4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
73 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
74 #include <asm/parisc-device.h>
77 #define PFX "ipmi_si: "
79 /* Measure times between events in the driver. */
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC 10000
84 #define SI_USEC_PER_JIFFY (1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
97 /* FIXME - add watchdog stuff. */
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
106 SI_KCS
, SI_SMIC
, SI_BT
108 static char *si_to_str
[] = { "kcs", "smic", "bt" };
110 #define DEVICE_NAME "ipmi_si"
112 static struct platform_driver ipmi_driver
;
115 * Indexes into stats[] in smi_info below.
117 enum si_stat_indexes
{
119 * Number of times the driver requested a timer while an operation
122 SI_STAT_short_timeouts
= 0,
125 * Number of times the driver requested a timer while nothing was in
128 SI_STAT_long_timeouts
,
130 /* Number of times the interface was idle while being polled. */
133 /* Number of interrupts the driver handled. */
136 /* Number of time the driver got an ATTN from the hardware. */
139 /* Number of times the driver requested flags from the hardware. */
140 SI_STAT_flag_fetches
,
142 /* Number of times the hardware didn't follow the state machine. */
145 /* Number of completed messages. */
146 SI_STAT_complete_transactions
,
148 /* Number of IPMI events received from the hardware. */
151 /* Number of watchdog pretimeouts. */
152 SI_STAT_watchdog_pretimeouts
,
154 /* Number of asynchronous messages received. */
155 SI_STAT_incoming_messages
,
158 /* This *must* remain last, add new values above this. */
165 struct si_sm_data
*si_sm
;
166 const struct si_sm_handlers
*handlers
;
167 enum si_type si_type
;
169 struct ipmi_smi_msg
*waiting_msg
;
170 struct ipmi_smi_msg
*curr_msg
;
171 enum si_intf_state si_state
;
174 * Used to handle the various types of I/O that can occur with
178 int (*io_setup
)(struct smi_info
*info
);
179 void (*io_cleanup
)(struct smi_info
*info
);
180 int (*irq_setup
)(struct smi_info
*info
);
181 void (*irq_cleanup
)(struct smi_info
*info
);
182 unsigned int io_size
;
183 enum ipmi_addr_src addr_source
; /* ACPI, PCI, SMBIOS, hardcode, etc. */
184 void (*addr_source_cleanup
)(struct smi_info
*info
);
185 void *addr_source_data
;
188 * Per-OEM handler, called from handle_flags(). Returns 1
189 * when handle_flags() needs to be re-run or 0 indicating it
190 * set si_state itself.
192 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
195 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
196 * is set to hold the flags until we are done handling everything
199 #define RECEIVE_MSG_AVAIL 0x01
200 #define EVENT_MSG_BUFFER_FULL 0x02
201 #define WDT_PRE_TIMEOUT_INT 0x08
202 #define OEM0_DATA_AVAIL 0x20
203 #define OEM1_DATA_AVAIL 0x40
204 #define OEM2_DATA_AVAIL 0x80
205 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
208 unsigned char msg_flags
;
210 /* Does the BMC have an event buffer? */
211 bool has_event_buffer
;
214 * If set to true, this will request events the next time the
215 * state machine is idle.
220 * If true, run the state machine to completion on every send
221 * call. Generally used after a panic to make sure stuff goes
224 bool run_to_completion
;
226 /* The I/O port of an SI interface. */
230 * The space between start addresses of the two ports. For
231 * instance, if the first port is 0xca2 and the spacing is 4, then
232 * the second port is 0xca6.
234 unsigned int spacing
;
236 /* zero if no irq; */
239 /* The timer for this si. */
240 struct timer_list si_timer
;
242 /* This flag is set, if the timer can be set */
243 bool timer_can_start
;
245 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
248 /* The time (in jiffies) the last timeout occurred at. */
249 unsigned long last_timeout_jiffies
;
251 /* Are we waiting for the events, pretimeouts, received msgs? */
255 * The driver will disable interrupts when it gets into a
256 * situation where it cannot handle messages due to lack of
257 * memory. Once that situation clears up, it will re-enable
260 bool interrupt_disabled
;
263 * Does the BMC support events?
265 bool supports_event_msg_buff
;
268 * Can we disable interrupts the global enables receive irq
269 * bit? There are currently two forms of brokenness, some
270 * systems cannot disable the bit (which is technically within
271 * the spec but a bad idea) and some systems have the bit
272 * forced to zero even though interrupts work (which is
273 * clearly outside the spec). The next bool tells which form
274 * of brokenness is present.
276 bool cannot_disable_irq
;
279 * Some systems are broken and cannot set the irq enable
280 * bit, even if they support interrupts.
282 bool irq_enable_broken
;
285 * Did we get an attention that we did not handle?
289 /* From the get device id response... */
290 struct ipmi_device_id device_id
;
292 /* Driver model stuff. */
294 struct platform_device
*pdev
;
297 * True if we allocated the device, false if it came from
298 * someplace else (like PCI).
302 /* Slave address, could be reported from DMI. */
303 unsigned char slave_addr
;
305 /* Counters and things for the proc filesystem. */
306 atomic_t stats
[SI_NUM_STATS
];
308 struct task_struct
*thread
;
310 struct list_head link
;
311 union ipmi_smi_info_union addr_info
;
314 #define smi_inc_stat(smi, stat) \
315 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
316 #define smi_get_stat(smi, stat) \
317 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
319 #define SI_MAX_PARMS 4
321 static int force_kipmid
[SI_MAX_PARMS
];
322 static int num_force_kipmid
;
324 static bool pci_registered
;
327 static bool parisc_registered
;
330 static unsigned int kipmid_max_busy_us
[SI_MAX_PARMS
];
331 static int num_max_busy_us
;
333 static bool unload_when_empty
= true;
335 static int add_smi(struct smi_info
*smi
);
336 static int try_smi_init(struct smi_info
*smi
);
337 static void cleanup_one_si(struct smi_info
*to_clean
);
338 static void cleanup_ipmi_si(void);
341 void debug_timestamp(char *msg
)
345 getnstimeofday64(&t
);
346 pr_debug("**%s: %lld.%9.9ld\n", msg
, (long long) t
.tv_sec
, t
.tv_nsec
);
349 #define debug_timestamp(x)
352 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
353 static int register_xaction_notifier(struct notifier_block
*nb
)
355 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
358 static void deliver_recv_msg(struct smi_info
*smi_info
,
359 struct ipmi_smi_msg
*msg
)
361 /* Deliver the message to the upper layer. */
363 ipmi_smi_msg_received(smi_info
->intf
, msg
);
365 ipmi_free_smi_msg(msg
);
368 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
370 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
372 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
373 cCode
= IPMI_ERR_UNSPECIFIED
;
374 /* else use it as is */
376 /* Make it a response */
377 msg
->rsp
[0] = msg
->data
[0] | 4;
378 msg
->rsp
[1] = msg
->data
[1];
382 smi_info
->curr_msg
= NULL
;
383 deliver_recv_msg(smi_info
, msg
);
386 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
390 if (!smi_info
->waiting_msg
) {
391 smi_info
->curr_msg
= NULL
;
396 smi_info
->curr_msg
= smi_info
->waiting_msg
;
397 smi_info
->waiting_msg
= NULL
;
398 debug_timestamp("Start2");
399 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
401 if (err
& NOTIFY_STOP_MASK
) {
402 rv
= SI_SM_CALL_WITHOUT_DELAY
;
405 err
= smi_info
->handlers
->start_transaction(
407 smi_info
->curr_msg
->data
,
408 smi_info
->curr_msg
->data_size
);
410 return_hosed_msg(smi_info
, err
);
412 rv
= SI_SM_CALL_WITHOUT_DELAY
;
418 static void smi_mod_timer(struct smi_info
*smi_info
, unsigned long new_val
)
420 if (!smi_info
->timer_can_start
)
422 smi_info
->last_timeout_jiffies
= jiffies
;
423 mod_timer(&smi_info
->si_timer
, new_val
);
424 smi_info
->timer_running
= true;
428 * Start a new message and (re)start the timer and thread.
430 static void start_new_msg(struct smi_info
*smi_info
, unsigned char *msg
,
433 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
435 if (smi_info
->thread
)
436 wake_up_process(smi_info
->thread
);
438 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, size
);
441 static void start_check_enables(struct smi_info
*smi_info
)
443 unsigned char msg
[2];
445 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
446 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
448 start_new_msg(smi_info
, msg
, 2);
449 smi_info
->si_state
= SI_CHECKING_ENABLES
;
452 static void start_clear_flags(struct smi_info
*smi_info
)
454 unsigned char msg
[3];
456 /* Make sure the watchdog pre-timeout flag is not set at startup. */
457 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
458 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
459 msg
[2] = WDT_PRE_TIMEOUT_INT
;
461 start_new_msg(smi_info
, msg
, 3);
462 smi_info
->si_state
= SI_CLEARING_FLAGS
;
465 static void start_getting_msg_queue(struct smi_info
*smi_info
)
467 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
468 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
469 smi_info
->curr_msg
->data_size
= 2;
471 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
472 smi_info
->curr_msg
->data_size
);
473 smi_info
->si_state
= SI_GETTING_MESSAGES
;
476 static void start_getting_events(struct smi_info
*smi_info
)
478 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
479 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
480 smi_info
->curr_msg
->data_size
= 2;
482 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
483 smi_info
->curr_msg
->data_size
);
484 smi_info
->si_state
= SI_GETTING_EVENTS
;
488 * When we have a situtaion where we run out of memory and cannot
489 * allocate messages, we just leave them in the BMC and run the system
490 * polled until we can allocate some memory. Once we have some
491 * memory, we will re-enable the interrupt.
493 * Note that we cannot just use disable_irq(), since the interrupt may
496 static inline bool disable_si_irq(struct smi_info
*smi_info
)
498 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
499 smi_info
->interrupt_disabled
= true;
500 start_check_enables(smi_info
);
506 static inline bool enable_si_irq(struct smi_info
*smi_info
)
508 if ((smi_info
->irq
) && (smi_info
->interrupt_disabled
)) {
509 smi_info
->interrupt_disabled
= false;
510 start_check_enables(smi_info
);
517 * Allocate a message. If unable to allocate, start the interrupt
518 * disable process and return NULL. If able to allocate but
519 * interrupts are disabled, free the message and return NULL after
520 * starting the interrupt enable process.
522 static struct ipmi_smi_msg
*alloc_msg_handle_irq(struct smi_info
*smi_info
)
524 struct ipmi_smi_msg
*msg
;
526 msg
= ipmi_alloc_smi_msg();
528 if (!disable_si_irq(smi_info
))
529 smi_info
->si_state
= SI_NORMAL
;
530 } else if (enable_si_irq(smi_info
)) {
531 ipmi_free_smi_msg(msg
);
537 static void handle_flags(struct smi_info
*smi_info
)
540 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
541 /* Watchdog pre-timeout */
542 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
544 start_clear_flags(smi_info
);
545 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
547 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
548 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
549 /* Messages available. */
550 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
551 if (!smi_info
->curr_msg
)
554 start_getting_msg_queue(smi_info
);
555 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
556 /* Events available. */
557 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
558 if (!smi_info
->curr_msg
)
561 start_getting_events(smi_info
);
562 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
563 smi_info
->oem_data_avail_handler
) {
564 if (smi_info
->oem_data_avail_handler(smi_info
))
567 smi_info
->si_state
= SI_NORMAL
;
571 * Global enables we care about.
573 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
574 IPMI_BMC_EVT_MSG_INTR)
576 static u8
current_global_enables(struct smi_info
*smi_info
, u8 base
,
581 if (smi_info
->supports_event_msg_buff
)
582 enables
|= IPMI_BMC_EVT_MSG_BUFF
;
584 if (((smi_info
->irq
&& !smi_info
->interrupt_disabled
) ||
585 smi_info
->cannot_disable_irq
) &&
586 !smi_info
->irq_enable_broken
)
587 enables
|= IPMI_BMC_RCV_MSG_INTR
;
589 if (smi_info
->supports_event_msg_buff
&&
590 smi_info
->irq
&& !smi_info
->interrupt_disabled
&&
591 !smi_info
->irq_enable_broken
)
592 enables
|= IPMI_BMC_EVT_MSG_INTR
;
594 *irq_on
= enables
& (IPMI_BMC_EVT_MSG_INTR
| IPMI_BMC_RCV_MSG_INTR
);
599 static void check_bt_irq(struct smi_info
*smi_info
, bool irq_on
)
601 u8 irqstate
= smi_info
->io
.inputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
);
603 irqstate
&= IPMI_BT_INTMASK_ENABLE_IRQ_BIT
;
605 if ((bool)irqstate
== irq_on
)
609 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
610 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
612 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
, 0);
615 static void handle_transaction_done(struct smi_info
*smi_info
)
617 struct ipmi_smi_msg
*msg
;
619 debug_timestamp("Done");
620 switch (smi_info
->si_state
) {
622 if (!smi_info
->curr_msg
)
625 smi_info
->curr_msg
->rsp_size
626 = smi_info
->handlers
->get_result(
628 smi_info
->curr_msg
->rsp
,
629 IPMI_MAX_MSG_LENGTH
);
632 * Do this here becase deliver_recv_msg() releases the
633 * lock, and a new message can be put in during the
634 * time the lock is released.
636 msg
= smi_info
->curr_msg
;
637 smi_info
->curr_msg
= NULL
;
638 deliver_recv_msg(smi_info
, msg
);
641 case SI_GETTING_FLAGS
:
643 unsigned char msg
[4];
646 /* We got the flags from the SMI, now handle them. */
647 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
649 /* Error fetching flags, just give up for now. */
650 smi_info
->si_state
= SI_NORMAL
;
651 } else if (len
< 4) {
653 * Hmm, no flags. That's technically illegal, but
654 * don't use uninitialized data.
656 smi_info
->si_state
= SI_NORMAL
;
658 smi_info
->msg_flags
= msg
[3];
659 handle_flags(smi_info
);
664 case SI_CLEARING_FLAGS
:
666 unsigned char msg
[3];
668 /* We cleared the flags. */
669 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
671 /* Error clearing flags */
672 dev_warn(smi_info
->dev
,
673 "Error clearing flags: %2.2x\n", msg
[2]);
675 smi_info
->si_state
= SI_NORMAL
;
679 case SI_GETTING_EVENTS
:
681 smi_info
->curr_msg
->rsp_size
682 = smi_info
->handlers
->get_result(
684 smi_info
->curr_msg
->rsp
,
685 IPMI_MAX_MSG_LENGTH
);
688 * Do this here becase deliver_recv_msg() releases the
689 * lock, and a new message can be put in during the
690 * time the lock is released.
692 msg
= smi_info
->curr_msg
;
693 smi_info
->curr_msg
= NULL
;
694 if (msg
->rsp
[2] != 0) {
695 /* Error getting event, probably done. */
698 /* Take off the event flag. */
699 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
700 handle_flags(smi_info
);
702 smi_inc_stat(smi_info
, events
);
705 * Do this before we deliver the message
706 * because delivering the message releases the
707 * lock and something else can mess with the
710 handle_flags(smi_info
);
712 deliver_recv_msg(smi_info
, msg
);
717 case SI_GETTING_MESSAGES
:
719 smi_info
->curr_msg
->rsp_size
720 = smi_info
->handlers
->get_result(
722 smi_info
->curr_msg
->rsp
,
723 IPMI_MAX_MSG_LENGTH
);
726 * Do this here becase deliver_recv_msg() releases the
727 * lock, and a new message can be put in during the
728 * time the lock is released.
730 msg
= smi_info
->curr_msg
;
731 smi_info
->curr_msg
= NULL
;
732 if (msg
->rsp
[2] != 0) {
733 /* Error getting event, probably done. */
736 /* Take off the msg flag. */
737 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
738 handle_flags(smi_info
);
740 smi_inc_stat(smi_info
, incoming_messages
);
743 * Do this before we deliver the message
744 * because delivering the message releases the
745 * lock and something else can mess with the
748 handle_flags(smi_info
);
750 deliver_recv_msg(smi_info
, msg
);
755 case SI_CHECKING_ENABLES
:
757 unsigned char msg
[4];
761 /* We got the flags from the SMI, now handle them. */
762 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
764 dev_warn(smi_info
->dev
,
765 "Couldn't get irq info: %x.\n", msg
[2]);
766 dev_warn(smi_info
->dev
,
767 "Maybe ok, but ipmi might run very slowly.\n");
768 smi_info
->si_state
= SI_NORMAL
;
771 enables
= current_global_enables(smi_info
, 0, &irq_on
);
772 if (smi_info
->si_type
== SI_BT
)
773 /* BT has its own interrupt enable bit. */
774 check_bt_irq(smi_info
, irq_on
);
775 if (enables
!= (msg
[3] & GLOBAL_ENABLES_MASK
)) {
776 /* Enables are not correct, fix them. */
777 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
778 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
779 msg
[2] = enables
| (msg
[3] & ~GLOBAL_ENABLES_MASK
);
780 smi_info
->handlers
->start_transaction(
781 smi_info
->si_sm
, msg
, 3);
782 smi_info
->si_state
= SI_SETTING_ENABLES
;
783 } else if (smi_info
->supports_event_msg_buff
) {
784 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
785 if (!smi_info
->curr_msg
) {
786 smi_info
->si_state
= SI_NORMAL
;
789 start_getting_msg_queue(smi_info
);
791 smi_info
->si_state
= SI_NORMAL
;
796 case SI_SETTING_ENABLES
:
798 unsigned char msg
[4];
800 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
802 dev_warn(smi_info
->dev
,
803 "Could not set the global enables: 0x%x.\n",
806 if (smi_info
->supports_event_msg_buff
) {
807 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
808 if (!smi_info
->curr_msg
) {
809 smi_info
->si_state
= SI_NORMAL
;
812 start_getting_msg_queue(smi_info
);
814 smi_info
->si_state
= SI_NORMAL
;
822 * Called on timeouts and events. Timeouts should pass the elapsed
823 * time, interrupts should pass in zero. Must be called with
824 * si_lock held and interrupts disabled.
826 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
829 enum si_sm_result si_sm_result
;
833 * There used to be a loop here that waited a little while
834 * (around 25us) before giving up. That turned out to be
835 * pointless, the minimum delays I was seeing were in the 300us
836 * range, which is far too long to wait in an interrupt. So
837 * we just run until the state machine tells us something
838 * happened or it needs a delay.
840 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
842 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
843 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
845 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
846 smi_inc_stat(smi_info
, complete_transactions
);
848 handle_transaction_done(smi_info
);
849 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
850 } else if (si_sm_result
== SI_SM_HOSED
) {
851 smi_inc_stat(smi_info
, hosed_count
);
854 * Do the before return_hosed_msg, because that
857 smi_info
->si_state
= SI_NORMAL
;
858 if (smi_info
->curr_msg
!= NULL
) {
860 * If we were handling a user message, format
861 * a response to send to the upper layer to
862 * tell it about the error.
864 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
866 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
870 * We prefer handling attn over new messages. But don't do
871 * this if there is not yet an upper layer to handle anything.
873 if (likely(smi_info
->intf
) &&
874 (si_sm_result
== SI_SM_ATTN
|| smi_info
->got_attn
)) {
875 unsigned char msg
[2];
877 if (smi_info
->si_state
!= SI_NORMAL
) {
879 * We got an ATTN, but we are doing something else.
880 * Handle the ATTN later.
882 smi_info
->got_attn
= true;
884 smi_info
->got_attn
= false;
885 smi_inc_stat(smi_info
, attentions
);
888 * Got a attn, send down a get message flags to see
889 * what's causing it. It would be better to handle
890 * this in the upper layer, but due to the way
891 * interrupts work with the SMI, that's not really
894 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
895 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
897 start_new_msg(smi_info
, msg
, 2);
898 smi_info
->si_state
= SI_GETTING_FLAGS
;
903 /* If we are currently idle, try to start the next message. */
904 if (si_sm_result
== SI_SM_IDLE
) {
905 smi_inc_stat(smi_info
, idles
);
907 si_sm_result
= start_next_msg(smi_info
);
908 if (si_sm_result
!= SI_SM_IDLE
)
912 if ((si_sm_result
== SI_SM_IDLE
)
913 && (atomic_read(&smi_info
->req_events
))) {
915 * We are idle and the upper layer requested that I fetch
918 atomic_set(&smi_info
->req_events
, 0);
921 * Take this opportunity to check the interrupt and
922 * message enable state for the BMC. The BMC can be
923 * asynchronously reset, and may thus get interrupts
924 * disable and messages disabled.
926 if (smi_info
->supports_event_msg_buff
|| smi_info
->irq
) {
927 start_check_enables(smi_info
);
929 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
930 if (!smi_info
->curr_msg
)
933 start_getting_events(smi_info
);
938 if (si_sm_result
== SI_SM_IDLE
&& smi_info
->timer_running
) {
939 /* Ok it if fails, the timer will just go off. */
940 if (del_timer(&smi_info
->si_timer
))
941 smi_info
->timer_running
= false;
948 static void check_start_timer_thread(struct smi_info
*smi_info
)
950 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
) {
951 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
953 if (smi_info
->thread
)
954 wake_up_process(smi_info
->thread
);
956 start_next_msg(smi_info
);
957 smi_event_handler(smi_info
, 0);
961 static void flush_messages(void *send_info
)
963 struct smi_info
*smi_info
= send_info
;
964 enum si_sm_result result
;
967 * Currently, this function is called only in run-to-completion
968 * mode. This means we are single-threaded, no need for locks.
970 result
= smi_event_handler(smi_info
, 0);
971 while (result
!= SI_SM_IDLE
) {
972 udelay(SI_SHORT_TIMEOUT_USEC
);
973 result
= smi_event_handler(smi_info
, SI_SHORT_TIMEOUT_USEC
);
977 static void sender(void *send_info
,
978 struct ipmi_smi_msg
*msg
)
980 struct smi_info
*smi_info
= send_info
;
983 debug_timestamp("Enqueue");
985 if (smi_info
->run_to_completion
) {
987 * If we are running to completion, start it. Upper
988 * layer will call flush_messages to clear it out.
990 smi_info
->waiting_msg
= msg
;
994 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
996 * The following two lines don't need to be under the lock for
997 * the lock's sake, but they do need SMP memory barriers to
998 * avoid getting things out of order. We are already claiming
999 * the lock, anyway, so just do it under the lock to avoid the
1002 BUG_ON(smi_info
->waiting_msg
);
1003 smi_info
->waiting_msg
= msg
;
1004 check_start_timer_thread(smi_info
);
1005 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1008 static void set_run_to_completion(void *send_info
, bool i_run_to_completion
)
1010 struct smi_info
*smi_info
= send_info
;
1012 smi_info
->run_to_completion
= i_run_to_completion
;
1013 if (i_run_to_completion
)
1014 flush_messages(smi_info
);
1018 * Use -1 in the nsec value of the busy waiting timespec to tell that
1019 * we are spinning in kipmid looking for something and not delaying
1022 static inline void ipmi_si_set_not_busy(struct timespec64
*ts
)
1026 static inline int ipmi_si_is_busy(struct timespec64
*ts
)
1028 return ts
->tv_nsec
!= -1;
1031 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result
,
1032 const struct smi_info
*smi_info
,
1033 struct timespec64
*busy_until
)
1035 unsigned int max_busy_us
= 0;
1037 if (smi_info
->intf_num
< num_max_busy_us
)
1038 max_busy_us
= kipmid_max_busy_us
[smi_info
->intf_num
];
1039 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
1040 ipmi_si_set_not_busy(busy_until
);
1041 else if (!ipmi_si_is_busy(busy_until
)) {
1042 getnstimeofday64(busy_until
);
1043 timespec64_add_ns(busy_until
, max_busy_us
*NSEC_PER_USEC
);
1045 struct timespec64 now
;
1047 getnstimeofday64(&now
);
1048 if (unlikely(timespec64_compare(&now
, busy_until
) > 0)) {
1049 ipmi_si_set_not_busy(busy_until
);
1058 * A busy-waiting loop for speeding up IPMI operation.
1060 * Lousy hardware makes this hard. This is only enabled for systems
1061 * that are not BT and do not have interrupts. It starts spinning
1062 * when an operation is complete or until max_busy tells it to stop
1063 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1064 * Documentation/IPMI.txt for details.
1066 static int ipmi_thread(void *data
)
1068 struct smi_info
*smi_info
= data
;
1069 unsigned long flags
;
1070 enum si_sm_result smi_result
;
1071 struct timespec64 busy_until
;
1073 ipmi_si_set_not_busy(&busy_until
);
1074 set_user_nice(current
, MAX_NICE
);
1075 while (!kthread_should_stop()) {
1078 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1079 smi_result
= smi_event_handler(smi_info
, 0);
1082 * If the driver is doing something, there is a possible
1083 * race with the timer. If the timer handler see idle,
1084 * and the thread here sees something else, the timer
1085 * handler won't restart the timer even though it is
1086 * required. So start it here if necessary.
1088 if (smi_result
!= SI_SM_IDLE
&& !smi_info
->timer_running
)
1089 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1091 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1092 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
1094 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
)
1096 else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
)
1098 else if (smi_result
== SI_SM_IDLE
) {
1099 if (atomic_read(&smi_info
->need_watch
)) {
1100 schedule_timeout_interruptible(100);
1102 /* Wait to be woken up when we are needed. */
1103 __set_current_state(TASK_INTERRUPTIBLE
);
1107 schedule_timeout_interruptible(1);
1113 static void poll(void *send_info
)
1115 struct smi_info
*smi_info
= send_info
;
1116 unsigned long flags
= 0;
1117 bool run_to_completion
= smi_info
->run_to_completion
;
1120 * Make sure there is some delay in the poll loop so we can
1121 * drive time forward and timeout things.
1124 if (!run_to_completion
)
1125 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1126 smi_event_handler(smi_info
, 10);
1127 if (!run_to_completion
)
1128 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1131 static void request_events(void *send_info
)
1133 struct smi_info
*smi_info
= send_info
;
1135 if (!smi_info
->has_event_buffer
)
1138 atomic_set(&smi_info
->req_events
, 1);
1141 static void set_need_watch(void *send_info
, bool enable
)
1143 struct smi_info
*smi_info
= send_info
;
1144 unsigned long flags
;
1146 atomic_set(&smi_info
->need_watch
, enable
);
1147 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1148 check_start_timer_thread(smi_info
);
1149 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1152 static int initialized
;
1154 static void smi_timeout(unsigned long data
)
1156 struct smi_info
*smi_info
= (struct smi_info
*) data
;
1157 enum si_sm_result smi_result
;
1158 unsigned long flags
;
1159 unsigned long jiffies_now
;
1163 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1164 debug_timestamp("Timer");
1166 jiffies_now
= jiffies
;
1167 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1168 * SI_USEC_PER_JIFFY
);
1169 smi_result
= smi_event_handler(smi_info
, time_diff
);
1171 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
1172 /* Running with interrupts, only do long timeouts. */
1173 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1174 smi_inc_stat(smi_info
, long_timeouts
);
1179 * If the state machine asks for a short delay, then shorten
1180 * the timer timeout.
1182 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1183 smi_inc_stat(smi_info
, short_timeouts
);
1184 timeout
= jiffies
+ 1;
1186 smi_inc_stat(smi_info
, long_timeouts
);
1187 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1191 if (smi_result
!= SI_SM_IDLE
)
1192 smi_mod_timer(smi_info
, timeout
);
1194 smi_info
->timer_running
= false;
1195 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1198 static irqreturn_t
si_irq_handler(int irq
, void *data
)
1200 struct smi_info
*smi_info
= data
;
1201 unsigned long flags
;
1203 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1205 smi_inc_stat(smi_info
, interrupts
);
1207 debug_timestamp("Interrupt");
1209 smi_event_handler(smi_info
, 0);
1210 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1214 static irqreturn_t
si_bt_irq_handler(int irq
, void *data
)
1216 struct smi_info
*smi_info
= data
;
1217 /* We need to clear the IRQ flag for the BT interface. */
1218 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1219 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1220 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1221 return si_irq_handler(irq
, data
);
1224 static int smi_start_processing(void *send_info
,
1227 struct smi_info
*new_smi
= send_info
;
1230 new_smi
->intf
= intf
;
1232 /* Set up the timer that drives the interface. */
1233 setup_timer(&new_smi
->si_timer
, smi_timeout
, (long)new_smi
);
1234 new_smi
->timer_can_start
= true;
1235 smi_mod_timer(new_smi
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1237 /* Try to claim any interrupts. */
1238 if (new_smi
->irq_setup
)
1239 new_smi
->irq_setup(new_smi
);
1242 * Check if the user forcefully enabled the daemon.
1244 if (new_smi
->intf_num
< num_force_kipmid
)
1245 enable
= force_kipmid
[new_smi
->intf_num
];
1247 * The BT interface is efficient enough to not need a thread,
1248 * and there is no need for a thread if we have interrupts.
1250 else if ((new_smi
->si_type
!= SI_BT
) && (!new_smi
->irq
))
1254 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1255 "kipmi%d", new_smi
->intf_num
);
1256 if (IS_ERR(new_smi
->thread
)) {
1257 dev_notice(new_smi
->dev
, "Could not start"
1258 " kernel thread due to error %ld, only using"
1259 " timers to drive the interface\n",
1260 PTR_ERR(new_smi
->thread
));
1261 new_smi
->thread
= NULL
;
1268 static int get_smi_info(void *send_info
, struct ipmi_smi_info
*data
)
1270 struct smi_info
*smi
= send_info
;
1272 data
->addr_src
= smi
->addr_source
;
1273 data
->dev
= smi
->dev
;
1274 data
->addr_info
= smi
->addr_info
;
1275 get_device(smi
->dev
);
1280 static void set_maintenance_mode(void *send_info
, bool enable
)
1282 struct smi_info
*smi_info
= send_info
;
1285 atomic_set(&smi_info
->req_events
, 0);
1288 static const struct ipmi_smi_handlers handlers
= {
1289 .owner
= THIS_MODULE
,
1290 .start_processing
= smi_start_processing
,
1291 .get_smi_info
= get_smi_info
,
1293 .request_events
= request_events
,
1294 .set_need_watch
= set_need_watch
,
1295 .set_maintenance_mode
= set_maintenance_mode
,
1296 .set_run_to_completion
= set_run_to_completion
,
1297 .flush_messages
= flush_messages
,
1302 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1303 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1306 static LIST_HEAD(smi_infos
);
1307 static DEFINE_MUTEX(smi_infos_lock
);
1308 static int smi_num
; /* Used to sequence the SMIs */
1310 #define DEFAULT_REGSPACING 1
1311 #define DEFAULT_REGSIZE 1
1314 static bool si_tryacpi
= true;
1317 static bool si_trydmi
= true;
1319 static bool si_tryplatform
= true;
1321 static bool si_trypci
= true;
1323 static bool si_trydefaults
= IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS
);
1324 static char *si_type
[SI_MAX_PARMS
];
1325 #define MAX_SI_TYPE_STR 30
1326 static char si_type_str
[MAX_SI_TYPE_STR
];
1327 static unsigned long addrs
[SI_MAX_PARMS
];
1328 static unsigned int num_addrs
;
1329 static unsigned int ports
[SI_MAX_PARMS
];
1330 static unsigned int num_ports
;
1331 static int irqs
[SI_MAX_PARMS
];
1332 static unsigned int num_irqs
;
1333 static int regspacings
[SI_MAX_PARMS
];
1334 static unsigned int num_regspacings
;
1335 static int regsizes
[SI_MAX_PARMS
];
1336 static unsigned int num_regsizes
;
1337 static int regshifts
[SI_MAX_PARMS
];
1338 static unsigned int num_regshifts
;
1339 static int slave_addrs
[SI_MAX_PARMS
]; /* Leaving 0 chooses the default value */
1340 static unsigned int num_slave_addrs
;
1342 #define IPMI_IO_ADDR_SPACE 0
1343 #define IPMI_MEM_ADDR_SPACE 1
1344 static char *addr_space_to_str
[] = { "i/o", "mem" };
1346 static int hotmod_handler(const char *val
, struct kernel_param
*kp
);
1348 module_param_call(hotmod
, hotmod_handler
, NULL
, NULL
, 0200);
1349 MODULE_PARM_DESC(hotmod
, "Add and remove interfaces. See"
1350 " Documentation/IPMI.txt in the kernel sources for the"
1354 module_param_named(tryacpi
, si_tryacpi
, bool, 0);
1355 MODULE_PARM_DESC(tryacpi
, "Setting this to zero will disable the"
1356 " default scan of the interfaces identified via ACPI");
1359 module_param_named(trydmi
, si_trydmi
, bool, 0);
1360 MODULE_PARM_DESC(trydmi
, "Setting this to zero will disable the"
1361 " default scan of the interfaces identified via DMI");
1363 module_param_named(tryplatform
, si_tryplatform
, bool, 0);
1364 MODULE_PARM_DESC(tryacpi
, "Setting this to zero will disable the"
1365 " default scan of the interfaces identified via platform"
1366 " interfaces like openfirmware");
1368 module_param_named(trypci
, si_trypci
, bool, 0);
1369 MODULE_PARM_DESC(tryacpi
, "Setting this to zero will disable the"
1370 " default scan of the interfaces identified via pci");
1372 module_param_named(trydefaults
, si_trydefaults
, bool, 0);
1373 MODULE_PARM_DESC(trydefaults
, "Setting this to 'false' will disable the"
1374 " default scan of the KCS and SMIC interface at the standard"
1376 module_param_string(type
, si_type_str
, MAX_SI_TYPE_STR
, 0);
1377 MODULE_PARM_DESC(type
, "Defines the type of each interface, each"
1378 " interface separated by commas. The types are 'kcs',"
1379 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1380 " the first interface to kcs and the second to bt");
1381 module_param_array(addrs
, ulong
, &num_addrs
, 0);
1382 MODULE_PARM_DESC(addrs
, "Sets the memory address of each interface, the"
1383 " addresses separated by commas. Only use if an interface"
1384 " is in memory. Otherwise, set it to zero or leave"
1386 module_param_array(ports
, uint
, &num_ports
, 0);
1387 MODULE_PARM_DESC(ports
, "Sets the port address of each interface, the"
1388 " addresses separated by commas. Only use if an interface"
1389 " is a port. Otherwise, set it to zero or leave"
1391 module_param_array(irqs
, int, &num_irqs
, 0);
1392 MODULE_PARM_DESC(irqs
, "Sets the interrupt of each interface, the"
1393 " addresses separated by commas. Only use if an interface"
1394 " has an interrupt. Otherwise, set it to zero or leave"
1396 module_param_array(regspacings
, int, &num_regspacings
, 0);
1397 MODULE_PARM_DESC(regspacings
, "The number of bytes between the start address"
1398 " and each successive register used by the interface. For"
1399 " instance, if the start address is 0xca2 and the spacing"
1400 " is 2, then the second address is at 0xca4. Defaults"
1402 module_param_array(regsizes
, int, &num_regsizes
, 0);
1403 MODULE_PARM_DESC(regsizes
, "The size of the specific IPMI register in bytes."
1404 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1405 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1406 " the 8-bit IPMI register has to be read from a larger"
1408 module_param_array(regshifts
, int, &num_regshifts
, 0);
1409 MODULE_PARM_DESC(regshifts
, "The amount to shift the data read from the."
1410 " IPMI register, in bits. For instance, if the data"
1411 " is read from a 32-bit word and the IPMI data is in"
1412 " bit 8-15, then the shift would be 8");
1413 module_param_array(slave_addrs
, int, &num_slave_addrs
, 0);
1414 MODULE_PARM_DESC(slave_addrs
, "Set the default IPMB slave address for"
1415 " the controller. Normally this is 0x20, but can be"
1416 " overridden by this parm. This is an array indexed"
1417 " by interface number.");
1418 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1419 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1420 " disabled(0). Normally the IPMI driver auto-detects"
1421 " this, but the value may be overridden by this parm.");
1422 module_param(unload_when_empty
, bool, 0);
1423 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1424 " specified or found, default is 1. Setting to 0"
1425 " is useful for hot add of devices using hotmod.");
1426 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1427 MODULE_PARM_DESC(kipmid_max_busy_us
,
1428 "Max time (in microseconds) to busy-wait for IPMI data before"
1429 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1430 " if kipmid is using up a lot of CPU time.");
1433 static void std_irq_cleanup(struct smi_info
*info
)
1435 if (info
->si_type
== SI_BT
)
1436 /* Disable the interrupt in the BT interface. */
1437 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
, 0);
1438 free_irq(info
->irq
, info
);
1441 static int std_irq_setup(struct smi_info
*info
)
1448 if (info
->si_type
== SI_BT
) {
1449 rv
= request_irq(info
->irq
,
1455 /* Enable the interrupt in the BT interface. */
1456 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
,
1457 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1459 rv
= request_irq(info
->irq
,
1465 dev_warn(info
->dev
, "%s unable to claim interrupt %d,"
1466 " running polled\n",
1467 DEVICE_NAME
, info
->irq
);
1470 info
->irq_cleanup
= std_irq_cleanup
;
1471 dev_info(info
->dev
, "Using irq %d\n", info
->irq
);
1477 static unsigned char port_inb(const struct si_sm_io
*io
, unsigned int offset
)
1479 unsigned int addr
= io
->addr_data
;
1481 return inb(addr
+ (offset
* io
->regspacing
));
1484 static void port_outb(const struct si_sm_io
*io
, unsigned int offset
,
1487 unsigned int addr
= io
->addr_data
;
1489 outb(b
, addr
+ (offset
* io
->regspacing
));
1492 static unsigned char port_inw(const struct si_sm_io
*io
, unsigned int offset
)
1494 unsigned int addr
= io
->addr_data
;
1496 return (inw(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1499 static void port_outw(const struct si_sm_io
*io
, unsigned int offset
,
1502 unsigned int addr
= io
->addr_data
;
1504 outw(b
<< io
->regshift
, addr
+ (offset
* io
->regspacing
));
1507 static unsigned char port_inl(const struct si_sm_io
*io
, unsigned int offset
)
1509 unsigned int addr
= io
->addr_data
;
1511 return (inl(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1514 static void port_outl(const struct si_sm_io
*io
, unsigned int offset
,
1517 unsigned int addr
= io
->addr_data
;
1519 outl(b
<< io
->regshift
, addr
+(offset
* io
->regspacing
));
1522 static void port_cleanup(struct smi_info
*info
)
1524 unsigned int addr
= info
->io
.addr_data
;
1528 for (idx
= 0; idx
< info
->io_size
; idx
++)
1529 release_region(addr
+ idx
* info
->io
.regspacing
,
1534 static int port_setup(struct smi_info
*info
)
1536 unsigned int addr
= info
->io
.addr_data
;
1542 info
->io_cleanup
= port_cleanup
;
1545 * Figure out the actual inb/inw/inl/etc routine to use based
1546 * upon the register size.
1548 switch (info
->io
.regsize
) {
1550 info
->io
.inputb
= port_inb
;
1551 info
->io
.outputb
= port_outb
;
1554 info
->io
.inputb
= port_inw
;
1555 info
->io
.outputb
= port_outw
;
1558 info
->io
.inputb
= port_inl
;
1559 info
->io
.outputb
= port_outl
;
1562 dev_warn(info
->dev
, "Invalid register size: %d\n",
1568 * Some BIOSes reserve disjoint I/O regions in their ACPI
1569 * tables. This causes problems when trying to register the
1570 * entire I/O region. Therefore we must register each I/O
1573 for (idx
= 0; idx
< info
->io_size
; idx
++) {
1574 if (request_region(addr
+ idx
* info
->io
.regspacing
,
1575 info
->io
.regsize
, DEVICE_NAME
) == NULL
) {
1576 /* Undo allocations */
1578 release_region(addr
+ idx
* info
->io
.regspacing
,
1587 static unsigned char intf_mem_inb(const struct si_sm_io
*io
,
1588 unsigned int offset
)
1590 return readb((io
->addr
)+(offset
* io
->regspacing
));
1593 static void intf_mem_outb(const struct si_sm_io
*io
, unsigned int offset
,
1596 writeb(b
, (io
->addr
)+(offset
* io
->regspacing
));
1599 static unsigned char intf_mem_inw(const struct si_sm_io
*io
,
1600 unsigned int offset
)
1602 return (readw((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1606 static void intf_mem_outw(const struct si_sm_io
*io
, unsigned int offset
,
1609 writeb(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1612 static unsigned char intf_mem_inl(const struct si_sm_io
*io
,
1613 unsigned int offset
)
1615 return (readl((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1619 static void intf_mem_outl(const struct si_sm_io
*io
, unsigned int offset
,
1622 writel(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1626 static unsigned char mem_inq(const struct si_sm_io
*io
, unsigned int offset
)
1628 return (readq((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1632 static void mem_outq(const struct si_sm_io
*io
, unsigned int offset
,
1635 writeq(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1639 static void mem_cleanup(struct smi_info
*info
)
1641 unsigned long addr
= info
->io
.addr_data
;
1644 if (info
->io
.addr
) {
1645 iounmap(info
->io
.addr
);
1647 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1648 - (info
->io
.regspacing
- info
->io
.regsize
));
1650 release_mem_region(addr
, mapsize
);
1654 static int mem_setup(struct smi_info
*info
)
1656 unsigned long addr
= info
->io
.addr_data
;
1662 info
->io_cleanup
= mem_cleanup
;
1665 * Figure out the actual readb/readw/readl/etc routine to use based
1666 * upon the register size.
1668 switch (info
->io
.regsize
) {
1670 info
->io
.inputb
= intf_mem_inb
;
1671 info
->io
.outputb
= intf_mem_outb
;
1674 info
->io
.inputb
= intf_mem_inw
;
1675 info
->io
.outputb
= intf_mem_outw
;
1678 info
->io
.inputb
= intf_mem_inl
;
1679 info
->io
.outputb
= intf_mem_outl
;
1683 info
->io
.inputb
= mem_inq
;
1684 info
->io
.outputb
= mem_outq
;
1688 dev_warn(info
->dev
, "Invalid register size: %d\n",
1694 * Calculate the total amount of memory to claim. This is an
1695 * unusual looking calculation, but it avoids claiming any
1696 * more memory than it has to. It will claim everything
1697 * between the first address to the end of the last full
1700 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1701 - (info
->io
.regspacing
- info
->io
.regsize
));
1703 if (request_mem_region(addr
, mapsize
, DEVICE_NAME
) == NULL
)
1706 info
->io
.addr
= ioremap(addr
, mapsize
);
1707 if (info
->io
.addr
== NULL
) {
1708 release_mem_region(addr
, mapsize
);
1715 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1716 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1724 enum hotmod_op
{ HM_ADD
, HM_REMOVE
};
1725 struct hotmod_vals
{
1729 static struct hotmod_vals hotmod_ops
[] = {
1731 { "remove", HM_REMOVE
},
1734 static struct hotmod_vals hotmod_si
[] = {
1736 { "smic", SI_SMIC
},
1740 static struct hotmod_vals hotmod_as
[] = {
1741 { "mem", IPMI_MEM_ADDR_SPACE
},
1742 { "i/o", IPMI_IO_ADDR_SPACE
},
1746 static int parse_str(struct hotmod_vals
*v
, int *val
, char *name
, char **curr
)
1751 s
= strchr(*curr
, ',');
1753 printk(KERN_WARNING PFX
"No hotmod %s given.\n", name
);
1758 for (i
= 0; v
[i
].name
; i
++) {
1759 if (strcmp(*curr
, v
[i
].name
) == 0) {
1766 printk(KERN_WARNING PFX
"Invalid hotmod %s '%s'\n", name
, *curr
);
1770 static int check_hotmod_int_op(const char *curr
, const char *option
,
1771 const char *name
, int *val
)
1775 if (strcmp(curr
, name
) == 0) {
1777 printk(KERN_WARNING PFX
1778 "No option given for '%s'\n",
1782 *val
= simple_strtoul(option
, &n
, 0);
1783 if ((*n
!= '\0') || (*option
== '\0')) {
1784 printk(KERN_WARNING PFX
1785 "Bad option given for '%s'\n",
1794 static struct smi_info
*smi_info_alloc(void)
1796 struct smi_info
*info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
1799 spin_lock_init(&info
->si_lock
);
1803 static int hotmod_handler(const char *val
, struct kernel_param
*kp
)
1805 char *str
= kstrdup(val
, GFP_KERNEL
);
1807 char *next
, *curr
, *s
, *n
, *o
;
1809 enum si_type si_type
;
1819 struct smi_info
*info
;
1824 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1827 while ((ival
>= 0) && isspace(str
[ival
])) {
1832 for (curr
= str
; curr
; curr
= next
) {
1837 ipmb
= 0; /* Choose the default if not specified */
1839 next
= strchr(curr
, ':');
1845 rv
= parse_str(hotmod_ops
, &ival
, "operation", &curr
);
1850 rv
= parse_str(hotmod_si
, &ival
, "interface type", &curr
);
1855 rv
= parse_str(hotmod_as
, &addr_space
, "address space", &curr
);
1859 s
= strchr(curr
, ',');
1864 addr
= simple_strtoul(curr
, &n
, 0);
1865 if ((*n
!= '\0') || (*curr
== '\0')) {
1866 printk(KERN_WARNING PFX
"Invalid hotmod address"
1873 s
= strchr(curr
, ',');
1878 o
= strchr(curr
, '=');
1883 rv
= check_hotmod_int_op(curr
, o
, "rsp", ®spacing
);
1888 rv
= check_hotmod_int_op(curr
, o
, "rsi", ®size
);
1893 rv
= check_hotmod_int_op(curr
, o
, "rsh", ®shift
);
1898 rv
= check_hotmod_int_op(curr
, o
, "irq", &irq
);
1903 rv
= check_hotmod_int_op(curr
, o
, "ipmb", &ipmb
);
1910 printk(KERN_WARNING PFX
1911 "Invalid hotmod option '%s'\n",
1917 info
= smi_info_alloc();
1923 info
->addr_source
= SI_HOTMOD
;
1924 info
->si_type
= si_type
;
1925 info
->io
.addr_data
= addr
;
1926 info
->io
.addr_type
= addr_space
;
1927 if (addr_space
== IPMI_MEM_ADDR_SPACE
)
1928 info
->io_setup
= mem_setup
;
1930 info
->io_setup
= port_setup
;
1932 info
->io
.addr
= NULL
;
1933 info
->io
.regspacing
= regspacing
;
1934 if (!info
->io
.regspacing
)
1935 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1936 info
->io
.regsize
= regsize
;
1937 if (!info
->io
.regsize
)
1938 info
->io
.regsize
= DEFAULT_REGSPACING
;
1939 info
->io
.regshift
= regshift
;
1942 info
->irq_setup
= std_irq_setup
;
1943 info
->slave_addr
= ipmb
;
1950 rv
= try_smi_init(info
);
1952 cleanup_one_si(info
);
1957 struct smi_info
*e
, *tmp_e
;
1959 mutex_lock(&smi_infos_lock
);
1960 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
1961 if (e
->io
.addr_type
!= addr_space
)
1963 if (e
->si_type
!= si_type
)
1965 if (e
->io
.addr_data
== addr
)
1968 mutex_unlock(&smi_infos_lock
);
1977 static int hardcode_find_bmc(void)
1981 struct smi_info
*info
;
1983 for (i
= 0; i
< SI_MAX_PARMS
; i
++) {
1984 if (!ports
[i
] && !addrs
[i
])
1987 info
= smi_info_alloc();
1991 info
->addr_source
= SI_HARDCODED
;
1992 printk(KERN_INFO PFX
"probing via hardcoded address\n");
1994 if (!si_type
[i
] || strcmp(si_type
[i
], "kcs") == 0) {
1995 info
->si_type
= SI_KCS
;
1996 } else if (strcmp(si_type
[i
], "smic") == 0) {
1997 info
->si_type
= SI_SMIC
;
1998 } else if (strcmp(si_type
[i
], "bt") == 0) {
1999 info
->si_type
= SI_BT
;
2001 printk(KERN_WARNING PFX
"Interface type specified "
2002 "for interface %d, was invalid: %s\n",
2010 info
->io_setup
= port_setup
;
2011 info
->io
.addr_data
= ports
[i
];
2012 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2013 } else if (addrs
[i
]) {
2015 info
->io_setup
= mem_setup
;
2016 info
->io
.addr_data
= addrs
[i
];
2017 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2019 printk(KERN_WARNING PFX
"Interface type specified "
2020 "for interface %d, but port and address were "
2021 "not set or set to zero.\n", i
);
2026 info
->io
.addr
= NULL
;
2027 info
->io
.regspacing
= regspacings
[i
];
2028 if (!info
->io
.regspacing
)
2029 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2030 info
->io
.regsize
= regsizes
[i
];
2031 if (!info
->io
.regsize
)
2032 info
->io
.regsize
= DEFAULT_REGSPACING
;
2033 info
->io
.regshift
= regshifts
[i
];
2034 info
->irq
= irqs
[i
];
2036 info
->irq_setup
= std_irq_setup
;
2037 info
->slave_addr
= slave_addrs
[i
];
2039 if (!add_smi(info
)) {
2040 if (try_smi_init(info
))
2041 cleanup_one_si(info
);
2052 #include <linux/acpi.h>
2055 * Once we get an ACPI failure, we don't try any more, because we go
2056 * through the tables sequentially. Once we don't find a table, there
2059 static int acpi_failure
;
2061 /* For GPE-type interrupts. */
2062 static u32
ipmi_acpi_gpe(acpi_handle gpe_device
,
2063 u32 gpe_number
, void *context
)
2065 struct smi_info
*smi_info
= context
;
2066 unsigned long flags
;
2068 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
2070 smi_inc_stat(smi_info
, interrupts
);
2072 debug_timestamp("ACPI_GPE");
2074 smi_event_handler(smi_info
, 0);
2075 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
2077 return ACPI_INTERRUPT_HANDLED
;
2080 static void acpi_gpe_irq_cleanup(struct smi_info
*info
)
2085 acpi_remove_gpe_handler(NULL
, info
->irq
, &ipmi_acpi_gpe
);
2088 static int acpi_gpe_irq_setup(struct smi_info
*info
)
2095 status
= acpi_install_gpe_handler(NULL
,
2097 ACPI_GPE_LEVEL_TRIGGERED
,
2100 if (status
!= AE_OK
) {
2101 dev_warn(info
->dev
, "%s unable to claim ACPI GPE %d,"
2102 " running polled\n", DEVICE_NAME
, info
->irq
);
2106 info
->irq_cleanup
= acpi_gpe_irq_cleanup
;
2107 dev_info(info
->dev
, "Using ACPI GPE %d\n", info
->irq
);
2114 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2125 s8 CreatorRevision
[4];
2128 s16 SpecificationRevision
;
2131 * Bit 0 - SCI interrupt supported
2132 * Bit 1 - I/O APIC/SAPIC
2137 * If bit 0 of InterruptType is set, then this is the SCI
2138 * interrupt in the GPEx_STS register.
2145 * If bit 1 of InterruptType is set, then this is the I/O
2146 * APIC/SAPIC interrupt.
2148 u32 GlobalSystemInterrupt
;
2150 /* The actual register address. */
2151 struct acpi_generic_address addr
;
2155 s8 spmi_id
[1]; /* A '\0' terminated array starts here. */
2158 static int try_init_spmi(struct SPMITable
*spmi
)
2160 struct smi_info
*info
;
2163 if (spmi
->IPMIlegacy
!= 1) {
2164 printk(KERN_INFO PFX
"Bad SPMI legacy %d\n", spmi
->IPMIlegacy
);
2168 info
= smi_info_alloc();
2170 printk(KERN_ERR PFX
"Could not allocate SI data (3)\n");
2174 info
->addr_source
= SI_SPMI
;
2175 printk(KERN_INFO PFX
"probing via SPMI\n");
2177 /* Figure out the interface type. */
2178 switch (spmi
->InterfaceType
) {
2180 info
->si_type
= SI_KCS
;
2183 info
->si_type
= SI_SMIC
;
2186 info
->si_type
= SI_BT
;
2188 case 4: /* SSIF, just ignore */
2192 printk(KERN_INFO PFX
"Unknown ACPI/SPMI SI type %d\n",
2193 spmi
->InterfaceType
);
2198 if (spmi
->InterruptType
& 1) {
2199 /* We've got a GPE interrupt. */
2200 info
->irq
= spmi
->GPE
;
2201 info
->irq_setup
= acpi_gpe_irq_setup
;
2202 } else if (spmi
->InterruptType
& 2) {
2203 /* We've got an APIC/SAPIC interrupt. */
2204 info
->irq
= spmi
->GlobalSystemInterrupt
;
2205 info
->irq_setup
= std_irq_setup
;
2207 /* Use the default interrupt setting. */
2209 info
->irq_setup
= NULL
;
2212 if (spmi
->addr
.bit_width
) {
2213 /* A (hopefully) properly formed register bit width. */
2214 info
->io
.regspacing
= spmi
->addr
.bit_width
/ 8;
2216 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2218 info
->io
.regsize
= info
->io
.regspacing
;
2219 info
->io
.regshift
= spmi
->addr
.bit_offset
;
2221 if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
2222 info
->io_setup
= mem_setup
;
2223 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2224 } else if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_IO
) {
2225 info
->io_setup
= port_setup
;
2226 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2229 printk(KERN_WARNING PFX
"Unknown ACPI I/O Address type\n");
2232 info
->io
.addr_data
= spmi
->addr
.address
;
2234 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2235 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2236 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2246 static void spmi_find_bmc(void)
2249 struct SPMITable
*spmi
;
2258 for (i
= 0; ; i
++) {
2259 status
= acpi_get_table(ACPI_SIG_SPMI
, i
+1,
2260 (struct acpi_table_header
**)&spmi
);
2261 if (status
!= AE_OK
)
2264 try_init_spmi(spmi
);
2270 struct dmi_ipmi_data
{
2273 unsigned long base_addr
;
2279 static int decode_dmi(const struct dmi_header
*dm
,
2280 struct dmi_ipmi_data
*dmi
)
2282 const u8
*data
= (const u8
*)dm
;
2283 unsigned long base_addr
;
2285 u8 len
= dm
->length
;
2287 dmi
->type
= data
[4];
2289 memcpy(&base_addr
, data
+8, sizeof(unsigned long));
2291 if (base_addr
& 1) {
2293 base_addr
&= 0xFFFE;
2294 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2297 dmi
->addr_space
= IPMI_MEM_ADDR_SPACE
;
2299 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2301 dmi
->base_addr
= base_addr
| ((data
[0x10] & 0x10) >> 4);
2303 dmi
->irq
= data
[0x11];
2305 /* The top two bits of byte 0x10 hold the register spacing. */
2306 reg_spacing
= (data
[0x10] & 0xC0) >> 6;
2307 switch (reg_spacing
) {
2308 case 0x00: /* Byte boundaries */
2311 case 0x01: /* 32-bit boundaries */
2314 case 0x02: /* 16-byte boundaries */
2318 /* Some other interface, just ignore it. */
2324 * Note that technically, the lower bit of the base
2325 * address should be 1 if the address is I/O and 0 if
2326 * the address is in memory. So many systems get that
2327 * wrong (and all that I have seen are I/O) so we just
2328 * ignore that bit and assume I/O. Systems that use
2329 * memory should use the newer spec, anyway.
2331 dmi
->base_addr
= base_addr
& 0xfffe;
2332 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2336 dmi
->slave_addr
= data
[6];
2341 static void try_init_dmi(struct dmi_ipmi_data
*ipmi_data
)
2343 struct smi_info
*info
;
2345 info
= smi_info_alloc();
2347 printk(KERN_ERR PFX
"Could not allocate SI data\n");
2351 info
->addr_source
= SI_SMBIOS
;
2352 printk(KERN_INFO PFX
"probing via SMBIOS\n");
2354 switch (ipmi_data
->type
) {
2355 case 0x01: /* KCS */
2356 info
->si_type
= SI_KCS
;
2358 case 0x02: /* SMIC */
2359 info
->si_type
= SI_SMIC
;
2362 info
->si_type
= SI_BT
;
2369 switch (ipmi_data
->addr_space
) {
2370 case IPMI_MEM_ADDR_SPACE
:
2371 info
->io_setup
= mem_setup
;
2372 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2375 case IPMI_IO_ADDR_SPACE
:
2376 info
->io_setup
= port_setup
;
2377 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2382 printk(KERN_WARNING PFX
"Unknown SMBIOS I/O Address type: %d\n",
2383 ipmi_data
->addr_space
);
2386 info
->io
.addr_data
= ipmi_data
->base_addr
;
2388 info
->io
.regspacing
= ipmi_data
->offset
;
2389 if (!info
->io
.regspacing
)
2390 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2391 info
->io
.regsize
= DEFAULT_REGSPACING
;
2392 info
->io
.regshift
= 0;
2394 info
->slave_addr
= ipmi_data
->slave_addr
;
2396 info
->irq
= ipmi_data
->irq
;
2398 info
->irq_setup
= std_irq_setup
;
2400 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2401 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2402 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2409 static void dmi_find_bmc(void)
2411 const struct dmi_device
*dev
= NULL
;
2412 struct dmi_ipmi_data data
;
2415 while ((dev
= dmi_find_device(DMI_DEV_TYPE_IPMI
, NULL
, dev
))) {
2416 memset(&data
, 0, sizeof(data
));
2417 rv
= decode_dmi((const struct dmi_header
*) dev
->device_data
,
2420 try_init_dmi(&data
);
2423 #endif /* CONFIG_DMI */
2427 #define PCI_ERMC_CLASSCODE 0x0C0700
2428 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2429 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2430 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2431 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2432 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2434 #define PCI_HP_VENDOR_ID 0x103C
2435 #define PCI_MMC_DEVICE_ID 0x121A
2436 #define PCI_MMC_ADDR_CW 0x10
2438 static void ipmi_pci_cleanup(struct smi_info
*info
)
2440 struct pci_dev
*pdev
= info
->addr_source_data
;
2442 pci_disable_device(pdev
);
2445 static int ipmi_pci_probe_regspacing(struct smi_info
*info
)
2447 if (info
->si_type
== SI_KCS
) {
2448 unsigned char status
;
2451 info
->io
.regsize
= DEFAULT_REGSIZE
;
2452 info
->io
.regshift
= 0;
2454 info
->handlers
= &kcs_smi_handlers
;
2456 /* detect 1, 4, 16byte spacing */
2457 for (regspacing
= DEFAULT_REGSPACING
; regspacing
<= 16;) {
2458 info
->io
.regspacing
= regspacing
;
2459 if (info
->io_setup(info
)) {
2461 "Could not setup I/O space\n");
2462 return DEFAULT_REGSPACING
;
2464 /* write invalid cmd */
2465 info
->io
.outputb(&info
->io
, 1, 0x10);
2466 /* read status back */
2467 status
= info
->io
.inputb(&info
->io
, 1);
2468 info
->io_cleanup(info
);
2474 return DEFAULT_REGSPACING
;
2477 static int ipmi_pci_probe(struct pci_dev
*pdev
,
2478 const struct pci_device_id
*ent
)
2481 int class_type
= pdev
->class & PCI_ERMC_CLASSCODE_TYPE_MASK
;
2482 struct smi_info
*info
;
2484 info
= smi_info_alloc();
2488 info
->addr_source
= SI_PCI
;
2489 dev_info(&pdev
->dev
, "probing via PCI");
2491 switch (class_type
) {
2492 case PCI_ERMC_CLASSCODE_TYPE_SMIC
:
2493 info
->si_type
= SI_SMIC
;
2496 case PCI_ERMC_CLASSCODE_TYPE_KCS
:
2497 info
->si_type
= SI_KCS
;
2500 case PCI_ERMC_CLASSCODE_TYPE_BT
:
2501 info
->si_type
= SI_BT
;
2506 dev_info(&pdev
->dev
, "Unknown IPMI type: %d\n", class_type
);
2510 rv
= pci_enable_device(pdev
);
2512 dev_err(&pdev
->dev
, "couldn't enable PCI device\n");
2517 info
->addr_source_cleanup
= ipmi_pci_cleanup
;
2518 info
->addr_source_data
= pdev
;
2520 if (pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) {
2521 info
->io_setup
= port_setup
;
2522 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2524 info
->io_setup
= mem_setup
;
2525 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2527 info
->io
.addr_data
= pci_resource_start(pdev
, 0);
2529 info
->io
.regspacing
= ipmi_pci_probe_regspacing(info
);
2530 info
->io
.regsize
= DEFAULT_REGSIZE
;
2531 info
->io
.regshift
= 0;
2533 info
->irq
= pdev
->irq
;
2535 info
->irq_setup
= std_irq_setup
;
2537 info
->dev
= &pdev
->dev
;
2538 pci_set_drvdata(pdev
, info
);
2540 dev_info(&pdev
->dev
, "%pR regsize %d spacing %d irq %d\n",
2541 &pdev
->resource
[0], info
->io
.regsize
, info
->io
.regspacing
,
2547 pci_disable_device(pdev
);
2553 static void ipmi_pci_remove(struct pci_dev
*pdev
)
2555 struct smi_info
*info
= pci_get_drvdata(pdev
);
2556 cleanup_one_si(info
);
2557 pci_disable_device(pdev
);
2560 static const struct pci_device_id ipmi_pci_devices
[] = {
2561 { PCI_DEVICE(PCI_HP_VENDOR_ID
, PCI_MMC_DEVICE_ID
) },
2562 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE
, PCI_ERMC_CLASSCODE_MASK
) },
2565 MODULE_DEVICE_TABLE(pci
, ipmi_pci_devices
);
2567 static struct pci_driver ipmi_pci_driver
= {
2568 .name
= DEVICE_NAME
,
2569 .id_table
= ipmi_pci_devices
,
2570 .probe
= ipmi_pci_probe
,
2571 .remove
= ipmi_pci_remove
,
2573 #endif /* CONFIG_PCI */
2576 static const struct of_device_id of_ipmi_match
[] = {
2577 { .type
= "ipmi", .compatible
= "ipmi-kcs",
2578 .data
= (void *)(unsigned long) SI_KCS
},
2579 { .type
= "ipmi", .compatible
= "ipmi-smic",
2580 .data
= (void *)(unsigned long) SI_SMIC
},
2581 { .type
= "ipmi", .compatible
= "ipmi-bt",
2582 .data
= (void *)(unsigned long) SI_BT
},
2585 MODULE_DEVICE_TABLE(of
, of_ipmi_match
);
2587 static int of_ipmi_probe(struct platform_device
*dev
)
2589 const struct of_device_id
*match
;
2590 struct smi_info
*info
;
2591 struct resource resource
;
2592 const __be32
*regsize
, *regspacing
, *regshift
;
2593 struct device_node
*np
= dev
->dev
.of_node
;
2597 dev_info(&dev
->dev
, "probing via device tree\n");
2599 match
= of_match_device(of_ipmi_match
, &dev
->dev
);
2603 if (!of_device_is_available(np
))
2606 ret
= of_address_to_resource(np
, 0, &resource
);
2608 dev_warn(&dev
->dev
, PFX
"invalid address from OF\n");
2612 regsize
= of_get_property(np
, "reg-size", &proplen
);
2613 if (regsize
&& proplen
!= 4) {
2614 dev_warn(&dev
->dev
, PFX
"invalid regsize from OF\n");
2618 regspacing
= of_get_property(np
, "reg-spacing", &proplen
);
2619 if (regspacing
&& proplen
!= 4) {
2620 dev_warn(&dev
->dev
, PFX
"invalid regspacing from OF\n");
2624 regshift
= of_get_property(np
, "reg-shift", &proplen
);
2625 if (regshift
&& proplen
!= 4) {
2626 dev_warn(&dev
->dev
, PFX
"invalid regshift from OF\n");
2630 info
= smi_info_alloc();
2634 "could not allocate memory for OF probe\n");
2638 info
->si_type
= (enum si_type
) match
->data
;
2639 info
->addr_source
= SI_DEVICETREE
;
2640 info
->irq_setup
= std_irq_setup
;
2642 if (resource
.flags
& IORESOURCE_IO
) {
2643 info
->io_setup
= port_setup
;
2644 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2646 info
->io_setup
= mem_setup
;
2647 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2650 info
->io
.addr_data
= resource
.start
;
2652 info
->io
.regsize
= regsize
? be32_to_cpup(regsize
) : DEFAULT_REGSIZE
;
2653 info
->io
.regspacing
= regspacing
? be32_to_cpup(regspacing
) : DEFAULT_REGSPACING
;
2654 info
->io
.regshift
= regshift
? be32_to_cpup(regshift
) : 0;
2656 info
->irq
= irq_of_parse_and_map(dev
->dev
.of_node
, 0);
2657 info
->dev
= &dev
->dev
;
2659 dev_dbg(&dev
->dev
, "addr 0x%lx regsize %d spacing %d irq %d\n",
2660 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2663 dev_set_drvdata(&dev
->dev
, info
);
2665 ret
= add_smi(info
);
2673 #define of_ipmi_match NULL
2674 static int of_ipmi_probe(struct platform_device
*dev
)
2681 static int acpi_ipmi_probe(struct platform_device
*dev
)
2683 struct smi_info
*info
;
2684 struct resource
*res
, *res_second
;
2687 unsigned long long tmp
;
2690 handle
= ACPI_HANDLE(&dev
->dev
);
2694 info
= smi_info_alloc();
2698 info
->addr_source
= SI_ACPI
;
2699 dev_info(&dev
->dev
, PFX
"probing via ACPI\n");
2701 info
->addr_info
.acpi_info
.acpi_handle
= handle
;
2703 /* _IFT tells us the interface type: KCS, BT, etc */
2704 status
= acpi_evaluate_integer(handle
, "_IFT", NULL
, &tmp
);
2705 if (ACPI_FAILURE(status
)) {
2706 dev_err(&dev
->dev
, "Could not find ACPI IPMI interface type\n");
2712 info
->si_type
= SI_KCS
;
2715 info
->si_type
= SI_SMIC
;
2718 info
->si_type
= SI_BT
;
2720 case 4: /* SSIF, just ignore */
2724 dev_info(&dev
->dev
, "unknown IPMI type %lld\n", tmp
);
2728 res
= platform_get_resource(dev
, IORESOURCE_IO
, 0);
2730 info
->io_setup
= port_setup
;
2731 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2733 res
= platform_get_resource(dev
, IORESOURCE_MEM
, 0);
2735 info
->io_setup
= mem_setup
;
2736 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2740 dev_err(&dev
->dev
, "no I/O or memory address\n");
2743 info
->io
.addr_data
= res
->start
;
2745 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2746 res_second
= platform_get_resource(dev
,
2747 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ?
2748 IORESOURCE_IO
: IORESOURCE_MEM
,
2751 if (res_second
->start
> info
->io
.addr_data
)
2752 info
->io
.regspacing
=
2753 res_second
->start
- info
->io
.addr_data
;
2755 info
->io
.regsize
= DEFAULT_REGSPACING
;
2756 info
->io
.regshift
= 0;
2758 /* If _GPE exists, use it; otherwise use standard interrupts */
2759 status
= acpi_evaluate_integer(handle
, "_GPE", NULL
, &tmp
);
2760 if (ACPI_SUCCESS(status
)) {
2762 info
->irq_setup
= acpi_gpe_irq_setup
;
2764 int irq
= platform_get_irq(dev
, 0);
2768 info
->irq_setup
= std_irq_setup
;
2772 info
->dev
= &dev
->dev
;
2773 platform_set_drvdata(dev
, info
);
2775 dev_info(info
->dev
, "%pR regsize %d spacing %d irq %d\n",
2776 res
, info
->io
.regsize
, info
->io
.regspacing
,
2790 static const struct acpi_device_id acpi_ipmi_match
[] = {
2794 MODULE_DEVICE_TABLE(acpi
, acpi_ipmi_match
);
2796 static int acpi_ipmi_probe(struct platform_device
*dev
)
2802 static int ipmi_probe(struct platform_device
*dev
)
2804 if (of_ipmi_probe(dev
) == 0)
2807 return acpi_ipmi_probe(dev
);
2810 static int ipmi_remove(struct platform_device
*dev
)
2812 struct smi_info
*info
= dev_get_drvdata(&dev
->dev
);
2814 cleanup_one_si(info
);
2818 static struct platform_driver ipmi_driver
= {
2820 .name
= DEVICE_NAME
,
2821 .of_match_table
= of_ipmi_match
,
2822 .acpi_match_table
= ACPI_PTR(acpi_ipmi_match
),
2824 .probe
= ipmi_probe
,
2825 .remove
= ipmi_remove
,
2828 #ifdef CONFIG_PARISC
2829 static int ipmi_parisc_probe(struct parisc_device
*dev
)
2831 struct smi_info
*info
;
2834 info
= smi_info_alloc();
2838 "could not allocate memory for PARISC probe\n");
2842 info
->si_type
= SI_KCS
;
2843 info
->addr_source
= SI_DEVICETREE
;
2844 info
->io_setup
= mem_setup
;
2845 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2846 info
->io
.addr_data
= dev
->hpa
.start
;
2847 info
->io
.regsize
= 1;
2848 info
->io
.regspacing
= 1;
2849 info
->io
.regshift
= 0;
2850 info
->irq
= 0; /* no interrupt */
2851 info
->irq_setup
= NULL
;
2852 info
->dev
= &dev
->dev
;
2854 dev_dbg(&dev
->dev
, "addr 0x%lx\n", info
->io
.addr_data
);
2856 dev_set_drvdata(&dev
->dev
, info
);
2867 static int ipmi_parisc_remove(struct parisc_device
*dev
)
2869 cleanup_one_si(dev_get_drvdata(&dev
->dev
));
2873 static struct parisc_device_id ipmi_parisc_tbl
[] = {
2874 { HPHW_MC
, HVERSION_REV_ANY_ID
, 0x004, 0xC0 },
2878 static struct parisc_driver ipmi_parisc_driver
= {
2880 .id_table
= ipmi_parisc_tbl
,
2881 .probe
= ipmi_parisc_probe
,
2882 .remove
= ipmi_parisc_remove
,
2884 #endif /* CONFIG_PARISC */
2886 static int wait_for_msg_done(struct smi_info
*smi_info
)
2888 enum si_sm_result smi_result
;
2890 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
2892 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
2893 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
2894 schedule_timeout_uninterruptible(1);
2895 smi_result
= smi_info
->handlers
->event(
2896 smi_info
->si_sm
, jiffies_to_usecs(1));
2897 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
2898 smi_result
= smi_info
->handlers
->event(
2899 smi_info
->si_sm
, 0);
2903 if (smi_result
== SI_SM_HOSED
)
2905 * We couldn't get the state machine to run, so whatever's at
2906 * the port is probably not an IPMI SMI interface.
2913 static int try_get_dev_id(struct smi_info
*smi_info
)
2915 unsigned char msg
[2];
2916 unsigned char *resp
;
2917 unsigned long resp_len
;
2920 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2925 * Do a Get Device ID command, since it comes back with some
2928 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2929 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
2930 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2932 rv
= wait_for_msg_done(smi_info
);
2936 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2937 resp
, IPMI_MAX_MSG_LENGTH
);
2939 /* Check and record info from the get device id, in case we need it. */
2940 rv
= ipmi_demangle_device_id(resp
, resp_len
, &smi_info
->device_id
);
2947 static int get_global_enables(struct smi_info
*smi_info
, u8
*enables
)
2949 unsigned char msg
[3];
2950 unsigned char *resp
;
2951 unsigned long resp_len
;
2954 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2958 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2959 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
2960 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2962 rv
= wait_for_msg_done(smi_info
);
2964 dev_warn(smi_info
->dev
,
2965 "Error getting response from get global enables command: %d\n",
2970 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2971 resp
, IPMI_MAX_MSG_LENGTH
);
2974 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2975 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
2977 dev_warn(smi_info
->dev
,
2978 "Invalid return from get global enables command: %ld %x %x %x\n",
2979 resp_len
, resp
[0], resp
[1], resp
[2]);
2992 * Returns 1 if it gets an error from the command.
2994 static int set_global_enables(struct smi_info
*smi_info
, u8 enables
)
2996 unsigned char msg
[3];
2997 unsigned char *resp
;
2998 unsigned long resp_len
;
3001 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
3005 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
3006 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
3008 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
3010 rv
= wait_for_msg_done(smi_info
);
3012 dev_warn(smi_info
->dev
,
3013 "Error getting response from set global enables command: %d\n",
3018 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
3019 resp
, IPMI_MAX_MSG_LENGTH
);
3022 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
3023 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
3024 dev_warn(smi_info
->dev
,
3025 "Invalid return from set global enables command: %ld %x %x\n",
3026 resp_len
, resp
[0], resp
[1]);
3040 * Some BMCs do not support clearing the receive irq bit in the global
3041 * enables (even if they don't support interrupts on the BMC). Check
3042 * for this and handle it properly.
3044 static void check_clr_rcv_irq(struct smi_info
*smi_info
)
3049 rv
= get_global_enables(smi_info
, &enables
);
3051 if ((enables
& IPMI_BMC_RCV_MSG_INTR
) == 0)
3052 /* Already clear, should work ok. */
3055 enables
&= ~IPMI_BMC_RCV_MSG_INTR
;
3056 rv
= set_global_enables(smi_info
, enables
);
3060 dev_err(smi_info
->dev
,
3061 "Cannot check clearing the rcv irq: %d\n", rv
);
3067 * An error when setting the event buffer bit means
3068 * clearing the bit is not supported.
3070 dev_warn(smi_info
->dev
,
3071 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3072 smi_info
->cannot_disable_irq
= true;
3077 * Some BMCs do not support setting the interrupt bits in the global
3078 * enables even if they support interrupts. Clearly bad, but we can
3081 static void check_set_rcv_irq(struct smi_info
*smi_info
)
3089 rv
= get_global_enables(smi_info
, &enables
);
3091 enables
|= IPMI_BMC_RCV_MSG_INTR
;
3092 rv
= set_global_enables(smi_info
, enables
);
3096 dev_err(smi_info
->dev
,
3097 "Cannot check setting the rcv irq: %d\n", rv
);
3103 * An error when setting the event buffer bit means
3104 * setting the bit is not supported.
3106 dev_warn(smi_info
->dev
,
3107 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3108 smi_info
->cannot_disable_irq
= true;
3109 smi_info
->irq_enable_broken
= true;
3113 static int try_enable_event_buffer(struct smi_info
*smi_info
)
3115 unsigned char msg
[3];
3116 unsigned char *resp
;
3117 unsigned long resp_len
;
3120 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
3124 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
3125 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
3126 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
3128 rv
= wait_for_msg_done(smi_info
);
3130 printk(KERN_WARNING PFX
"Error getting response from get"
3131 " global enables command, the event buffer is not"
3136 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
3137 resp
, IPMI_MAX_MSG_LENGTH
);
3140 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
3141 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
3143 printk(KERN_WARNING PFX
"Invalid return from get global"
3144 " enables command, cannot enable the event buffer.\n");
3149 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
) {
3150 /* buffer is already enabled, nothing to do. */
3151 smi_info
->supports_event_msg_buff
= true;
3155 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
3156 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
3157 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
3158 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
3160 rv
= wait_for_msg_done(smi_info
);
3162 printk(KERN_WARNING PFX
"Error getting response from set"
3163 " global, enables command, the event buffer is not"
3168 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
3169 resp
, IPMI_MAX_MSG_LENGTH
);
3172 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
3173 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
3174 printk(KERN_WARNING PFX
"Invalid return from get global,"
3175 "enables command, not enable the event buffer.\n");
3182 * An error when setting the event buffer bit means
3183 * that the event buffer is not supported.
3187 smi_info
->supports_event_msg_buff
= true;
3194 static int smi_type_proc_show(struct seq_file
*m
, void *v
)
3196 struct smi_info
*smi
= m
->private;
3198 seq_printf(m
, "%s\n", si_to_str
[smi
->si_type
]);
3203 static int smi_type_proc_open(struct inode
*inode
, struct file
*file
)
3205 return single_open(file
, smi_type_proc_show
, PDE_DATA(inode
));
3208 static const struct file_operations smi_type_proc_ops
= {
3209 .open
= smi_type_proc_open
,
3211 .llseek
= seq_lseek
,
3212 .release
= single_release
,
3215 static int smi_si_stats_proc_show(struct seq_file
*m
, void *v
)
3217 struct smi_info
*smi
= m
->private;
3219 seq_printf(m
, "interrupts_enabled: %d\n",
3220 smi
->irq
&& !smi
->interrupt_disabled
);
3221 seq_printf(m
, "short_timeouts: %u\n",
3222 smi_get_stat(smi
, short_timeouts
));
3223 seq_printf(m
, "long_timeouts: %u\n",
3224 smi_get_stat(smi
, long_timeouts
));
3225 seq_printf(m
, "idles: %u\n",
3226 smi_get_stat(smi
, idles
));
3227 seq_printf(m
, "interrupts: %u\n",
3228 smi_get_stat(smi
, interrupts
));
3229 seq_printf(m
, "attentions: %u\n",
3230 smi_get_stat(smi
, attentions
));
3231 seq_printf(m
, "flag_fetches: %u\n",
3232 smi_get_stat(smi
, flag_fetches
));
3233 seq_printf(m
, "hosed_count: %u\n",
3234 smi_get_stat(smi
, hosed_count
));
3235 seq_printf(m
, "complete_transactions: %u\n",
3236 smi_get_stat(smi
, complete_transactions
));
3237 seq_printf(m
, "events: %u\n",
3238 smi_get_stat(smi
, events
));
3239 seq_printf(m
, "watchdog_pretimeouts: %u\n",
3240 smi_get_stat(smi
, watchdog_pretimeouts
));
3241 seq_printf(m
, "incoming_messages: %u\n",
3242 smi_get_stat(smi
, incoming_messages
));
3246 static int smi_si_stats_proc_open(struct inode
*inode
, struct file
*file
)
3248 return single_open(file
, smi_si_stats_proc_show
, PDE_DATA(inode
));
3251 static const struct file_operations smi_si_stats_proc_ops
= {
3252 .open
= smi_si_stats_proc_open
,
3254 .llseek
= seq_lseek
,
3255 .release
= single_release
,
3258 static int smi_params_proc_show(struct seq_file
*m
, void *v
)
3260 struct smi_info
*smi
= m
->private;
3263 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3264 si_to_str
[smi
->si_type
],
3265 addr_space_to_str
[smi
->io
.addr_type
],
3276 static int smi_params_proc_open(struct inode
*inode
, struct file
*file
)
3278 return single_open(file
, smi_params_proc_show
, PDE_DATA(inode
));
3281 static const struct file_operations smi_params_proc_ops
= {
3282 .open
= smi_params_proc_open
,
3284 .llseek
= seq_lseek
,
3285 .release
= single_release
,
3289 * oem_data_avail_to_receive_msg_avail
3290 * @info - smi_info structure with msg_flags set
3292 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3293 * Returns 1 indicating need to re-run handle_flags().
3295 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
3297 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
3303 * setup_dell_poweredge_oem_data_handler
3304 * @info - smi_info.device_id must be populated
3306 * Systems that match, but have firmware version < 1.40 may assert
3307 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3308 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3309 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3310 * as RECEIVE_MSG_AVAIL instead.
3312 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3313 * assert the OEM[012] bits, and if it did, the driver would have to
3314 * change to handle that properly, we don't actually check for the
3316 * Device ID = 0x20 BMC on PowerEdge 8G servers
3317 * Device Revision = 0x80
3318 * Firmware Revision1 = 0x01 BMC version 1.40
3319 * Firmware Revision2 = 0x40 BCD encoded
3320 * IPMI Version = 0x51 IPMI 1.5
3321 * Manufacturer ID = A2 02 00 Dell IANA
3323 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3324 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3327 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3328 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3329 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3330 #define DELL_IANA_MFR_ID 0x0002a2
3331 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
3333 struct ipmi_device_id
*id
= &smi_info
->device_id
;
3334 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
3335 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
3336 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
3337 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
3338 smi_info
->oem_data_avail_handler
=
3339 oem_data_avail_to_receive_msg_avail
;
3340 } else if (ipmi_version_major(id
) < 1 ||
3341 (ipmi_version_major(id
) == 1 &&
3342 ipmi_version_minor(id
) < 5)) {
3343 smi_info
->oem_data_avail_handler
=
3344 oem_data_avail_to_receive_msg_avail
;
3349 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3350 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
3352 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
3354 /* Make it a response */
3355 msg
->rsp
[0] = msg
->data
[0] | 4;
3356 msg
->rsp
[1] = msg
->data
[1];
3357 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
3359 smi_info
->curr_msg
= NULL
;
3360 deliver_recv_msg(smi_info
, msg
);
3364 * dell_poweredge_bt_xaction_handler
3365 * @info - smi_info.device_id must be populated
3367 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3368 * not respond to a Get SDR command if the length of the data
3369 * requested is exactly 0x3A, which leads to command timeouts and no
3370 * data returned. This intercepts such commands, and causes userspace
3371 * callers to try again with a different-sized buffer, which succeeds.
3374 #define STORAGE_NETFN 0x0A
3375 #define STORAGE_CMD_GET_SDR 0x23
3376 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
3377 unsigned long unused
,
3380 struct smi_info
*smi_info
= in
;
3381 unsigned char *data
= smi_info
->curr_msg
->data
;
3382 unsigned int size
= smi_info
->curr_msg
->data_size
;
3384 (data
[0]>>2) == STORAGE_NETFN
&&
3385 data
[1] == STORAGE_CMD_GET_SDR
&&
3387 return_hosed_msg_badsize(smi_info
);
3393 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
3394 .notifier_call
= dell_poweredge_bt_xaction_handler
,
3398 * setup_dell_poweredge_bt_xaction_handler
3399 * @info - smi_info.device_id must be filled in already
3401 * Fills in smi_info.device_id.start_transaction_pre_hook
3402 * when we know what function to use there.
3405 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
3407 struct ipmi_device_id
*id
= &smi_info
->device_id
;
3408 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
3409 smi_info
->si_type
== SI_BT
)
3410 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
3414 * setup_oem_data_handler
3415 * @info - smi_info.device_id must be filled in already
3417 * Fills in smi_info.device_id.oem_data_available_handler
3418 * when we know what function to use there.
3421 static void setup_oem_data_handler(struct smi_info
*smi_info
)
3423 setup_dell_poweredge_oem_data_handler(smi_info
);
3426 static void setup_xaction_handlers(struct smi_info
*smi_info
)
3428 setup_dell_poweredge_bt_xaction_handler(smi_info
);
3431 static void check_for_broken_irqs(struct smi_info
*smi_info
)
3433 check_clr_rcv_irq(smi_info
);
3434 check_set_rcv_irq(smi_info
);
3437 static inline void stop_timer_and_thread(struct smi_info
*smi_info
)
3439 if (smi_info
->thread
!= NULL
)
3440 kthread_stop(smi_info
->thread
);
3442 smi_info
->timer_can_start
= false;
3443 if (smi_info
->timer_running
)
3444 del_timer_sync(&smi_info
->si_timer
);
3447 static const struct ipmi_default_vals
3453 { .type
= SI_KCS
, .port
= 0xca2 },
3454 { .type
= SI_SMIC
, .port
= 0xca9 },
3455 { .type
= SI_BT
, .port
= 0xe4 },
3459 static void default_find_bmc(void)
3461 struct smi_info
*info
;
3464 for (i
= 0; ; i
++) {
3465 if (!ipmi_defaults
[i
].port
)
3468 if (check_legacy_ioport(ipmi_defaults
[i
].port
))
3471 info
= smi_info_alloc();
3475 info
->addr_source
= SI_DEFAULT
;
3477 info
->si_type
= ipmi_defaults
[i
].type
;
3478 info
->io_setup
= port_setup
;
3479 info
->io
.addr_data
= ipmi_defaults
[i
].port
;
3480 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
3482 info
->io
.addr
= NULL
;
3483 info
->io
.regspacing
= DEFAULT_REGSPACING
;
3484 info
->io
.regsize
= DEFAULT_REGSPACING
;
3485 info
->io
.regshift
= 0;
3487 if (add_smi(info
) == 0) {
3488 if ((try_smi_init(info
)) == 0) {
3490 printk(KERN_INFO PFX
"Found default %s"
3491 " state machine at %s address 0x%lx\n",
3492 si_to_str
[info
->si_type
],
3493 addr_space_to_str
[info
->io
.addr_type
],
3494 info
->io
.addr_data
);
3496 cleanup_one_si(info
);
3503 static int is_new_interface(struct smi_info
*info
)
3507 list_for_each_entry(e
, &smi_infos
, link
) {
3508 if (e
->io
.addr_type
!= info
->io
.addr_type
)
3510 if (e
->io
.addr_data
== info
->io
.addr_data
)
3517 static int add_smi(struct smi_info
*new_smi
)
3521 printk(KERN_INFO PFX
"Adding %s-specified %s state machine",
3522 ipmi_addr_src_to_str(new_smi
->addr_source
),
3523 si_to_str
[new_smi
->si_type
]);
3524 mutex_lock(&smi_infos_lock
);
3525 if (!is_new_interface(new_smi
)) {
3526 printk(KERN_CONT
" duplicate interface\n");
3531 printk(KERN_CONT
"\n");
3533 /* So we know not to free it unless we have allocated one. */
3534 new_smi
->intf
= NULL
;
3535 new_smi
->si_sm
= NULL
;
3536 new_smi
->handlers
= NULL
;
3538 list_add_tail(&new_smi
->link
, &smi_infos
);
3541 mutex_unlock(&smi_infos_lock
);
3545 static int try_smi_init(struct smi_info
*new_smi
)
3550 printk(KERN_INFO PFX
"Trying %s-specified %s state"
3551 " machine at %s address 0x%lx, slave address 0x%x,"
3553 ipmi_addr_src_to_str(new_smi
->addr_source
),
3554 si_to_str
[new_smi
->si_type
],
3555 addr_space_to_str
[new_smi
->io
.addr_type
],
3556 new_smi
->io
.addr_data
,
3557 new_smi
->slave_addr
, new_smi
->irq
);
3559 switch (new_smi
->si_type
) {
3561 new_smi
->handlers
= &kcs_smi_handlers
;
3565 new_smi
->handlers
= &smic_smi_handlers
;
3569 new_smi
->handlers
= &bt_smi_handlers
;
3573 /* No support for anything else yet. */
3578 /* Allocate the state machine's data and initialize it. */
3579 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
3580 if (!new_smi
->si_sm
) {
3582 "Could not allocate state machine memory\n");
3586 new_smi
->io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
3589 /* Now that we know the I/O size, we can set up the I/O. */
3590 rv
= new_smi
->io_setup(new_smi
);
3592 printk(KERN_ERR PFX
"Could not set up I/O space\n");
3596 /* Do low-level detection first. */
3597 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
3598 if (new_smi
->addr_source
)
3599 printk(KERN_INFO PFX
"Interface detection failed\n");
3605 * Attempt a get device id command. If it fails, we probably
3606 * don't have a BMC here.
3608 rv
= try_get_dev_id(new_smi
);
3610 if (new_smi
->addr_source
)
3611 printk(KERN_INFO PFX
"There appears to be no BMC"
3612 " at this location\n");
3616 setup_oem_data_handler(new_smi
);
3617 setup_xaction_handlers(new_smi
);
3618 check_for_broken_irqs(new_smi
);
3620 new_smi
->waiting_msg
= NULL
;
3621 new_smi
->curr_msg
= NULL
;
3622 atomic_set(&new_smi
->req_events
, 0);
3623 new_smi
->run_to_completion
= false;
3624 for (i
= 0; i
< SI_NUM_STATS
; i
++)
3625 atomic_set(&new_smi
->stats
[i
], 0);
3627 new_smi
->interrupt_disabled
= true;
3628 atomic_set(&new_smi
->need_watch
, 0);
3629 new_smi
->intf_num
= smi_num
;
3632 rv
= try_enable_event_buffer(new_smi
);
3634 new_smi
->has_event_buffer
= true;
3637 * Start clearing the flags before we enable interrupts or the
3638 * timer to avoid racing with the timer.
3640 start_clear_flags(new_smi
);
3643 * IRQ is defined to be set when non-zero. req_events will
3644 * cause a global flags check that will enable interrupts.
3647 new_smi
->interrupt_disabled
= false;
3648 atomic_set(&new_smi
->req_events
, 1);
3651 if (!new_smi
->dev
) {
3653 * If we don't already have a device from something
3654 * else (like PCI), then register a new one.
3656 new_smi
->pdev
= platform_device_alloc("ipmi_si",
3658 if (!new_smi
->pdev
) {
3660 "Unable to allocate platform device\n");
3663 new_smi
->dev
= &new_smi
->pdev
->dev
;
3664 new_smi
->dev
->driver
= &ipmi_driver
.driver
;
3666 rv
= platform_device_add(new_smi
->pdev
);
3669 "Unable to register system interface device:"
3674 new_smi
->dev_registered
= true;
3677 rv
= ipmi_register_smi(&handlers
,
3679 &new_smi
->device_id
,
3681 new_smi
->slave_addr
);
3683 dev_err(new_smi
->dev
, "Unable to register device: error %d\n",
3685 goto out_err_stop_timer
;
3688 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "type",
3692 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3693 goto out_err_stop_timer
;
3696 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "si_stats",
3697 &smi_si_stats_proc_ops
,
3700 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3701 goto out_err_stop_timer
;
3704 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "params",
3705 &smi_params_proc_ops
,
3708 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3709 goto out_err_stop_timer
;
3712 dev_info(new_smi
->dev
, "IPMI %s interface initialized\n",
3713 si_to_str
[new_smi
->si_type
]);
3718 stop_timer_and_thread(new_smi
);
3721 new_smi
->interrupt_disabled
= true;
3723 if (new_smi
->intf
) {
3724 ipmi_smi_t intf
= new_smi
->intf
;
3725 new_smi
->intf
= NULL
;
3726 ipmi_unregister_smi(intf
);
3729 if (new_smi
->irq_cleanup
) {
3730 new_smi
->irq_cleanup(new_smi
);
3731 new_smi
->irq_cleanup
= NULL
;
3735 * Wait until we know that we are out of any interrupt
3736 * handlers might have been running before we freed the
3739 synchronize_sched();
3741 if (new_smi
->si_sm
) {
3742 if (new_smi
->handlers
)
3743 new_smi
->handlers
->cleanup(new_smi
->si_sm
);
3744 kfree(new_smi
->si_sm
);
3745 new_smi
->si_sm
= NULL
;
3747 if (new_smi
->addr_source_cleanup
) {
3748 new_smi
->addr_source_cleanup(new_smi
);
3749 new_smi
->addr_source_cleanup
= NULL
;
3751 if (new_smi
->io_cleanup
) {
3752 new_smi
->io_cleanup(new_smi
);
3753 new_smi
->io_cleanup
= NULL
;
3756 if (new_smi
->dev_registered
) {
3757 platform_device_unregister(new_smi
->pdev
);
3758 new_smi
->dev_registered
= false;
3764 static int init_ipmi_si(void)
3770 enum ipmi_addr_src type
= SI_INVALID
;
3776 if (si_tryplatform
) {
3777 rv
= platform_driver_register(&ipmi_driver
);
3779 printk(KERN_ERR PFX
"Unable to register "
3780 "driver: %d\n", rv
);
3785 /* Parse out the si_type string into its components. */
3788 for (i
= 0; (i
< SI_MAX_PARMS
) && (*str
!= '\0'); i
++) {
3790 str
= strchr(str
, ',');
3800 printk(KERN_INFO
"IPMI System Interface driver.\n");
3802 /* If the user gave us a device, they presumably want us to use it */
3803 if (!hardcode_find_bmc())
3808 rv
= pci_register_driver(&ipmi_pci_driver
);
3810 printk(KERN_ERR PFX
"Unable to register "
3811 "PCI driver: %d\n", rv
);
3813 pci_registered
= true;
3827 #ifdef CONFIG_PARISC
3828 register_parisc_driver(&ipmi_parisc_driver
);
3829 parisc_registered
= true;
3830 /* poking PC IO addresses will crash machine, don't do it */
3834 /* We prefer devices with interrupts, but in the case of a machine
3835 with multiple BMCs we assume that there will be several instances
3836 of a given type so if we succeed in registering a type then also
3837 try to register everything else of the same type */
3839 mutex_lock(&smi_infos_lock
);
3840 list_for_each_entry(e
, &smi_infos
, link
) {
3841 /* Try to register a device if it has an IRQ and we either
3842 haven't successfully registered a device yet or this
3843 device has the same type as one we successfully registered */
3844 if (e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3845 if (!try_smi_init(e
)) {
3846 type
= e
->addr_source
;
3851 /* type will only have been set if we successfully registered an si */
3853 mutex_unlock(&smi_infos_lock
);
3857 /* Fall back to the preferred device */
3859 list_for_each_entry(e
, &smi_infos
, link
) {
3860 if (!e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3861 if (!try_smi_init(e
)) {
3862 type
= e
->addr_source
;
3866 mutex_unlock(&smi_infos_lock
);
3871 if (si_trydefaults
) {
3872 mutex_lock(&smi_infos_lock
);
3873 if (list_empty(&smi_infos
)) {
3874 /* No BMC was found, try defaults. */
3875 mutex_unlock(&smi_infos_lock
);
3878 mutex_unlock(&smi_infos_lock
);
3881 mutex_lock(&smi_infos_lock
);
3882 if (unload_when_empty
&& list_empty(&smi_infos
)) {
3883 mutex_unlock(&smi_infos_lock
);
3885 printk(KERN_WARNING PFX
3886 "Unable to find any System Interface(s)\n");
3889 mutex_unlock(&smi_infos_lock
);
3893 module_init(init_ipmi_si
);
3895 static void cleanup_one_si(struct smi_info
*to_clean
)
3902 if (to_clean
->intf
) {
3903 ipmi_smi_t intf
= to_clean
->intf
;
3905 to_clean
->intf
= NULL
;
3906 rv
= ipmi_unregister_smi(intf
);
3908 pr_err(PFX
"Unable to unregister device: errno=%d\n",
3914 dev_set_drvdata(to_clean
->dev
, NULL
);
3916 list_del(&to_clean
->link
);
3919 * Make sure that interrupts, the timer and the thread are
3920 * stopped and will not run again.
3922 if (to_clean
->irq_cleanup
)
3923 to_clean
->irq_cleanup(to_clean
);
3924 stop_timer_and_thread(to_clean
);
3927 * Timeouts are stopped, now make sure the interrupts are off
3928 * in the BMC. Note that timers and CPU interrupts are off,
3929 * so no need for locks.
3931 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3933 schedule_timeout_uninterruptible(1);
3935 disable_si_irq(to_clean
);
3936 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3938 schedule_timeout_uninterruptible(1);
3941 if (to_clean
->handlers
)
3942 to_clean
->handlers
->cleanup(to_clean
->si_sm
);
3944 kfree(to_clean
->si_sm
);
3946 if (to_clean
->addr_source_cleanup
)
3947 to_clean
->addr_source_cleanup(to_clean
);
3948 if (to_clean
->io_cleanup
)
3949 to_clean
->io_cleanup(to_clean
);
3951 if (to_clean
->dev_registered
)
3952 platform_device_unregister(to_clean
->pdev
);
3957 static void cleanup_ipmi_si(void)
3959 struct smi_info
*e
, *tmp_e
;
3966 pci_unregister_driver(&ipmi_pci_driver
);
3968 #ifdef CONFIG_PARISC
3969 if (parisc_registered
)
3970 unregister_parisc_driver(&ipmi_parisc_driver
);
3973 platform_driver_unregister(&ipmi_driver
);
3975 mutex_lock(&smi_infos_lock
);
3976 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
3978 mutex_unlock(&smi_infos_lock
);
3980 module_exit(cleanup_ipmi_si
);
3982 MODULE_LICENSE("GPL");
3983 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3984 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3985 " system interfaces.");