2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock
);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node
);
77 EXPORT_PER_CPU_SYMBOL(numa_node
);
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
87 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
89 int _node_numa_mem_
[MAX_NUMNODES
];
93 * Array of node states.
95 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
96 [N_POSSIBLE
] = NODE_MASK_ALL
,
97 [N_ONLINE
] = { { [0] = 1UL } },
99 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY
] = { { [0] = 1UL } },
106 [N_CPU
] = { { [0] = 1UL } },
109 EXPORT_SYMBOL(node_states
);
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock
);
114 unsigned long totalram_pages __read_mostly
;
115 unsigned long totalreserve_pages __read_mostly
;
116 unsigned long totalcma_pages __read_mostly
;
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
123 unsigned long dirty_balance_reserve __read_mostly
;
125 int percpu_pagelist_fraction
;
126 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
136 static inline int get_pcppage_migratetype(struct page
*page
)
141 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
143 page
->index
= migratetype
;
146 #ifdef CONFIG_PM_SLEEP
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
156 static gfp_t saved_gfp_mask
;
158 void pm_restore_gfp_mask(void)
160 WARN_ON(!mutex_is_locked(&pm_mutex
));
161 if (saved_gfp_mask
) {
162 gfp_allowed_mask
= saved_gfp_mask
;
167 void pm_restrict_gfp_mask(void)
169 WARN_ON(!mutex_is_locked(&pm_mutex
));
170 WARN_ON(saved_gfp_mask
);
171 saved_gfp_mask
= gfp_allowed_mask
;
172 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
175 bool pm_suspended_storage(void)
177 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
181 #endif /* CONFIG_PM_SLEEP */
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly
;
187 static void __free_pages_ok(struct page
*page
, unsigned int order
);
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
200 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
201 #ifdef CONFIG_ZONE_DMA
204 #ifdef CONFIG_ZONE_DMA32
207 #ifdef CONFIG_HIGHMEM
213 EXPORT_SYMBOL(totalram_pages
);
215 static char * const zone_names
[MAX_NR_ZONES
] = {
216 #ifdef CONFIG_ZONE_DMA
219 #ifdef CONFIG_ZONE_DMA32
223 #ifdef CONFIG_HIGHMEM
227 #ifdef CONFIG_ZONE_DEVICE
232 static void free_compound_page(struct page
*page
);
233 compound_page_dtor
* const compound_page_dtors
[] = {
236 #ifdef CONFIG_HUGETLB_PAGE
241 int min_free_kbytes
= 1024;
242 int user_min_free_kbytes
= -1;
244 static unsigned long __meminitdata nr_kernel_pages
;
245 static unsigned long __meminitdata nr_all_pages
;
246 static unsigned long __meminitdata dma_reserve
;
248 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
249 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
250 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
251 static unsigned long __initdata required_kernelcore
;
252 static unsigned long __initdata required_movablecore
;
253 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
255 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
257 EXPORT_SYMBOL(movable_zone
);
258 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
261 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
262 int nr_online_nodes __read_mostly
= 1;
263 EXPORT_SYMBOL(nr_node_ids
);
264 EXPORT_SYMBOL(nr_online_nodes
);
267 int page_group_by_mobility_disabled __read_mostly
;
269 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
272 * Determine how many pages need to be initialized durig early boot
273 * (non-deferred initialization).
274 * The value of first_deferred_pfn will be set later, once non-deferred pages
275 * are initialized, but for now set it ULONG_MAX.
277 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
279 phys_addr_t start_addr
, end_addr
;
280 unsigned long max_pgcnt
;
281 unsigned long reserved
;
284 * Initialise at least 2G of a node but also take into account that
285 * two large system hashes that can take up 1GB for 0.25TB/node.
287 max_pgcnt
= max(2UL << (30 - PAGE_SHIFT
),
288 (pgdat
->node_spanned_pages
>> 8));
291 * Compensate the all the memblock reservations (e.g. crash kernel)
292 * from the initial estimation to make sure we will initialize enough
295 start_addr
= PFN_PHYS(pgdat
->node_start_pfn
);
296 end_addr
= PFN_PHYS(pgdat
->node_start_pfn
+ max_pgcnt
);
297 reserved
= memblock_reserved_memory_within(start_addr
, end_addr
);
298 max_pgcnt
+= PHYS_PFN(reserved
);
300 pgdat
->static_init_pgcnt
= min(max_pgcnt
, pgdat
->node_spanned_pages
);
301 pgdat
->first_deferred_pfn
= ULONG_MAX
;
304 /* Returns true if the struct page for the pfn is uninitialised */
305 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
307 int nid
= early_pfn_to_nid(pfn
);
309 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
315 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
317 if (pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
324 * Returns false when the remaining initialisation should be deferred until
325 * later in the boot cycle when it can be parallelised.
327 static inline bool update_defer_init(pg_data_t
*pgdat
,
328 unsigned long pfn
, unsigned long zone_end
,
329 unsigned long *nr_initialised
)
331 /* Always populate low zones for address-contrained allocations */
332 if (zone_end
< pgdat_end_pfn(pgdat
))
334 /* Initialise at least 2G of the highest zone */
336 if ((*nr_initialised
> pgdat
->static_init_pgcnt
) &&
337 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
338 pgdat
->first_deferred_pfn
= pfn
;
345 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
349 static inline bool early_page_uninitialised(unsigned long pfn
)
354 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
359 static inline bool update_defer_init(pg_data_t
*pgdat
,
360 unsigned long pfn
, unsigned long zone_end
,
361 unsigned long *nr_initialised
)
368 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
370 if (unlikely(page_group_by_mobility_disabled
&&
371 migratetype
< MIGRATE_PCPTYPES
))
372 migratetype
= MIGRATE_UNMOVABLE
;
374 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
375 PB_migrate
, PB_migrate_end
);
378 #ifdef CONFIG_DEBUG_VM
379 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
383 unsigned long pfn
= page_to_pfn(page
);
384 unsigned long sp
, start_pfn
;
387 seq
= zone_span_seqbegin(zone
);
388 start_pfn
= zone
->zone_start_pfn
;
389 sp
= zone
->spanned_pages
;
390 if (!zone_spans_pfn(zone
, pfn
))
392 } while (zone_span_seqretry(zone
, seq
));
395 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
396 pfn
, zone_to_nid(zone
), zone
->name
,
397 start_pfn
, start_pfn
+ sp
);
402 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
404 if (!pfn_valid_within(page_to_pfn(page
)))
406 if (zone
!= page_zone(page
))
412 * Temporary debugging check for pages not lying within a given zone.
414 static int bad_range(struct zone
*zone
, struct page
*page
)
416 if (page_outside_zone_boundaries(zone
, page
))
418 if (!page_is_consistent(zone
, page
))
424 static inline int bad_range(struct zone
*zone
, struct page
*page
)
430 static void bad_page(struct page
*page
, const char *reason
,
431 unsigned long bad_flags
)
433 static unsigned long resume
;
434 static unsigned long nr_shown
;
435 static unsigned long nr_unshown
;
437 /* Don't complain about poisoned pages */
438 if (PageHWPoison(page
)) {
439 page_mapcount_reset(page
); /* remove PageBuddy */
444 * Allow a burst of 60 reports, then keep quiet for that minute;
445 * or allow a steady drip of one report per second.
447 if (nr_shown
== 60) {
448 if (time_before(jiffies
, resume
)) {
454 "BUG: Bad page state: %lu messages suppressed\n",
461 resume
= jiffies
+ 60 * HZ
;
463 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
464 current
->comm
, page_to_pfn(page
));
465 dump_page_badflags(page
, reason
, bad_flags
);
470 /* Leave bad fields for debug, except PageBuddy could make trouble */
471 page_mapcount_reset(page
); /* remove PageBuddy */
472 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
476 * Higher-order pages are called "compound pages". They are structured thusly:
478 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
480 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
481 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
483 * The first tail page's ->compound_dtor holds the offset in array of compound
484 * page destructors. See compound_page_dtors.
486 * The first tail page's ->compound_order holds the order of allocation.
487 * This usage means that zero-order pages may not be compound.
490 static void free_compound_page(struct page
*page
)
492 __free_pages_ok(page
, compound_order(page
));
495 void prep_compound_page(struct page
*page
, unsigned int order
)
498 int nr_pages
= 1 << order
;
500 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
501 set_compound_order(page
, order
);
503 for (i
= 1; i
< nr_pages
; i
++) {
504 struct page
*p
= page
+ i
;
505 set_page_count(p
, 0);
506 set_compound_head(p
, page
);
510 #ifdef CONFIG_DEBUG_PAGEALLOC
511 unsigned int _debug_guardpage_minorder
;
512 bool _debug_pagealloc_enabled __read_mostly
;
513 bool _debug_guardpage_enabled __read_mostly
;
515 static int __init
early_debug_pagealloc(char *buf
)
520 if (strcmp(buf
, "on") == 0)
521 _debug_pagealloc_enabled
= true;
525 early_param("debug_pagealloc", early_debug_pagealloc
);
527 static bool need_debug_guardpage(void)
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
536 static void init_debug_guardpage(void)
538 if (!debug_pagealloc_enabled())
541 _debug_guardpage_enabled
= true;
544 struct page_ext_operations debug_guardpage_ops
= {
545 .need
= need_debug_guardpage
,
546 .init
= init_debug_guardpage
,
549 static int __init
debug_guardpage_minorder_setup(char *buf
)
553 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
554 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
557 _debug_guardpage_minorder
= res
;
558 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
561 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
563 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
564 unsigned int order
, int migratetype
)
566 struct page_ext
*page_ext
;
568 if (!debug_guardpage_enabled())
571 page_ext
= lookup_page_ext(page
);
572 if (unlikely(!page_ext
))
575 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
577 INIT_LIST_HEAD(&page
->lru
);
578 set_page_private(page
, order
);
579 /* Guard pages are not available for any usage */
580 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
583 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
584 unsigned int order
, int migratetype
)
586 struct page_ext
*page_ext
;
588 if (!debug_guardpage_enabled())
591 page_ext
= lookup_page_ext(page
);
592 if (unlikely(!page_ext
))
595 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
597 set_page_private(page
, 0);
598 if (!is_migrate_isolate(migratetype
))
599 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
602 struct page_ext_operations debug_guardpage_ops
= { NULL
, };
603 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
604 unsigned int order
, int migratetype
) {}
605 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
606 unsigned int order
, int migratetype
) {}
609 static inline void set_page_order(struct page
*page
, unsigned int order
)
611 set_page_private(page
, order
);
612 __SetPageBuddy(page
);
615 static inline void rmv_page_order(struct page
*page
)
617 __ClearPageBuddy(page
);
618 set_page_private(page
, 0);
622 * This function checks whether a page is free && is the buddy
623 * we can do coalesce a page and its buddy if
624 * (a) the buddy is not in a hole &&
625 * (b) the buddy is in the buddy system &&
626 * (c) a page and its buddy have the same order &&
627 * (d) a page and its buddy are in the same zone.
629 * For recording whether a page is in the buddy system, we set ->_mapcount
630 * PAGE_BUDDY_MAPCOUNT_VALUE.
631 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
632 * serialized by zone->lock.
634 * For recording page's order, we use page_private(page).
636 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
639 if (!pfn_valid_within(page_to_pfn(buddy
)))
642 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
643 if (page_zone_id(page
) != page_zone_id(buddy
))
646 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
651 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
653 * zone check is done late to avoid uselessly
654 * calculating zone/node ids for pages that could
657 if (page_zone_id(page
) != page_zone_id(buddy
))
660 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
668 * Freeing function for a buddy system allocator.
670 * The concept of a buddy system is to maintain direct-mapped table
671 * (containing bit values) for memory blocks of various "orders".
672 * The bottom level table contains the map for the smallest allocatable
673 * units of memory (here, pages), and each level above it describes
674 * pairs of units from the levels below, hence, "buddies".
675 * At a high level, all that happens here is marking the table entry
676 * at the bottom level available, and propagating the changes upward
677 * as necessary, plus some accounting needed to play nicely with other
678 * parts of the VM system.
679 * At each level, we keep a list of pages, which are heads of continuous
680 * free pages of length of (1 << order) and marked with _mapcount
681 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
683 * So when we are allocating or freeing one, we can derive the state of the
684 * other. That is, if we allocate a small block, and both were
685 * free, the remainder of the region must be split into blocks.
686 * If a block is freed, and its buddy is also free, then this
687 * triggers coalescing into a block of larger size.
692 static inline void __free_one_page(struct page
*page
,
694 struct zone
*zone
, unsigned int order
,
697 unsigned long page_idx
;
698 unsigned long combined_idx
;
699 unsigned long uninitialized_var(buddy_idx
);
701 unsigned int max_order
;
703 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
705 VM_BUG_ON(!zone_is_initialized(zone
));
706 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
708 VM_BUG_ON(migratetype
== -1);
709 if (likely(!is_migrate_isolate(migratetype
)))
710 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
712 page_idx
= pfn
& ((1 << MAX_ORDER
) - 1);
714 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
715 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
718 while (order
< max_order
- 1) {
719 buddy_idx
= __find_buddy_index(page_idx
, order
);
720 buddy
= page
+ (buddy_idx
- page_idx
);
721 if (!page_is_buddy(page
, buddy
, order
))
724 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
725 * merge with it and move up one order.
727 if (page_is_guard(buddy
)) {
728 clear_page_guard(zone
, buddy
, order
, migratetype
);
730 list_del(&buddy
->lru
);
731 zone
->free_area
[order
].nr_free
--;
732 rmv_page_order(buddy
);
734 combined_idx
= buddy_idx
& page_idx
;
735 page
= page
+ (combined_idx
- page_idx
);
736 page_idx
= combined_idx
;
739 if (max_order
< MAX_ORDER
) {
740 /* If we are here, it means order is >= pageblock_order.
741 * We want to prevent merge between freepages on isolate
742 * pageblock and normal pageblock. Without this, pageblock
743 * isolation could cause incorrect freepage or CMA accounting.
745 * We don't want to hit this code for the more frequent
748 if (unlikely(has_isolate_pageblock(zone
))) {
751 buddy_idx
= __find_buddy_index(page_idx
, order
);
752 buddy
= page
+ (buddy_idx
- page_idx
);
753 buddy_mt
= get_pageblock_migratetype(buddy
);
755 if (migratetype
!= buddy_mt
756 && (is_migrate_isolate(migratetype
) ||
757 is_migrate_isolate(buddy_mt
)))
761 goto continue_merging
;
765 set_page_order(page
, order
);
768 * If this is not the largest possible page, check if the buddy
769 * of the next-highest order is free. If it is, it's possible
770 * that pages are being freed that will coalesce soon. In case,
771 * that is happening, add the free page to the tail of the list
772 * so it's less likely to be used soon and more likely to be merged
773 * as a higher order page
775 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
776 struct page
*higher_page
, *higher_buddy
;
777 combined_idx
= buddy_idx
& page_idx
;
778 higher_page
= page
+ (combined_idx
- page_idx
);
779 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
780 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
781 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
782 list_add_tail(&page
->lru
,
783 &zone
->free_area
[order
].free_list
[migratetype
]);
788 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
790 zone
->free_area
[order
].nr_free
++;
793 static inline int free_pages_check(struct page
*page
)
795 const char *bad_reason
= NULL
;
796 unsigned long bad_flags
= 0;
798 if (unlikely(page_mapcount(page
)))
799 bad_reason
= "nonzero mapcount";
800 if (unlikely(page
->mapping
!= NULL
))
801 bad_reason
= "non-NULL mapping";
802 if (unlikely(atomic_read(&page
->_count
) != 0))
803 bad_reason
= "nonzero _count";
804 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
805 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
806 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
809 if (unlikely(page
->mem_cgroup
))
810 bad_reason
= "page still charged to cgroup";
812 if (unlikely(bad_reason
)) {
813 bad_page(page
, bad_reason
, bad_flags
);
816 page_cpupid_reset_last(page
);
817 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
818 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
823 * Frees a number of pages from the PCP lists
824 * Assumes all pages on list are in same zone, and of same order.
825 * count is the number of pages to free.
827 * If the zone was previously in an "all pages pinned" state then look to
828 * see if this freeing clears that state.
830 * And clear the zone's pages_scanned counter, to hold off the "all pages are
831 * pinned" detection logic.
833 static void free_pcppages_bulk(struct zone
*zone
, int count
,
834 struct per_cpu_pages
*pcp
)
839 unsigned long nr_scanned
;
841 spin_lock(&zone
->lock
);
842 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
844 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
848 struct list_head
*list
;
851 * Remove pages from lists in a round-robin fashion. A
852 * batch_free count is maintained that is incremented when an
853 * empty list is encountered. This is so more pages are freed
854 * off fuller lists instead of spinning excessively around empty
859 if (++migratetype
== MIGRATE_PCPTYPES
)
861 list
= &pcp
->lists
[migratetype
];
862 } while (list_empty(list
));
864 /* This is the only non-empty list. Free them all. */
865 if (batch_free
== MIGRATE_PCPTYPES
)
866 batch_free
= to_free
;
869 int mt
; /* migratetype of the to-be-freed page */
871 page
= list_entry(list
->prev
, struct page
, lru
);
872 /* must delete as __free_one_page list manipulates */
873 list_del(&page
->lru
);
875 mt
= get_pcppage_migratetype(page
);
876 /* MIGRATE_ISOLATE page should not go to pcplists */
877 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
878 /* Pageblock could have been isolated meanwhile */
879 if (unlikely(has_isolate_pageblock(zone
)))
880 mt
= get_pageblock_migratetype(page
);
882 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
883 trace_mm_page_pcpu_drain(page
, 0, mt
);
884 } while (--to_free
&& --batch_free
&& !list_empty(list
));
886 spin_unlock(&zone
->lock
);
889 static void free_one_page(struct zone
*zone
,
890 struct page
*page
, unsigned long pfn
,
894 unsigned long nr_scanned
;
895 spin_lock(&zone
->lock
);
896 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
898 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
900 if (unlikely(has_isolate_pageblock(zone
) ||
901 is_migrate_isolate(migratetype
))) {
902 migratetype
= get_pfnblock_migratetype(page
, pfn
);
904 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
905 spin_unlock(&zone
->lock
);
908 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
913 * We rely page->lru.next never has bit 0 set, unless the page
914 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
916 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
918 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
922 if (unlikely(!PageTail(page
))) {
923 bad_page(page
, "PageTail not set", 0);
926 if (unlikely(compound_head(page
) != head_page
)) {
927 bad_page(page
, "compound_head not consistent", 0);
932 clear_compound_head(page
);
936 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
937 unsigned long zone
, int nid
)
939 set_page_links(page
, zone
, nid
, pfn
);
940 init_page_count(page
);
941 page_mapcount_reset(page
);
942 page_cpupid_reset_last(page
);
944 INIT_LIST_HEAD(&page
->lru
);
945 #ifdef WANT_PAGE_VIRTUAL
946 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
947 if (!is_highmem_idx(zone
))
948 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
952 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
955 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
958 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
959 static void init_reserved_page(unsigned long pfn
)
964 if (!early_page_uninitialised(pfn
))
967 nid
= early_pfn_to_nid(pfn
);
968 pgdat
= NODE_DATA(nid
);
970 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
971 struct zone
*zone
= &pgdat
->node_zones
[zid
];
973 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
976 __init_single_pfn(pfn
, zid
, nid
);
979 static inline void init_reserved_page(unsigned long pfn
)
982 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
985 * Initialised pages do not have PageReserved set. This function is
986 * called for each range allocated by the bootmem allocator and
987 * marks the pages PageReserved. The remaining valid pages are later
988 * sent to the buddy page allocator.
990 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
992 unsigned long start_pfn
= PFN_DOWN(start
);
993 unsigned long end_pfn
= PFN_UP(end
);
995 for (; start_pfn
< end_pfn
; start_pfn
++) {
996 if (pfn_valid(start_pfn
)) {
997 struct page
*page
= pfn_to_page(start_pfn
);
999 init_reserved_page(start_pfn
);
1001 /* Avoid false-positive PageTail() */
1002 INIT_LIST_HEAD(&page
->lru
);
1004 SetPageReserved(page
);
1009 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
1011 bool compound
= PageCompound(page
);
1014 VM_BUG_ON_PAGE(PageTail(page
), page
);
1015 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1017 trace_mm_page_free(page
, order
);
1018 kmemcheck_free_shadow(page
, order
);
1019 kasan_free_pages(page
, order
);
1022 page
->mapping
= NULL
;
1023 bad
+= free_pages_check(page
);
1024 for (i
= 1; i
< (1 << order
); i
++) {
1026 bad
+= free_tail_pages_check(page
, page
+ i
);
1027 bad
+= free_pages_check(page
+ i
);
1032 reset_page_owner(page
, order
);
1034 if (!PageHighMem(page
)) {
1035 debug_check_no_locks_freed(page_address(page
),
1036 PAGE_SIZE
<< order
);
1037 debug_check_no_obj_freed(page_address(page
),
1038 PAGE_SIZE
<< order
);
1040 arch_free_page(page
, order
);
1041 kernel_map_pages(page
, 1 << order
, 0);
1046 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1048 unsigned long flags
;
1050 unsigned long pfn
= page_to_pfn(page
);
1052 if (!free_pages_prepare(page
, order
))
1055 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1056 local_irq_save(flags
);
1057 __count_vm_events(PGFREE
, 1 << order
);
1058 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1059 local_irq_restore(flags
);
1062 static void __init
__free_pages_boot_core(struct page
*page
,
1063 unsigned long pfn
, unsigned int order
)
1065 unsigned int nr_pages
= 1 << order
;
1066 struct page
*p
= page
;
1070 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1072 __ClearPageReserved(p
);
1073 set_page_count(p
, 0);
1075 __ClearPageReserved(p
);
1076 set_page_count(p
, 0);
1078 page_zone(page
)->managed_pages
+= nr_pages
;
1079 set_page_refcounted(page
);
1080 __free_pages(page
, order
);
1083 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1084 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1086 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1088 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1090 static DEFINE_SPINLOCK(early_pfn_lock
);
1093 spin_lock(&early_pfn_lock
);
1094 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1096 nid
= first_online_node
;
1097 spin_unlock(&early_pfn_lock
);
1103 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1104 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1105 struct mminit_pfnnid_cache
*state
)
1109 nid
= __early_pfn_to_nid(pfn
, state
);
1110 if (nid
>= 0 && nid
!= node
)
1115 /* Only safe to use early in boot when initialisation is single-threaded */
1116 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1118 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1123 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1127 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1128 struct mminit_pfnnid_cache
*state
)
1135 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1138 if (early_page_uninitialised(pfn
))
1140 return __free_pages_boot_core(page
, pfn
, order
);
1143 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1144 static void __init
deferred_free_range(struct page
*page
,
1145 unsigned long pfn
, int nr_pages
)
1152 /* Free a large naturally-aligned chunk if possible */
1153 if (nr_pages
== MAX_ORDER_NR_PAGES
&&
1154 (pfn
& (MAX_ORDER_NR_PAGES
-1)) == 0) {
1155 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1156 __free_pages_boot_core(page
, pfn
, MAX_ORDER
-1);
1160 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++)
1161 __free_pages_boot_core(page
, pfn
, 0);
1164 /* Completion tracking for deferred_init_memmap() threads */
1165 static atomic_t pgdat_init_n_undone __initdata
;
1166 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1168 static inline void __init
pgdat_init_report_one_done(void)
1170 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1171 complete(&pgdat_init_all_done_comp
);
1174 /* Initialise remaining memory on a node */
1175 static int __init
deferred_init_memmap(void *data
)
1177 pg_data_t
*pgdat
= data
;
1178 int nid
= pgdat
->node_id
;
1179 struct mminit_pfnnid_cache nid_init_state
= { };
1180 unsigned long start
= jiffies
;
1181 unsigned long nr_pages
= 0;
1182 unsigned long walk_start
, walk_end
;
1185 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1186 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1188 if (first_init_pfn
== ULONG_MAX
) {
1189 pgdat_init_report_one_done();
1193 /* Bind memory initialisation thread to a local node if possible */
1194 if (!cpumask_empty(cpumask
))
1195 set_cpus_allowed_ptr(current
, cpumask
);
1197 /* Sanity check boundaries */
1198 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1199 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1200 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1202 /* Only the highest zone is deferred so find it */
1203 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1204 zone
= pgdat
->node_zones
+ zid
;
1205 if (first_init_pfn
< zone_end_pfn(zone
))
1209 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1210 unsigned long pfn
, end_pfn
;
1211 struct page
*page
= NULL
;
1212 struct page
*free_base_page
= NULL
;
1213 unsigned long free_base_pfn
= 0;
1216 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1217 pfn
= first_init_pfn
;
1218 if (pfn
< walk_start
)
1220 if (pfn
< zone
->zone_start_pfn
)
1221 pfn
= zone
->zone_start_pfn
;
1223 for (; pfn
< end_pfn
; pfn
++) {
1224 if (!pfn_valid_within(pfn
))
1228 * Ensure pfn_valid is checked every
1229 * MAX_ORDER_NR_PAGES for memory holes
1231 if ((pfn
& (MAX_ORDER_NR_PAGES
- 1)) == 0) {
1232 if (!pfn_valid(pfn
)) {
1238 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1243 /* Minimise pfn page lookups and scheduler checks */
1244 if (page
&& (pfn
& (MAX_ORDER_NR_PAGES
- 1)) != 0) {
1247 nr_pages
+= nr_to_free
;
1248 deferred_free_range(free_base_page
,
1249 free_base_pfn
, nr_to_free
);
1250 free_base_page
= NULL
;
1251 free_base_pfn
= nr_to_free
= 0;
1253 page
= pfn_to_page(pfn
);
1258 VM_BUG_ON(page_zone(page
) != zone
);
1262 __init_single_page(page
, pfn
, zid
, nid
);
1263 if (!free_base_page
) {
1264 free_base_page
= page
;
1265 free_base_pfn
= pfn
;
1270 /* Where possible, batch up pages for a single free */
1273 /* Free the current block of pages to allocator */
1274 nr_pages
+= nr_to_free
;
1275 deferred_free_range(free_base_page
, free_base_pfn
,
1277 free_base_page
= NULL
;
1278 free_base_pfn
= nr_to_free
= 0;
1281 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1284 /* Sanity check that the next zone really is unpopulated */
1285 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1287 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1288 jiffies_to_msecs(jiffies
- start
));
1290 pgdat_init_report_one_done();
1294 void __init
page_alloc_init_late(void)
1298 /* There will be num_node_state(N_MEMORY) threads */
1299 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1300 for_each_node_state(nid
, N_MEMORY
) {
1301 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1304 /* Block until all are initialised */
1305 wait_for_completion(&pgdat_init_all_done_comp
);
1307 /* Reinit limits that are based on free pages after the kernel is up */
1308 files_maxfiles_init();
1310 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1313 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1314 void __init
init_cma_reserved_pageblock(struct page
*page
)
1316 unsigned i
= pageblock_nr_pages
;
1317 struct page
*p
= page
;
1320 __ClearPageReserved(p
);
1321 set_page_count(p
, 0);
1324 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1326 if (pageblock_order
>= MAX_ORDER
) {
1327 i
= pageblock_nr_pages
;
1330 set_page_refcounted(p
);
1331 __free_pages(p
, MAX_ORDER
- 1);
1332 p
+= MAX_ORDER_NR_PAGES
;
1333 } while (i
-= MAX_ORDER_NR_PAGES
);
1335 set_page_refcounted(page
);
1336 __free_pages(page
, pageblock_order
);
1339 adjust_managed_page_count(page
, pageblock_nr_pages
);
1344 * The order of subdivision here is critical for the IO subsystem.
1345 * Please do not alter this order without good reasons and regression
1346 * testing. Specifically, as large blocks of memory are subdivided,
1347 * the order in which smaller blocks are delivered depends on the order
1348 * they're subdivided in this function. This is the primary factor
1349 * influencing the order in which pages are delivered to the IO
1350 * subsystem according to empirical testing, and this is also justified
1351 * by considering the behavior of a buddy system containing a single
1352 * large block of memory acted on by a series of small allocations.
1353 * This behavior is a critical factor in sglist merging's success.
1357 static inline void expand(struct zone
*zone
, struct page
*page
,
1358 int low
, int high
, struct free_area
*area
,
1361 unsigned long size
= 1 << high
;
1363 while (high
> low
) {
1367 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1369 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
) &&
1370 debug_guardpage_enabled() &&
1371 high
< debug_guardpage_minorder()) {
1373 * Mark as guard pages (or page), that will allow to
1374 * merge back to allocator when buddy will be freed.
1375 * Corresponding page table entries will not be touched,
1376 * pages will stay not present in virtual address space
1378 set_page_guard(zone
, &page
[size
], high
, migratetype
);
1381 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1383 set_page_order(&page
[size
], high
);
1388 * This page is about to be returned from the page allocator
1390 static inline int check_new_page(struct page
*page
)
1392 const char *bad_reason
= NULL
;
1393 unsigned long bad_flags
= 0;
1395 if (unlikely(page_mapcount(page
)))
1396 bad_reason
= "nonzero mapcount";
1397 if (unlikely(page
->mapping
!= NULL
))
1398 bad_reason
= "non-NULL mapping";
1399 if (unlikely(atomic_read(&page
->_count
) != 0))
1400 bad_reason
= "nonzero _count";
1401 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1402 bad_reason
= "HWPoisoned (hardware-corrupted)";
1403 bad_flags
= __PG_HWPOISON
;
1405 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1406 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1407 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1410 if (unlikely(page
->mem_cgroup
))
1411 bad_reason
= "page still charged to cgroup";
1413 if (unlikely(bad_reason
)) {
1414 bad_page(page
, bad_reason
, bad_flags
);
1420 static int prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1425 for (i
= 0; i
< (1 << order
); i
++) {
1426 struct page
*p
= page
+ i
;
1427 if (unlikely(check_new_page(p
)))
1431 set_page_private(page
, 0);
1432 set_page_refcounted(page
);
1434 arch_alloc_page(page
, order
);
1435 kernel_map_pages(page
, 1 << order
, 1);
1436 kasan_alloc_pages(page
, order
);
1438 if (gfp_flags
& __GFP_ZERO
)
1439 for (i
= 0; i
< (1 << order
); i
++)
1440 clear_highpage(page
+ i
);
1442 if (order
&& (gfp_flags
& __GFP_COMP
))
1443 prep_compound_page(page
, order
);
1445 set_page_owner(page
, order
, gfp_flags
);
1448 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1449 * allocate the page. The expectation is that the caller is taking
1450 * steps that will free more memory. The caller should avoid the page
1451 * being used for !PFMEMALLOC purposes.
1453 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1454 set_page_pfmemalloc(page
);
1456 clear_page_pfmemalloc(page
);
1462 * Go through the free lists for the given migratetype and remove
1463 * the smallest available page from the freelists
1466 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1469 unsigned int current_order
;
1470 struct free_area
*area
;
1473 /* Find a page of the appropriate size in the preferred list */
1474 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1475 area
= &(zone
->free_area
[current_order
]);
1476 if (list_empty(&area
->free_list
[migratetype
]))
1479 page
= list_entry(area
->free_list
[migratetype
].next
,
1481 list_del(&page
->lru
);
1482 rmv_page_order(page
);
1484 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1485 set_pcppage_migratetype(page
, migratetype
);
1494 * This array describes the order lists are fallen back to when
1495 * the free lists for the desirable migrate type are depleted
1497 static int fallbacks
[MIGRATE_TYPES
][4] = {
1498 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1499 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1500 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1502 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1504 #ifdef CONFIG_MEMORY_ISOLATION
1505 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1510 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1513 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1516 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1517 unsigned int order
) { return NULL
; }
1521 * Move the free pages in a range to the free lists of the requested type.
1522 * Note that start_page and end_pages are not aligned on a pageblock
1523 * boundary. If alignment is required, use move_freepages_block()
1525 int move_freepages(struct zone
*zone
,
1526 struct page
*start_page
, struct page
*end_page
,
1531 int pages_moved
= 0;
1533 #ifndef CONFIG_HOLES_IN_ZONE
1535 * page_zone is not safe to call in this context when
1536 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1537 * anyway as we check zone boundaries in move_freepages_block().
1538 * Remove at a later date when no bug reports exist related to
1539 * grouping pages by mobility
1541 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1544 for (page
= start_page
; page
<= end_page
;) {
1545 if (!pfn_valid_within(page_to_pfn(page
))) {
1550 /* Make sure we are not inadvertently changing nodes */
1551 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1553 if (!PageBuddy(page
)) {
1558 order
= page_order(page
);
1559 list_move(&page
->lru
,
1560 &zone
->free_area
[order
].free_list
[migratetype
]);
1562 pages_moved
+= 1 << order
;
1568 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1571 unsigned long start_pfn
, end_pfn
;
1572 struct page
*start_page
, *end_page
;
1574 start_pfn
= page_to_pfn(page
);
1575 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1576 start_page
= pfn_to_page(start_pfn
);
1577 end_page
= start_page
+ pageblock_nr_pages
- 1;
1578 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1580 /* Do not cross zone boundaries */
1581 if (!zone_spans_pfn(zone
, start_pfn
))
1583 if (!zone_spans_pfn(zone
, end_pfn
))
1586 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1589 static void change_pageblock_range(struct page
*pageblock_page
,
1590 int start_order
, int migratetype
)
1592 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1594 while (nr_pageblocks
--) {
1595 set_pageblock_migratetype(pageblock_page
, migratetype
);
1596 pageblock_page
+= pageblock_nr_pages
;
1601 * When we are falling back to another migratetype during allocation, try to
1602 * steal extra free pages from the same pageblocks to satisfy further
1603 * allocations, instead of polluting multiple pageblocks.
1605 * If we are stealing a relatively large buddy page, it is likely there will
1606 * be more free pages in the pageblock, so try to steal them all. For
1607 * reclaimable and unmovable allocations, we steal regardless of page size,
1608 * as fragmentation caused by those allocations polluting movable pageblocks
1609 * is worse than movable allocations stealing from unmovable and reclaimable
1612 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1615 * Leaving this order check is intended, although there is
1616 * relaxed order check in next check. The reason is that
1617 * we can actually steal whole pageblock if this condition met,
1618 * but, below check doesn't guarantee it and that is just heuristic
1619 * so could be changed anytime.
1621 if (order
>= pageblock_order
)
1624 if (order
>= pageblock_order
/ 2 ||
1625 start_mt
== MIGRATE_RECLAIMABLE
||
1626 start_mt
== MIGRATE_UNMOVABLE
||
1627 page_group_by_mobility_disabled
)
1634 * This function implements actual steal behaviour. If order is large enough,
1635 * we can steal whole pageblock. If not, we first move freepages in this
1636 * pageblock and check whether half of pages are moved or not. If half of
1637 * pages are moved, we can change migratetype of pageblock and permanently
1638 * use it's pages as requested migratetype in the future.
1640 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1643 unsigned int current_order
= page_order(page
);
1646 /* Take ownership for orders >= pageblock_order */
1647 if (current_order
>= pageblock_order
) {
1648 change_pageblock_range(page
, current_order
, start_type
);
1652 pages
= move_freepages_block(zone
, page
, start_type
);
1654 /* Claim the whole block if over half of it is free */
1655 if (pages
>= (1 << (pageblock_order
-1)) ||
1656 page_group_by_mobility_disabled
)
1657 set_pageblock_migratetype(page
, start_type
);
1661 * Check whether there is a suitable fallback freepage with requested order.
1662 * If only_stealable is true, this function returns fallback_mt only if
1663 * we can steal other freepages all together. This would help to reduce
1664 * fragmentation due to mixed migratetype pages in one pageblock.
1666 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
1667 int migratetype
, bool only_stealable
, bool *can_steal
)
1672 if (area
->nr_free
== 0)
1677 fallback_mt
= fallbacks
[migratetype
][i
];
1678 if (fallback_mt
== MIGRATE_TYPES
)
1681 if (list_empty(&area
->free_list
[fallback_mt
]))
1684 if (can_steal_fallback(order
, migratetype
))
1687 if (!only_stealable
)
1698 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1699 * there are no empty page blocks that contain a page with a suitable order
1701 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
1702 unsigned int alloc_order
)
1705 unsigned long max_managed
, flags
;
1708 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1709 * Check is race-prone but harmless.
1711 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
1712 if (zone
->nr_reserved_highatomic
>= max_managed
)
1715 spin_lock_irqsave(&zone
->lock
, flags
);
1717 /* Recheck the nr_reserved_highatomic limit under the lock */
1718 if (zone
->nr_reserved_highatomic
>= max_managed
)
1722 mt
= get_pageblock_migratetype(page
);
1723 if (mt
!= MIGRATE_HIGHATOMIC
&&
1724 !is_migrate_isolate(mt
) && !is_migrate_cma(mt
)) {
1725 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
1726 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
1727 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
);
1731 spin_unlock_irqrestore(&zone
->lock
, flags
);
1735 * Used when an allocation is about to fail under memory pressure. This
1736 * potentially hurts the reliability of high-order allocations when under
1737 * intense memory pressure but failed atomic allocations should be easier
1738 * to recover from than an OOM.
1740 static void unreserve_highatomic_pageblock(const struct alloc_context
*ac
)
1742 struct zonelist
*zonelist
= ac
->zonelist
;
1743 unsigned long flags
;
1749 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
1751 /* Preserve at least one pageblock */
1752 if (zone
->nr_reserved_highatomic
<= pageblock_nr_pages
)
1755 spin_lock_irqsave(&zone
->lock
, flags
);
1756 for (order
= 0; order
< MAX_ORDER
; order
++) {
1757 struct free_area
*area
= &(zone
->free_area
[order
]);
1759 if (list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
1762 page
= list_entry(area
->free_list
[MIGRATE_HIGHATOMIC
].next
,
1766 * In page freeing path, migratetype change is racy so
1767 * we can counter several free pages in a pageblock
1768 * in this loop althoug we changed the pageblock type
1769 * from highatomic to ac->migratetype. So we should
1770 * adjust the count once.
1772 if (get_pageblock_migratetype(page
) ==
1773 MIGRATE_HIGHATOMIC
) {
1775 * It should never happen but changes to
1776 * locking could inadvertently allow a per-cpu
1777 * drain to add pages to MIGRATE_HIGHATOMIC
1778 * while unreserving so be safe and watch for
1781 zone
->nr_reserved_highatomic
-= min(
1783 zone
->nr_reserved_highatomic
);
1787 * Convert to ac->migratetype and avoid the normal
1788 * pageblock stealing heuristics. Minimally, the caller
1789 * is doing the work and needs the pages. More
1790 * importantly, if the block was always converted to
1791 * MIGRATE_UNMOVABLE or another type then the number
1792 * of pageblocks that cannot be completely freed
1795 set_pageblock_migratetype(page
, ac
->migratetype
);
1796 move_freepages_block(zone
, page
, ac
->migratetype
);
1797 spin_unlock_irqrestore(&zone
->lock
, flags
);
1800 spin_unlock_irqrestore(&zone
->lock
, flags
);
1804 /* Remove an element from the buddy allocator from the fallback list */
1805 static inline struct page
*
1806 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
1808 struct free_area
*area
;
1809 unsigned int current_order
;
1814 /* Find the largest possible block of pages in the other list */
1815 for (current_order
= MAX_ORDER
-1;
1816 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
1818 area
= &(zone
->free_area
[current_order
]);
1819 fallback_mt
= find_suitable_fallback(area
, current_order
,
1820 start_migratetype
, false, &can_steal
);
1821 if (fallback_mt
== -1)
1824 page
= list_entry(area
->free_list
[fallback_mt
].next
,
1827 steal_suitable_fallback(zone
, page
, start_migratetype
);
1829 /* Remove the page from the freelists */
1831 list_del(&page
->lru
);
1832 rmv_page_order(page
);
1834 expand(zone
, page
, order
, current_order
, area
,
1837 * The pcppage_migratetype may differ from pageblock's
1838 * migratetype depending on the decisions in
1839 * find_suitable_fallback(). This is OK as long as it does not
1840 * differ for MIGRATE_CMA pageblocks. Those can be used as
1841 * fallback only via special __rmqueue_cma_fallback() function
1843 set_pcppage_migratetype(page
, start_migratetype
);
1845 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1846 start_migratetype
, fallback_mt
);
1855 * Do the hard work of removing an element from the buddy allocator.
1856 * Call me with the zone->lock already held.
1858 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1859 int migratetype
, gfp_t gfp_flags
)
1863 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1864 if (unlikely(!page
)) {
1865 if (migratetype
== MIGRATE_MOVABLE
)
1866 page
= __rmqueue_cma_fallback(zone
, order
);
1869 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1872 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1877 * Obtain a specified number of elements from the buddy allocator, all under
1878 * a single hold of the lock, for efficiency. Add them to the supplied list.
1879 * Returns the number of new pages which were placed at *list.
1881 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1882 unsigned long count
, struct list_head
*list
,
1883 int migratetype
, bool cold
)
1887 spin_lock(&zone
->lock
);
1888 for (i
= 0; i
< count
; ++i
) {
1889 struct page
*page
= __rmqueue(zone
, order
, migratetype
, 0);
1890 if (unlikely(page
== NULL
))
1894 * Split buddy pages returned by expand() are received here
1895 * in physical page order. The page is added to the callers and
1896 * list and the list head then moves forward. From the callers
1897 * perspective, the linked list is ordered by page number in
1898 * some conditions. This is useful for IO devices that can
1899 * merge IO requests if the physical pages are ordered
1903 list_add(&page
->lru
, list
);
1905 list_add_tail(&page
->lru
, list
);
1907 if (is_migrate_cma(get_pcppage_migratetype(page
)))
1908 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1911 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1912 spin_unlock(&zone
->lock
);
1918 * Called from the vmstat counter updater to drain pagesets of this
1919 * currently executing processor on remote nodes after they have
1922 * Note that this function must be called with the thread pinned to
1923 * a single processor.
1925 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1927 unsigned long flags
;
1928 int to_drain
, batch
;
1930 local_irq_save(flags
);
1931 batch
= READ_ONCE(pcp
->batch
);
1932 to_drain
= min(pcp
->count
, batch
);
1934 free_pcppages_bulk(zone
, to_drain
, pcp
);
1935 pcp
->count
-= to_drain
;
1937 local_irq_restore(flags
);
1942 * Drain pcplists of the indicated processor and zone.
1944 * The processor must either be the current processor and the
1945 * thread pinned to the current processor or a processor that
1948 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
1950 unsigned long flags
;
1951 struct per_cpu_pageset
*pset
;
1952 struct per_cpu_pages
*pcp
;
1954 local_irq_save(flags
);
1955 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1959 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1962 local_irq_restore(flags
);
1966 * Drain pcplists of all zones on the indicated processor.
1968 * The processor must either be the current processor and the
1969 * thread pinned to the current processor or a processor that
1972 static void drain_pages(unsigned int cpu
)
1976 for_each_populated_zone(zone
) {
1977 drain_pages_zone(cpu
, zone
);
1982 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1984 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1985 * the single zone's pages.
1987 void drain_local_pages(struct zone
*zone
)
1989 int cpu
= smp_processor_id();
1992 drain_pages_zone(cpu
, zone
);
1998 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2000 * When zone parameter is non-NULL, spill just the single zone's pages.
2002 * Note that this code is protected against sending an IPI to an offline
2003 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2004 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2005 * nothing keeps CPUs from showing up after we populated the cpumask and
2006 * before the call to on_each_cpu_mask().
2008 void drain_all_pages(struct zone
*zone
)
2013 * Allocate in the BSS so we wont require allocation in
2014 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2016 static cpumask_t cpus_with_pcps
;
2019 * We don't care about racing with CPU hotplug event
2020 * as offline notification will cause the notified
2021 * cpu to drain that CPU pcps and on_each_cpu_mask
2022 * disables preemption as part of its processing
2024 for_each_online_cpu(cpu
) {
2025 struct per_cpu_pageset
*pcp
;
2027 bool has_pcps
= false;
2030 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2034 for_each_populated_zone(z
) {
2035 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2036 if (pcp
->pcp
.count
) {
2044 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2046 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2048 on_each_cpu_mask(&cpus_with_pcps
, (smp_call_func_t
) drain_local_pages
,
2052 #ifdef CONFIG_HIBERNATION
2054 void mark_free_pages(struct zone
*zone
)
2056 unsigned long pfn
, max_zone_pfn
;
2057 unsigned long flags
;
2058 unsigned int order
, t
;
2059 struct list_head
*curr
;
2061 if (zone_is_empty(zone
))
2064 spin_lock_irqsave(&zone
->lock
, flags
);
2066 max_zone_pfn
= zone_end_pfn(zone
);
2067 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2068 if (pfn_valid(pfn
)) {
2069 struct page
*page
= pfn_to_page(pfn
);
2071 if (!swsusp_page_is_forbidden(page
))
2072 swsusp_unset_page_free(page
);
2075 for_each_migratetype_order(order
, t
) {
2076 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
2079 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
2080 for (i
= 0; i
< (1UL << order
); i
++)
2081 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2084 spin_unlock_irqrestore(&zone
->lock
, flags
);
2086 #endif /* CONFIG_PM */
2089 * Free a 0-order page
2090 * cold == true ? free a cold page : free a hot page
2092 void free_hot_cold_page(struct page
*page
, bool cold
)
2094 struct zone
*zone
= page_zone(page
);
2095 struct per_cpu_pages
*pcp
;
2096 unsigned long flags
;
2097 unsigned long pfn
= page_to_pfn(page
);
2100 if (!free_pages_prepare(page
, 0))
2103 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2104 set_pcppage_migratetype(page
, migratetype
);
2105 local_irq_save(flags
);
2106 __count_vm_event(PGFREE
);
2109 * We only track unmovable, reclaimable and movable on pcp lists.
2110 * Free ISOLATE pages back to the allocator because they are being
2111 * offlined but treat RESERVE as movable pages so we can get those
2112 * areas back if necessary. Otherwise, we may have to free
2113 * excessively into the page allocator
2115 if (migratetype
>= MIGRATE_PCPTYPES
) {
2116 if (unlikely(is_migrate_isolate(migratetype
))) {
2117 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2120 migratetype
= MIGRATE_MOVABLE
;
2123 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2125 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2127 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2129 if (pcp
->count
>= pcp
->high
) {
2130 unsigned long batch
= READ_ONCE(pcp
->batch
);
2131 free_pcppages_bulk(zone
, batch
, pcp
);
2132 pcp
->count
-= batch
;
2136 local_irq_restore(flags
);
2140 * Free a list of 0-order pages
2142 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2144 struct page
*page
, *next
;
2146 list_for_each_entry_safe(page
, next
, list
, lru
) {
2147 trace_mm_page_free_batched(page
, cold
);
2148 free_hot_cold_page(page
, cold
);
2153 * split_page takes a non-compound higher-order page, and splits it into
2154 * n (1<<order) sub-pages: page[0..n]
2155 * Each sub-page must be freed individually.
2157 * Note: this is probably too low level an operation for use in drivers.
2158 * Please consult with lkml before using this in your driver.
2160 void split_page(struct page
*page
, unsigned int order
)
2165 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2166 VM_BUG_ON_PAGE(!page_count(page
), page
);
2168 #ifdef CONFIG_KMEMCHECK
2170 * Split shadow pages too, because free(page[0]) would
2171 * otherwise free the whole shadow.
2173 if (kmemcheck_page_is_tracked(page
))
2174 split_page(virt_to_page(page
[0].shadow
), order
);
2177 gfp_mask
= get_page_owner_gfp(page
);
2178 set_page_owner(page
, 0, gfp_mask
);
2179 for (i
= 1; i
< (1 << order
); i
++) {
2180 set_page_refcounted(page
+ i
);
2181 set_page_owner(page
+ i
, 0, gfp_mask
);
2184 EXPORT_SYMBOL_GPL(split_page
);
2186 int __isolate_free_page(struct page
*page
, unsigned int order
)
2188 unsigned long watermark
;
2192 BUG_ON(!PageBuddy(page
));
2194 zone
= page_zone(page
);
2195 mt
= get_pageblock_migratetype(page
);
2197 if (!is_migrate_isolate(mt
)) {
2198 /* Obey watermarks as if the page was being allocated */
2199 watermark
= low_wmark_pages(zone
) + (1 << order
);
2200 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
2203 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2206 /* Remove page from free list */
2207 list_del(&page
->lru
);
2208 zone
->free_area
[order
].nr_free
--;
2209 rmv_page_order(page
);
2211 set_page_owner(page
, order
, __GFP_MOVABLE
);
2213 /* Set the pageblock if the isolated page is at least a pageblock */
2214 if (order
>= pageblock_order
- 1) {
2215 struct page
*endpage
= page
+ (1 << order
) - 1;
2216 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2217 int mt
= get_pageblock_migratetype(page
);
2218 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
2219 set_pageblock_migratetype(page
,
2225 return 1UL << order
;
2229 * Similar to split_page except the page is already free. As this is only
2230 * being used for migration, the migratetype of the block also changes.
2231 * As this is called with interrupts disabled, the caller is responsible
2232 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2235 * Note: this is probably too low level an operation for use in drivers.
2236 * Please consult with lkml before using this in your driver.
2238 int split_free_page(struct page
*page
)
2243 order
= page_order(page
);
2245 nr_pages
= __isolate_free_page(page
, order
);
2249 /* Split into individual pages */
2250 set_page_refcounted(page
);
2251 split_page(page
, order
);
2256 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2259 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
2260 struct zone
*zone
, unsigned int order
,
2261 gfp_t gfp_flags
, int alloc_flags
, int migratetype
)
2263 unsigned long flags
;
2265 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2267 if (likely(order
== 0)) {
2268 struct per_cpu_pages
*pcp
;
2269 struct list_head
*list
;
2271 local_irq_save(flags
);
2272 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2273 list
= &pcp
->lists
[migratetype
];
2274 if (list_empty(list
)) {
2275 pcp
->count
+= rmqueue_bulk(zone
, 0,
2278 if (unlikely(list_empty(list
)))
2283 page
= list_entry(list
->prev
, struct page
, lru
);
2285 page
= list_entry(list
->next
, struct page
, lru
);
2287 list_del(&page
->lru
);
2290 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
2292 * __GFP_NOFAIL is not to be used in new code.
2294 * All __GFP_NOFAIL callers should be fixed so that they
2295 * properly detect and handle allocation failures.
2297 * We most definitely don't want callers attempting to
2298 * allocate greater than order-1 page units with
2301 WARN_ON_ONCE(order
> 1);
2303 spin_lock_irqsave(&zone
->lock
, flags
);
2306 if (alloc_flags
& ALLOC_HARDER
) {
2307 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2309 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2312 page
= __rmqueue(zone
, order
, migratetype
, gfp_flags
);
2313 spin_unlock(&zone
->lock
);
2316 __mod_zone_freepage_state(zone
, -(1 << order
),
2317 get_pcppage_migratetype(page
));
2320 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
2321 if (atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]) <= 0 &&
2322 !test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
))
2323 set_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2325 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
2326 zone_statistics(preferred_zone
, zone
, gfp_flags
);
2327 local_irq_restore(flags
);
2329 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
2333 local_irq_restore(flags
);
2337 #ifdef CONFIG_FAIL_PAGE_ALLOC
2340 struct fault_attr attr
;
2342 bool ignore_gfp_highmem
;
2343 bool ignore_gfp_reclaim
;
2345 } fail_page_alloc
= {
2346 .attr
= FAULT_ATTR_INITIALIZER
,
2347 .ignore_gfp_reclaim
= true,
2348 .ignore_gfp_highmem
= true,
2352 static int __init
setup_fail_page_alloc(char *str
)
2354 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2356 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2358 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2360 if (order
< fail_page_alloc
.min_order
)
2362 if (gfp_mask
& __GFP_NOFAIL
)
2364 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2366 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2367 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2370 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2373 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2375 static int __init
fail_page_alloc_debugfs(void)
2377 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2380 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2381 &fail_page_alloc
.attr
);
2383 return PTR_ERR(dir
);
2385 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2386 &fail_page_alloc
.ignore_gfp_reclaim
))
2388 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2389 &fail_page_alloc
.ignore_gfp_highmem
))
2391 if (!debugfs_create_u32("min-order", mode
, dir
,
2392 &fail_page_alloc
.min_order
))
2397 debugfs_remove_recursive(dir
);
2402 late_initcall(fail_page_alloc_debugfs
);
2404 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2406 #else /* CONFIG_FAIL_PAGE_ALLOC */
2408 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2413 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2416 * Return true if free base pages are above 'mark'. For high-order checks it
2417 * will return true of the order-0 watermark is reached and there is at least
2418 * one free page of a suitable size. Checking now avoids taking the zone lock
2419 * to check in the allocation paths if no pages are free.
2421 static bool __zone_watermark_ok(struct zone
*z
, unsigned int order
,
2422 unsigned long mark
, int classzone_idx
, int alloc_flags
,
2427 const int alloc_harder
= (alloc_flags
& ALLOC_HARDER
);
2429 /* free_pages may go negative - that's OK */
2430 free_pages
-= (1 << order
) - 1;
2432 if (alloc_flags
& ALLOC_HIGH
)
2436 * If the caller does not have rights to ALLOC_HARDER then subtract
2437 * the high-atomic reserves. This will over-estimate the size of the
2438 * atomic reserve but it avoids a search.
2440 if (likely(!alloc_harder
))
2441 free_pages
-= z
->nr_reserved_highatomic
;
2446 /* If allocation can't use CMA areas don't use free CMA pages */
2447 if (!(alloc_flags
& ALLOC_CMA
))
2448 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2452 * Check watermarks for an order-0 allocation request. If these
2453 * are not met, then a high-order request also cannot go ahead
2454 * even if a suitable page happened to be free.
2456 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2459 /* If this is an order-0 request then the watermark is fine */
2463 /* For a high-order request, check at least one suitable page is free */
2464 for (o
= order
; o
< MAX_ORDER
; o
++) {
2465 struct free_area
*area
= &z
->free_area
[o
];
2471 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
2472 if (!list_empty(&area
->free_list
[mt
]))
2477 if ((alloc_flags
& ALLOC_CMA
) &&
2478 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
2483 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
2489 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2490 int classzone_idx
, int alloc_flags
)
2492 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2493 zone_page_state(z
, NR_FREE_PAGES
));
2496 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
2497 unsigned long mark
, int classzone_idx
)
2499 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2501 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
2502 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
2504 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
2509 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2511 return local_zone
->node
== zone
->node
;
2514 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2516 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
2519 #else /* CONFIG_NUMA */
2520 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2525 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2529 #endif /* CONFIG_NUMA */
2531 static void reset_alloc_batches(struct zone
*preferred_zone
)
2533 struct zone
*zone
= preferred_zone
->zone_pgdat
->node_zones
;
2536 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2537 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
2538 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
2539 clear_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2540 } while (zone
++ != preferred_zone
);
2544 * get_page_from_freelist goes through the zonelist trying to allocate
2547 static struct page
*
2548 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
2549 const struct alloc_context
*ac
)
2551 struct zonelist
*zonelist
= ac
->zonelist
;
2553 struct page
*page
= NULL
;
2555 int nr_fair_skipped
= 0;
2556 bool zonelist_rescan
;
2559 zonelist_rescan
= false;
2562 * Scan zonelist, looking for a zone with enough free.
2563 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2565 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2569 if (cpusets_enabled() &&
2570 (alloc_flags
& ALLOC_CPUSET
) &&
2571 !cpuset_zone_allowed(zone
, gfp_mask
))
2574 * Distribute pages in proportion to the individual
2575 * zone size to ensure fair page aging. The zone a
2576 * page was allocated in should have no effect on the
2577 * time the page has in memory before being reclaimed.
2579 if (alloc_flags
& ALLOC_FAIR
) {
2580 if (!zone_local(ac
->preferred_zone
, zone
))
2582 if (test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
)) {
2588 * When allocating a page cache page for writing, we
2589 * want to get it from a zone that is within its dirty
2590 * limit, such that no single zone holds more than its
2591 * proportional share of globally allowed dirty pages.
2592 * The dirty limits take into account the zone's
2593 * lowmem reserves and high watermark so that kswapd
2594 * should be able to balance it without having to
2595 * write pages from its LRU list.
2597 * This may look like it could increase pressure on
2598 * lower zones by failing allocations in higher zones
2599 * before they are full. But the pages that do spill
2600 * over are limited as the lower zones are protected
2601 * by this very same mechanism. It should not become
2602 * a practical burden to them.
2604 * XXX: For now, allow allocations to potentially
2605 * exceed the per-zone dirty limit in the slowpath
2606 * (spread_dirty_pages unset) before going into reclaim,
2607 * which is important when on a NUMA setup the allowed
2608 * zones are together not big enough to reach the
2609 * global limit. The proper fix for these situations
2610 * will require awareness of zones in the
2611 * dirty-throttling and the flusher threads.
2613 if (ac
->spread_dirty_pages
&& !zone_dirty_ok(zone
))
2616 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2617 if (!zone_watermark_ok(zone
, order
, mark
,
2618 ac
->classzone_idx
, alloc_flags
)) {
2621 /* Checked here to keep the fast path fast */
2622 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2623 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2626 if (zone_reclaim_mode
== 0 ||
2627 !zone_allows_reclaim(ac
->preferred_zone
, zone
))
2630 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2632 case ZONE_RECLAIM_NOSCAN
:
2635 case ZONE_RECLAIM_FULL
:
2636 /* scanned but unreclaimable */
2639 /* did we reclaim enough */
2640 if (zone_watermark_ok(zone
, order
, mark
,
2641 ac
->classzone_idx
, alloc_flags
))
2649 page
= buffered_rmqueue(ac
->preferred_zone
, zone
, order
,
2650 gfp_mask
, alloc_flags
, ac
->migratetype
);
2652 if (prep_new_page(page
, order
, gfp_mask
, alloc_flags
))
2656 * If this is a high-order atomic allocation then check
2657 * if the pageblock should be reserved for the future
2659 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
2660 reserve_highatomic_pageblock(page
, zone
, order
);
2667 * The first pass makes sure allocations are spread fairly within the
2668 * local node. However, the local node might have free pages left
2669 * after the fairness batches are exhausted, and remote zones haven't
2670 * even been considered yet. Try once more without fairness, and
2671 * include remote zones now, before entering the slowpath and waking
2672 * kswapd: prefer spilling to a remote zone over swapping locally.
2674 if (alloc_flags
& ALLOC_FAIR
) {
2675 alloc_flags
&= ~ALLOC_FAIR
;
2676 if (nr_fair_skipped
) {
2677 zonelist_rescan
= true;
2678 reset_alloc_batches(ac
->preferred_zone
);
2680 if (nr_online_nodes
> 1)
2681 zonelist_rescan
= true;
2684 if (zonelist_rescan
)
2691 * Large machines with many possible nodes should not always dump per-node
2692 * meminfo in irq context.
2694 static inline bool should_suppress_show_mem(void)
2699 ret
= in_interrupt();
2704 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2705 DEFAULT_RATELIMIT_INTERVAL
,
2706 DEFAULT_RATELIMIT_BURST
);
2708 void warn_alloc_failed(gfp_t gfp_mask
, unsigned int order
, const char *fmt
, ...)
2710 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2712 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2713 debug_guardpage_minorder() > 0)
2717 * This documents exceptions given to allocations in certain
2718 * contexts that are allowed to allocate outside current's set
2721 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2722 if (test_thread_flag(TIF_MEMDIE
) ||
2723 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2724 filter
&= ~SHOW_MEM_FILTER_NODES
;
2725 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
2726 filter
&= ~SHOW_MEM_FILTER_NODES
;
2729 struct va_format vaf
;
2732 va_start(args
, fmt
);
2737 pr_warn("%pV", &vaf
);
2742 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2743 current
->comm
, order
, gfp_mask
);
2746 if (!should_suppress_show_mem())
2750 static inline struct page
*
2751 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2752 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
2754 struct oom_control oc
= {
2755 .zonelist
= ac
->zonelist
,
2756 .nodemask
= ac
->nodemask
,
2757 .gfp_mask
= gfp_mask
,
2762 *did_some_progress
= 0;
2765 * Acquire the oom lock. If that fails, somebody else is
2766 * making progress for us.
2768 if (!mutex_trylock(&oom_lock
)) {
2769 *did_some_progress
= 1;
2770 schedule_timeout_uninterruptible(1);
2775 * Go through the zonelist yet one more time, keep very high watermark
2776 * here, this is only to catch a parallel oom killing, we must fail if
2777 * we're still under heavy pressure.
2779 page
= get_page_from_freelist(gfp_mask
| __GFP_HARDWALL
, order
,
2780 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
2784 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2785 /* Coredumps can quickly deplete all memory reserves */
2786 if (current
->flags
& PF_DUMPCORE
)
2788 /* The OOM killer will not help higher order allocs */
2789 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2791 /* The OOM killer does not needlessly kill tasks for lowmem */
2792 if (ac
->high_zoneidx
< ZONE_NORMAL
)
2794 /* The OOM killer does not compensate for IO-less reclaim */
2795 if (!(gfp_mask
& __GFP_FS
)) {
2797 * XXX: Page reclaim didn't yield anything,
2798 * and the OOM killer can't be invoked, but
2799 * keep looping as per tradition.
2801 *did_some_progress
= 1;
2804 if (pm_suspended_storage())
2806 /* The OOM killer may not free memory on a specific node */
2807 if (gfp_mask
& __GFP_THISNODE
)
2810 /* Exhausted what can be done so it's blamo time */
2811 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
))
2812 *did_some_progress
= 1;
2814 mutex_unlock(&oom_lock
);
2818 #ifdef CONFIG_COMPACTION
2819 /* Try memory compaction for high-order allocations before reclaim */
2820 static struct page
*
2821 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2822 int alloc_flags
, const struct alloc_context
*ac
,
2823 enum migrate_mode mode
, int *contended_compaction
,
2824 bool *deferred_compaction
)
2826 unsigned long compact_result
;
2832 current
->flags
|= PF_MEMALLOC
;
2833 compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
2834 mode
, contended_compaction
);
2835 current
->flags
&= ~PF_MEMALLOC
;
2837 switch (compact_result
) {
2838 case COMPACT_DEFERRED
:
2839 *deferred_compaction
= true;
2841 case COMPACT_SKIPPED
:
2848 * At least in one zone compaction wasn't deferred or skipped, so let's
2849 * count a compaction stall
2851 count_vm_event(COMPACTSTALL
);
2853 page
= get_page_from_freelist(gfp_mask
, order
,
2854 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
2857 struct zone
*zone
= page_zone(page
);
2859 zone
->compact_blockskip_flush
= false;
2860 compaction_defer_reset(zone
, order
, true);
2861 count_vm_event(COMPACTSUCCESS
);
2866 * It's bad if compaction run occurs and fails. The most likely reason
2867 * is that pages exist, but not enough to satisfy watermarks.
2869 count_vm_event(COMPACTFAIL
);
2876 static inline struct page
*
2877 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2878 int alloc_flags
, const struct alloc_context
*ac
,
2879 enum migrate_mode mode
, int *contended_compaction
,
2880 bool *deferred_compaction
)
2884 #endif /* CONFIG_COMPACTION */
2886 /* Perform direct synchronous page reclaim */
2888 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
2889 const struct alloc_context
*ac
)
2891 struct reclaim_state reclaim_state
;
2896 /* We now go into synchronous reclaim */
2897 cpuset_memory_pressure_bump();
2898 current
->flags
|= PF_MEMALLOC
;
2899 lockdep_set_current_reclaim_state(gfp_mask
);
2900 reclaim_state
.reclaimed_slab
= 0;
2901 current
->reclaim_state
= &reclaim_state
;
2903 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
2906 current
->reclaim_state
= NULL
;
2907 lockdep_clear_current_reclaim_state();
2908 current
->flags
&= ~PF_MEMALLOC
;
2915 /* The really slow allocator path where we enter direct reclaim */
2916 static inline struct page
*
2917 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2918 int alloc_flags
, const struct alloc_context
*ac
,
2919 unsigned long *did_some_progress
)
2921 struct page
*page
= NULL
;
2922 bool drained
= false;
2924 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
2925 if (unlikely(!(*did_some_progress
)))
2929 page
= get_page_from_freelist(gfp_mask
, order
,
2930 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
2933 * If an allocation failed after direct reclaim, it could be because
2934 * pages are pinned on the per-cpu lists or in high alloc reserves.
2935 * Shrink them them and try again
2937 if (!page
&& !drained
) {
2938 unreserve_highatomic_pageblock(ac
);
2939 drain_all_pages(NULL
);
2948 * This is called in the allocator slow-path if the allocation request is of
2949 * sufficient urgency to ignore watermarks and take other desperate measures
2951 static inline struct page
*
2952 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2953 const struct alloc_context
*ac
)
2958 page
= get_page_from_freelist(gfp_mask
, order
,
2959 ALLOC_NO_WATERMARKS
, ac
);
2961 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2962 wait_iff_congested(ac
->preferred_zone
, BLK_RW_ASYNC
,
2964 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2969 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
2974 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
2975 ac
->high_zoneidx
, ac
->nodemask
)
2976 wakeup_kswapd(zone
, order
, zone_idx(ac
->preferred_zone
));
2980 gfp_to_alloc_flags(gfp_t gfp_mask
)
2982 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2984 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2985 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2988 * The caller may dip into page reserves a bit more if the caller
2989 * cannot run direct reclaim, or if the caller has realtime scheduling
2990 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2991 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2993 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2995 if (gfp_mask
& __GFP_ATOMIC
) {
2997 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2998 * if it can't schedule.
3000 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3001 alloc_flags
|= ALLOC_HARDER
;
3003 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3004 * comment for __cpuset_node_allowed().
3006 alloc_flags
&= ~ALLOC_CPUSET
;
3007 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3008 alloc_flags
|= ALLOC_HARDER
;
3010 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
3011 if (gfp_mask
& __GFP_MEMALLOC
)
3012 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3013 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3014 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3015 else if (!in_interrupt() &&
3016 ((current
->flags
& PF_MEMALLOC
) ||
3017 unlikely(test_thread_flag(TIF_MEMDIE
))))
3018 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3021 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3022 alloc_flags
|= ALLOC_CMA
;
3027 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3029 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
3032 static inline bool is_thp_gfp_mask(gfp_t gfp_mask
)
3034 return (gfp_mask
& (GFP_TRANSHUGE
| __GFP_KSWAPD_RECLAIM
)) == GFP_TRANSHUGE
;
3037 static inline struct page
*
3038 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3039 struct alloc_context
*ac
)
3041 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3042 struct page
*page
= NULL
;
3044 unsigned long pages_reclaimed
= 0;
3045 unsigned long did_some_progress
;
3046 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
3047 bool deferred_compaction
= false;
3048 int contended_compaction
= COMPACT_CONTENDED_NONE
;
3051 * In the slowpath, we sanity check order to avoid ever trying to
3052 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3053 * be using allocators in order of preference for an area that is
3056 if (order
>= MAX_ORDER
) {
3057 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3062 * We also sanity check to catch abuse of atomic reserves being used by
3063 * callers that are not in atomic context.
3065 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3066 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3067 gfp_mask
&= ~__GFP_ATOMIC
;
3070 * If this allocation cannot block and it is for a specific node, then
3071 * fail early. There's no need to wakeup kswapd or retry for a
3072 * speculative node-specific allocation.
3074 if (IS_ENABLED(CONFIG_NUMA
) && (gfp_mask
& __GFP_THISNODE
) && !can_direct_reclaim
)
3078 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3079 wake_all_kswapds(order
, ac
);
3082 * OK, we're below the kswapd watermark and have kicked background
3083 * reclaim. Now things get more complex, so set up alloc_flags according
3084 * to how we want to proceed.
3086 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3089 * Find the true preferred zone if the allocation is unconstrained by
3092 if (!(alloc_flags
& ALLOC_CPUSET
) && !ac
->nodemask
) {
3093 struct zoneref
*preferred_zoneref
;
3094 preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3095 ac
->high_zoneidx
, NULL
, &ac
->preferred_zone
);
3096 ac
->classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
3099 /* This is the last chance, in general, before the goto nopage. */
3100 page
= get_page_from_freelist(gfp_mask
, order
,
3101 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
3105 /* Allocate without watermarks if the context allows */
3106 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
3108 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3109 * the allocation is high priority and these type of
3110 * allocations are system rather than user orientated
3112 page
= __alloc_pages_high_priority(gfp_mask
, order
, ac
);
3119 /* Caller is not willing to reclaim, we can't balance anything */
3120 if (!can_direct_reclaim
) {
3122 * All existing users of the deprecated __GFP_NOFAIL are
3123 * blockable, so warn of any new users that actually allow this
3124 * type of allocation to fail.
3126 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
3130 /* Avoid recursion of direct reclaim */
3131 if (current
->flags
& PF_MEMALLOC
)
3134 /* Avoid allocations with no watermarks from looping endlessly */
3135 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
3139 * Try direct compaction. The first pass is asynchronous. Subsequent
3140 * attempts after direct reclaim are synchronous
3142 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3144 &contended_compaction
,
3145 &deferred_compaction
);
3149 /* Checks for THP-specific high-order allocations */
3150 if (is_thp_gfp_mask(gfp_mask
)) {
3152 * If compaction is deferred for high-order allocations, it is
3153 * because sync compaction recently failed. If this is the case
3154 * and the caller requested a THP allocation, we do not want
3155 * to heavily disrupt the system, so we fail the allocation
3156 * instead of entering direct reclaim.
3158 if (deferred_compaction
)
3162 * In all zones where compaction was attempted (and not
3163 * deferred or skipped), lock contention has been detected.
3164 * For THP allocation we do not want to disrupt the others
3165 * so we fallback to base pages instead.
3167 if (contended_compaction
== COMPACT_CONTENDED_LOCK
)
3171 * If compaction was aborted due to need_resched(), we do not
3172 * want to further increase allocation latency, unless it is
3173 * khugepaged trying to collapse.
3175 if (contended_compaction
== COMPACT_CONTENDED_SCHED
3176 && !(current
->flags
& PF_KTHREAD
))
3181 * It can become very expensive to allocate transparent hugepages at
3182 * fault, so use asynchronous memory compaction for THP unless it is
3183 * khugepaged trying to collapse.
3185 if (!is_thp_gfp_mask(gfp_mask
) || (current
->flags
& PF_KTHREAD
))
3186 migration_mode
= MIGRATE_SYNC_LIGHT
;
3188 /* Try direct reclaim and then allocating */
3189 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3190 &did_some_progress
);
3194 /* Do not loop if specifically requested */
3195 if (gfp_mask
& __GFP_NORETRY
)
3198 /* Keep reclaiming pages as long as there is reasonable progress */
3199 pages_reclaimed
+= did_some_progress
;
3200 if ((did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
3201 ((gfp_mask
& __GFP_REPEAT
) && pages_reclaimed
< (1 << order
))) {
3202 /* Wait for some write requests to complete then retry */
3203 wait_iff_congested(ac
->preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
3207 /* Reclaim has failed us, start killing things */
3208 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3212 /* Retry as long as the OOM killer is making progress */
3213 if (did_some_progress
)
3218 * High-order allocations do not necessarily loop after
3219 * direct reclaim and reclaim/compaction depends on compaction
3220 * being called after reclaim so call directly if necessary
3222 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
,
3224 &contended_compaction
,
3225 &deferred_compaction
);
3229 warn_alloc_failed(gfp_mask
, order
, NULL
);
3235 * This is the 'heart' of the zoned buddy allocator.
3238 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
3239 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
3241 struct zoneref
*preferred_zoneref
;
3242 struct page
*page
= NULL
;
3243 unsigned int cpuset_mems_cookie
;
3244 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
3245 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
3246 struct alloc_context ac
= {
3247 .high_zoneidx
= gfp_zone(gfp_mask
),
3248 .nodemask
= nodemask
,
3249 .migratetype
= gfpflags_to_migratetype(gfp_mask
),
3252 gfp_mask
&= gfp_allowed_mask
;
3254 lockdep_trace_alloc(gfp_mask
);
3256 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
3258 if (should_fail_alloc_page(gfp_mask
, order
))
3262 * Check the zones suitable for the gfp_mask contain at least one
3263 * valid zone. It's possible to have an empty zonelist as a result
3264 * of __GFP_THISNODE and a memoryless node
3266 if (unlikely(!zonelist
->_zonerefs
->zone
))
3269 if (IS_ENABLED(CONFIG_CMA
) && ac
.migratetype
== MIGRATE_MOVABLE
)
3270 alloc_flags
|= ALLOC_CMA
;
3273 cpuset_mems_cookie
= read_mems_allowed_begin();
3275 /* We set it here, as __alloc_pages_slowpath might have changed it */
3276 ac
.zonelist
= zonelist
;
3278 /* Dirty zone balancing only done in the fast path */
3279 ac
.spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
3281 /* The preferred zone is used for statistics later */
3282 preferred_zoneref
= first_zones_zonelist(ac
.zonelist
, ac
.high_zoneidx
,
3283 ac
.nodemask
? : &cpuset_current_mems_allowed
,
3284 &ac
.preferred_zone
);
3285 if (!ac
.preferred_zone
)
3287 ac
.classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
3289 /* First allocation attempt */
3290 alloc_mask
= gfp_mask
|__GFP_HARDWALL
;
3291 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
3292 if (unlikely(!page
)) {
3294 * Runtime PM, block IO and its error handling path
3295 * can deadlock because I/O on the device might not
3298 alloc_mask
= memalloc_noio_flags(gfp_mask
);
3299 ac
.spread_dirty_pages
= false;
3301 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
3304 if (kmemcheck_enabled
&& page
)
3305 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
3307 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
3311 * When updating a task's mems_allowed, it is possible to race with
3312 * parallel threads in such a way that an allocation can fail while
3313 * the mask is being updated. If a page allocation is about to fail,
3314 * check if the cpuset changed during allocation and if so, retry.
3316 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3321 EXPORT_SYMBOL(__alloc_pages_nodemask
);
3324 * Common helper functions.
3326 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
3331 * __get_free_pages() returns a 32-bit address, which cannot represent
3334 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
3336 page
= alloc_pages(gfp_mask
, order
);
3339 return (unsigned long) page_address(page
);
3341 EXPORT_SYMBOL(__get_free_pages
);
3343 unsigned long get_zeroed_page(gfp_t gfp_mask
)
3345 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
3347 EXPORT_SYMBOL(get_zeroed_page
);
3349 void __free_pages(struct page
*page
, unsigned int order
)
3351 if (put_page_testzero(page
)) {
3353 free_hot_cold_page(page
, false);
3355 __free_pages_ok(page
, order
);
3359 EXPORT_SYMBOL(__free_pages
);
3361 void free_pages(unsigned long addr
, unsigned int order
)
3364 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3365 __free_pages(virt_to_page((void *)addr
), order
);
3369 EXPORT_SYMBOL(free_pages
);
3373 * An arbitrary-length arbitrary-offset area of memory which resides
3374 * within a 0 or higher order page. Multiple fragments within that page
3375 * are individually refcounted, in the page's reference counter.
3377 * The page_frag functions below provide a simple allocation framework for
3378 * page fragments. This is used by the network stack and network device
3379 * drivers to provide a backing region of memory for use as either an
3380 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3382 static struct page
*__page_frag_refill(struct page_frag_cache
*nc
,
3385 struct page
*page
= NULL
;
3386 gfp_t gfp
= gfp_mask
;
3388 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3389 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
3391 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
3392 PAGE_FRAG_CACHE_MAX_ORDER
);
3393 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
3395 if (unlikely(!page
))
3396 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
3398 nc
->va
= page
? page_address(page
) : NULL
;
3403 void *__alloc_page_frag(struct page_frag_cache
*nc
,
3404 unsigned int fragsz
, gfp_t gfp_mask
)
3406 unsigned int size
= PAGE_SIZE
;
3410 if (unlikely(!nc
->va
)) {
3412 page
= __page_frag_refill(nc
, gfp_mask
);
3416 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3417 /* if size can vary use size else just use PAGE_SIZE */
3420 /* Even if we own the page, we do not use atomic_set().
3421 * This would break get_page_unless_zero() users.
3423 atomic_add(size
- 1, &page
->_count
);
3425 /* reset page count bias and offset to start of new frag */
3426 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
3427 nc
->pagecnt_bias
= size
;
3431 offset
= nc
->offset
- fragsz
;
3432 if (unlikely(offset
< 0)) {
3433 page
= virt_to_page(nc
->va
);
3435 if (!atomic_sub_and_test(nc
->pagecnt_bias
, &page
->_count
))
3438 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3439 /* if size can vary use size else just use PAGE_SIZE */
3442 /* OK, page count is 0, we can safely set it */
3443 atomic_set(&page
->_count
, size
);
3445 /* reset page count bias and offset to start of new frag */
3446 nc
->pagecnt_bias
= size
;
3447 offset
= size
- fragsz
;
3451 nc
->offset
= offset
;
3453 return nc
->va
+ offset
;
3455 EXPORT_SYMBOL(__alloc_page_frag
);
3458 * Frees a page fragment allocated out of either a compound or order 0 page.
3460 void __free_page_frag(void *addr
)
3462 struct page
*page
= virt_to_head_page(addr
);
3464 if (unlikely(put_page_testzero(page
)))
3465 __free_pages_ok(page
, compound_order(page
));
3467 EXPORT_SYMBOL(__free_page_frag
);
3470 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3471 * of the current memory cgroup.
3473 * It should be used when the caller would like to use kmalloc, but since the
3474 * allocation is large, it has to fall back to the page allocator.
3476 struct page
*alloc_kmem_pages(gfp_t gfp_mask
, unsigned int order
)
3480 page
= alloc_pages(gfp_mask
, order
);
3481 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
3482 __free_pages(page
, order
);
3488 struct page
*alloc_kmem_pages_node(int nid
, gfp_t gfp_mask
, unsigned int order
)
3492 page
= alloc_pages_node(nid
, gfp_mask
, order
);
3493 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
3494 __free_pages(page
, order
);
3501 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3504 void __free_kmem_pages(struct page
*page
, unsigned int order
)
3506 memcg_kmem_uncharge(page
, order
);
3507 __free_pages(page
, order
);
3510 void free_kmem_pages(unsigned long addr
, unsigned int order
)
3513 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3514 __free_kmem_pages(virt_to_page((void *)addr
), order
);
3518 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
3522 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
3523 unsigned long used
= addr
+ PAGE_ALIGN(size
);
3525 split_page(virt_to_page((void *)addr
), order
);
3526 while (used
< alloc_end
) {
3531 return (void *)addr
;
3535 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3536 * @size: the number of bytes to allocate
3537 * @gfp_mask: GFP flags for the allocation
3539 * This function is similar to alloc_pages(), except that it allocates the
3540 * minimum number of pages to satisfy the request. alloc_pages() can only
3541 * allocate memory in power-of-two pages.
3543 * This function is also limited by MAX_ORDER.
3545 * Memory allocated by this function must be released by free_pages_exact().
3547 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
3549 unsigned int order
= get_order(size
);
3552 addr
= __get_free_pages(gfp_mask
, order
);
3553 return make_alloc_exact(addr
, order
, size
);
3555 EXPORT_SYMBOL(alloc_pages_exact
);
3558 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3560 * @nid: the preferred node ID where memory should be allocated
3561 * @size: the number of bytes to allocate
3562 * @gfp_mask: GFP flags for the allocation
3564 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3567 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
3569 unsigned int order
= get_order(size
);
3570 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
3573 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
3577 * free_pages_exact - release memory allocated via alloc_pages_exact()
3578 * @virt: the value returned by alloc_pages_exact.
3579 * @size: size of allocation, same value as passed to alloc_pages_exact().
3581 * Release the memory allocated by a previous call to alloc_pages_exact.
3583 void free_pages_exact(void *virt
, size_t size
)
3585 unsigned long addr
= (unsigned long)virt
;
3586 unsigned long end
= addr
+ PAGE_ALIGN(size
);
3588 while (addr
< end
) {
3593 EXPORT_SYMBOL(free_pages_exact
);
3596 * nr_free_zone_pages - count number of pages beyond high watermark
3597 * @offset: The zone index of the highest zone
3599 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3600 * high watermark within all zones at or below a given zone index. For each
3601 * zone, the number of pages is calculated as:
3602 * managed_pages - high_pages
3604 static unsigned long nr_free_zone_pages(int offset
)
3609 /* Just pick one node, since fallback list is circular */
3610 unsigned long sum
= 0;
3612 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
3614 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
3615 unsigned long size
= zone
->managed_pages
;
3616 unsigned long high
= high_wmark_pages(zone
);
3625 * nr_free_buffer_pages - count number of pages beyond high watermark
3627 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3628 * watermark within ZONE_DMA and ZONE_NORMAL.
3630 unsigned long nr_free_buffer_pages(void)
3632 return nr_free_zone_pages(gfp_zone(GFP_USER
));
3634 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
3637 * nr_free_pagecache_pages - count number of pages beyond high watermark
3639 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3640 * high watermark within all zones.
3642 unsigned long nr_free_pagecache_pages(void)
3644 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
3647 static inline void show_node(struct zone
*zone
)
3649 if (IS_ENABLED(CONFIG_NUMA
))
3650 printk("Node %d ", zone_to_nid(zone
));
3653 void si_meminfo(struct sysinfo
*val
)
3655 val
->totalram
= totalram_pages
;
3656 val
->sharedram
= global_page_state(NR_SHMEM
);
3657 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3658 val
->bufferram
= nr_blockdev_pages();
3659 val
->totalhigh
= totalhigh_pages
;
3660 val
->freehigh
= nr_free_highpages();
3661 val
->mem_unit
= PAGE_SIZE
;
3664 EXPORT_SYMBOL(si_meminfo
);
3667 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3669 int zone_type
; /* needs to be signed */
3670 unsigned long managed_pages
= 0;
3671 pg_data_t
*pgdat
= NODE_DATA(nid
);
3673 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3674 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3675 val
->totalram
= managed_pages
;
3676 val
->sharedram
= node_page_state(nid
, NR_SHMEM
);
3677 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3678 #ifdef CONFIG_HIGHMEM
3679 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3680 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3686 val
->mem_unit
= PAGE_SIZE
;
3691 * Determine whether the node should be displayed or not, depending on whether
3692 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3694 bool skip_free_areas_node(unsigned int flags
, int nid
)
3697 unsigned int cpuset_mems_cookie
;
3699 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3703 cpuset_mems_cookie
= read_mems_allowed_begin();
3704 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3705 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
3710 #define K(x) ((x) << (PAGE_SHIFT-10))
3712 static void show_migration_types(unsigned char type
)
3714 static const char types
[MIGRATE_TYPES
] = {
3715 [MIGRATE_UNMOVABLE
] = 'U',
3716 [MIGRATE_MOVABLE
] = 'M',
3717 [MIGRATE_RECLAIMABLE
] = 'E',
3718 [MIGRATE_HIGHATOMIC
] = 'H',
3720 [MIGRATE_CMA
] = 'C',
3722 #ifdef CONFIG_MEMORY_ISOLATION
3723 [MIGRATE_ISOLATE
] = 'I',
3726 char tmp
[MIGRATE_TYPES
+ 1];
3730 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3731 if (type
& (1 << i
))
3736 printk("(%s) ", tmp
);
3740 * Show free area list (used inside shift_scroll-lock stuff)
3741 * We also calculate the percentage fragmentation. We do this by counting the
3742 * memory on each free list with the exception of the first item on the list.
3745 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3748 void show_free_areas(unsigned int filter
)
3750 unsigned long free_pcp
= 0;
3754 for_each_populated_zone(zone
) {
3755 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3758 for_each_online_cpu(cpu
)
3759 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
3762 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3763 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3764 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3765 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3766 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3767 " free:%lu free_pcp:%lu free_cma:%lu\n",
3768 global_page_state(NR_ACTIVE_ANON
),
3769 global_page_state(NR_INACTIVE_ANON
),
3770 global_page_state(NR_ISOLATED_ANON
),
3771 global_page_state(NR_ACTIVE_FILE
),
3772 global_page_state(NR_INACTIVE_FILE
),
3773 global_page_state(NR_ISOLATED_FILE
),
3774 global_page_state(NR_UNEVICTABLE
),
3775 global_page_state(NR_FILE_DIRTY
),
3776 global_page_state(NR_WRITEBACK
),
3777 global_page_state(NR_UNSTABLE_NFS
),
3778 global_page_state(NR_SLAB_RECLAIMABLE
),
3779 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3780 global_page_state(NR_FILE_MAPPED
),
3781 global_page_state(NR_SHMEM
),
3782 global_page_state(NR_PAGETABLE
),
3783 global_page_state(NR_BOUNCE
),
3784 global_page_state(NR_FREE_PAGES
),
3786 global_page_state(NR_FREE_CMA_PAGES
));
3788 for_each_populated_zone(zone
) {
3791 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3795 for_each_online_cpu(cpu
)
3796 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
3804 " active_anon:%lukB"
3805 " inactive_anon:%lukB"
3806 " active_file:%lukB"
3807 " inactive_file:%lukB"
3808 " unevictable:%lukB"
3809 " isolated(anon):%lukB"
3810 " isolated(file):%lukB"
3818 " slab_reclaimable:%lukB"
3819 " slab_unreclaimable:%lukB"
3820 " kernel_stack:%lukB"
3827 " writeback_tmp:%lukB"
3828 " pages_scanned:%lu"
3829 " all_unreclaimable? %s"
3832 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3833 K(min_wmark_pages(zone
)),
3834 K(low_wmark_pages(zone
)),
3835 K(high_wmark_pages(zone
)),
3836 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3837 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3838 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3839 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3840 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3841 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3842 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3843 K(zone
->present_pages
),
3844 K(zone
->managed_pages
),
3845 K(zone_page_state(zone
, NR_MLOCK
)),
3846 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3847 K(zone_page_state(zone
, NR_WRITEBACK
)),
3848 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3849 K(zone_page_state(zone
, NR_SHMEM
)),
3850 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3851 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3852 zone_page_state(zone
, NR_KERNEL_STACK
) *
3854 K(zone_page_state(zone
, NR_PAGETABLE
)),
3855 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3856 K(zone_page_state(zone
, NR_BOUNCE
)),
3858 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
3859 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3860 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3861 K(zone_page_state(zone
, NR_PAGES_SCANNED
)),
3862 (!zone_reclaimable(zone
) ? "yes" : "no")
3864 printk("lowmem_reserve[]:");
3865 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3866 printk(" %ld", zone
->lowmem_reserve
[i
]);
3870 for_each_populated_zone(zone
) {
3872 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
3873 unsigned char types
[MAX_ORDER
];
3875 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3878 printk("%s: ", zone
->name
);
3880 spin_lock_irqsave(&zone
->lock
, flags
);
3881 for (order
= 0; order
< MAX_ORDER
; order
++) {
3882 struct free_area
*area
= &zone
->free_area
[order
];
3885 nr
[order
] = area
->nr_free
;
3886 total
+= nr
[order
] << order
;
3889 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3890 if (!list_empty(&area
->free_list
[type
]))
3891 types
[order
] |= 1 << type
;
3894 spin_unlock_irqrestore(&zone
->lock
, flags
);
3895 for (order
= 0; order
< MAX_ORDER
; order
++) {
3896 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3898 show_migration_types(types
[order
]);
3900 printk("= %lukB\n", K(total
));
3903 hugetlb_show_meminfo();
3905 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3907 show_swap_cache_info();
3910 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3912 zoneref
->zone
= zone
;
3913 zoneref
->zone_idx
= zone_idx(zone
);
3917 * Builds allocation fallback zone lists.
3919 * Add all populated zones of a node to the zonelist.
3921 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3925 enum zone_type zone_type
= MAX_NR_ZONES
;
3929 zone
= pgdat
->node_zones
+ zone_type
;
3930 if (populated_zone(zone
)) {
3931 zoneref_set_zone(zone
,
3932 &zonelist
->_zonerefs
[nr_zones
++]);
3933 check_highest_zone(zone_type
);
3935 } while (zone_type
);
3943 * 0 = automatic detection of better ordering.
3944 * 1 = order by ([node] distance, -zonetype)
3945 * 2 = order by (-zonetype, [node] distance)
3947 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3948 * the same zonelist. So only NUMA can configure this param.
3950 #define ZONELIST_ORDER_DEFAULT 0
3951 #define ZONELIST_ORDER_NODE 1
3952 #define ZONELIST_ORDER_ZONE 2
3954 /* zonelist order in the kernel.
3955 * set_zonelist_order() will set this to NODE or ZONE.
3957 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3958 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3962 /* The value user specified ....changed by config */
3963 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3964 /* string for sysctl */
3965 #define NUMA_ZONELIST_ORDER_LEN 16
3966 char numa_zonelist_order
[16] = "default";
3969 * interface for configure zonelist ordering.
3970 * command line option "numa_zonelist_order"
3971 * = "[dD]efault - default, automatic configuration.
3972 * = "[nN]ode - order by node locality, then by zone within node
3973 * = "[zZ]one - order by zone, then by locality within zone
3976 static int __parse_numa_zonelist_order(char *s
)
3978 if (*s
== 'd' || *s
== 'D') {
3979 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3980 } else if (*s
== 'n' || *s
== 'N') {
3981 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3982 } else if (*s
== 'z' || *s
== 'Z') {
3983 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3986 "Ignoring invalid numa_zonelist_order value: "
3993 static __init
int setup_numa_zonelist_order(char *s
)
4000 ret
= __parse_numa_zonelist_order(s
);
4002 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
4006 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4009 * sysctl handler for numa_zonelist_order
4011 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4012 void __user
*buffer
, size_t *length
,
4015 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
4017 static DEFINE_MUTEX(zl_order_mutex
);
4019 mutex_lock(&zl_order_mutex
);
4021 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
4025 strcpy(saved_string
, (char *)table
->data
);
4027 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
4031 int oldval
= user_zonelist_order
;
4033 ret
= __parse_numa_zonelist_order((char *)table
->data
);
4036 * bogus value. restore saved string
4038 strncpy((char *)table
->data
, saved_string
,
4039 NUMA_ZONELIST_ORDER_LEN
);
4040 user_zonelist_order
= oldval
;
4041 } else if (oldval
!= user_zonelist_order
) {
4042 mutex_lock(&zonelists_mutex
);
4043 build_all_zonelists(NULL
, NULL
);
4044 mutex_unlock(&zonelists_mutex
);
4048 mutex_unlock(&zl_order_mutex
);
4053 #define MAX_NODE_LOAD (nr_online_nodes)
4054 static int node_load
[MAX_NUMNODES
];
4057 * find_next_best_node - find the next node that should appear in a given node's fallback list
4058 * @node: node whose fallback list we're appending
4059 * @used_node_mask: nodemask_t of already used nodes
4061 * We use a number of factors to determine which is the next node that should
4062 * appear on a given node's fallback list. The node should not have appeared
4063 * already in @node's fallback list, and it should be the next closest node
4064 * according to the distance array (which contains arbitrary distance values
4065 * from each node to each node in the system), and should also prefer nodes
4066 * with no CPUs, since presumably they'll have very little allocation pressure
4067 * on them otherwise.
4068 * It returns -1 if no node is found.
4070 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4073 int min_val
= INT_MAX
;
4074 int best_node
= NUMA_NO_NODE
;
4075 const struct cpumask
*tmp
= cpumask_of_node(0);
4077 /* Use the local node if we haven't already */
4078 if (!node_isset(node
, *used_node_mask
)) {
4079 node_set(node
, *used_node_mask
);
4083 for_each_node_state(n
, N_MEMORY
) {
4085 /* Don't want a node to appear more than once */
4086 if (node_isset(n
, *used_node_mask
))
4089 /* Use the distance array to find the distance */
4090 val
= node_distance(node
, n
);
4092 /* Penalize nodes under us ("prefer the next node") */
4095 /* Give preference to headless and unused nodes */
4096 tmp
= cpumask_of_node(n
);
4097 if (!cpumask_empty(tmp
))
4098 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4100 /* Slight preference for less loaded node */
4101 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4102 val
+= node_load
[n
];
4104 if (val
< min_val
) {
4111 node_set(best_node
, *used_node_mask
);
4118 * Build zonelists ordered by node and zones within node.
4119 * This results in maximum locality--normal zone overflows into local
4120 * DMA zone, if any--but risks exhausting DMA zone.
4122 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
4125 struct zonelist
*zonelist
;
4127 zonelist
= &pgdat
->node_zonelists
[0];
4128 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
4130 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4131 zonelist
->_zonerefs
[j
].zone
= NULL
;
4132 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4136 * Build gfp_thisnode zonelists
4138 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
4141 struct zonelist
*zonelist
;
4143 zonelist
= &pgdat
->node_zonelists
[1];
4144 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4145 zonelist
->_zonerefs
[j
].zone
= NULL
;
4146 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4150 * Build zonelists ordered by zone and nodes within zones.
4151 * This results in conserving DMA zone[s] until all Normal memory is
4152 * exhausted, but results in overflowing to remote node while memory
4153 * may still exist in local DMA zone.
4155 static int node_order
[MAX_NUMNODES
];
4157 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
4160 int zone_type
; /* needs to be signed */
4162 struct zonelist
*zonelist
;
4164 zonelist
= &pgdat
->node_zonelists
[0];
4166 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
4167 for (j
= 0; j
< nr_nodes
; j
++) {
4168 node
= node_order
[j
];
4169 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
4170 if (populated_zone(z
)) {
4172 &zonelist
->_zonerefs
[pos
++]);
4173 check_highest_zone(zone_type
);
4177 zonelist
->_zonerefs
[pos
].zone
= NULL
;
4178 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
4181 #if defined(CONFIG_64BIT)
4183 * Devices that require DMA32/DMA are relatively rare and do not justify a
4184 * penalty to every machine in case the specialised case applies. Default
4185 * to Node-ordering on 64-bit NUMA machines
4187 static int default_zonelist_order(void)
4189 return ZONELIST_ORDER_NODE
;
4193 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4194 * by the kernel. If processes running on node 0 deplete the low memory zone
4195 * then reclaim will occur more frequency increasing stalls and potentially
4196 * be easier to OOM if a large percentage of the zone is under writeback or
4197 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4198 * Hence, default to zone ordering on 32-bit.
4200 static int default_zonelist_order(void)
4202 return ZONELIST_ORDER_ZONE
;
4204 #endif /* CONFIG_64BIT */
4206 static void set_zonelist_order(void)
4208 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
4209 current_zonelist_order
= default_zonelist_order();
4211 current_zonelist_order
= user_zonelist_order
;
4214 static void build_zonelists(pg_data_t
*pgdat
)
4218 nodemask_t used_mask
;
4219 int local_node
, prev_node
;
4220 struct zonelist
*zonelist
;
4221 unsigned int order
= current_zonelist_order
;
4223 /* initialize zonelists */
4224 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
4225 zonelist
= pgdat
->node_zonelists
+ i
;
4226 zonelist
->_zonerefs
[0].zone
= NULL
;
4227 zonelist
->_zonerefs
[0].zone_idx
= 0;
4230 /* NUMA-aware ordering of nodes */
4231 local_node
= pgdat
->node_id
;
4232 load
= nr_online_nodes
;
4233 prev_node
= local_node
;
4234 nodes_clear(used_mask
);
4236 memset(node_order
, 0, sizeof(node_order
));
4239 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
4241 * We don't want to pressure a particular node.
4242 * So adding penalty to the first node in same
4243 * distance group to make it round-robin.
4245 if (node_distance(local_node
, node
) !=
4246 node_distance(local_node
, prev_node
))
4247 node_load
[node
] = load
;
4251 if (order
== ZONELIST_ORDER_NODE
)
4252 build_zonelists_in_node_order(pgdat
, node
);
4254 node_order
[j
++] = node
; /* remember order */
4257 if (order
== ZONELIST_ORDER_ZONE
) {
4258 /* calculate node order -- i.e., DMA last! */
4259 build_zonelists_in_zone_order(pgdat
, j
);
4262 build_thisnode_zonelists(pgdat
);
4265 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4267 * Return node id of node used for "local" allocations.
4268 * I.e., first node id of first zone in arg node's generic zonelist.
4269 * Used for initializing percpu 'numa_mem', which is used primarily
4270 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4272 int local_memory_node(int node
)
4276 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
4277 gfp_zone(GFP_KERNEL
),
4284 #else /* CONFIG_NUMA */
4286 static void set_zonelist_order(void)
4288 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
4291 static void build_zonelists(pg_data_t
*pgdat
)
4293 int node
, local_node
;
4295 struct zonelist
*zonelist
;
4297 local_node
= pgdat
->node_id
;
4299 zonelist
= &pgdat
->node_zonelists
[0];
4300 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4303 * Now we build the zonelist so that it contains the zones
4304 * of all the other nodes.
4305 * We don't want to pressure a particular node, so when
4306 * building the zones for node N, we make sure that the
4307 * zones coming right after the local ones are those from
4308 * node N+1 (modulo N)
4310 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
4311 if (!node_online(node
))
4313 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4315 for (node
= 0; node
< local_node
; node
++) {
4316 if (!node_online(node
))
4318 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4321 zonelist
->_zonerefs
[j
].zone
= NULL
;
4322 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4325 #endif /* CONFIG_NUMA */
4328 * Boot pageset table. One per cpu which is going to be used for all
4329 * zones and all nodes. The parameters will be set in such a way
4330 * that an item put on a list will immediately be handed over to
4331 * the buddy list. This is safe since pageset manipulation is done
4332 * with interrupts disabled.
4334 * The boot_pagesets must be kept even after bootup is complete for
4335 * unused processors and/or zones. They do play a role for bootstrapping
4336 * hotplugged processors.
4338 * zoneinfo_show() and maybe other functions do
4339 * not check if the processor is online before following the pageset pointer.
4340 * Other parts of the kernel may not check if the zone is available.
4342 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
4343 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
4344 static void setup_zone_pageset(struct zone
*zone
);
4347 * Global mutex to protect against size modification of zonelists
4348 * as well as to serialize pageset setup for the new populated zone.
4350 DEFINE_MUTEX(zonelists_mutex
);
4352 /* return values int ....just for stop_machine() */
4353 static int __build_all_zonelists(void *data
)
4357 pg_data_t
*self
= data
;
4360 memset(node_load
, 0, sizeof(node_load
));
4363 if (self
&& !node_online(self
->node_id
)) {
4364 build_zonelists(self
);
4367 for_each_online_node(nid
) {
4368 pg_data_t
*pgdat
= NODE_DATA(nid
);
4370 build_zonelists(pgdat
);
4374 * Initialize the boot_pagesets that are going to be used
4375 * for bootstrapping processors. The real pagesets for
4376 * each zone will be allocated later when the per cpu
4377 * allocator is available.
4379 * boot_pagesets are used also for bootstrapping offline
4380 * cpus if the system is already booted because the pagesets
4381 * are needed to initialize allocators on a specific cpu too.
4382 * F.e. the percpu allocator needs the page allocator which
4383 * needs the percpu allocator in order to allocate its pagesets
4384 * (a chicken-egg dilemma).
4386 for_each_possible_cpu(cpu
) {
4387 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
4389 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4391 * We now know the "local memory node" for each node--
4392 * i.e., the node of the first zone in the generic zonelist.
4393 * Set up numa_mem percpu variable for on-line cpus. During
4394 * boot, only the boot cpu should be on-line; we'll init the
4395 * secondary cpus' numa_mem as they come on-line. During
4396 * node/memory hotplug, we'll fixup all on-line cpus.
4398 if (cpu_online(cpu
))
4399 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
4406 static noinline
void __init
4407 build_all_zonelists_init(void)
4409 __build_all_zonelists(NULL
);
4410 mminit_verify_zonelist();
4411 cpuset_init_current_mems_allowed();
4415 * Called with zonelists_mutex held always
4416 * unless system_state == SYSTEM_BOOTING.
4418 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4419 * [we're only called with non-NULL zone through __meminit paths] and
4420 * (2) call of __init annotated helper build_all_zonelists_init
4421 * [protected by SYSTEM_BOOTING].
4423 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
4425 set_zonelist_order();
4427 if (system_state
== SYSTEM_BOOTING
) {
4428 build_all_zonelists_init();
4430 #ifdef CONFIG_MEMORY_HOTPLUG
4432 setup_zone_pageset(zone
);
4434 /* we have to stop all cpus to guarantee there is no user
4436 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
4437 /* cpuset refresh routine should be here */
4439 vm_total_pages
= nr_free_pagecache_pages();
4441 * Disable grouping by mobility if the number of pages in the
4442 * system is too low to allow the mechanism to work. It would be
4443 * more accurate, but expensive to check per-zone. This check is
4444 * made on memory-hotadd so a system can start with mobility
4445 * disabled and enable it later
4447 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
4448 page_group_by_mobility_disabled
= 1;
4450 page_group_by_mobility_disabled
= 0;
4452 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4453 "Total pages: %ld\n",
4455 zonelist_order_name
[current_zonelist_order
],
4456 page_group_by_mobility_disabled
? "off" : "on",
4459 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
4464 * Helper functions to size the waitqueue hash table.
4465 * Essentially these want to choose hash table sizes sufficiently
4466 * large so that collisions trying to wait on pages are rare.
4467 * But in fact, the number of active page waitqueues on typical
4468 * systems is ridiculously low, less than 200. So this is even
4469 * conservative, even though it seems large.
4471 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4472 * waitqueues, i.e. the size of the waitq table given the number of pages.
4474 #define PAGES_PER_WAITQUEUE 256
4476 #ifndef CONFIG_MEMORY_HOTPLUG
4477 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4479 unsigned long size
= 1;
4481 pages
/= PAGES_PER_WAITQUEUE
;
4483 while (size
< pages
)
4487 * Once we have dozens or even hundreds of threads sleeping
4488 * on IO we've got bigger problems than wait queue collision.
4489 * Limit the size of the wait table to a reasonable size.
4491 size
= min(size
, 4096UL);
4493 return max(size
, 4UL);
4497 * A zone's size might be changed by hot-add, so it is not possible to determine
4498 * a suitable size for its wait_table. So we use the maximum size now.
4500 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4502 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4503 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4504 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4506 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4507 * or more by the traditional way. (See above). It equals:
4509 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4510 * ia64(16K page size) : = ( 8G + 4M)byte.
4511 * powerpc (64K page size) : = (32G +16M)byte.
4513 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4520 * This is an integer logarithm so that shifts can be used later
4521 * to extract the more random high bits from the multiplicative
4522 * hash function before the remainder is taken.
4524 static inline unsigned long wait_table_bits(unsigned long size
)
4530 * Initially all pages are reserved - free ones are freed
4531 * up by free_all_bootmem() once the early boot process is
4532 * done. Non-atomic initialization, single-pass.
4534 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4535 unsigned long start_pfn
, enum memmap_context context
)
4537 pg_data_t
*pgdat
= NODE_DATA(nid
);
4538 unsigned long end_pfn
= start_pfn
+ size
;
4541 unsigned long nr_initialised
= 0;
4543 if (highest_memmap_pfn
< end_pfn
- 1)
4544 highest_memmap_pfn
= end_pfn
- 1;
4546 z
= &pgdat
->node_zones
[zone
];
4547 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4549 * There can be holes in boot-time mem_map[]s
4550 * handed to this function. They do not
4551 * exist on hotplugged memory.
4553 if (context
== MEMMAP_EARLY
) {
4554 if (!early_pfn_valid(pfn
))
4556 if (!early_pfn_in_nid(pfn
, nid
))
4558 if (!update_defer_init(pgdat
, pfn
, end_pfn
,
4564 * Mark the block movable so that blocks are reserved for
4565 * movable at startup. This will force kernel allocations
4566 * to reserve their blocks rather than leaking throughout
4567 * the address space during boot when many long-lived
4568 * kernel allocations are made.
4570 * bitmap is created for zone's valid pfn range. but memmap
4571 * can be created for invalid pages (for alignment)
4572 * check here not to call set_pageblock_migratetype() against
4575 if (!(pfn
& (pageblock_nr_pages
- 1))) {
4576 struct page
*page
= pfn_to_page(pfn
);
4578 __init_single_page(page
, pfn
, zone
, nid
);
4579 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4581 __init_single_pfn(pfn
, zone
, nid
);
4586 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4588 unsigned int order
, t
;
4589 for_each_migratetype_order(order
, t
) {
4590 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4591 zone
->free_area
[order
].nr_free
= 0;
4595 #ifndef __HAVE_ARCH_MEMMAP_INIT
4596 #define memmap_init(size, nid, zone, start_pfn) \
4597 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4600 static int zone_batchsize(struct zone
*zone
)
4606 * The per-cpu-pages pools are set to around 1000th of the
4607 * size of the zone. But no more than 1/2 of a meg.
4609 * OK, so we don't know how big the cache is. So guess.
4611 batch
= zone
->managed_pages
/ 1024;
4612 if (batch
* PAGE_SIZE
> 512 * 1024)
4613 batch
= (512 * 1024) / PAGE_SIZE
;
4614 batch
/= 4; /* We effectively *= 4 below */
4619 * Clamp the batch to a 2^n - 1 value. Having a power
4620 * of 2 value was found to be more likely to have
4621 * suboptimal cache aliasing properties in some cases.
4623 * For example if 2 tasks are alternately allocating
4624 * batches of pages, one task can end up with a lot
4625 * of pages of one half of the possible page colors
4626 * and the other with pages of the other colors.
4628 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4633 /* The deferral and batching of frees should be suppressed under NOMMU
4636 * The problem is that NOMMU needs to be able to allocate large chunks
4637 * of contiguous memory as there's no hardware page translation to
4638 * assemble apparent contiguous memory from discontiguous pages.
4640 * Queueing large contiguous runs of pages for batching, however,
4641 * causes the pages to actually be freed in smaller chunks. As there
4642 * can be a significant delay between the individual batches being
4643 * recycled, this leads to the once large chunks of space being
4644 * fragmented and becoming unavailable for high-order allocations.
4651 * pcp->high and pcp->batch values are related and dependent on one another:
4652 * ->batch must never be higher then ->high.
4653 * The following function updates them in a safe manner without read side
4656 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4657 * those fields changing asynchronously (acording the the above rule).
4659 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4660 * outside of boot time (or some other assurance that no concurrent updaters
4663 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4664 unsigned long batch
)
4666 /* start with a fail safe value for batch */
4670 /* Update high, then batch, in order */
4677 /* a companion to pageset_set_high() */
4678 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4680 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4683 static void pageset_init(struct per_cpu_pageset
*p
)
4685 struct per_cpu_pages
*pcp
;
4688 memset(p
, 0, sizeof(*p
));
4692 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4693 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4696 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4699 pageset_set_batch(p
, batch
);
4703 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4704 * to the value high for the pageset p.
4706 static void pageset_set_high(struct per_cpu_pageset
*p
,
4709 unsigned long batch
= max(1UL, high
/ 4);
4710 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4711 batch
= PAGE_SHIFT
* 8;
4713 pageset_update(&p
->pcp
, high
, batch
);
4716 static void pageset_set_high_and_batch(struct zone
*zone
,
4717 struct per_cpu_pageset
*pcp
)
4719 if (percpu_pagelist_fraction
)
4720 pageset_set_high(pcp
,
4721 (zone
->managed_pages
/
4722 percpu_pagelist_fraction
));
4724 pageset_set_batch(pcp
, zone_batchsize(zone
));
4727 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4729 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4732 pageset_set_high_and_batch(zone
, pcp
);
4735 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4738 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4739 for_each_possible_cpu(cpu
)
4740 zone_pageset_init(zone
, cpu
);
4744 * Allocate per cpu pagesets and initialize them.
4745 * Before this call only boot pagesets were available.
4747 void __init
setup_per_cpu_pageset(void)
4751 for_each_populated_zone(zone
)
4752 setup_zone_pageset(zone
);
4755 static noinline __init_refok
4756 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4762 * The per-page waitqueue mechanism uses hashed waitqueues
4765 zone
->wait_table_hash_nr_entries
=
4766 wait_table_hash_nr_entries(zone_size_pages
);
4767 zone
->wait_table_bits
=
4768 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4769 alloc_size
= zone
->wait_table_hash_nr_entries
4770 * sizeof(wait_queue_head_t
);
4772 if (!slab_is_available()) {
4773 zone
->wait_table
= (wait_queue_head_t
*)
4774 memblock_virt_alloc_node_nopanic(
4775 alloc_size
, zone
->zone_pgdat
->node_id
);
4778 * This case means that a zone whose size was 0 gets new memory
4779 * via memory hot-add.
4780 * But it may be the case that a new node was hot-added. In
4781 * this case vmalloc() will not be able to use this new node's
4782 * memory - this wait_table must be initialized to use this new
4783 * node itself as well.
4784 * To use this new node's memory, further consideration will be
4787 zone
->wait_table
= vmalloc(alloc_size
);
4789 if (!zone
->wait_table
)
4792 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4793 init_waitqueue_head(zone
->wait_table
+ i
);
4798 static __meminit
void zone_pcp_init(struct zone
*zone
)
4801 * per cpu subsystem is not up at this point. The following code
4802 * relies on the ability of the linker to provide the
4803 * offset of a (static) per cpu variable into the per cpu area.
4805 zone
->pageset
= &boot_pageset
;
4807 if (populated_zone(zone
))
4808 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4809 zone
->name
, zone
->present_pages
,
4810 zone_batchsize(zone
));
4813 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4814 unsigned long zone_start_pfn
,
4817 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4819 ret
= zone_wait_table_init(zone
, size
);
4822 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4824 zone
->zone_start_pfn
= zone_start_pfn
;
4826 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4827 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4829 (unsigned long)zone_idx(zone
),
4830 zone_start_pfn
, (zone_start_pfn
+ size
));
4832 zone_init_free_lists(zone
);
4837 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4838 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4841 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4843 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
4844 struct mminit_pfnnid_cache
*state
)
4846 unsigned long start_pfn
, end_pfn
;
4849 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
4850 return state
->last_nid
;
4852 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4854 state
->last_start
= start_pfn
;
4855 state
->last_end
= end_pfn
;
4856 state
->last_nid
= nid
;
4861 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4864 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4865 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4866 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4868 * If an architecture guarantees that all ranges registered contain no holes
4869 * and may be freed, this this function may be used instead of calling
4870 * memblock_free_early_nid() manually.
4872 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4874 unsigned long start_pfn
, end_pfn
;
4877 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4878 start_pfn
= min(start_pfn
, max_low_pfn
);
4879 end_pfn
= min(end_pfn
, max_low_pfn
);
4881 if (start_pfn
< end_pfn
)
4882 memblock_free_early_nid(PFN_PHYS(start_pfn
),
4883 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
4889 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4890 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4892 * If an architecture guarantees that all ranges registered contain no holes and may
4893 * be freed, this function may be used instead of calling memory_present() manually.
4895 void __init
sparse_memory_present_with_active_regions(int nid
)
4897 unsigned long start_pfn
, end_pfn
;
4900 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4901 memory_present(this_nid
, start_pfn
, end_pfn
);
4905 * get_pfn_range_for_nid - Return the start and end page frames for a node
4906 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4907 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4908 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4910 * It returns the start and end page frame of a node based on information
4911 * provided by memblock_set_node(). If called for a node
4912 * with no available memory, a warning is printed and the start and end
4915 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4916 unsigned long *start_pfn
, unsigned long *end_pfn
)
4918 unsigned long this_start_pfn
, this_end_pfn
;
4924 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4925 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4926 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4929 if (*start_pfn
== -1UL)
4934 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4935 * assumption is made that zones within a node are ordered in monotonic
4936 * increasing memory addresses so that the "highest" populated zone is used
4938 static void __init
find_usable_zone_for_movable(void)
4941 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4942 if (zone_index
== ZONE_MOVABLE
)
4945 if (arch_zone_highest_possible_pfn
[zone_index
] >
4946 arch_zone_lowest_possible_pfn
[zone_index
])
4950 VM_BUG_ON(zone_index
== -1);
4951 movable_zone
= zone_index
;
4955 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4956 * because it is sized independent of architecture. Unlike the other zones,
4957 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4958 * in each node depending on the size of each node and how evenly kernelcore
4959 * is distributed. This helper function adjusts the zone ranges
4960 * provided by the architecture for a given node by using the end of the
4961 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4962 * zones within a node are in order of monotonic increases memory addresses
4964 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4965 unsigned long zone_type
,
4966 unsigned long node_start_pfn
,
4967 unsigned long node_end_pfn
,
4968 unsigned long *zone_start_pfn
,
4969 unsigned long *zone_end_pfn
)
4971 /* Only adjust if ZONE_MOVABLE is on this node */
4972 if (zone_movable_pfn
[nid
]) {
4973 /* Size ZONE_MOVABLE */
4974 if (zone_type
== ZONE_MOVABLE
) {
4975 *zone_start_pfn
= zone_movable_pfn
[nid
];
4976 *zone_end_pfn
= min(node_end_pfn
,
4977 arch_zone_highest_possible_pfn
[movable_zone
]);
4979 /* Adjust for ZONE_MOVABLE starting within this range */
4980 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4981 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4982 *zone_end_pfn
= zone_movable_pfn
[nid
];
4984 /* Check if this whole range is within ZONE_MOVABLE */
4985 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4986 *zone_start_pfn
= *zone_end_pfn
;
4991 * Return the number of pages a zone spans in a node, including holes
4992 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4994 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4995 unsigned long zone_type
,
4996 unsigned long node_start_pfn
,
4997 unsigned long node_end_pfn
,
4998 unsigned long *ignored
)
5000 unsigned long zone_start_pfn
, zone_end_pfn
;
5002 /* When hotadd a new node from cpu_up(), the node should be empty */
5003 if (!node_start_pfn
&& !node_end_pfn
)
5006 /* Get the start and end of the zone */
5007 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5008 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5009 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5010 node_start_pfn
, node_end_pfn
,
5011 &zone_start_pfn
, &zone_end_pfn
);
5013 /* Check that this node has pages within the zone's required range */
5014 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
5017 /* Move the zone boundaries inside the node if necessary */
5018 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
5019 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
5021 /* Return the spanned pages */
5022 return zone_end_pfn
- zone_start_pfn
;
5026 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5027 * then all holes in the requested range will be accounted for.
5029 unsigned long __meminit
__absent_pages_in_range(int nid
,
5030 unsigned long range_start_pfn
,
5031 unsigned long range_end_pfn
)
5033 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5034 unsigned long start_pfn
, end_pfn
;
5037 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5038 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5039 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5040 nr_absent
-= end_pfn
- start_pfn
;
5046 * absent_pages_in_range - Return number of page frames in holes within a range
5047 * @start_pfn: The start PFN to start searching for holes
5048 * @end_pfn: The end PFN to stop searching for holes
5050 * It returns the number of pages frames in memory holes within a range.
5052 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5053 unsigned long end_pfn
)
5055 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5058 /* Return the number of page frames in holes in a zone on a node */
5059 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5060 unsigned long zone_type
,
5061 unsigned long node_start_pfn
,
5062 unsigned long node_end_pfn
,
5063 unsigned long *ignored
)
5065 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5066 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5067 unsigned long zone_start_pfn
, zone_end_pfn
;
5069 /* When hotadd a new node from cpu_up(), the node should be empty */
5070 if (!node_start_pfn
&& !node_end_pfn
)
5073 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5074 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5076 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5077 node_start_pfn
, node_end_pfn
,
5078 &zone_start_pfn
, &zone_end_pfn
);
5079 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5082 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5083 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5084 unsigned long zone_type
,
5085 unsigned long node_start_pfn
,
5086 unsigned long node_end_pfn
,
5087 unsigned long *zones_size
)
5089 return zones_size
[zone_type
];
5092 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5093 unsigned long zone_type
,
5094 unsigned long node_start_pfn
,
5095 unsigned long node_end_pfn
,
5096 unsigned long *zholes_size
)
5101 return zholes_size
[zone_type
];
5104 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5106 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5107 unsigned long node_start_pfn
,
5108 unsigned long node_end_pfn
,
5109 unsigned long *zones_size
,
5110 unsigned long *zholes_size
)
5112 unsigned long realtotalpages
= 0, totalpages
= 0;
5115 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5116 struct zone
*zone
= pgdat
->node_zones
+ i
;
5117 unsigned long size
, real_size
;
5119 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5123 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5124 node_start_pfn
, node_end_pfn
,
5126 zone
->spanned_pages
= size
;
5127 zone
->present_pages
= real_size
;
5130 realtotalpages
+= real_size
;
5133 pgdat
->node_spanned_pages
= totalpages
;
5134 pgdat
->node_present_pages
= realtotalpages
;
5135 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5139 #ifndef CONFIG_SPARSEMEM
5141 * Calculate the size of the zone->blockflags rounded to an unsigned long
5142 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5143 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5144 * round what is now in bits to nearest long in bits, then return it in
5147 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5149 unsigned long usemapsize
;
5151 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5152 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5153 usemapsize
= usemapsize
>> pageblock_order
;
5154 usemapsize
*= NR_PAGEBLOCK_BITS
;
5155 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5157 return usemapsize
/ 8;
5160 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5162 unsigned long zone_start_pfn
,
5163 unsigned long zonesize
)
5165 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5166 zone
->pageblock_flags
= NULL
;
5168 zone
->pageblock_flags
=
5169 memblock_virt_alloc_node_nopanic(usemapsize
,
5173 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5174 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5175 #endif /* CONFIG_SPARSEMEM */
5177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5179 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5180 void __paginginit
set_pageblock_order(void)
5184 /* Check that pageblock_nr_pages has not already been setup */
5185 if (pageblock_order
)
5188 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5189 order
= HUGETLB_PAGE_ORDER
;
5191 order
= MAX_ORDER
- 1;
5194 * Assume the largest contiguous order of interest is a huge page.
5195 * This value may be variable depending on boot parameters on IA64 and
5198 pageblock_order
= order
;
5200 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5203 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5204 * is unused as pageblock_order is set at compile-time. See
5205 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5208 void __paginginit
set_pageblock_order(void)
5212 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5214 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
5215 unsigned long present_pages
)
5217 unsigned long pages
= spanned_pages
;
5220 * Provide a more accurate estimation if there are holes within
5221 * the zone and SPARSEMEM is in use. If there are holes within the
5222 * zone, each populated memory region may cost us one or two extra
5223 * memmap pages due to alignment because memmap pages for each
5224 * populated regions may not naturally algined on page boundary.
5225 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5227 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
5228 IS_ENABLED(CONFIG_SPARSEMEM
))
5229 pages
= present_pages
;
5231 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
5235 * Set up the zone data structures:
5236 * - mark all pages reserved
5237 * - mark all memory queues empty
5238 * - clear the memory bitmaps
5240 * NOTE: pgdat should get zeroed by caller.
5242 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
5245 int nid
= pgdat
->node_id
;
5246 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
5249 pgdat_resize_init(pgdat
);
5250 #ifdef CONFIG_NUMA_BALANCING
5251 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
5252 pgdat
->numabalancing_migrate_nr_pages
= 0;
5253 pgdat
->numabalancing_migrate_next_window
= jiffies
;
5255 init_waitqueue_head(&pgdat
->kswapd_wait
);
5256 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
5257 pgdat_page_ext_init(pgdat
);
5259 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5260 struct zone
*zone
= pgdat
->node_zones
+ j
;
5261 unsigned long size
, realsize
, freesize
, memmap_pages
;
5263 size
= zone
->spanned_pages
;
5264 realsize
= freesize
= zone
->present_pages
;
5267 * Adjust freesize so that it accounts for how much memory
5268 * is used by this zone for memmap. This affects the watermark
5269 * and per-cpu initialisations
5271 memmap_pages
= calc_memmap_size(size
, realsize
);
5272 if (!is_highmem_idx(j
)) {
5273 if (freesize
>= memmap_pages
) {
5274 freesize
-= memmap_pages
;
5277 " %s zone: %lu pages used for memmap\n",
5278 zone_names
[j
], memmap_pages
);
5281 " %s zone: %lu pages exceeds freesize %lu\n",
5282 zone_names
[j
], memmap_pages
, freesize
);
5285 /* Account for reserved pages */
5286 if (j
== 0 && freesize
> dma_reserve
) {
5287 freesize
-= dma_reserve
;
5288 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
5289 zone_names
[0], dma_reserve
);
5292 if (!is_highmem_idx(j
))
5293 nr_kernel_pages
+= freesize
;
5294 /* Charge for highmem memmap if there are enough kernel pages */
5295 else if (nr_kernel_pages
> memmap_pages
* 2)
5296 nr_kernel_pages
-= memmap_pages
;
5297 nr_all_pages
+= freesize
;
5300 * Set an approximate value for lowmem here, it will be adjusted
5301 * when the bootmem allocator frees pages into the buddy system.
5302 * And all highmem pages will be managed by the buddy system.
5304 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
5307 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
5309 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
5311 zone
->name
= zone_names
[j
];
5312 spin_lock_init(&zone
->lock
);
5313 spin_lock_init(&zone
->lru_lock
);
5314 zone_seqlock_init(zone
);
5315 zone
->zone_pgdat
= pgdat
;
5316 zone_pcp_init(zone
);
5318 /* For bootup, initialized properly in watermark setup */
5319 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
5321 lruvec_init(&zone
->lruvec
);
5325 set_pageblock_order();
5326 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
5327 ret
= init_currently_empty_zone(zone
, zone_start_pfn
, size
);
5329 memmap_init(size
, nid
, j
, zone_start_pfn
);
5330 zone_start_pfn
+= size
;
5334 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
5336 unsigned long __maybe_unused start
= 0;
5337 unsigned long __maybe_unused offset
= 0;
5339 /* Skip empty nodes */
5340 if (!pgdat
->node_spanned_pages
)
5343 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5344 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
5345 offset
= pgdat
->node_start_pfn
- start
;
5346 /* ia64 gets its own node_mem_map, before this, without bootmem */
5347 if (!pgdat
->node_mem_map
) {
5348 unsigned long size
, end
;
5352 * The zone's endpoints aren't required to be MAX_ORDER
5353 * aligned but the node_mem_map endpoints must be in order
5354 * for the buddy allocator to function correctly.
5356 end
= pgdat_end_pfn(pgdat
);
5357 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
5358 size
= (end
- start
) * sizeof(struct page
);
5359 map
= alloc_remap(pgdat
->node_id
, size
);
5361 map
= memblock_virt_alloc_node_nopanic(size
,
5363 pgdat
->node_mem_map
= map
+ offset
;
5365 #ifndef CONFIG_NEED_MULTIPLE_NODES
5367 * With no DISCONTIG, the global mem_map is just set as node 0's
5369 if (pgdat
== NODE_DATA(0)) {
5370 mem_map
= NODE_DATA(0)->node_mem_map
;
5371 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5372 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
5374 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5377 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5380 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
5381 unsigned long node_start_pfn
, unsigned long *zholes_size
)
5383 pg_data_t
*pgdat
= NODE_DATA(nid
);
5384 unsigned long start_pfn
= 0;
5385 unsigned long end_pfn
= 0;
5387 /* pg_data_t should be reset to zero when it's allocated */
5388 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
5390 pgdat
->node_id
= nid
;
5391 pgdat
->node_start_pfn
= node_start_pfn
;
5392 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5393 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
5394 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
5395 (u64
)start_pfn
<< PAGE_SHIFT
,
5396 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
5398 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
5399 zones_size
, zholes_size
);
5401 alloc_node_mem_map(pgdat
);
5402 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5403 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5404 nid
, (unsigned long)pgdat
,
5405 (unsigned long)pgdat
->node_mem_map
);
5408 reset_deferred_meminit(pgdat
);
5409 free_area_init_core(pgdat
);
5412 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5414 #if MAX_NUMNODES > 1
5416 * Figure out the number of possible node ids.
5418 void __init
setup_nr_node_ids(void)
5420 unsigned int highest
;
5422 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
5423 nr_node_ids
= highest
+ 1;
5428 * node_map_pfn_alignment - determine the maximum internode alignment
5430 * This function should be called after node map is populated and sorted.
5431 * It calculates the maximum power of two alignment which can distinguish
5434 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5435 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5436 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5437 * shifted, 1GiB is enough and this function will indicate so.
5439 * This is used to test whether pfn -> nid mapping of the chosen memory
5440 * model has fine enough granularity to avoid incorrect mapping for the
5441 * populated node map.
5443 * Returns the determined alignment in pfn's. 0 if there is no alignment
5444 * requirement (single node).
5446 unsigned long __init
node_map_pfn_alignment(void)
5448 unsigned long accl_mask
= 0, last_end
= 0;
5449 unsigned long start
, end
, mask
;
5453 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5454 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
5461 * Start with a mask granular enough to pin-point to the
5462 * start pfn and tick off bits one-by-one until it becomes
5463 * too coarse to separate the current node from the last.
5465 mask
= ~((1 << __ffs(start
)) - 1);
5466 while (mask
&& last_end
<= (start
& (mask
<< 1)))
5469 /* accumulate all internode masks */
5473 /* convert mask to number of pages */
5474 return ~accl_mask
+ 1;
5477 /* Find the lowest pfn for a node */
5478 static unsigned long __init
find_min_pfn_for_node(int nid
)
5480 unsigned long min_pfn
= ULONG_MAX
;
5481 unsigned long start_pfn
;
5484 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
5485 min_pfn
= min(min_pfn
, start_pfn
);
5487 if (min_pfn
== ULONG_MAX
) {
5489 "Could not find start_pfn for node %d\n", nid
);
5497 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5499 * It returns the minimum PFN based on information provided via
5500 * memblock_set_node().
5502 unsigned long __init
find_min_pfn_with_active_regions(void)
5504 return find_min_pfn_for_node(MAX_NUMNODES
);
5508 * early_calculate_totalpages()
5509 * Sum pages in active regions for movable zone.
5510 * Populate N_MEMORY for calculating usable_nodes.
5512 static unsigned long __init
early_calculate_totalpages(void)
5514 unsigned long totalpages
= 0;
5515 unsigned long start_pfn
, end_pfn
;
5518 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5519 unsigned long pages
= end_pfn
- start_pfn
;
5521 totalpages
+= pages
;
5523 node_set_state(nid
, N_MEMORY
);
5529 * Find the PFN the Movable zone begins in each node. Kernel memory
5530 * is spread evenly between nodes as long as the nodes have enough
5531 * memory. When they don't, some nodes will have more kernelcore than
5534 static void __init
find_zone_movable_pfns_for_nodes(void)
5537 unsigned long usable_startpfn
;
5538 unsigned long kernelcore_node
, kernelcore_remaining
;
5539 /* save the state before borrow the nodemask */
5540 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5541 unsigned long totalpages
= early_calculate_totalpages();
5542 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5543 struct memblock_region
*r
;
5545 /* Need to find movable_zone earlier when movable_node is specified. */
5546 find_usable_zone_for_movable();
5549 * If movable_node is specified, ignore kernelcore and movablecore
5552 if (movable_node_is_enabled()) {
5553 for_each_memblock(memory
, r
) {
5554 if (!memblock_is_hotpluggable(r
))
5559 usable_startpfn
= PFN_DOWN(r
->base
);
5560 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5561 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5569 * If movablecore=nn[KMG] was specified, calculate what size of
5570 * kernelcore that corresponds so that memory usable for
5571 * any allocation type is evenly spread. If both kernelcore
5572 * and movablecore are specified, then the value of kernelcore
5573 * will be used for required_kernelcore if it's greater than
5574 * what movablecore would have allowed.
5576 if (required_movablecore
) {
5577 unsigned long corepages
;
5580 * Round-up so that ZONE_MOVABLE is at least as large as what
5581 * was requested by the user
5583 required_movablecore
=
5584 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5585 required_movablecore
= min(totalpages
, required_movablecore
);
5586 corepages
= totalpages
- required_movablecore
;
5588 required_kernelcore
= max(required_kernelcore
, corepages
);
5592 * If kernelcore was not specified or kernelcore size is larger
5593 * than totalpages, there is no ZONE_MOVABLE.
5595 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
5598 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5599 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5602 /* Spread kernelcore memory as evenly as possible throughout nodes */
5603 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5604 for_each_node_state(nid
, N_MEMORY
) {
5605 unsigned long start_pfn
, end_pfn
;
5608 * Recalculate kernelcore_node if the division per node
5609 * now exceeds what is necessary to satisfy the requested
5610 * amount of memory for the kernel
5612 if (required_kernelcore
< kernelcore_node
)
5613 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5616 * As the map is walked, we track how much memory is usable
5617 * by the kernel using kernelcore_remaining. When it is
5618 * 0, the rest of the node is usable by ZONE_MOVABLE
5620 kernelcore_remaining
= kernelcore_node
;
5622 /* Go through each range of PFNs within this node */
5623 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5624 unsigned long size_pages
;
5626 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5627 if (start_pfn
>= end_pfn
)
5630 /* Account for what is only usable for kernelcore */
5631 if (start_pfn
< usable_startpfn
) {
5632 unsigned long kernel_pages
;
5633 kernel_pages
= min(end_pfn
, usable_startpfn
)
5636 kernelcore_remaining
-= min(kernel_pages
,
5637 kernelcore_remaining
);
5638 required_kernelcore
-= min(kernel_pages
,
5639 required_kernelcore
);
5641 /* Continue if range is now fully accounted */
5642 if (end_pfn
<= usable_startpfn
) {
5645 * Push zone_movable_pfn to the end so
5646 * that if we have to rebalance
5647 * kernelcore across nodes, we will
5648 * not double account here
5650 zone_movable_pfn
[nid
] = end_pfn
;
5653 start_pfn
= usable_startpfn
;
5657 * The usable PFN range for ZONE_MOVABLE is from
5658 * start_pfn->end_pfn. Calculate size_pages as the
5659 * number of pages used as kernelcore
5661 size_pages
= end_pfn
- start_pfn
;
5662 if (size_pages
> kernelcore_remaining
)
5663 size_pages
= kernelcore_remaining
;
5664 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5667 * Some kernelcore has been met, update counts and
5668 * break if the kernelcore for this node has been
5671 required_kernelcore
-= min(required_kernelcore
,
5673 kernelcore_remaining
-= size_pages
;
5674 if (!kernelcore_remaining
)
5680 * If there is still required_kernelcore, we do another pass with one
5681 * less node in the count. This will push zone_movable_pfn[nid] further
5682 * along on the nodes that still have memory until kernelcore is
5686 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5690 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5691 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5692 zone_movable_pfn
[nid
] =
5693 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5696 /* restore the node_state */
5697 node_states
[N_MEMORY
] = saved_node_state
;
5700 /* Any regular or high memory on that node ? */
5701 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5703 enum zone_type zone_type
;
5705 if (N_MEMORY
== N_NORMAL_MEMORY
)
5708 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5709 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5710 if (populated_zone(zone
)) {
5711 node_set_state(nid
, N_HIGH_MEMORY
);
5712 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5713 zone_type
<= ZONE_NORMAL
)
5714 node_set_state(nid
, N_NORMAL_MEMORY
);
5721 * free_area_init_nodes - Initialise all pg_data_t and zone data
5722 * @max_zone_pfn: an array of max PFNs for each zone
5724 * This will call free_area_init_node() for each active node in the system.
5725 * Using the page ranges provided by memblock_set_node(), the size of each
5726 * zone in each node and their holes is calculated. If the maximum PFN
5727 * between two adjacent zones match, it is assumed that the zone is empty.
5728 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5729 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5730 * starts where the previous one ended. For example, ZONE_DMA32 starts
5731 * at arch_max_dma_pfn.
5733 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5735 unsigned long start_pfn
, end_pfn
;
5738 /* Record where the zone boundaries are */
5739 memset(arch_zone_lowest_possible_pfn
, 0,
5740 sizeof(arch_zone_lowest_possible_pfn
));
5741 memset(arch_zone_highest_possible_pfn
, 0,
5742 sizeof(arch_zone_highest_possible_pfn
));
5744 start_pfn
= find_min_pfn_with_active_regions();
5746 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5747 if (i
== ZONE_MOVABLE
)
5750 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
5751 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
5752 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
5754 start_pfn
= end_pfn
;
5756 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5757 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5759 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5760 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5761 find_zone_movable_pfns_for_nodes();
5763 /* Print out the zone ranges */
5764 pr_info("Zone ranges:\n");
5765 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5766 if (i
== ZONE_MOVABLE
)
5768 pr_info(" %-8s ", zone_names
[i
]);
5769 if (arch_zone_lowest_possible_pfn
[i
] ==
5770 arch_zone_highest_possible_pfn
[i
])
5773 pr_cont("[mem %#018Lx-%#018Lx]\n",
5774 (u64
)arch_zone_lowest_possible_pfn
[i
]
5776 ((u64
)arch_zone_highest_possible_pfn
[i
]
5777 << PAGE_SHIFT
) - 1);
5780 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5781 pr_info("Movable zone start for each node\n");
5782 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5783 if (zone_movable_pfn
[i
])
5784 pr_info(" Node %d: %#018Lx\n", i
,
5785 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
5788 /* Print out the early node map */
5789 pr_info("Early memory node ranges\n");
5790 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5791 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
5792 (u64
)start_pfn
<< PAGE_SHIFT
,
5793 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
5795 /* Initialise every node */
5796 mminit_verify_pageflags_layout();
5797 setup_nr_node_ids();
5798 for_each_online_node(nid
) {
5799 pg_data_t
*pgdat
= NODE_DATA(nid
);
5800 free_area_init_node(nid
, NULL
,
5801 find_min_pfn_for_node(nid
), NULL
);
5803 /* Any memory on that node */
5804 if (pgdat
->node_present_pages
)
5805 node_set_state(nid
, N_MEMORY
);
5806 check_for_memory(pgdat
, nid
);
5810 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5812 unsigned long long coremem
;
5816 coremem
= memparse(p
, &p
);
5817 *core
= coremem
>> PAGE_SHIFT
;
5819 /* Paranoid check that UL is enough for the coremem value */
5820 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5826 * kernelcore=size sets the amount of memory for use for allocations that
5827 * cannot be reclaimed or migrated.
5829 static int __init
cmdline_parse_kernelcore(char *p
)
5831 return cmdline_parse_core(p
, &required_kernelcore
);
5835 * movablecore=size sets the amount of memory for use for allocations that
5836 * can be reclaimed or migrated.
5838 static int __init
cmdline_parse_movablecore(char *p
)
5840 return cmdline_parse_core(p
, &required_movablecore
);
5843 early_param("kernelcore", cmdline_parse_kernelcore
);
5844 early_param("movablecore", cmdline_parse_movablecore
);
5846 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5848 void adjust_managed_page_count(struct page
*page
, long count
)
5850 spin_lock(&managed_page_count_lock
);
5851 page_zone(page
)->managed_pages
+= count
;
5852 totalram_pages
+= count
;
5853 #ifdef CONFIG_HIGHMEM
5854 if (PageHighMem(page
))
5855 totalhigh_pages
+= count
;
5857 spin_unlock(&managed_page_count_lock
);
5859 EXPORT_SYMBOL(adjust_managed_page_count
);
5861 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5864 unsigned long pages
= 0;
5866 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5867 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5868 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5869 if ((unsigned int)poison
<= 0xFF)
5870 memset(pos
, poison
, PAGE_SIZE
);
5871 free_reserved_page(virt_to_page(pos
));
5875 pr_info("Freeing %s memory: %ldK\n",
5876 s
, pages
<< (PAGE_SHIFT
- 10));
5880 EXPORT_SYMBOL(free_reserved_area
);
5882 #ifdef CONFIG_HIGHMEM
5883 void free_highmem_page(struct page
*page
)
5885 __free_reserved_page(page
);
5887 page_zone(page
)->managed_pages
++;
5893 void __init
mem_init_print_info(const char *str
)
5895 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5896 unsigned long init_code_size
, init_data_size
;
5898 physpages
= get_num_physpages();
5899 codesize
= _etext
- _stext
;
5900 datasize
= _edata
- _sdata
;
5901 rosize
= __end_rodata
- __start_rodata
;
5902 bss_size
= __bss_stop
- __bss_start
;
5903 init_data_size
= __init_end
- __init_begin
;
5904 init_code_size
= _einittext
- _sinittext
;
5907 * Detect special cases and adjust section sizes accordingly:
5908 * 1) .init.* may be embedded into .data sections
5909 * 2) .init.text.* may be out of [__init_begin, __init_end],
5910 * please refer to arch/tile/kernel/vmlinux.lds.S.
5911 * 3) .rodata.* may be embedded into .text or .data sections.
5913 #define adj_init_size(start, end, size, pos, adj) \
5915 if (start <= pos && pos < end && size > adj) \
5919 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5920 _sinittext
, init_code_size
);
5921 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5922 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5923 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5924 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5926 #undef adj_init_size
5928 pr_info("Memory: %luK/%luK available "
5929 "(%luK kernel code, %luK rwdata, %luK rodata, "
5930 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5931 #ifdef CONFIG_HIGHMEM
5935 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5936 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5937 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5938 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
-10),
5939 totalcma_pages
<< (PAGE_SHIFT
-10),
5940 #ifdef CONFIG_HIGHMEM
5941 totalhigh_pages
<< (PAGE_SHIFT
-10),
5943 str
? ", " : "", str
? str
: "");
5947 * set_dma_reserve - set the specified number of pages reserved in the first zone
5948 * @new_dma_reserve: The number of pages to mark reserved
5950 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5951 * In the DMA zone, a significant percentage may be consumed by kernel image
5952 * and other unfreeable allocations which can skew the watermarks badly. This
5953 * function may optionally be used to account for unfreeable pages in the
5954 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5955 * smaller per-cpu batchsize.
5957 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5959 dma_reserve
= new_dma_reserve
;
5962 void __init
free_area_init(unsigned long *zones_size
)
5964 free_area_init_node(0, zones_size
,
5965 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5968 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5969 unsigned long action
, void *hcpu
)
5971 int cpu
= (unsigned long)hcpu
;
5973 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5974 lru_add_drain_cpu(cpu
);
5978 * Spill the event counters of the dead processor
5979 * into the current processors event counters.
5980 * This artificially elevates the count of the current
5983 vm_events_fold_cpu(cpu
);
5986 * Zero the differential counters of the dead processor
5987 * so that the vm statistics are consistent.
5989 * This is only okay since the processor is dead and cannot
5990 * race with what we are doing.
5992 cpu_vm_stats_fold(cpu
);
5997 void __init
page_alloc_init(void)
5999 hotcpu_notifier(page_alloc_cpu_notify
, 0);
6003 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6004 * or min_free_kbytes changes.
6006 static void calculate_totalreserve_pages(void)
6008 struct pglist_data
*pgdat
;
6009 unsigned long reserve_pages
= 0;
6010 enum zone_type i
, j
;
6012 for_each_online_pgdat(pgdat
) {
6013 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6014 struct zone
*zone
= pgdat
->node_zones
+ i
;
6017 /* Find valid and maximum lowmem_reserve in the zone */
6018 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6019 if (zone
->lowmem_reserve
[j
] > max
)
6020 max
= zone
->lowmem_reserve
[j
];
6023 /* we treat the high watermark as reserved pages. */
6024 max
+= high_wmark_pages(zone
);
6026 if (max
> zone
->managed_pages
)
6027 max
= zone
->managed_pages
;
6028 reserve_pages
+= max
;
6030 * Lowmem reserves are not available to
6031 * GFP_HIGHUSER page cache allocations and
6032 * kswapd tries to balance zones to their high
6033 * watermark. As a result, neither should be
6034 * regarded as dirtyable memory, to prevent a
6035 * situation where reclaim has to clean pages
6036 * in order to balance the zones.
6038 zone
->dirty_balance_reserve
= max
;
6041 dirty_balance_reserve
= reserve_pages
;
6042 totalreserve_pages
= reserve_pages
;
6046 * setup_per_zone_lowmem_reserve - called whenever
6047 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6048 * has a correct pages reserved value, so an adequate number of
6049 * pages are left in the zone after a successful __alloc_pages().
6051 static void setup_per_zone_lowmem_reserve(void)
6053 struct pglist_data
*pgdat
;
6054 enum zone_type j
, idx
;
6056 for_each_online_pgdat(pgdat
) {
6057 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6058 struct zone
*zone
= pgdat
->node_zones
+ j
;
6059 unsigned long managed_pages
= zone
->managed_pages
;
6061 zone
->lowmem_reserve
[j
] = 0;
6065 struct zone
*lower_zone
;
6069 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6070 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6072 lower_zone
= pgdat
->node_zones
+ idx
;
6073 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6074 sysctl_lowmem_reserve_ratio
[idx
];
6075 managed_pages
+= lower_zone
->managed_pages
;
6080 /* update totalreserve_pages */
6081 calculate_totalreserve_pages();
6084 static void __setup_per_zone_wmarks(void)
6086 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6087 unsigned long lowmem_pages
= 0;
6089 unsigned long flags
;
6091 /* Calculate total number of !ZONE_HIGHMEM pages */
6092 for_each_zone(zone
) {
6093 if (!is_highmem(zone
))
6094 lowmem_pages
+= zone
->managed_pages
;
6097 for_each_zone(zone
) {
6100 spin_lock_irqsave(&zone
->lock
, flags
);
6101 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6102 do_div(tmp
, lowmem_pages
);
6103 if (is_highmem(zone
)) {
6105 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6106 * need highmem pages, so cap pages_min to a small
6109 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6110 * deltas control asynch page reclaim, and so should
6111 * not be capped for highmem.
6113 unsigned long min_pages
;
6115 min_pages
= zone
->managed_pages
/ 1024;
6116 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6117 zone
->watermark
[WMARK_MIN
] = min_pages
;
6120 * If it's a lowmem zone, reserve a number of pages
6121 * proportionate to the zone's size.
6123 zone
->watermark
[WMARK_MIN
] = tmp
;
6126 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
6127 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
6129 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
6130 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
6131 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
6133 spin_unlock_irqrestore(&zone
->lock
, flags
);
6136 /* update totalreserve_pages */
6137 calculate_totalreserve_pages();
6141 * setup_per_zone_wmarks - called when min_free_kbytes changes
6142 * or when memory is hot-{added|removed}
6144 * Ensures that the watermark[min,low,high] values for each zone are set
6145 * correctly with respect to min_free_kbytes.
6147 void setup_per_zone_wmarks(void)
6149 mutex_lock(&zonelists_mutex
);
6150 __setup_per_zone_wmarks();
6151 mutex_unlock(&zonelists_mutex
);
6155 * The inactive anon list should be small enough that the VM never has to
6156 * do too much work, but large enough that each inactive page has a chance
6157 * to be referenced again before it is swapped out.
6159 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6160 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6161 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6162 * the anonymous pages are kept on the inactive list.
6165 * memory ratio inactive anon
6166 * -------------------------------------
6175 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
6177 unsigned int gb
, ratio
;
6179 /* Zone size in gigabytes */
6180 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
6182 ratio
= int_sqrt(10 * gb
);
6186 zone
->inactive_ratio
= ratio
;
6189 static void __meminit
setup_per_zone_inactive_ratio(void)
6194 calculate_zone_inactive_ratio(zone
);
6198 * Initialise min_free_kbytes.
6200 * For small machines we want it small (128k min). For large machines
6201 * we want it large (64MB max). But it is not linear, because network
6202 * bandwidth does not increase linearly with machine size. We use
6204 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6205 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6221 int __meminit
init_per_zone_wmark_min(void)
6223 unsigned long lowmem_kbytes
;
6224 int new_min_free_kbytes
;
6226 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6227 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6229 if (new_min_free_kbytes
> user_min_free_kbytes
) {
6230 min_free_kbytes
= new_min_free_kbytes
;
6231 if (min_free_kbytes
< 128)
6232 min_free_kbytes
= 128;
6233 if (min_free_kbytes
> 65536)
6234 min_free_kbytes
= 65536;
6236 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6237 new_min_free_kbytes
, user_min_free_kbytes
);
6239 setup_per_zone_wmarks();
6240 refresh_zone_stat_thresholds();
6241 setup_per_zone_lowmem_reserve();
6242 setup_per_zone_inactive_ratio();
6245 core_initcall(init_per_zone_wmark_min
)
6248 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6249 * that we can call two helper functions whenever min_free_kbytes
6252 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
6253 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6257 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6262 user_min_free_kbytes
= min_free_kbytes
;
6263 setup_per_zone_wmarks();
6269 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6270 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6275 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6280 zone
->min_unmapped_pages
= (zone
->managed_pages
*
6281 sysctl_min_unmapped_ratio
) / 100;
6285 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6286 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6291 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6296 zone
->min_slab_pages
= (zone
->managed_pages
*
6297 sysctl_min_slab_ratio
) / 100;
6303 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6304 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6305 * whenever sysctl_lowmem_reserve_ratio changes.
6307 * The reserve ratio obviously has absolutely no relation with the
6308 * minimum watermarks. The lowmem reserve ratio can only make sense
6309 * if in function of the boot time zone sizes.
6311 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6312 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6314 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6315 setup_per_zone_lowmem_reserve();
6320 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6321 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6322 * pagelist can have before it gets flushed back to buddy allocator.
6324 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
6325 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6328 int old_percpu_pagelist_fraction
;
6331 mutex_lock(&pcp_batch_high_lock
);
6332 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
6334 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6335 if (!write
|| ret
< 0)
6338 /* Sanity checking to avoid pcp imbalance */
6339 if (percpu_pagelist_fraction
&&
6340 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
6341 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
6347 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
6350 for_each_populated_zone(zone
) {
6353 for_each_possible_cpu(cpu
)
6354 pageset_set_high_and_batch(zone
,
6355 per_cpu_ptr(zone
->pageset
, cpu
));
6358 mutex_unlock(&pcp_batch_high_lock
);
6363 int hashdist
= HASHDIST_DEFAULT
;
6365 static int __init
set_hashdist(char *str
)
6369 hashdist
= simple_strtoul(str
, &str
, 0);
6372 __setup("hashdist=", set_hashdist
);
6376 * allocate a large system hash table from bootmem
6377 * - it is assumed that the hash table must contain an exact power-of-2
6378 * quantity of entries
6379 * - limit is the number of hash buckets, not the total allocation size
6381 void *__init
alloc_large_system_hash(const char *tablename
,
6382 unsigned long bucketsize
,
6383 unsigned long numentries
,
6386 unsigned int *_hash_shift
,
6387 unsigned int *_hash_mask
,
6388 unsigned long low_limit
,
6389 unsigned long high_limit
)
6391 unsigned long long max
= high_limit
;
6392 unsigned long log2qty
, size
;
6395 /* allow the kernel cmdline to have a say */
6397 /* round applicable memory size up to nearest megabyte */
6398 numentries
= nr_kernel_pages
;
6400 /* It isn't necessary when PAGE_SIZE >= 1MB */
6401 if (PAGE_SHIFT
< 20)
6402 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
6404 /* limit to 1 bucket per 2^scale bytes of low memory */
6405 if (scale
> PAGE_SHIFT
)
6406 numentries
>>= (scale
- PAGE_SHIFT
);
6408 numentries
<<= (PAGE_SHIFT
- scale
);
6410 /* Make sure we've got at least a 0-order allocation.. */
6411 if (unlikely(flags
& HASH_SMALL
)) {
6412 /* Makes no sense without HASH_EARLY */
6413 WARN_ON(!(flags
& HASH_EARLY
));
6414 if (!(numentries
>> *_hash_shift
)) {
6415 numentries
= 1UL << *_hash_shift
;
6416 BUG_ON(!numentries
);
6418 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
6419 numentries
= PAGE_SIZE
/ bucketsize
;
6421 numentries
= roundup_pow_of_two(numentries
);
6423 /* limit allocation size to 1/16 total memory by default */
6425 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
6426 do_div(max
, bucketsize
);
6428 max
= min(max
, 0x80000000ULL
);
6430 if (numentries
< low_limit
)
6431 numentries
= low_limit
;
6432 if (numentries
> max
)
6435 log2qty
= ilog2(numentries
);
6438 size
= bucketsize
<< log2qty
;
6439 if (flags
& HASH_EARLY
)
6440 table
= memblock_virt_alloc_nopanic(size
, 0);
6442 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
6445 * If bucketsize is not a power-of-two, we may free
6446 * some pages at the end of hash table which
6447 * alloc_pages_exact() automatically does
6449 if (get_order(size
) < MAX_ORDER
) {
6450 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
6451 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
6454 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
6457 panic("Failed to allocate %s hash table\n", tablename
);
6459 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
6462 ilog2(size
) - PAGE_SHIFT
,
6466 *_hash_shift
= log2qty
;
6468 *_hash_mask
= (1 << log2qty
) - 1;
6473 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6474 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
6477 #ifdef CONFIG_SPARSEMEM
6478 return __pfn_to_section(pfn
)->pageblock_flags
;
6480 return zone
->pageblock_flags
;
6481 #endif /* CONFIG_SPARSEMEM */
6484 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
6486 #ifdef CONFIG_SPARSEMEM
6487 pfn
&= (PAGES_PER_SECTION
-1);
6488 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6490 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
6491 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6492 #endif /* CONFIG_SPARSEMEM */
6496 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6497 * @page: The page within the block of interest
6498 * @pfn: The target page frame number
6499 * @end_bitidx: The last bit of interest to retrieve
6500 * @mask: mask of bits that the caller is interested in
6502 * Return: pageblock_bits flags
6504 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
6505 unsigned long end_bitidx
,
6509 unsigned long *bitmap
;
6510 unsigned long bitidx
, word_bitidx
;
6513 zone
= page_zone(page
);
6514 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6515 bitidx
= pfn_to_bitidx(zone
, pfn
);
6516 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6517 bitidx
&= (BITS_PER_LONG
-1);
6519 word
= bitmap
[word_bitidx
];
6520 bitidx
+= end_bitidx
;
6521 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
6525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6526 * @page: The page within the block of interest
6527 * @flags: The flags to set
6528 * @pfn: The target page frame number
6529 * @end_bitidx: The last bit of interest
6530 * @mask: mask of bits that the caller is interested in
6532 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
6534 unsigned long end_bitidx
,
6538 unsigned long *bitmap
;
6539 unsigned long bitidx
, word_bitidx
;
6540 unsigned long old_word
, word
;
6542 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
6544 zone
= page_zone(page
);
6545 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6546 bitidx
= pfn_to_bitidx(zone
, pfn
);
6547 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6548 bitidx
&= (BITS_PER_LONG
-1);
6550 VM_BUG_ON_PAGE(!zone_spans_pfn(zone
, pfn
), page
);
6552 bitidx
+= end_bitidx
;
6553 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
6554 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
6556 word
= READ_ONCE(bitmap
[word_bitidx
]);
6558 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
6559 if (word
== old_word
)
6566 * This function checks whether pageblock includes unmovable pages or not.
6567 * If @count is not zero, it is okay to include less @count unmovable pages
6569 * PageLRU check without isolation or lru_lock could race so that
6570 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6571 * expect this function should be exact.
6573 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6574 bool skip_hwpoisoned_pages
)
6576 unsigned long pfn
, iter
, found
;
6580 * For avoiding noise data, lru_add_drain_all() should be called
6581 * If ZONE_MOVABLE, the zone never contains unmovable pages
6583 if (zone_idx(zone
) == ZONE_MOVABLE
)
6585 mt
= get_pageblock_migratetype(page
);
6586 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6589 pfn
= page_to_pfn(page
);
6590 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6591 unsigned long check
= pfn
+ iter
;
6593 if (!pfn_valid_within(check
))
6596 page
= pfn_to_page(check
);
6599 * Hugepages are not in LRU lists, but they're movable.
6600 * We need not scan over tail pages bacause we don't
6601 * handle each tail page individually in migration.
6603 if (PageHuge(page
)) {
6604 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6609 * We can't use page_count without pin a page
6610 * because another CPU can free compound page.
6611 * This check already skips compound tails of THP
6612 * because their page->_count is zero at all time.
6614 if (!atomic_read(&page
->_count
)) {
6615 if (PageBuddy(page
))
6616 iter
+= (1 << page_order(page
)) - 1;
6621 * The HWPoisoned page may be not in buddy system, and
6622 * page_count() is not 0.
6624 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6630 * If there are RECLAIMABLE pages, we need to check
6631 * it. But now, memory offline itself doesn't call
6632 * shrink_node_slabs() and it still to be fixed.
6635 * If the page is not RAM, page_count()should be 0.
6636 * we don't need more check. This is an _used_ not-movable page.
6638 * The problematic thing here is PG_reserved pages. PG_reserved
6639 * is set to both of a memory hole page and a _used_ kernel
6648 bool is_pageblock_removable_nolock(struct page
*page
)
6654 * We have to be careful here because we are iterating over memory
6655 * sections which are not zone aware so we might end up outside of
6656 * the zone but still within the section.
6657 * We have to take care about the node as well. If the node is offline
6658 * its NODE_DATA will be NULL - see page_zone.
6660 if (!node_online(page_to_nid(page
)))
6663 zone
= page_zone(page
);
6664 pfn
= page_to_pfn(page
);
6665 if (!zone_spans_pfn(zone
, pfn
))
6668 return !has_unmovable_pages(zone
, page
, 0, true);
6673 static unsigned long pfn_max_align_down(unsigned long pfn
)
6675 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6676 pageblock_nr_pages
) - 1);
6679 static unsigned long pfn_max_align_up(unsigned long pfn
)
6681 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6682 pageblock_nr_pages
));
6685 /* [start, end) must belong to a single zone. */
6686 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6687 unsigned long start
, unsigned long end
)
6689 /* This function is based on compact_zone() from compaction.c. */
6690 unsigned long nr_reclaimed
;
6691 unsigned long pfn
= start
;
6692 unsigned int tries
= 0;
6697 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6698 if (fatal_signal_pending(current
)) {
6703 if (list_empty(&cc
->migratepages
)) {
6704 cc
->nr_migratepages
= 0;
6705 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
6711 } else if (++tries
== 5) {
6712 ret
= ret
< 0 ? ret
: -EBUSY
;
6716 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6718 cc
->nr_migratepages
-= nr_reclaimed
;
6720 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6721 NULL
, 0, cc
->mode
, MR_CMA
);
6724 putback_movable_pages(&cc
->migratepages
);
6731 * alloc_contig_range() -- tries to allocate given range of pages
6732 * @start: start PFN to allocate
6733 * @end: one-past-the-last PFN to allocate
6734 * @migratetype: migratetype of the underlaying pageblocks (either
6735 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6736 * in range must have the same migratetype and it must
6737 * be either of the two.
6739 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6740 * aligned, however it's the caller's responsibility to guarantee that
6741 * we are the only thread that changes migrate type of pageblocks the
6744 * The PFN range must belong to a single zone.
6746 * Returns zero on success or negative error code. On success all
6747 * pages which PFN is in [start, end) are allocated for the caller and
6748 * need to be freed with free_contig_range().
6750 int alloc_contig_range(unsigned long start
, unsigned long end
,
6751 unsigned migratetype
)
6753 unsigned long outer_start
, outer_end
;
6757 struct compact_control cc
= {
6758 .nr_migratepages
= 0,
6760 .zone
= page_zone(pfn_to_page(start
)),
6761 .mode
= MIGRATE_SYNC
,
6762 .ignore_skip_hint
= true,
6764 INIT_LIST_HEAD(&cc
.migratepages
);
6767 * What we do here is we mark all pageblocks in range as
6768 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6769 * have different sizes, and due to the way page allocator
6770 * work, we align the range to biggest of the two pages so
6771 * that page allocator won't try to merge buddies from
6772 * different pageblocks and change MIGRATE_ISOLATE to some
6773 * other migration type.
6775 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6776 * migrate the pages from an unaligned range (ie. pages that
6777 * we are interested in). This will put all the pages in
6778 * range back to page allocator as MIGRATE_ISOLATE.
6780 * When this is done, we take the pages in range from page
6781 * allocator removing them from the buddy system. This way
6782 * page allocator will never consider using them.
6784 * This lets us mark the pageblocks back as
6785 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6786 * aligned range but not in the unaligned, original range are
6787 * put back to page allocator so that buddy can use them.
6790 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6791 pfn_max_align_up(end
), migratetype
,
6796 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6801 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6802 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6803 * more, all pages in [start, end) are free in page allocator.
6804 * What we are going to do is to allocate all pages from
6805 * [start, end) (that is remove them from page allocator).
6807 * The only problem is that pages at the beginning and at the
6808 * end of interesting range may be not aligned with pages that
6809 * page allocator holds, ie. they can be part of higher order
6810 * pages. Because of this, we reserve the bigger range and
6811 * once this is done free the pages we are not interested in.
6813 * We don't have to hold zone->lock here because the pages are
6814 * isolated thus they won't get removed from buddy.
6817 lru_add_drain_all();
6818 drain_all_pages(cc
.zone
);
6821 outer_start
= start
;
6822 while (!PageBuddy(pfn_to_page(outer_start
))) {
6823 if (++order
>= MAX_ORDER
) {
6827 outer_start
&= ~0UL << order
;
6830 /* Make sure the range is really isolated. */
6831 if (test_pages_isolated(outer_start
, end
, false)) {
6832 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
6833 __func__
, outer_start
, end
);
6838 /* Grab isolated pages from freelists. */
6839 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6845 /* Free head and tail (if any) */
6846 if (start
!= outer_start
)
6847 free_contig_range(outer_start
, start
- outer_start
);
6848 if (end
!= outer_end
)
6849 free_contig_range(end
, outer_end
- end
);
6852 undo_isolate_page_range(pfn_max_align_down(start
),
6853 pfn_max_align_up(end
), migratetype
);
6857 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6859 unsigned int count
= 0;
6861 for (; nr_pages
--; pfn
++) {
6862 struct page
*page
= pfn_to_page(pfn
);
6864 count
+= page_count(page
) != 1;
6867 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6871 #ifdef CONFIG_MEMORY_HOTPLUG
6873 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6874 * page high values need to be recalulated.
6876 void __meminit
zone_pcp_update(struct zone
*zone
)
6879 mutex_lock(&pcp_batch_high_lock
);
6880 for_each_possible_cpu(cpu
)
6881 pageset_set_high_and_batch(zone
,
6882 per_cpu_ptr(zone
->pageset
, cpu
));
6883 mutex_unlock(&pcp_batch_high_lock
);
6887 void zone_pcp_reset(struct zone
*zone
)
6889 unsigned long flags
;
6891 struct per_cpu_pageset
*pset
;
6893 /* avoid races with drain_pages() */
6894 local_irq_save(flags
);
6895 if (zone
->pageset
!= &boot_pageset
) {
6896 for_each_online_cpu(cpu
) {
6897 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6898 drain_zonestat(zone
, pset
);
6900 free_percpu(zone
->pageset
);
6901 zone
->pageset
= &boot_pageset
;
6903 local_irq_restore(flags
);
6906 #ifdef CONFIG_MEMORY_HOTREMOVE
6908 * All pages in the range must be isolated before calling this.
6911 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6915 unsigned int order
, i
;
6917 unsigned long flags
;
6918 /* find the first valid pfn */
6919 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6924 zone
= page_zone(pfn_to_page(pfn
));
6925 spin_lock_irqsave(&zone
->lock
, flags
);
6927 while (pfn
< end_pfn
) {
6928 if (!pfn_valid(pfn
)) {
6932 page
= pfn_to_page(pfn
);
6934 * The HWPoisoned page may be not in buddy system, and
6935 * page_count() is not 0.
6937 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6939 SetPageReserved(page
);
6943 BUG_ON(page_count(page
));
6944 BUG_ON(!PageBuddy(page
));
6945 order
= page_order(page
);
6946 #ifdef CONFIG_DEBUG_VM
6947 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6948 pfn
, 1 << order
, end_pfn
);
6950 list_del(&page
->lru
);
6951 rmv_page_order(page
);
6952 zone
->free_area
[order
].nr_free
--;
6953 for (i
= 0; i
< (1 << order
); i
++)
6954 SetPageReserved((page
+i
));
6955 pfn
+= (1 << order
);
6957 spin_unlock_irqrestore(&zone
->lock
, flags
);
6961 #ifdef CONFIG_MEMORY_FAILURE
6962 bool is_free_buddy_page(struct page
*page
)
6964 struct zone
*zone
= page_zone(page
);
6965 unsigned long pfn
= page_to_pfn(page
);
6966 unsigned long flags
;
6969 spin_lock_irqsave(&zone
->lock
, flags
);
6970 for (order
= 0; order
< MAX_ORDER
; order
++) {
6971 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6973 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6976 spin_unlock_irqrestore(&zone
->lock
, flags
);
6978 return order
< MAX_ORDER
;