dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / kernel / time / posix-timers.c
blobfc7c37ad90a0054100c96a2d588495ce34413a18
1 /*
2 * linux/kernel/posix-timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/hash.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/export.h>
50 #include <linux/hashtable.h>
52 #include "timekeeping.h"
55 * Management arrays for POSIX timers. Timers are now kept in static hash table
56 * with 512 entries.
57 * Timer ids are allocated by local routine, which selects proper hash head by
58 * key, constructed from current->signal address and per signal struct counter.
59 * This keeps timer ids unique per process, but now they can intersect between
60 * processes.
64 * Lets keep our timers in a slab cache :-)
66 static struct kmem_cache *posix_timers_cache;
68 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
69 static DEFINE_SPINLOCK(hash_lock);
72 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
73 * SIGEV values. Here we put out an error if this assumption fails.
75 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
76 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
77 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
78 #endif
81 * parisc wants ENOTSUP instead of EOPNOTSUPP
83 #ifndef ENOTSUP
84 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
85 #else
86 # define ENANOSLEEP_NOTSUP ENOTSUP
87 #endif
90 * The timer ID is turned into a timer address by idr_find().
91 * Verifying a valid ID consists of:
93 * a) checking that idr_find() returns other than -1.
94 * b) checking that the timer id matches the one in the timer itself.
95 * c) that the timer owner is in the callers thread group.
99 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
100 * to implement others. This structure defines the various
101 * clocks.
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
111 * FUNCTIONS: The CLOCKs structure defines possible functions to
112 * handle various clock functions.
114 * The standard POSIX timer management code assumes the
115 * following: 1.) The k_itimer struct (sched.h) is used for
116 * the timer. 2.) The list, it_lock, it_clock, it_id and
117 * it_pid fields are not modified by timer code.
119 * Permissions: It is assumed that the clock_settime() function defined
120 * for each clock will take care of permission checks. Some
121 * clocks may be set able by any user (i.e. local process
122 * clocks) others not. Currently the only set able clock we
123 * have is CLOCK_REALTIME and its high res counter part, both of
124 * which we beg off on and pass to do_sys_settimeofday().
127 static struct k_clock posix_clocks[MAX_CLOCKS];
130 * These ones are defined below.
132 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
133 struct timespec __user *rmtp);
134 static int common_timer_create(struct k_itimer *new_timer);
135 static void common_timer_get(struct k_itimer *, struct itimerspec *);
136 static int common_timer_set(struct k_itimer *, int,
137 struct itimerspec *, struct itimerspec *);
138 static int common_timer_del(struct k_itimer *timer);
140 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
142 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
144 #define lock_timer(tid, flags) \
145 ({ struct k_itimer *__timr; \
146 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
147 __timr; \
150 static int hash(struct signal_struct *sig, unsigned int nr)
152 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
155 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
156 struct signal_struct *sig,
157 timer_t id)
159 struct k_itimer *timer;
161 hlist_for_each_entry_rcu(timer, head, t_hash) {
162 if ((timer->it_signal == sig) && (timer->it_id == id))
163 return timer;
165 return NULL;
168 static struct k_itimer *posix_timer_by_id(timer_t id)
170 struct signal_struct *sig = current->signal;
171 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
173 return __posix_timers_find(head, sig, id);
176 static int posix_timer_add(struct k_itimer *timer)
178 struct signal_struct *sig = current->signal;
179 int first_free_id = sig->posix_timer_id;
180 struct hlist_head *head;
181 int ret = -ENOENT;
183 do {
184 spin_lock(&hash_lock);
185 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
186 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
187 hlist_add_head_rcu(&timer->t_hash, head);
188 ret = sig->posix_timer_id;
190 if (++sig->posix_timer_id < 0)
191 sig->posix_timer_id = 0;
192 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
193 /* Loop over all possible ids completed */
194 ret = -EAGAIN;
195 spin_unlock(&hash_lock);
196 } while (ret == -ENOENT);
197 return ret;
200 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
202 spin_unlock_irqrestore(&timr->it_lock, flags);
205 /* Get clock_realtime */
206 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
208 ktime_get_real_ts(tp);
209 return 0;
212 /* Set clock_realtime */
213 static int posix_clock_realtime_set(const clockid_t which_clock,
214 const struct timespec *tp)
216 return do_sys_settimeofday(tp, NULL);
219 static int posix_clock_realtime_adj(const clockid_t which_clock,
220 struct timex *t)
222 return do_adjtimex(t);
226 * Get monotonic time for posix timers
228 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
230 ktime_get_ts(tp);
231 return 0;
235 * Get monotonic-raw time for posix timers
237 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
239 getrawmonotonic(tp);
240 return 0;
244 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
246 *tp = current_kernel_time();
247 return 0;
250 static int posix_get_monotonic_coarse(clockid_t which_clock,
251 struct timespec *tp)
253 *tp = get_monotonic_coarse();
254 return 0;
257 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
259 *tp = ktime_to_timespec(KTIME_LOW_RES);
260 return 0;
263 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
265 get_monotonic_boottime(tp);
266 return 0;
269 static int posix_get_tai(clockid_t which_clock, struct timespec *tp)
271 timekeeping_clocktai(tp);
272 return 0;
275 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec *tp)
277 tp->tv_sec = 0;
278 tp->tv_nsec = hrtimer_resolution;
279 return 0;
283 * Initialize everything, well, just everything in Posix clocks/timers ;)
285 static __init int init_posix_timers(void)
287 struct k_clock clock_realtime = {
288 .clock_getres = posix_get_hrtimer_res,
289 .clock_get = posix_clock_realtime_get,
290 .clock_set = posix_clock_realtime_set,
291 .clock_adj = posix_clock_realtime_adj,
292 .nsleep = common_nsleep,
293 .nsleep_restart = hrtimer_nanosleep_restart,
294 .timer_create = common_timer_create,
295 .timer_set = common_timer_set,
296 .timer_get = common_timer_get,
297 .timer_del = common_timer_del,
299 struct k_clock clock_monotonic = {
300 .clock_getres = posix_get_hrtimer_res,
301 .clock_get = posix_ktime_get_ts,
302 .nsleep = common_nsleep,
303 .nsleep_restart = hrtimer_nanosleep_restart,
304 .timer_create = common_timer_create,
305 .timer_set = common_timer_set,
306 .timer_get = common_timer_get,
307 .timer_del = common_timer_del,
309 struct k_clock clock_monotonic_raw = {
310 .clock_getres = posix_get_hrtimer_res,
311 .clock_get = posix_get_monotonic_raw,
313 struct k_clock clock_realtime_coarse = {
314 .clock_getres = posix_get_coarse_res,
315 .clock_get = posix_get_realtime_coarse,
317 struct k_clock clock_monotonic_coarse = {
318 .clock_getres = posix_get_coarse_res,
319 .clock_get = posix_get_monotonic_coarse,
321 struct k_clock clock_tai = {
322 .clock_getres = posix_get_hrtimer_res,
323 .clock_get = posix_get_tai,
324 .nsleep = common_nsleep,
325 .nsleep_restart = hrtimer_nanosleep_restart,
326 .timer_create = common_timer_create,
327 .timer_set = common_timer_set,
328 .timer_get = common_timer_get,
329 .timer_del = common_timer_del,
331 struct k_clock clock_boottime = {
332 .clock_getres = posix_get_hrtimer_res,
333 .clock_get = posix_get_boottime,
334 .nsleep = common_nsleep,
335 .nsleep_restart = hrtimer_nanosleep_restart,
336 .timer_create = common_timer_create,
337 .timer_set = common_timer_set,
338 .timer_get = common_timer_get,
339 .timer_del = common_timer_del,
342 posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
343 posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
344 posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
345 posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
346 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
347 posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
348 posix_timers_register_clock(CLOCK_TAI, &clock_tai);
350 posix_timers_cache = kmem_cache_create("posix_timers_cache",
351 sizeof (struct k_itimer), 0, SLAB_PANIC,
352 NULL);
353 return 0;
356 __initcall(init_posix_timers);
358 static void schedule_next_timer(struct k_itimer *timr)
360 struct hrtimer *timer = &timr->it.real.timer;
362 if (timr->it.real.interval.tv64 == 0)
363 return;
365 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
366 timer->base->get_time(),
367 timr->it.real.interval);
369 timr->it_overrun_last = timr->it_overrun;
370 timr->it_overrun = -1;
371 ++timr->it_requeue_pending;
372 hrtimer_restart(timer);
376 * This function is exported for use by the signal deliver code. It is
377 * called just prior to the info block being released and passes that
378 * block to us. It's function is to update the overrun entry AND to
379 * restart the timer. It should only be called if the timer is to be
380 * restarted (i.e. we have flagged this in the sys_private entry of the
381 * info block).
383 * To protect against the timer going away while the interrupt is queued,
384 * we require that the it_requeue_pending flag be set.
386 void do_schedule_next_timer(struct siginfo *info)
388 struct k_itimer *timr;
389 unsigned long flags;
391 timr = lock_timer(info->si_tid, &flags);
393 if (timr && timr->it_requeue_pending == info->si_sys_private) {
394 if (timr->it_clock < 0)
395 posix_cpu_timer_schedule(timr);
396 else
397 schedule_next_timer(timr);
399 info->si_overrun += timr->it_overrun_last;
402 if (timr)
403 unlock_timer(timr, flags);
406 int posix_timer_event(struct k_itimer *timr, int si_private)
408 struct task_struct *task;
409 int shared, ret = -1;
411 * FIXME: if ->sigq is queued we can race with
412 * dequeue_signal()->do_schedule_next_timer().
414 * If dequeue_signal() sees the "right" value of
415 * si_sys_private it calls do_schedule_next_timer().
416 * We re-queue ->sigq and drop ->it_lock().
417 * do_schedule_next_timer() locks the timer
418 * and re-schedules it while ->sigq is pending.
419 * Not really bad, but not that we want.
421 timr->sigq->info.si_sys_private = si_private;
423 rcu_read_lock();
424 task = pid_task(timr->it_pid, PIDTYPE_PID);
425 if (task) {
426 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
427 ret = send_sigqueue(timr->sigq, task, shared);
429 rcu_read_unlock();
430 /* If we failed to send the signal the timer stops. */
431 return ret > 0;
433 EXPORT_SYMBOL_GPL(posix_timer_event);
436 * This function gets called when a POSIX.1b interval timer expires. It
437 * is used as a callback from the kernel internal timer. The
438 * run_timer_list code ALWAYS calls with interrupts on.
440 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
442 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
444 struct k_itimer *timr;
445 unsigned long flags;
446 int si_private = 0;
447 enum hrtimer_restart ret = HRTIMER_NORESTART;
449 timr = container_of(timer, struct k_itimer, it.real.timer);
450 spin_lock_irqsave(&timr->it_lock, flags);
452 if (timr->it.real.interval.tv64 != 0)
453 si_private = ++timr->it_requeue_pending;
455 if (posix_timer_event(timr, si_private)) {
457 * signal was not sent because of sig_ignor
458 * we will not get a call back to restart it AND
459 * it should be restarted.
461 if (timr->it.real.interval.tv64 != 0) {
462 ktime_t now = hrtimer_cb_get_time(timer);
465 * FIXME: What we really want, is to stop this
466 * timer completely and restart it in case the
467 * SIG_IGN is removed. This is a non trivial
468 * change which involves sighand locking
469 * (sigh !), which we don't want to do late in
470 * the release cycle.
472 * For now we just let timers with an interval
473 * less than a jiffie expire every jiffie to
474 * avoid softirq starvation in case of SIG_IGN
475 * and a very small interval, which would put
476 * the timer right back on the softirq pending
477 * list. By moving now ahead of time we trick
478 * hrtimer_forward() to expire the timer
479 * later, while we still maintain the overrun
480 * accuracy, but have some inconsistency in
481 * the timer_gettime() case. This is at least
482 * better than a starved softirq. A more
483 * complex fix which solves also another related
484 * inconsistency is already in the pipeline.
486 #ifdef CONFIG_HIGH_RES_TIMERS
488 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
490 if (timr->it.real.interval.tv64 < kj.tv64)
491 now = ktime_add(now, kj);
493 #endif
494 timr->it_overrun += (unsigned int)
495 hrtimer_forward(timer, now,
496 timr->it.real.interval);
497 ret = HRTIMER_RESTART;
498 ++timr->it_requeue_pending;
502 unlock_timer(timr, flags);
503 return ret;
506 static struct pid *good_sigevent(sigevent_t * event)
508 struct task_struct *rtn = current->group_leader;
510 switch (event->sigev_notify) {
511 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
512 rtn = find_task_by_vpid(event->sigev_notify_thread_id);
513 if (!rtn || !same_thread_group(rtn, current))
514 return NULL;
515 /* FALLTHRU */
516 case SIGEV_SIGNAL:
517 case SIGEV_THREAD:
518 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
519 return NULL;
520 /* FALLTHRU */
521 case SIGEV_NONE:
522 return task_pid(rtn);
523 default:
524 return NULL;
528 void posix_timers_register_clock(const clockid_t clock_id,
529 struct k_clock *new_clock)
531 if ((unsigned) clock_id >= MAX_CLOCKS) {
532 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
533 clock_id);
534 return;
537 if (!new_clock->clock_get) {
538 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
539 clock_id);
540 return;
542 if (!new_clock->clock_getres) {
543 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
544 clock_id);
545 return;
548 posix_clocks[clock_id] = *new_clock;
550 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
552 static struct k_itimer * alloc_posix_timer(void)
554 struct k_itimer *tmr;
555 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
556 if (!tmr)
557 return tmr;
558 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
559 kmem_cache_free(posix_timers_cache, tmr);
560 return NULL;
562 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
563 return tmr;
566 static void k_itimer_rcu_free(struct rcu_head *head)
568 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
570 kmem_cache_free(posix_timers_cache, tmr);
573 #define IT_ID_SET 1
574 #define IT_ID_NOT_SET 0
575 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
577 if (it_id_set) {
578 unsigned long flags;
579 spin_lock_irqsave(&hash_lock, flags);
580 hlist_del_rcu(&tmr->t_hash);
581 spin_unlock_irqrestore(&hash_lock, flags);
583 put_pid(tmr->it_pid);
584 sigqueue_free(tmr->sigq);
585 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
588 static struct k_clock *clockid_to_kclock(const clockid_t id)
590 if (id < 0)
591 return (id & CLOCKFD_MASK) == CLOCKFD ?
592 &clock_posix_dynamic : &clock_posix_cpu;
594 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
595 return NULL;
596 return &posix_clocks[id];
599 static int common_timer_create(struct k_itimer *new_timer)
601 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
602 return 0;
605 /* Create a POSIX.1b interval timer. */
607 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
608 struct sigevent __user *, timer_event_spec,
609 timer_t __user *, created_timer_id)
611 struct k_clock *kc = clockid_to_kclock(which_clock);
612 struct k_itimer *new_timer;
613 int error, new_timer_id;
614 sigevent_t event;
615 int it_id_set = IT_ID_NOT_SET;
617 if (!kc)
618 return -EINVAL;
619 if (!kc->timer_create)
620 return -EOPNOTSUPP;
622 new_timer = alloc_posix_timer();
623 if (unlikely(!new_timer))
624 return -EAGAIN;
626 spin_lock_init(&new_timer->it_lock);
627 new_timer_id = posix_timer_add(new_timer);
628 if (new_timer_id < 0) {
629 error = new_timer_id;
630 goto out;
633 it_id_set = IT_ID_SET;
634 new_timer->it_id = (timer_t) new_timer_id;
635 new_timer->it_clock = which_clock;
636 new_timer->it_overrun = -1;
638 if (timer_event_spec) {
639 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
640 error = -EFAULT;
641 goto out;
643 rcu_read_lock();
644 new_timer->it_pid = get_pid(good_sigevent(&event));
645 rcu_read_unlock();
646 if (!new_timer->it_pid) {
647 error = -EINVAL;
648 goto out;
650 } else {
651 memset(&event.sigev_value, 0, sizeof(event.sigev_value));
652 event.sigev_notify = SIGEV_SIGNAL;
653 event.sigev_signo = SIGALRM;
654 event.sigev_value.sival_int = new_timer->it_id;
655 new_timer->it_pid = get_pid(task_tgid(current));
658 new_timer->it_sigev_notify = event.sigev_notify;
659 new_timer->sigq->info.si_signo = event.sigev_signo;
660 new_timer->sigq->info.si_value = event.sigev_value;
661 new_timer->sigq->info.si_tid = new_timer->it_id;
662 new_timer->sigq->info.si_code = SI_TIMER;
664 if (copy_to_user(created_timer_id,
665 &new_timer_id, sizeof (new_timer_id))) {
666 error = -EFAULT;
667 goto out;
670 error = kc->timer_create(new_timer);
671 if (error)
672 goto out;
674 spin_lock_irq(&current->sighand->siglock);
675 new_timer->it_signal = current->signal;
676 list_add(&new_timer->list, &current->signal->posix_timers);
677 spin_unlock_irq(&current->sighand->siglock);
679 return 0;
681 * In the case of the timer belonging to another task, after
682 * the task is unlocked, the timer is owned by the other task
683 * and may cease to exist at any time. Don't use or modify
684 * new_timer after the unlock call.
686 out:
687 release_posix_timer(new_timer, it_id_set);
688 return error;
692 * Locking issues: We need to protect the result of the id look up until
693 * we get the timer locked down so it is not deleted under us. The
694 * removal is done under the idr spinlock so we use that here to bridge
695 * the find to the timer lock. To avoid a dead lock, the timer id MUST
696 * be release with out holding the timer lock.
698 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
700 struct k_itimer *timr;
703 * timer_t could be any type >= int and we want to make sure any
704 * @timer_id outside positive int range fails lookup.
706 if ((unsigned long long)timer_id > INT_MAX)
707 return NULL;
709 rcu_read_lock();
710 timr = posix_timer_by_id(timer_id);
711 if (timr) {
712 spin_lock_irqsave(&timr->it_lock, *flags);
713 if (timr->it_signal == current->signal) {
714 rcu_read_unlock();
715 return timr;
717 spin_unlock_irqrestore(&timr->it_lock, *flags);
719 rcu_read_unlock();
721 return NULL;
725 * Get the time remaining on a POSIX.1b interval timer. This function
726 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
727 * mess with irq.
729 * We have a couple of messes to clean up here. First there is the case
730 * of a timer that has a requeue pending. These timers should appear to
731 * be in the timer list with an expiry as if we were to requeue them
732 * now.
734 * The second issue is the SIGEV_NONE timer which may be active but is
735 * not really ever put in the timer list (to save system resources).
736 * This timer may be expired, and if so, we will do it here. Otherwise
737 * it is the same as a requeue pending timer WRT to what we should
738 * report.
740 static void
741 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
743 ktime_t now, remaining, iv;
744 struct hrtimer *timer = &timr->it.real.timer;
746 memset(cur_setting, 0, sizeof(struct itimerspec));
748 iv = timr->it.real.interval;
750 /* interval timer ? */
751 if (iv.tv64)
752 cur_setting->it_interval = ktime_to_timespec(iv);
753 else if (!hrtimer_active(timer) && timr->it_sigev_notify != SIGEV_NONE)
754 return;
756 now = timer->base->get_time();
759 * When a requeue is pending or this is a SIGEV_NONE
760 * timer move the expiry time forward by intervals, so
761 * expiry is > now.
763 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
764 timr->it_sigev_notify == SIGEV_NONE))
765 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
767 remaining = __hrtimer_expires_remaining_adjusted(timer, now);
768 /* Return 0 only, when the timer is expired and not pending */
769 if (remaining.tv64 <= 0) {
771 * A single shot SIGEV_NONE timer must return 0, when
772 * it is expired !
774 if (timr->it_sigev_notify != SIGEV_NONE)
775 cur_setting->it_value.tv_nsec = 1;
776 } else
777 cur_setting->it_value = ktime_to_timespec(remaining);
780 /* Get the time remaining on a POSIX.1b interval timer. */
781 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
782 struct itimerspec __user *, setting)
784 struct itimerspec cur_setting;
785 struct k_itimer *timr;
786 struct k_clock *kc;
787 unsigned long flags;
788 int ret = 0;
790 timr = lock_timer(timer_id, &flags);
791 if (!timr)
792 return -EINVAL;
794 kc = clockid_to_kclock(timr->it_clock);
795 if (WARN_ON_ONCE(!kc || !kc->timer_get))
796 ret = -EINVAL;
797 else
798 kc->timer_get(timr, &cur_setting);
800 unlock_timer(timr, flags);
802 if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
803 return -EFAULT;
805 return ret;
809 * Get the number of overruns of a POSIX.1b interval timer. This is to
810 * be the overrun of the timer last delivered. At the same time we are
811 * accumulating overruns on the next timer. The overrun is frozen when
812 * the signal is delivered, either at the notify time (if the info block
813 * is not queued) or at the actual delivery time (as we are informed by
814 * the call back to do_schedule_next_timer(). So all we need to do is
815 * to pick up the frozen overrun.
817 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
819 struct k_itimer *timr;
820 int overrun;
821 unsigned long flags;
823 timr = lock_timer(timer_id, &flags);
824 if (!timr)
825 return -EINVAL;
827 overrun = timr->it_overrun_last;
828 unlock_timer(timr, flags);
830 return overrun;
833 /* Set a POSIX.1b interval timer. */
834 /* timr->it_lock is taken. */
835 static int
836 common_timer_set(struct k_itimer *timr, int flags,
837 struct itimerspec *new_setting, struct itimerspec *old_setting)
839 struct hrtimer *timer = &timr->it.real.timer;
840 enum hrtimer_mode mode;
842 if (old_setting)
843 common_timer_get(timr, old_setting);
845 /* disable the timer */
846 timr->it.real.interval.tv64 = 0;
848 * careful here. If smp we could be in the "fire" routine which will
849 * be spinning as we hold the lock. But this is ONLY an SMP issue.
851 if (hrtimer_try_to_cancel(timer) < 0)
852 return TIMER_RETRY;
854 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
855 ~REQUEUE_PENDING;
856 timr->it_overrun_last = 0;
858 /* switch off the timer when it_value is zero */
859 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
860 return 0;
862 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
863 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
864 timr->it.real.timer.function = posix_timer_fn;
866 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
868 /* Convert interval */
869 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
871 /* SIGEV_NONE timers are not queued ! See common_timer_get */
872 if (timr->it_sigev_notify == SIGEV_NONE) {
873 /* Setup correct expiry time for relative timers */
874 if (mode == HRTIMER_MODE_REL) {
875 hrtimer_add_expires(timer, timer->base->get_time());
877 return 0;
880 hrtimer_start_expires(timer, mode);
881 return 0;
884 /* Set a POSIX.1b interval timer */
885 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
886 const struct itimerspec __user *, new_setting,
887 struct itimerspec __user *, old_setting)
889 struct k_itimer *timr;
890 struct itimerspec new_spec, old_spec;
891 int error = 0;
892 unsigned long flag;
893 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
894 struct k_clock *kc;
896 if (!new_setting)
897 return -EINVAL;
899 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
900 return -EFAULT;
902 if (!timespec_valid(&new_spec.it_interval) ||
903 !timespec_valid(&new_spec.it_value))
904 return -EINVAL;
905 retry:
906 timr = lock_timer(timer_id, &flag);
907 if (!timr)
908 return -EINVAL;
910 kc = clockid_to_kclock(timr->it_clock);
911 if (WARN_ON_ONCE(!kc || !kc->timer_set))
912 error = -EINVAL;
913 else
914 error = kc->timer_set(timr, flags, &new_spec, rtn);
916 unlock_timer(timr, flag);
917 if (error == TIMER_RETRY) {
918 rtn = NULL; // We already got the old time...
919 goto retry;
922 if (old_setting && !error &&
923 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
924 error = -EFAULT;
926 return error;
929 static int common_timer_del(struct k_itimer *timer)
931 timer->it.real.interval.tv64 = 0;
933 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
934 return TIMER_RETRY;
935 return 0;
938 static inline int timer_delete_hook(struct k_itimer *timer)
940 struct k_clock *kc = clockid_to_kclock(timer->it_clock);
942 if (WARN_ON_ONCE(!kc || !kc->timer_del))
943 return -EINVAL;
944 return kc->timer_del(timer);
947 /* Delete a POSIX.1b interval timer. */
948 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
950 struct k_itimer *timer;
951 unsigned long flags;
953 retry_delete:
954 timer = lock_timer(timer_id, &flags);
955 if (!timer)
956 return -EINVAL;
958 if (timer_delete_hook(timer) == TIMER_RETRY) {
959 unlock_timer(timer, flags);
960 goto retry_delete;
963 spin_lock(&current->sighand->siglock);
964 list_del(&timer->list);
965 spin_unlock(&current->sighand->siglock);
967 * This keeps any tasks waiting on the spin lock from thinking
968 * they got something (see the lock code above).
970 timer->it_signal = NULL;
972 unlock_timer(timer, flags);
973 release_posix_timer(timer, IT_ID_SET);
974 return 0;
978 * return timer owned by the process, used by exit_itimers
980 static void itimer_delete(struct k_itimer *timer)
982 unsigned long flags;
984 retry_delete:
985 spin_lock_irqsave(&timer->it_lock, flags);
987 if (timer_delete_hook(timer) == TIMER_RETRY) {
988 unlock_timer(timer, flags);
989 goto retry_delete;
991 list_del(&timer->list);
993 * This keeps any tasks waiting on the spin lock from thinking
994 * they got something (see the lock code above).
996 timer->it_signal = NULL;
998 unlock_timer(timer, flags);
999 release_posix_timer(timer, IT_ID_SET);
1003 * This is called by do_exit or de_thread, only when there are no more
1004 * references to the shared signal_struct.
1006 void exit_itimers(struct signal_struct *sig)
1008 struct k_itimer *tmr;
1010 while (!list_empty(&sig->posix_timers)) {
1011 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1012 itimer_delete(tmr);
1016 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1017 const struct timespec __user *, tp)
1019 struct k_clock *kc = clockid_to_kclock(which_clock);
1020 struct timespec new_tp;
1022 if (!kc || !kc->clock_set)
1023 return -EINVAL;
1025 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1026 return -EFAULT;
1028 return kc->clock_set(which_clock, &new_tp);
1031 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1032 struct timespec __user *,tp)
1034 struct k_clock *kc = clockid_to_kclock(which_clock);
1035 struct timespec kernel_tp;
1036 int error;
1038 if (!kc)
1039 return -EINVAL;
1041 error = kc->clock_get(which_clock, &kernel_tp);
1043 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1044 error = -EFAULT;
1046 return error;
1049 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1050 struct timex __user *, utx)
1052 struct k_clock *kc = clockid_to_kclock(which_clock);
1053 struct timex ktx;
1054 int err;
1056 if (!kc)
1057 return -EINVAL;
1058 if (!kc->clock_adj)
1059 return -EOPNOTSUPP;
1061 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1062 return -EFAULT;
1064 err = kc->clock_adj(which_clock, &ktx);
1066 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1067 return -EFAULT;
1069 return err;
1072 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1073 struct timespec __user *, tp)
1075 struct k_clock *kc = clockid_to_kclock(which_clock);
1076 struct timespec rtn_tp;
1077 int error;
1079 if (!kc)
1080 return -EINVAL;
1082 error = kc->clock_getres(which_clock, &rtn_tp);
1084 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1085 error = -EFAULT;
1087 return error;
1091 * nanosleep for monotonic and realtime clocks
1093 static int common_nsleep(const clockid_t which_clock, int flags,
1094 struct timespec *tsave, struct timespec __user *rmtp)
1096 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1097 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1098 which_clock);
1101 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1102 const struct timespec __user *, rqtp,
1103 struct timespec __user *, rmtp)
1105 struct k_clock *kc = clockid_to_kclock(which_clock);
1106 struct timespec t;
1108 if (!kc)
1109 return -EINVAL;
1110 if (!kc->nsleep)
1111 return -ENANOSLEEP_NOTSUP;
1113 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1114 return -EFAULT;
1116 if (!timespec_valid(&t))
1117 return -EINVAL;
1119 return kc->nsleep(which_clock, flags, &t, rmtp);
1123 * This will restart clock_nanosleep. This is required only by
1124 * compat_clock_nanosleep_restart for now.
1126 long clock_nanosleep_restart(struct restart_block *restart_block)
1128 clockid_t which_clock = restart_block->nanosleep.clockid;
1129 struct k_clock *kc = clockid_to_kclock(which_clock);
1131 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1132 return -EINVAL;
1134 return kc->nsleep_restart(restart_block);