the head page is 512 and a bit more.)
997 * This means that when we try to migrate hugepage whose subpages are
998 * doing direct I/O, some references remain after try_to_unmap() and
999 * hugepage migration fails without data corruption.
1001 * There is also no race when direct I/O is issued on the page under migration,
1002 * because then pte is replaced with migration swap entry and direct I/O code
1003 * will wait in the page fault for migration to complete.
1005 static int unmap_and_move_huge_page(new_page_t get_new_page,
1006 unsigned long private, struct page *hpage,
1007 int force, enum migrate_mode mode)
1009 int rc = 0;
1010 int *result = NULL;
1011 struct page *new_hpage = get_new_page(hpage, private, &result);
1012 struct anon_vma *anon_vma = NULL;
1015 * Movability of hugepages depends on architectures and hugepage size.
1016 * This check is necessary because some callers of hugepage migration
1017 * like soft offline and memory hotremove don't walk through page
1018 * tables or check whether the hugepage is pmd-based or not before
1019 * kicking migration.
1021 if (!hugepage_migration_support(page_hstate(hpage)))
1022 return -ENOSYS;
1024 if (!new_hpage)
1025 return -ENOMEM;
1027 rc = -EAGAIN;
1029 if (!trylock_page(hpage)) {
1030 if (!force || mode != MIGRATE_SYNC)
1031 goto out;
1032 lock_page(hpage);
1035 if (PageAnon(hpage))
1036 anon_vma = page_get_anon_vma(hpage);
1038 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1040 if (!page_mapped(hpage))
1041 rc = move_to_new_page(new_hpage, hpage, 1, mode);
1043 if (rc)
1044 remove_migration_ptes(hpage, hpage);
1046 if (anon_vma)
1047 put_anon_vma(anon_vma);
1049 if (!rc)
1050 hugetlb_cgroup_migrate(hpage, new_hpage);
1052 unlock_page(hpage);
1053 out:
1054 if (rc != -EAGAIN)
1055 putback_active_hugepage(hpage);
1056 put_page(new_hpage);
1057 if (result) {
1058 if (rc)
1059 *result = rc;
1060 else
1061 *result = page_to_nid(new_hpage);
1063 return rc;
1067 * migrate_pages - migrate the pages specified in a list, to the free pages
1068 * supplied as the target for the page migration
1070 * @from: The list of pages to be migrated.
1071 * @get_new_page: The function used to allocate free pages to be used
1072 * as the target of the page migration.
1073 * @private: Private data to be passed on to get_new_page()
1074 * @mode: The migration mode that specifies the constraints for
1075 * page migration, if any.
1076 * @reason: The reason for page migration.
1078 * The function returns after 10 attempts or if no pages are movable any more
1079 * because the list has become empty or no retryable pages exist any more.
1080 * The caller should call putback_lru_pages() to return pages to the LRU
1081 * or free list only if ret != 0.
1083 * Returns the number of pages that were not migrated, or an error code.
1085 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1086 unsigned long private, enum migrate_mode mode, int reason)
1088 int retry = 1;
1089 int nr_failed = 0;
1090 int nr_succeeded = 0;
1091 int pass = 0;
1092 struct page *page;
1093 struct page *page2;
1094 int swapwrite = current->flags & PF_SWAPWRITE;
1095 int rc;
1097 if (!swapwrite)
1098 current->flags |= PF_SWAPWRITE;
1100 for(pass = 0; pass < 10 && retry; pass++) {
1101 retry = 0;
1103 list_for_each_entry_safe(page, page2, from, lru) {
1104 cond_resched();
1106 if (PageHuge(page))
1107 rc = unmap_and_move_huge_page(get_new_page,
1108 private, page, pass > 2, mode);
1109 else
1110 rc = unmap_and_move(get_new_page, private,
1111 page, pass > 2, mode);
1113 switch(rc) {
1114 case -ENOMEM:
1115 goto out;
1116 case -EAGAIN:
1117 retry++;
1118 break;
1119 case MIGRATEPAGE_SUCCESS:
1120 nr_succeeded++;
1121 break;
1122 default:
1123 /* Permanent failure */
1124 nr_failed++;
1125 break;
1129 rc = nr_failed + retry;
1130 out:
1131 if (nr_succeeded)
1132 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1133 if (nr_failed)
1134 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1135 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1137 if (!swapwrite)
1138 current->flags &= ~PF_SWAPWRITE;
1140 return rc;
1143 #ifdef CONFIG_NUMA
1145 * Move a list of individual pages
1147 struct page_to_node {
1148 unsigned long addr;
1149 struct page *page;
1150 int node;
1151 int status;
1154 static struct page *new_page_node(struct page *p, unsigned long private,
1155 int **result)
1157 struct page_to_node *pm = (struct page_to_node *)private;
1159 while (pm->node != MAX_NUMNODES && pm->page != p)
1160 pm++;
1162 if (pm->node == MAX_NUMNODES)
1163 return NULL;
1165 *result = &pm->status;
1167 if (PageHuge(p))
1168 return alloc_huge_page_node(page_hstate(compound_head(p)),
1169 pm->node);
1170 else
1171 return alloc_pages_exact_node(pm->node,
1172 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1176 * Move a set of pages as indicated in the pm array. The addr
1177 * field must be set to the virtual address of the page to be moved
1178 * and the node number must contain a valid target node.
1179 * The pm array ends with node = MAX_NUMNODES.
1181 static int do_move_page_to_node_array(struct mm_struct *mm,
1182 struct page_to_node *pm,
1183 int migrate_all)
1185 int err;
1186 struct page_to_node *pp;
1187 LIST_HEAD(pagelist);
1189 down_read(&mm->mmap_sem);
1192 * Build a list of pages to migrate
1194 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1195 struct vm_area_struct *vma;
1196 struct page *page;
1198 err = -EFAULT;
1199 vma = find_vma(mm, pp->addr);
1200 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1201 goto set_status;
1203 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1205 err = PTR_ERR(page);
1206 if (IS_ERR(page))
1207 goto set_status;
1209 err = -ENOENT;
1210 if (!page)
1211 goto set_status;
1213 /* Use PageReserved to check for zero page */
1214 if (PageReserved(page))
1215 goto put_and_set;
1217 pp->page = page;
1218 err = page_to_nid(page);
1220 if (err == pp->node)
1222 * Node already in the right place
1224 goto put_and_set;
1226 err = -EACCES;
1227 if (page_mapcount(page) > 1 &&
1228 !migrate_all)
1229 goto put_and_set;
1231 if (PageHuge(page)) {
1232 isolate_huge_page(page, &pagelist);
1233 goto put_and_set;
1236 err = isolate_lru_page(page);
1237 if (!err) {
1238 list_add_tail(&page->lru, &pagelist);
1239 inc_zone_page_state(page, NR_ISOLATED_ANON +
1240 page_is_file_cache(page));
1242 put_and_set:
1244 * Either remove the duplicate refcount from
1245 * isolate_lru_page() or drop the page ref if it was
1246 * not isolated.
1248 put_page(page);
1249 set_status:
1250 pp->status = err;
1253 err = 0;
1254 if (!list_empty(&pagelist)) {
1255 err = migrate_pages(&pagelist, new_page_node,
1256 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1257 if (err)
1258 putback_movable_pages(&pagelist);
1261 up_read(&mm->mmap_sem);
1262 return err;
1266 * Migrate an array of page address onto an array of nodes and fill
1267 * the corresponding array of status.
1269 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1270 unsigned long nr_pages,
1271 const void __user * __user *pages,
1272 const int __user *nodes,
1273 int __user *status, int flags)
1275 struct page_to_node *pm;
1276 unsigned long chunk_nr_pages;
1277 unsigned long chunk_start;
1278 int err;
1280 err = -ENOMEM;
1281 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1282 if (!pm)
1283 goto out;
1285 migrate_prep();
1288 * Store a chunk of page_to_node array in a page,
1289 * but keep the last one as a marker
1291 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1293 for (chunk_start = 0;
1294 chunk_start < nr_pages;
1295 chunk_start += chunk_nr_pages) {
1296 int j;
1298 if (chunk_start + chunk_nr_pages > nr_pages)
1299 chunk_nr_pages = nr_pages - chunk_start;
1301 /* fill the chunk pm with addrs and nodes from user-space */
1302 for (j = 0; j < chunk_nr_pages; j++) {
1303 const void __user *p;
1304 int node;
1306 err = -EFAULT;
1307 if (get_user(p, pages + j + chunk_start))
1308 goto out_pm;
1309 pm[j].addr = (unsigned long) p;
1311 if (get_user(node, nodes + j + chunk_start))
1312 goto out_pm;
1314 err = -ENODEV;
1315 if (node < 0 || node >= MAX_NUMNODES)
1316 goto out_pm;
1318 if (!node_state(node, N_MEMORY))
1319 goto out_pm;
1321 err = -EACCES;
1322 if (!node_isset(node, task_nodes))
1323 goto out_pm;
1325 pm[j].node = node;
1328 /* End marker for this chunk */
1329 pm[chunk_nr_pages].node = MAX_NUMNODES;
1331 /* Migrate this chunk */
1332 err = do_move_page_to_node_array(mm, pm,
1333 flags & MPOL_MF_MOVE_ALL);
1334 if (err < 0)
1335 goto out_pm;
1337 /* Return status information */
1338 for (j = 0; j < chunk_nr_pages; j++)
1339 if (put_user(pm[j].status, status + j + chunk_start)) {
1340 err = -EFAULT;
1341 goto out_pm;
1344 err = 0;
1346 out_pm:
1347 free_page((unsigned long)pm);
1348 out:
1349 return err;
1353 * Determine the nodes of an array of pages and store it in an array of status.
1355 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1356 const void __user **pages, int *status)
1358 unsigned long i;
1360 down_read(&mm->mmap_sem);
1362 for (i = 0; i < nr_pages; i++) {
1363 unsigned long addr = (unsigned long)(*pages);
1364 struct vm_area_struct *vma;
1365 struct page *page;
1366 int err = -EFAULT;
1368 vma = find_vma(mm, addr);
1369 if (!vma || addr < vma->vm_start)
1370 goto set_status;
1372 page = follow_page(vma, addr, 0);
1374 err = PTR_ERR(page);
1375 if (IS_ERR(page))
1376 goto set_status;
1378 err = -ENOENT;
1379 /* Use PageReserved to check for zero page */
1380 if (!page || PageReserved(page))
1381 goto set_status;
1383 err = page_to_nid(page);
1384 set_status:
1385 *status = err;
1387 pages++;
1388 status++;
1391 up_read(&mm->mmap_sem);
1395 * Determine the nodes of a user array of pages and store it in
1396 * a user array of status.
1398 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1399 const void __user * __user *pages,
1400 int __user *status)
1402 #define DO_PAGES_STAT_CHUNK_NR 16
1403 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1404 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1406 while (nr_pages) {
1407 unsigned long chunk_nr;
1409 chunk_nr = nr_pages;
1410 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1411 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1413 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1414 break;
1416 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1418 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1419 break;
1421 pages += chunk_nr;
1422 status += chunk_nr;
1423 nr_pages -= chunk_nr;
1425 return nr_pages ? -EFAULT : 0;
1429 * Move a list of pages in the address space of the currently executing
1430 * process.
1432 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1433 const void __user * __user *, pages,
1434 const int __user *, nodes,
1435 int __user *, status, int, flags)
1437 const struct cred *cred = current_cred(), *tcred;
1438 struct task_struct *task;
1439 struct mm_struct *mm;
1440 int err;
1441 nodemask_t task_nodes;
1443 /* Check flags */
1444 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1445 return -EINVAL;
1447 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1448 return -EPERM;
1450 /* Find the mm_struct */
1451 rcu_read_lock();
1452 task = pid ? find_task_by_vpid(pid) : current;
1453 if (!task) {
1454 rcu_read_unlock();
1455 return -ESRCH;
1457 get_task_struct(task);
1460 * Check if this process has the right to modify the specified
1461 * process. The right exists if the process has administrative
1462 * capabilities, superuser privileges or the same
1463 * userid as the target process.
1465 tcred = __task_cred(task);
1466 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1467 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1468 !capable(CAP_SYS_NICE)) {
1469 rcu_read_unlock();
1470 err = -EPERM;
1471 goto out;
1473 rcu_read_unlock();
1475 err = security_task_movememory(task);
1476 if (err)
1477 goto out;
1479 task_nodes = cpuset_mems_allowed(task);
1480 mm = get_task_mm(task);
1481 put_task_struct(task);
1483 if (!mm)
1484 return -EINVAL;
1486 if (nodes)
1487 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1488 nodes, status, flags);
1489 else
1490 err = do_pages_stat(mm, nr_pages, pages, status);
1492 mmput(mm);
1493 return err;
1495 out:
1496 put_task_struct(task);
1497 return err;
1501 * Call migration functions in the vma_ops that may prepare
1502 * memory in a vm for migration. migration functions may perform
1503 * the migration for vmas that do not have an underlying page struct.
1505 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1506 const nodemask_t *from, unsigned long flags)
1508 struct vm_area_struct *vma;
1509 int err = 0;
1511 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1512 if (vma->vm_ops && vma->vm_ops->migrate) {
1513 err = vma->vm_ops->migrate(vma, to, from, flags);
1514 if (err)
1515 break;
1518 return err;
1521 #ifdef CONFIG_NUMA_BALANCING
1523 * Returns true if this is a safe migration target node for misplaced NUMA
1524 * pages. Currently it only checks the watermarks which crude
1526 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1527 unsigned long nr_migrate_pages)
1529 int z;
1530 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1531 struct zone *zone = pgdat->node_zones + z;
1533 if (!populated_zone(zone))
1534 continue;
1536 if (!zone_reclaimable(zone))
1537 continue;
1539 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1540 if (!zone_watermark_ok(zone, 0,
1541 high_wmark_pages(zone) +
1542 nr_migrate_pages,
1543 0, 0))
1544 continue;
1545 return true;
1547 return false;
1550 static struct page *alloc_misplaced_dst_page(struct page *page,
1551 unsigned long data,
1552 int **result)
1554 int nid = (int) data;
1555 struct page *newpage;
1557 newpage = alloc_pages_exact_node(nid,
1558 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1559 __GFP_NOMEMALLOC | __GFP_NORETRY |
1560 __GFP_NOWARN) &
1561 ~GFP_IOFS, 0);
1562 if (newpage)
1563 page_cpupid_xchg_last(newpage, page_cpupid_last(page));
1565 return newpage;
1569 * page migration rate limiting control.
1570 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1571 * window of time. Default here says do not migrate more than 1280M per second.
1572 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1573 * as it is faults that reset the window, pte updates will happen unconditionally
1574 * if there has not been a fault since @pteupdate_interval_millisecs after the
1575 * throttle window closed.
1577 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1578 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1579 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1581 /* Returns true if NUMA migration is currently rate limited */
1582 bool migrate_ratelimited(int node)
1584 pg_data_t *pgdat = NODE_DATA(node);
1586 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1587 msecs_to_jiffies(pteupdate_interval_millisecs)))
1588 return false;
1590 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1591 return false;
1593 return true;
1596 /* Returns true if the node is migrate rate-limited after the update */
1597 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1599 bool rate_limited = false;
1602 * Rate-limit the amount of data that is being migrated to a node.
1603 * Optimal placement is no good if the memory bus is saturated and
1604 * all the time is being spent migrating!
1606 spin_lock(&pgdat->numabalancing_migrate_lock);
1607 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1608 pgdat->numabalancing_migrate_nr_pages = 0;
1609 pgdat->numabalancing_migrate_next_window = jiffies +
1610 msecs_to_jiffies(migrate_interval_millisecs);
1612 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1613 rate_limited = true;
1614 else
1615 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1616 spin_unlock(&pgdat->numabalancing_migrate_lock);
1618 return rate_limited;
1621 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1623 int page_lru;
1625 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1627 /* Avoid migrating to a node that is nearly full */
1628 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1629 return 0;
1631 if (isolate_lru_page(page))
1632 return 0;
1635 * migrate_misplaced_transhuge_page() skips page migration's usual
1636 * check on page_count(), so we must do it here, now that the page
1637 * has been isolated: a GUP pin, or any other pin, prevents migration.
1638 * The expected page count is 3: 1 for page's mapcount and 1 for the
1639 * caller's pin and 1 for the reference taken by isolate_lru_page().
1641 if (PageTransHuge(page) && page_count(page) != 3) {
1642 putback_lru_page(page);
1643 return 0;
1646 page_lru = page_is_file_cache(page);
1647 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1648 hpage_nr_pages(page));
1651 * Isolating the page has taken another reference, so the
1652 * caller's reference can be safely dropped without the page
1653 * disappearing underneath us during migration.
1655 put_page(page);
1656 return 1;
1659 bool pmd_trans_migrating(pmd_t pmd)
1661 struct page *page = pmd_page(pmd);
1662 return PageLocked(page);
1665 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1667 struct page *page = pmd_page(*pmd);
1668 wait_on_page_locked(page);
1672 * Attempt to migrate a misplaced page to the specified destination
1673 * node. Caller is expected to have an elevated reference count on
1674 * the page that will be dropped by this function before returning.
1676 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1677 int node)
1679 pg_data_t *pgdat = NODE_DATA(node);
1680 int isolated;
1681 int nr_remaining;
1682 LIST_HEAD(migratepages);
1685 * Don't migrate file pages that are mapped in multiple processes
1686 * with execute permissions as they are probably shared libraries.
1688 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1689 (vma->vm_flags & VM_EXEC))
1690 goto out;
1693 * Rate-limit the amount of data that is being migrated to a node.
1694 * Optimal placement is no good if the memory bus is saturated and
1695 * all the time is being spent migrating!
1697 if (numamigrate_update_ratelimit(pgdat, 1))
1698 goto out;
1700 isolated = numamigrate_isolate_page(pgdat, page);
1701 if (!isolated)
1702 goto out;
1704 list_add(&page->lru, &migratepages);
1705 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1706 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1707 if (nr_remaining) {
1708 putback_lru_pages(&migratepages);
1709 isolated = 0;
1710 } else
1711 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1712 BUG_ON(!list_empty(&migratepages));
1713 return isolated;
1715 out:
1716 put_page(page);
1717 return 0;
1719 #endif /* CONFIG_NUMA_BALANCING */
1721 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1723 * Migrates a THP to a given target node. page must be locked and is unlocked
1724 * before returning.
1726 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1727 struct vm_area_struct *vma,
1728 pmd_t *pmd, pmd_t entry,
1729 unsigned long address,
1730 struct page *page, int node)
1732 spinlock_t *ptl;
1733 pg_data_t *pgdat = NODE_DATA(node);
1734 int isolated = 0;
1735 struct page *new_page = NULL;
1736 struct mem_cgroup *memcg = NULL;
1737 int page_lru = page_is_file_cache(page);
1738 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1739 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1740 pmd_t orig_entry;
1743 * Rate-limit the amount of data that is being migrated to a node.
1744 * Optimal placement is no good if the memory bus is saturated and
1745 * all the time is being spent migrating!
1747 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1748 goto out_dropref;
1750 new_page = alloc_pages_node(node,
1751 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1752 if (!new_page)
1753 goto out_fail;
1755 page_cpupid_xchg_last(new_page, page_cpupid_last(page));
1757 isolated = numamigrate_isolate_page(pgdat, page);
1758 if (!isolated) {
1759 put_page(new_page);
1760 goto out_fail;
1763 if (mm_tlb_flush_pending(mm))
1764 flush_tlb_range(vma, mmun_start, mmun_end);
1766 /* Prepare a page as a migration target */
1767 __set_page_locked(new_page);
1768 SetPageSwapBacked(new_page);
1770 /* anon mapping, we can simply copy page->mapping to the new page: */
1771 new_page->mapping = page->mapping;
1772 new_page->index = page->index;
1773 migrate_page_copy(new_page, page);
1774 WARN_ON(PageLRU(new_page));
1776 /* Recheck the target PMD */
1777 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1778 ptl = pmd_lock(mm, pmd);
1779 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1780 fail_putback:
1781 spin_unlock(ptl);
1782 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1784 /* Reverse changes made by migrate_page_copy() */
1785 if (TestClearPageActive(new_page))
1786 SetPageActive(page);
1787 if (TestClearPageUnevictable(new_page))
1788 SetPageUnevictable(page);
1789 mlock_migrate_page(page, new_page);
1791 unlock_page(new_page);
1792 put_page(new_page); /* Free it */
1794 /* Retake the callers reference and putback on LRU */
1795 get_page(page);
1796 putback_lru_page(page);
1797 mod_zone_page_state(page_zone(page),
1798 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1800 goto out_unlock;
1804 * Traditional migration needs to prepare the memcg charge
1805 * transaction early to prevent the old page from being
1806 * uncharged when installing migration entries. Here we can
1807 * save the potential rollback and start the charge transfer
1808 * only when migration is already known to end successfully.
1810 mem_cgroup_prepare_migration(page, new_page, &memcg);
1812 orig_entry = *pmd;
1813 entry = mk_pmd(new_page, vma->vm_page_prot);
1814 entry = pmd_mkhuge(entry);
1815 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1818 * Clear the old entry under pagetable lock and establish the new PTE.
1819 * Any parallel GUP will either observe the old page blocking on the
1820 * page lock, block on the page table lock or observe the new page.
1821 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1822 * guarantee the copy is visible before the pagetable update.
1824 flush_cache_range(vma, mmun_start, mmun_end);
1825 page_add_new_anon_rmap(new_page, vma, mmun_start);
1826 pmdp_clear_flush(vma, mmun_start, pmd);
1827 set_pmd_at(mm, mmun_start, pmd, entry);
1828 flush_tlb_range(vma, mmun_start, mmun_end);
1829 update_mmu_cache_pmd(vma, address, &entry);
1831 if (page_count(page) != 2) {
1832 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1833 flush_tlb_range(vma, mmun_start, mmun_end);
1834 update_mmu_cache_pmd(vma, address, &entry);
1835 page_remove_rmap(new_page);
1836 goto fail_putback;
1839 page_remove_rmap(page);
1842 * Finish the charge transaction under the page table lock to
1843 * prevent split_huge_page() from dividing up the charge
1844 * before it's fully transferred to the new page.
1846 mem_cgroup_end_migration(memcg, page, new_page, true);
1847 spin_unlock(ptl);
1848 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1850 unlock_page(new_page);
1851 unlock_page(page);
1852 put_page(page); /* Drop the rmap reference */
1853 put_page(page); /* Drop the LRU isolation reference */
1855 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1856 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1858 mod_zone_page_state(page_zone(page),
1859 NR_ISOLATED_ANON + page_lru,
1860 -HPAGE_PMD_NR);
1861 return isolated;
1863 out_fail:
1864 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1865 out_dropref:
1866 ptl = pmd_lock(mm, pmd);
1867 if (pmd_same(*pmd, entry)) {
1868 entry = pmd_mknonnuma(entry);
1869 set_pmd_at(mm, mmun_start, pmd, entry);
1870 update_mmu_cache_pmd(vma, address, &entry);
1872 spin_unlock(ptl);
1874 out_unlock:
1875 unlock_page(page);
1876 put_page(page);
1877 return 0;
1879 #endif /* CONFIG_NUMA_BALANCING */
1881 #endif /* CONFIG_NUMA */