2 * Copyright (c) 2016, 2017 Oracle. All rights reserved.
3 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
4 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 * Author: Tom Tucker <tom@opengridcomputing.com>
46 * The main entry point is svc_rdma_recvfrom. This is called from
47 * svc_recv when the transport indicates there is incoming data to
48 * be read. "Data Ready" is signaled when an RDMA Receive completes,
49 * or when a set of RDMA Reads complete.
51 * An svc_rqst is passed in. This structure contains an array of
52 * free pages (rq_pages) that will contain the incoming RPC message.
54 * Short messages are moved directly into svc_rqst::rq_arg, and
55 * the RPC Call is ready to be processed by the Upper Layer.
56 * svc_rdma_recvfrom returns the length of the RPC Call message,
57 * completing the reception of the RPC Call.
59 * However, when an incoming message has Read chunks,
60 * svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's
61 * data payload from the client. svc_rdma_recvfrom sets up the
62 * RDMA Reads using pages in svc_rqst::rq_pages, which are
63 * transferred to an svc_rdma_op_ctxt for the duration of the
64 * I/O. svc_rdma_recvfrom then returns zero, since the RPC message
65 * is still not yet ready.
67 * When the Read chunk payloads have become available on the
68 * server, "Data Ready" is raised again, and svc_recv calls
69 * svc_rdma_recvfrom again. This second call may use a different
70 * svc_rqst than the first one, thus any information that needs
71 * to be preserved across these two calls is kept in an
74 * The second call to svc_rdma_recvfrom performs final assembly
75 * of the RPC Call message, using the RDMA Read sink pages kept in
76 * the svc_rdma_op_ctxt. The xdr_buf is copied from the
77 * svc_rdma_op_ctxt to the second svc_rqst. The second call returns
78 * the length of the completed RPC Call message.
82 * Pages under I/O must be transferred from the first svc_rqst to an
83 * svc_rdma_op_ctxt before the first svc_rdma_recvfrom call returns.
85 * The first svc_rqst supplies pages for RDMA Reads. These are moved
86 * from rqstp::rq_pages into ctxt::pages. The consumed elements of
87 * the rq_pages array are set to NULL and refilled with the first
88 * svc_rdma_recvfrom call returns.
90 * During the second svc_rdma_recvfrom call, RDMA Read sink pages
91 * are transferred from the svc_rdma_op_ctxt to the second svc_rqst
92 * (see rdma_read_complete() below).
95 #include <asm/unaligned.h>
96 #include <rdma/ib_verbs.h>
97 #include <rdma/rdma_cm.h>
99 #include <linux/spinlock.h>
101 #include <linux/sunrpc/xdr.h>
102 #include <linux/sunrpc/debug.h>
103 #include <linux/sunrpc/rpc_rdma.h>
104 #include <linux/sunrpc/svc_rdma.h>
106 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
109 * Replace the pages in the rq_argpages array with the pages from the SGE in
110 * the RDMA_RECV completion. The SGL should contain full pages up until the
113 static void rdma_build_arg_xdr(struct svc_rqst
*rqstp
,
114 struct svc_rdma_op_ctxt
*ctxt
,
121 /* Swap the page in the SGE with the page in argpages */
122 page
= ctxt
->pages
[0];
123 put_page(rqstp
->rq_pages
[0]);
124 rqstp
->rq_pages
[0] = page
;
126 /* Set up the XDR head */
127 rqstp
->rq_arg
.head
[0].iov_base
= page_address(page
);
128 rqstp
->rq_arg
.head
[0].iov_len
=
129 min_t(size_t, byte_count
, ctxt
->sge
[0].length
);
130 rqstp
->rq_arg
.len
= byte_count
;
131 rqstp
->rq_arg
.buflen
= byte_count
;
133 /* Compute bytes past head in the SGL */
134 bc
= byte_count
- rqstp
->rq_arg
.head
[0].iov_len
;
136 /* If data remains, store it in the pagelist */
137 rqstp
->rq_arg
.page_len
= bc
;
138 rqstp
->rq_arg
.page_base
= 0;
141 while (bc
&& sge_no
< ctxt
->count
) {
142 page
= ctxt
->pages
[sge_no
];
143 put_page(rqstp
->rq_pages
[sge_no
]);
144 rqstp
->rq_pages
[sge_no
] = page
;
145 bc
-= min_t(u32
, bc
, ctxt
->sge
[sge_no
].length
);
148 rqstp
->rq_respages
= &rqstp
->rq_pages
[sge_no
];
149 rqstp
->rq_next_page
= rqstp
->rq_respages
+ 1;
151 /* If not all pages were used from the SGL, free the remaining ones */
153 while (sge_no
< ctxt
->count
) {
154 page
= ctxt
->pages
[sge_no
++];
160 rqstp
->rq_arg
.tail
[0].iov_base
= NULL
;
161 rqstp
->rq_arg
.tail
[0].iov_len
= 0;
164 /* This accommodates the largest possible Write chunk,
167 #define MAX_BYTES_WRITE_SEG ((u32)(RPCSVC_MAXPAGES << PAGE_SHIFT))
169 /* This accommodates the largest possible Position-Zero
170 * Read chunk or Reply chunk, in one segment.
172 #define MAX_BYTES_SPECIAL_SEG ((u32)((RPCSVC_MAXPAGES + 2) << PAGE_SHIFT))
174 /* Sanity check the Read list.
176 * Implementation limits:
177 * - This implementation supports only one Read chunk.
180 * - Read list does not overflow buffer.
181 * - Segment size limited by largest NFS data payload.
183 * The segment count is limited to how many segments can
184 * fit in the transport header without overflowing the
185 * buffer. That's about 40 Read segments for a 1KB inline
188 * Returns pointer to the following Write list.
190 static __be32
*xdr_check_read_list(__be32
*p
, const __be32
*end
)
196 while (*p
++ != xdr_zero
) {
198 position
= be32_to_cpup(p
++);
200 } else if (be32_to_cpup(p
++) != position
) {
204 if (be32_to_cpup(p
++) > MAX_BYTES_SPECIAL_SEG
)
214 /* The segment count is limited to how many segments can
215 * fit in the transport header without overflowing the
216 * buffer. That's about 60 Write segments for a 1KB inline
219 static __be32
*xdr_check_write_chunk(__be32
*p
, const __be32
*end
,
224 segcount
= be32_to_cpup(p
++);
225 for (i
= 0; i
< segcount
; i
++) {
227 if (be32_to_cpup(p
++) > maxlen
)
238 /* Sanity check the Write list.
240 * Implementation limits:
241 * - This implementation supports only one Write chunk.
244 * - Write list does not overflow buffer.
245 * - Segment size limited by largest NFS data payload.
247 * Returns pointer to the following Reply chunk.
249 static __be32
*xdr_check_write_list(__be32
*p
, const __be32
*end
)
254 while (*p
++ != xdr_zero
) {
255 p
= xdr_check_write_chunk(p
, end
, MAX_BYTES_WRITE_SEG
);
264 /* Sanity check the Reply chunk.
267 * - Reply chunk does not overflow buffer.
268 * - Segment size limited by largest NFS data payload.
270 * Returns pointer to the following RPC header.
272 static __be32
*xdr_check_reply_chunk(__be32
*p
, const __be32
*end
)
274 if (*p
++ != xdr_zero
) {
275 p
= xdr_check_write_chunk(p
, end
, MAX_BYTES_SPECIAL_SEG
);
282 /* On entry, xdr->head[0].iov_base points to first byte in the
283 * RPC-over-RDMA header.
285 * On successful exit, head[0] points to first byte past the
286 * RPC-over-RDMA header. For RDMA_MSG, this is the RPC message.
287 * The length of the RPC-over-RDMA header is returned.
290 * - The transport header is entirely contained in the head iovec.
292 static int svc_rdma_xdr_decode_req(struct xdr_buf
*rq_arg
)
294 __be32
*p
, *end
, *rdma_argp
;
295 unsigned int hdr_len
;
298 /* Verify that there's enough bytes for header + something */
299 if (rq_arg
->len
<= RPCRDMA_HDRLEN_ERR
)
302 rdma_argp
= rq_arg
->head
[0].iov_base
;
303 if (*(rdma_argp
+ 1) != rpcrdma_version
)
306 switch (*(rdma_argp
+ 3)) {
324 end
= (__be32
*)((unsigned long)rdma_argp
+ rq_arg
->len
);
325 p
= xdr_check_read_list(rdma_argp
+ 4, end
);
328 p
= xdr_check_write_list(p
, end
);
331 p
= xdr_check_reply_chunk(p
, end
);
337 rq_arg
->head
[0].iov_base
= p
;
338 hdr_len
= (unsigned long)p
- (unsigned long)rdma_argp
;
339 rq_arg
->head
[0].iov_len
-= hdr_len
;
340 rq_arg
->len
-= hdr_len
;
341 dprintk("svcrdma: received %s request for XID 0x%08x, hdr_len=%u\n",
342 proc
, be32_to_cpup(rdma_argp
), hdr_len
);
346 dprintk("svcrdma: header too short = %d\n", rq_arg
->len
);
350 dprintk("svcrdma: bad xprt version: %u\n",
351 be32_to_cpup(rdma_argp
+ 1));
352 return -EPROTONOSUPPORT
;
355 dprintk("svcrdma: dropping RDMA_DONE/ERROR message\n");
359 dprintk("svcrdma: bad rdma procedure (%u)\n",
360 be32_to_cpup(rdma_argp
+ 3));
364 dprintk("svcrdma: failed to parse transport header\n");
368 static void rdma_read_complete(struct svc_rqst
*rqstp
,
369 struct svc_rdma_op_ctxt
*head
)
374 for (page_no
= 0; page_no
< head
->count
; page_no
++) {
375 put_page(rqstp
->rq_pages
[page_no
]);
376 rqstp
->rq_pages
[page_no
] = head
->pages
[page_no
];
379 /* Point rq_arg.pages past header */
380 rqstp
->rq_arg
.pages
= &rqstp
->rq_pages
[head
->hdr_count
];
381 rqstp
->rq_arg
.page_len
= head
->arg
.page_len
;
383 /* rq_respages starts after the last arg page */
384 rqstp
->rq_respages
= &rqstp
->rq_pages
[page_no
];
385 rqstp
->rq_next_page
= rqstp
->rq_respages
+ 1;
387 /* Rebuild rq_arg head and tail. */
388 rqstp
->rq_arg
.head
[0] = head
->arg
.head
[0];
389 rqstp
->rq_arg
.tail
[0] = head
->arg
.tail
[0];
390 rqstp
->rq_arg
.len
= head
->arg
.len
;
391 rqstp
->rq_arg
.buflen
= head
->arg
.buflen
;
394 static void svc_rdma_send_error(struct svcxprt_rdma
*xprt
,
395 __be32
*rdma_argp
, int status
)
397 struct svc_rdma_op_ctxt
*ctxt
;
398 __be32
*p
, *err_msgp
;
403 ret
= svc_rdma_repost_recv(xprt
, GFP_KERNEL
);
407 page
= alloc_page(GFP_KERNEL
);
410 err_msgp
= page_address(page
);
414 *p
++ = *(rdma_argp
+ 1);
415 *p
++ = xprt
->sc_fc_credits
;
417 if (status
== -EPROTONOSUPPORT
) {
419 *p
++ = rpcrdma_version
;
420 *p
++ = rpcrdma_version
;
424 length
= (unsigned long)p
- (unsigned long)err_msgp
;
426 /* Map transport header; no RPC message payload */
427 ctxt
= svc_rdma_get_context(xprt
);
428 ret
= svc_rdma_map_reply_hdr(xprt
, ctxt
, err_msgp
, length
);
430 dprintk("svcrdma: Error %d mapping send for protocol error\n",
435 ret
= svc_rdma_post_send_wr(xprt
, ctxt
, 1, 0);
437 dprintk("svcrdma: Error %d posting send for protocol error\n",
439 svc_rdma_unmap_dma(ctxt
);
440 svc_rdma_put_context(ctxt
, 1);
444 /* By convention, backchannel calls arrive via rdma_msg type
445 * messages, and never populate the chunk lists. This makes
446 * the RPC/RDMA header small and fixed in size, so it is
447 * straightforward to check the RPC header's direction field.
449 static bool svc_rdma_is_backchannel_reply(struct svc_xprt
*xprt
,
454 if (!xprt
->xpt_bc_xprt
)
458 if (*p
++ != rdma_msg
)
461 if (*p
++ != xdr_zero
)
463 if (*p
++ != xdr_zero
)
465 if (*p
++ != xdr_zero
)
469 if (*p
++ != *rdma_resp
)
472 if (*p
== cpu_to_be32(RPC_CALL
))
479 * svc_rdma_recvfrom - Receive an RPC call
480 * @rqstp: request structure into which to receive an RPC Call
483 * The positive number of bytes in the RPC Call message,
484 * %0 if there were no Calls ready to return,
485 * %-EINVAL if the Read chunk data is too large,
486 * %-ENOMEM if rdma_rw context pool was exhausted,
487 * %-ENOTCONN if posting failed (connection is lost),
488 * %-EIO if rdma_rw initialization failed (DMA mapping, etc).
490 * Called in a loop when XPT_DATA is set. XPT_DATA is cleared only
491 * when there are no remaining ctxt's to process.
493 * The next ctxt is removed from the "receive" lists.
495 * - If the ctxt completes a Read, then finish assembling the Call
496 * message and return the number of bytes in the message.
498 * - If the ctxt completes a Receive, then construct the Call
499 * message from the contents of the Receive buffer.
501 * - If there are no Read chunks in this message, then finish
502 * assembling the Call message and return the number of bytes
505 * - If there are Read chunks in this message, post Read WRs to
506 * pull that payload and return 0.
508 int svc_rdma_recvfrom(struct svc_rqst
*rqstp
)
510 struct svc_xprt
*xprt
= rqstp
->rq_xprt
;
511 struct svcxprt_rdma
*rdma_xprt
=
512 container_of(xprt
, struct svcxprt_rdma
, sc_xprt
);
513 struct svc_rdma_op_ctxt
*ctxt
;
517 spin_lock(&rdma_xprt
->sc_rq_dto_lock
);
518 if (!list_empty(&rdma_xprt
->sc_read_complete_q
)) {
519 ctxt
= list_first_entry(&rdma_xprt
->sc_read_complete_q
,
520 struct svc_rdma_op_ctxt
, list
);
521 list_del(&ctxt
->list
);
522 spin_unlock(&rdma_xprt
->sc_rq_dto_lock
);
523 rdma_read_complete(rqstp
, ctxt
);
525 } else if (!list_empty(&rdma_xprt
->sc_rq_dto_q
)) {
526 ctxt
= list_first_entry(&rdma_xprt
->sc_rq_dto_q
,
527 struct svc_rdma_op_ctxt
, list
);
528 list_del(&ctxt
->list
);
530 /* No new incoming requests, terminate the loop */
531 clear_bit(XPT_DATA
, &xprt
->xpt_flags
);
532 spin_unlock(&rdma_xprt
->sc_rq_dto_lock
);
535 spin_unlock(&rdma_xprt
->sc_rq_dto_lock
);
537 dprintk("svcrdma: recvfrom: ctxt=%p on xprt=%p, rqstp=%p\n",
538 ctxt
, rdma_xprt
, rqstp
);
539 atomic_inc(&rdma_stat_recv
);
541 /* Build up the XDR from the receive buffers. */
542 rdma_build_arg_xdr(rqstp
, ctxt
, ctxt
->byte_len
);
544 /* Decode the RDMA header. */
545 p
= (__be32
*)rqstp
->rq_arg
.head
[0].iov_base
;
546 ret
= svc_rdma_xdr_decode_req(&rqstp
->rq_arg
);
551 rqstp
->rq_xprt_hlen
= ret
;
553 if (svc_rdma_is_backchannel_reply(xprt
, p
)) {
554 ret
= svc_rdma_handle_bc_reply(xprt
->xpt_bc_xprt
, p
,
556 svc_rdma_put_context(ctxt
, 0);
562 p
+= rpcrdma_fixed_maxsz
;
567 svc_rdma_put_context(ctxt
, 0);
568 dprintk("svcrdma: recvfrom: xprt=%p, rqstp=%p, rq_arg.len=%u\n",
569 rdma_xprt
, rqstp
, rqstp
->rq_arg
.len
);
570 rqstp
->rq_prot
= IPPROTO_MAX
;
571 svc_xprt_copy_addrs(rqstp
, xprt
);
572 return rqstp
->rq_arg
.len
;
575 ret
= svc_rdma_recv_read_chunk(rdma_xprt
, rqstp
, ctxt
, p
);
581 svc_rdma_send_error(rdma_xprt
, p
, ret
);
582 svc_rdma_put_context(ctxt
, 0);
587 svc_rdma_send_error(rdma_xprt
, p
, ret
);
588 svc_rdma_put_context(ctxt
, 1);
592 svc_rdma_put_context(ctxt
, 1);
594 return svc_rdma_repost_recv(rdma_xprt
, GFP_KERNEL
);