dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-riic.c
blob16833365475f6a87a2595cb10c13339963b1436b
1 /*
2 * Renesas RIIC driver
4 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com>
5 * Copyright (C) 2013 Renesas Solutions Corp.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
13 * This i2c core has a lot of interrupts, namely 8. We use their chaining as
14 * some kind of state machine.
16 * 1) The main xfer routine kicks off a transmission by putting the start bit
17 * (or repeated start) on the bus and enabling the transmit interrupt (TIE)
18 * since we need to send the slave address + RW bit in every case.
20 * 2) TIE sends slave address + RW bit and selects how to continue.
22 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we
23 * are done, we switch over to the transmission done interrupt (TEIE) and mark
24 * the message as completed (includes sending STOP) there.
26 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is
27 * needed to start clocking, then we keep receiving until we are done. Note
28 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by
29 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a
30 * message to create the final NACK as sketched in the datasheet. This caused
31 * some subtle races (when byte n was processed and byte n+1 was already
32 * waiting), though, and I started with the safe approach.
34 * 4) If we got a NACK somewhere, we flag the error and stop the transmission
35 * via NAKIE.
37 * Also check the comments in the interrupt routines for some gory details.
40 #include <linux/clk.h>
41 #include <linux/completion.h>
42 #include <linux/err.h>
43 #include <linux/i2c.h>
44 #include <linux/interrupt.h>
45 #include <linux/io.h>
46 #include <linux/module.h>
47 #include <linux/of.h>
48 #include <linux/platform_device.h>
50 #define RIIC_ICCR1 0x00
51 #define RIIC_ICCR2 0x04
52 #define RIIC_ICMR1 0x08
53 #define RIIC_ICMR3 0x10
54 #define RIIC_ICSER 0x18
55 #define RIIC_ICIER 0x1c
56 #define RIIC_ICSR2 0x24
57 #define RIIC_ICBRL 0x34
58 #define RIIC_ICBRH 0x38
59 #define RIIC_ICDRT 0x3c
60 #define RIIC_ICDRR 0x40
62 #define ICCR1_ICE 0x80
63 #define ICCR1_IICRST 0x40
64 #define ICCR1_SOWP 0x10
66 #define ICCR2_BBSY 0x80
67 #define ICCR2_SP 0x08
68 #define ICCR2_RS 0x04
69 #define ICCR2_ST 0x02
71 #define ICMR1_CKS_MASK 0x70
72 #define ICMR1_BCWP 0x08
73 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP)
75 #define ICMR3_RDRFS 0x20
76 #define ICMR3_ACKWP 0x10
77 #define ICMR3_ACKBT 0x08
79 #define ICIER_TIE 0x80
80 #define ICIER_TEIE 0x40
81 #define ICIER_RIE 0x20
82 #define ICIER_NAKIE 0x10
83 #define ICIER_SPIE 0x08
85 #define ICSR2_NACKF 0x10
87 /* ICBRx (@ PCLK 33MHz) */
88 #define ICBR_RESERVED 0xe0 /* Should be 1 on writes */
89 #define ICBRL_SP100K (19 | ICBR_RESERVED)
90 #define ICBRH_SP100K (16 | ICBR_RESERVED)
91 #define ICBRL_SP400K (21 | ICBR_RESERVED)
92 #define ICBRH_SP400K (9 | ICBR_RESERVED)
94 #define RIIC_INIT_MSG -1
96 struct riic_dev {
97 void __iomem *base;
98 u8 *buf;
99 struct i2c_msg *msg;
100 int bytes_left;
101 int err;
102 int is_last;
103 struct completion msg_done;
104 struct i2c_adapter adapter;
105 struct clk *clk;
108 struct riic_irq_desc {
109 int res_num;
110 irq_handler_t isr;
111 char *name;
114 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg)
116 writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg);
119 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
121 struct riic_dev *riic = i2c_get_adapdata(adap);
122 unsigned long time_left;
123 int i, ret;
124 u8 start_bit;
126 ret = clk_prepare_enable(riic->clk);
127 if (ret)
128 return ret;
130 if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) {
131 riic->err = -EBUSY;
132 goto out;
135 reinit_completion(&riic->msg_done);
136 riic->err = 0;
138 writeb(0, riic->base + RIIC_ICSR2);
140 for (i = 0, start_bit = ICCR2_ST; i < num; i++) {
141 riic->bytes_left = RIIC_INIT_MSG;
142 riic->buf = msgs[i].buf;
143 riic->msg = &msgs[i];
144 riic->is_last = (i == num - 1);
146 writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER);
148 writeb(start_bit, riic->base + RIIC_ICCR2);
150 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout);
151 if (time_left == 0)
152 riic->err = -ETIMEDOUT;
154 if (riic->err)
155 break;
157 start_bit = ICCR2_RS;
160 out:
161 clk_disable_unprepare(riic->clk);
163 return riic->err ?: num;
166 static irqreturn_t riic_tdre_isr(int irq, void *data)
168 struct riic_dev *riic = data;
169 u8 val;
171 if (!riic->bytes_left)
172 return IRQ_NONE;
174 if (riic->bytes_left == RIIC_INIT_MSG) {
175 val = !!(riic->msg->flags & I2C_M_RD);
176 if (val)
177 /* On read, switch over to receive interrupt */
178 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER);
179 else
180 /* On write, initialize length */
181 riic->bytes_left = riic->msg->len;
183 val |= (riic->msg->addr << 1);
184 } else {
185 val = *riic->buf;
186 riic->buf++;
187 riic->bytes_left--;
191 * Switch to transmission ended interrupt when done. Do check here
192 * after bytes_left was initialized to support SMBUS_QUICK (new msg has
193 * 0 length then)
195 if (riic->bytes_left == 0)
196 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER);
199 * This acks the TIE interrupt. We get another TIE immediately if our
200 * value could be moved to the shadow shift register right away. So
201 * this must be after updates to ICIER (where we want to disable TIE)!
203 writeb(val, riic->base + RIIC_ICDRT);
205 return IRQ_HANDLED;
208 static irqreturn_t riic_tend_isr(int irq, void *data)
210 struct riic_dev *riic = data;
212 if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) {
213 /* We got a NACKIE */
214 readb(riic->base + RIIC_ICDRR); /* dummy read */
215 riic->err = -ENXIO;
216 } else if (riic->bytes_left) {
217 return IRQ_NONE;
220 if (riic->is_last || riic->err) {
221 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER);
222 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
223 } else {
224 /* Transfer is complete, but do not send STOP */
225 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER);
226 complete(&riic->msg_done);
229 return IRQ_HANDLED;
232 static irqreturn_t riic_rdrf_isr(int irq, void *data)
234 struct riic_dev *riic = data;
236 if (!riic->bytes_left)
237 return IRQ_NONE;
239 if (riic->bytes_left == RIIC_INIT_MSG) {
240 riic->bytes_left = riic->msg->len;
241 readb(riic->base + RIIC_ICDRR); /* dummy read */
242 return IRQ_HANDLED;
245 if (riic->bytes_left == 1) {
246 /* STOP must come before we set ACKBT! */
247 if (riic->is_last) {
248 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER);
249 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
252 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3);
254 } else {
255 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3);
258 /* Reading acks the RIE interrupt */
259 *riic->buf = readb(riic->base + RIIC_ICDRR);
260 riic->buf++;
261 riic->bytes_left--;
263 return IRQ_HANDLED;
266 static irqreturn_t riic_stop_isr(int irq, void *data)
268 struct riic_dev *riic = data;
270 /* read back registers to confirm writes have fully propagated */
271 writeb(0, riic->base + RIIC_ICSR2);
272 readb(riic->base + RIIC_ICSR2);
273 writeb(0, riic->base + RIIC_ICIER);
274 readb(riic->base + RIIC_ICIER);
276 complete(&riic->msg_done);
278 return IRQ_HANDLED;
281 static u32 riic_func(struct i2c_adapter *adap)
283 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
286 static const struct i2c_algorithm riic_algo = {
287 .master_xfer = riic_xfer,
288 .functionality = riic_func,
291 static int riic_init_hw(struct riic_dev *riic, u32 spd)
293 int ret;
294 unsigned long rate;
296 ret = clk_prepare_enable(riic->clk);
297 if (ret)
298 return ret;
301 * TODO: Implement formula to calculate the timing values depending on
302 * variable parent clock rate and arbitrary bus speed
304 rate = clk_get_rate(riic->clk);
305 if (rate != 33325000) {
306 dev_err(&riic->adapter.dev,
307 "invalid parent clk (%lu). Must be 33325000Hz\n", rate);
308 clk_disable_unprepare(riic->clk);
309 return -EINVAL;
312 /* Changing the order of accessing IICRST and ICE may break things! */
313 writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1);
314 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1);
316 switch (spd) {
317 case 100000:
318 writeb(ICMR1_CKS(3), riic->base + RIIC_ICMR1);
319 writeb(ICBRH_SP100K, riic->base + RIIC_ICBRH);
320 writeb(ICBRL_SP100K, riic->base + RIIC_ICBRL);
321 break;
322 case 400000:
323 writeb(ICMR1_CKS(1), riic->base + RIIC_ICMR1);
324 writeb(ICBRH_SP400K, riic->base + RIIC_ICBRH);
325 writeb(ICBRL_SP400K, riic->base + RIIC_ICBRL);
326 break;
327 default:
328 dev_err(&riic->adapter.dev,
329 "unsupported bus speed (%dHz). Use 100000 or 400000\n", spd);
330 clk_disable_unprepare(riic->clk);
331 return -EINVAL;
334 writeb(0, riic->base + RIIC_ICSER);
335 writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3);
337 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1);
339 clk_disable_unprepare(riic->clk);
341 return 0;
344 static struct riic_irq_desc riic_irqs[] = {
345 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" },
346 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" },
347 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" },
348 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" },
349 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" },
352 static int riic_i2c_probe(struct platform_device *pdev)
354 struct device_node *np = pdev->dev.of_node;
355 struct riic_dev *riic;
356 struct i2c_adapter *adap;
357 struct resource *res;
358 u32 bus_rate = 0;
359 int i, ret;
361 riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL);
362 if (!riic)
363 return -ENOMEM;
365 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
366 riic->base = devm_ioremap_resource(&pdev->dev, res);
367 if (IS_ERR(riic->base))
368 return PTR_ERR(riic->base);
370 riic->clk = devm_clk_get(&pdev->dev, NULL);
371 if (IS_ERR(riic->clk)) {
372 dev_err(&pdev->dev, "missing controller clock");
373 return PTR_ERR(riic->clk);
376 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) {
377 res = platform_get_resource(pdev, IORESOURCE_IRQ, riic_irqs[i].res_num);
378 if (!res)
379 return -ENODEV;
381 ret = devm_request_irq(&pdev->dev, res->start, riic_irqs[i].isr,
382 0, riic_irqs[i].name, riic);
383 if (ret) {
384 dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name);
385 return ret;
389 adap = &riic->adapter;
390 i2c_set_adapdata(adap, riic);
391 strlcpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name));
392 adap->owner = THIS_MODULE;
393 adap->algo = &riic_algo;
394 adap->dev.parent = &pdev->dev;
395 adap->dev.of_node = pdev->dev.of_node;
397 init_completion(&riic->msg_done);
399 of_property_read_u32(np, "clock-frequency", &bus_rate);
400 ret = riic_init_hw(riic, bus_rate);
401 if (ret)
402 return ret;
405 ret = i2c_add_adapter(adap);
406 if (ret) {
407 dev_err(&pdev->dev, "failed to add adapter\n");
408 return ret;
411 platform_set_drvdata(pdev, riic);
413 dev_info(&pdev->dev, "registered with %dHz bus speed\n", bus_rate);
414 return 0;
417 static int riic_i2c_remove(struct platform_device *pdev)
419 struct riic_dev *riic = platform_get_drvdata(pdev);
421 writeb(0, riic->base + RIIC_ICIER);
422 i2c_del_adapter(&riic->adapter);
424 return 0;
427 static const struct of_device_id riic_i2c_dt_ids[] = {
428 { .compatible = "renesas,riic-rz" },
429 { /* Sentinel */ },
432 static struct platform_driver riic_i2c_driver = {
433 .probe = riic_i2c_probe,
434 .remove = riic_i2c_remove,
435 .driver = {
436 .name = "i2c-riic",
437 .of_match_table = riic_i2c_dt_ids,
441 module_platform_driver(riic_i2c_driver);
443 MODULE_DESCRIPTION("Renesas RIIC adapter");
444 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>");
445 MODULE_LICENSE("GPL v2");
446 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids);