kasan, arm64: clean up KASAN_SHADOW_SCALE_SHIFT usage
[linux/fpc-iii.git] / mm / page_alloc.c
blobcb416723538fe49810db0cb9b9e0b165cb963a44
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <xen/xen.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78 static DEFINE_MUTEX(pcp_batch_high_lock);
79 #define MIN_PERCPU_PAGELIST_FRACTION (8)
81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82 DEFINE_PER_CPU(int, numa_node);
83 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #endif
86 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
91 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
92 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
93 * defined in <linux/topology.h>.
95 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
96 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97 int _node_numa_mem_[MAX_NUMNODES];
98 #endif
100 /* work_structs for global per-cpu drains */
101 DEFINE_MUTEX(pcpu_drain_mutex);
102 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
104 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105 volatile unsigned long latent_entropy __latent_entropy;
106 EXPORT_SYMBOL(latent_entropy);
107 #endif
110 * Array of node states.
112 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
113 [N_POSSIBLE] = NODE_MASK_ALL,
114 [N_ONLINE] = { { [0] = 1UL } },
115 #ifndef CONFIG_NUMA
116 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
117 #ifdef CONFIG_HIGHMEM
118 [N_HIGH_MEMORY] = { { [0] = 1UL } },
119 #endif
120 [N_MEMORY] = { { [0] = 1UL } },
121 [N_CPU] = { { [0] = 1UL } },
122 #endif /* NUMA */
124 EXPORT_SYMBOL(node_states);
126 /* Protect totalram_pages and zone->managed_pages */
127 static DEFINE_SPINLOCK(managed_page_count_lock);
129 unsigned long totalram_pages __read_mostly;
130 unsigned long totalreserve_pages __read_mostly;
131 unsigned long totalcma_pages __read_mostly;
133 int percpu_pagelist_fraction;
134 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
137 * A cached value of the page's pageblock's migratetype, used when the page is
138 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
139 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
140 * Also the migratetype set in the page does not necessarily match the pcplist
141 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
142 * other index - this ensures that it will be put on the correct CMA freelist.
144 static inline int get_pcppage_migratetype(struct page *page)
146 return page->index;
149 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
151 page->index = migratetype;
154 #ifdef CONFIG_PM_SLEEP
156 * The following functions are used by the suspend/hibernate code to temporarily
157 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
158 * while devices are suspended. To avoid races with the suspend/hibernate code,
159 * they should always be called with pm_mutex held (gfp_allowed_mask also should
160 * only be modified with pm_mutex held, unless the suspend/hibernate code is
161 * guaranteed not to run in parallel with that modification).
164 static gfp_t saved_gfp_mask;
166 void pm_restore_gfp_mask(void)
168 WARN_ON(!mutex_is_locked(&pm_mutex));
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
171 saved_gfp_mask = 0;
175 void pm_restrict_gfp_mask(void)
177 WARN_ON(!mutex_is_locked(&pm_mutex));
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
183 bool pm_suspended_storage(void)
185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 return false;
187 return true;
189 #endif /* CONFIG_PM_SLEEP */
191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192 unsigned int pageblock_order __read_mostly;
193 #endif
195 static void __free_pages_ok(struct page *page, unsigned int order);
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
209 #ifdef CONFIG_ZONE_DMA
210 256,
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 256,
214 #endif
215 #ifdef CONFIG_HIGHMEM
217 #endif
221 EXPORT_SYMBOL(totalram_pages);
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 "DMA32",
229 #endif
230 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 "HighMem",
233 #endif
234 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 "Device",
237 #endif
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245 #ifdef CONFIG_CMA
246 "CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250 #endif
253 compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261 #endif
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
268 static unsigned long __meminitdata nr_kernel_pages;
269 static unsigned long __meminitdata nr_all_pages;
270 static unsigned long __meminitdata dma_reserve;
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
275 static unsigned long __initdata required_kernelcore;
276 static unsigned long __initdata required_movablecore;
277 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
278 static bool mirrored_kernelcore;
280 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281 int movable_zone;
282 EXPORT_SYMBOL(movable_zone);
283 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
285 #if MAX_NUMNODES > 1
286 int nr_node_ids __read_mostly = MAX_NUMNODES;
287 int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
292 int page_group_by_mobility_disabled __read_mostly;
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 * Determine how many pages need to be initialized during early boot
298 * (non-deferred initialization).
299 * The value of first_deferred_pfn will be set later, once non-deferred pages
300 * are initialized, but for now set it ULONG_MAX.
302 static inline void reset_deferred_meminit(pg_data_t *pgdat)
304 phys_addr_t start_addr, end_addr;
305 unsigned long max_pgcnt;
306 unsigned long reserved;
309 * Initialise at least 2G of a node but also take into account that
310 * two large system hashes that can take up 1GB for 0.25TB/node.
312 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
313 (pgdat->node_spanned_pages >> 8));
316 * Compensate the all the memblock reservations (e.g. crash kernel)
317 * from the initial estimation to make sure we will initialize enough
318 * memory to boot.
320 start_addr = PFN_PHYS(pgdat->node_start_pfn);
321 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
322 reserved = memblock_reserved_memory_within(start_addr, end_addr);
323 max_pgcnt += PHYS_PFN(reserved);
325 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
326 pgdat->first_deferred_pfn = ULONG_MAX;
329 /* Returns true if the struct page for the pfn is uninitialised */
330 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
332 int nid = early_pfn_to_nid(pfn);
334 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
335 return true;
337 return false;
341 * Returns false when the remaining initialisation should be deferred until
342 * later in the boot cycle when it can be parallelised.
344 static inline bool update_defer_init(pg_data_t *pgdat,
345 unsigned long pfn, unsigned long zone_end,
346 unsigned long *nr_initialised)
348 /* Always populate low zones for address-constrained allocations */
349 if (zone_end < pgdat_end_pfn(pgdat))
350 return true;
351 /* Xen PV domains need page structures early */
352 if (xen_pv_domain())
353 return true;
354 (*nr_initialised)++;
355 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
356 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
357 pgdat->first_deferred_pfn = pfn;
358 return false;
361 return true;
363 #else
364 static inline void reset_deferred_meminit(pg_data_t *pgdat)
368 static inline bool early_page_uninitialised(unsigned long pfn)
370 return false;
373 static inline bool update_defer_init(pg_data_t *pgdat,
374 unsigned long pfn, unsigned long zone_end,
375 unsigned long *nr_initialised)
377 return true;
379 #endif
381 /* Return a pointer to the bitmap storing bits affecting a block of pages */
382 static inline unsigned long *get_pageblock_bitmap(struct page *page,
383 unsigned long pfn)
385 #ifdef CONFIG_SPARSEMEM
386 return __pfn_to_section(pfn)->pageblock_flags;
387 #else
388 return page_zone(page)->pageblock_flags;
389 #endif /* CONFIG_SPARSEMEM */
392 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
394 #ifdef CONFIG_SPARSEMEM
395 pfn &= (PAGES_PER_SECTION-1);
396 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
397 #else
398 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
399 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
400 #endif /* CONFIG_SPARSEMEM */
404 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
405 * @page: The page within the block of interest
406 * @pfn: The target page frame number
407 * @end_bitidx: The last bit of interest to retrieve
408 * @mask: mask of bits that the caller is interested in
410 * Return: pageblock_bits flags
412 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
413 unsigned long pfn,
414 unsigned long end_bitidx,
415 unsigned long mask)
417 unsigned long *bitmap;
418 unsigned long bitidx, word_bitidx;
419 unsigned long word;
421 bitmap = get_pageblock_bitmap(page, pfn);
422 bitidx = pfn_to_bitidx(page, pfn);
423 word_bitidx = bitidx / BITS_PER_LONG;
424 bitidx &= (BITS_PER_LONG-1);
426 word = bitmap[word_bitidx];
427 bitidx += end_bitidx;
428 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
431 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
432 unsigned long end_bitidx,
433 unsigned long mask)
435 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
438 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
440 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
444 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
445 * @page: The page within the block of interest
446 * @flags: The flags to set
447 * @pfn: The target page frame number
448 * @end_bitidx: The last bit of interest
449 * @mask: mask of bits that the caller is interested in
451 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
452 unsigned long pfn,
453 unsigned long end_bitidx,
454 unsigned long mask)
456 unsigned long *bitmap;
457 unsigned long bitidx, word_bitidx;
458 unsigned long old_word, word;
460 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
462 bitmap = get_pageblock_bitmap(page, pfn);
463 bitidx = pfn_to_bitidx(page, pfn);
464 word_bitidx = bitidx / BITS_PER_LONG;
465 bitidx &= (BITS_PER_LONG-1);
467 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
469 bitidx += end_bitidx;
470 mask <<= (BITS_PER_LONG - bitidx - 1);
471 flags <<= (BITS_PER_LONG - bitidx - 1);
473 word = READ_ONCE(bitmap[word_bitidx]);
474 for (;;) {
475 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
476 if (word == old_word)
477 break;
478 word = old_word;
482 void set_pageblock_migratetype(struct page *page, int migratetype)
484 if (unlikely(page_group_by_mobility_disabled &&
485 migratetype < MIGRATE_PCPTYPES))
486 migratetype = MIGRATE_UNMOVABLE;
488 set_pageblock_flags_group(page, (unsigned long)migratetype,
489 PB_migrate, PB_migrate_end);
492 #ifdef CONFIG_DEBUG_VM
493 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
495 int ret = 0;
496 unsigned seq;
497 unsigned long pfn = page_to_pfn(page);
498 unsigned long sp, start_pfn;
500 do {
501 seq = zone_span_seqbegin(zone);
502 start_pfn = zone->zone_start_pfn;
503 sp = zone->spanned_pages;
504 if (!zone_spans_pfn(zone, pfn))
505 ret = 1;
506 } while (zone_span_seqretry(zone, seq));
508 if (ret)
509 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
510 pfn, zone_to_nid(zone), zone->name,
511 start_pfn, start_pfn + sp);
513 return ret;
516 static int page_is_consistent(struct zone *zone, struct page *page)
518 if (!pfn_valid_within(page_to_pfn(page)))
519 return 0;
520 if (zone != page_zone(page))
521 return 0;
523 return 1;
526 * Temporary debugging check for pages not lying within a given zone.
528 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
530 if (page_outside_zone_boundaries(zone, page))
531 return 1;
532 if (!page_is_consistent(zone, page))
533 return 1;
535 return 0;
537 #else
538 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
540 return 0;
542 #endif
544 static void bad_page(struct page *page, const char *reason,
545 unsigned long bad_flags)
547 static unsigned long resume;
548 static unsigned long nr_shown;
549 static unsigned long nr_unshown;
552 * Allow a burst of 60 reports, then keep quiet for that minute;
553 * or allow a steady drip of one report per second.
555 if (nr_shown == 60) {
556 if (time_before(jiffies, resume)) {
557 nr_unshown++;
558 goto out;
560 if (nr_unshown) {
561 pr_alert(
562 "BUG: Bad page state: %lu messages suppressed\n",
563 nr_unshown);
564 nr_unshown = 0;
566 nr_shown = 0;
568 if (nr_shown++ == 0)
569 resume = jiffies + 60 * HZ;
571 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
572 current->comm, page_to_pfn(page));
573 __dump_page(page, reason);
574 bad_flags &= page->flags;
575 if (bad_flags)
576 pr_alert("bad because of flags: %#lx(%pGp)\n",
577 bad_flags, &bad_flags);
578 dump_page_owner(page);
580 print_modules();
581 dump_stack();
582 out:
583 /* Leave bad fields for debug, except PageBuddy could make trouble */
584 page_mapcount_reset(page); /* remove PageBuddy */
585 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
589 * Higher-order pages are called "compound pages". They are structured thusly:
591 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
593 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
594 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
596 * The first tail page's ->compound_dtor holds the offset in array of compound
597 * page destructors. See compound_page_dtors.
599 * The first tail page's ->compound_order holds the order of allocation.
600 * This usage means that zero-order pages may not be compound.
603 void free_compound_page(struct page *page)
605 __free_pages_ok(page, compound_order(page));
608 void prep_compound_page(struct page *page, unsigned int order)
610 int i;
611 int nr_pages = 1 << order;
613 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
614 set_compound_order(page, order);
615 __SetPageHead(page);
616 for (i = 1; i < nr_pages; i++) {
617 struct page *p = page + i;
618 set_page_count(p, 0);
619 p->mapping = TAIL_MAPPING;
620 set_compound_head(p, page);
622 atomic_set(compound_mapcount_ptr(page), -1);
625 #ifdef CONFIG_DEBUG_PAGEALLOC
626 unsigned int _debug_guardpage_minorder;
627 bool _debug_pagealloc_enabled __read_mostly
628 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
629 EXPORT_SYMBOL(_debug_pagealloc_enabled);
630 bool _debug_guardpage_enabled __read_mostly;
632 static int __init early_debug_pagealloc(char *buf)
634 if (!buf)
635 return -EINVAL;
636 return kstrtobool(buf, &_debug_pagealloc_enabled);
638 early_param("debug_pagealloc", early_debug_pagealloc);
640 static bool need_debug_guardpage(void)
642 /* If we don't use debug_pagealloc, we don't need guard page */
643 if (!debug_pagealloc_enabled())
644 return false;
646 if (!debug_guardpage_minorder())
647 return false;
649 return true;
652 static void init_debug_guardpage(void)
654 if (!debug_pagealloc_enabled())
655 return;
657 if (!debug_guardpage_minorder())
658 return;
660 _debug_guardpage_enabled = true;
663 struct page_ext_operations debug_guardpage_ops = {
664 .need = need_debug_guardpage,
665 .init = init_debug_guardpage,
668 static int __init debug_guardpage_minorder_setup(char *buf)
670 unsigned long res;
672 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
673 pr_err("Bad debug_guardpage_minorder value\n");
674 return 0;
676 _debug_guardpage_minorder = res;
677 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
678 return 0;
680 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
682 static inline bool set_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype)
685 struct page_ext *page_ext;
687 if (!debug_guardpage_enabled())
688 return false;
690 if (order >= debug_guardpage_minorder())
691 return false;
693 page_ext = lookup_page_ext(page);
694 if (unlikely(!page_ext))
695 return false;
697 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
699 INIT_LIST_HEAD(&page->lru);
700 set_page_private(page, order);
701 /* Guard pages are not available for any usage */
702 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
704 return true;
707 static inline void clear_page_guard(struct zone *zone, struct page *page,
708 unsigned int order, int migratetype)
710 struct page_ext *page_ext;
712 if (!debug_guardpage_enabled())
713 return;
715 page_ext = lookup_page_ext(page);
716 if (unlikely(!page_ext))
717 return;
719 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
721 set_page_private(page, 0);
722 if (!is_migrate_isolate(migratetype))
723 __mod_zone_freepage_state(zone, (1 << order), migratetype);
725 #else
726 struct page_ext_operations debug_guardpage_ops;
727 static inline bool set_page_guard(struct zone *zone, struct page *page,
728 unsigned int order, int migratetype) { return false; }
729 static inline void clear_page_guard(struct zone *zone, struct page *page,
730 unsigned int order, int migratetype) {}
731 #endif
733 static inline void set_page_order(struct page *page, unsigned int order)
735 set_page_private(page, order);
736 __SetPageBuddy(page);
739 static inline void rmv_page_order(struct page *page)
741 __ClearPageBuddy(page);
742 set_page_private(page, 0);
746 * This function checks whether a page is free && is the buddy
747 * we can do coalesce a page and its buddy if
748 * (a) the buddy is not in a hole (check before calling!) &&
749 * (b) the buddy is in the buddy system &&
750 * (c) a page and its buddy have the same order &&
751 * (d) a page and its buddy are in the same zone.
753 * For recording whether a page is in the buddy system, we set ->_mapcount
754 * PAGE_BUDDY_MAPCOUNT_VALUE.
755 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
756 * serialized by zone->lock.
758 * For recording page's order, we use page_private(page).
760 static inline int page_is_buddy(struct page *page, struct page *buddy,
761 unsigned int order)
763 if (page_is_guard(buddy) && page_order(buddy) == order) {
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
769 return 1;
772 if (PageBuddy(buddy) && page_order(buddy) == order) {
774 * zone check is done late to avoid uselessly
775 * calculating zone/node ids for pages that could
776 * never merge.
778 if (page_zone_id(page) != page_zone_id(buddy))
779 return 0;
781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
783 return 1;
785 return 0;
789 * Freeing function for a buddy system allocator.
791 * The concept of a buddy system is to maintain direct-mapped table
792 * (containing bit values) for memory blocks of various "orders".
793 * The bottom level table contains the map for the smallest allocatable
794 * units of memory (here, pages), and each level above it describes
795 * pairs of units from the levels below, hence, "buddies".
796 * At a high level, all that happens here is marking the table entry
797 * at the bottom level available, and propagating the changes upward
798 * as necessary, plus some accounting needed to play nicely with other
799 * parts of the VM system.
800 * At each level, we keep a list of pages, which are heads of continuous
801 * free pages of length of (1 << order) and marked with _mapcount
802 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
803 * field.
804 * So when we are allocating or freeing one, we can derive the state of the
805 * other. That is, if we allocate a small block, and both were
806 * free, the remainder of the region must be split into blocks.
807 * If a block is freed, and its buddy is also free, then this
808 * triggers coalescing into a block of larger size.
810 * -- nyc
813 static inline void __free_one_page(struct page *page,
814 unsigned long pfn,
815 struct zone *zone, unsigned int order,
816 int migratetype)
818 unsigned long combined_pfn;
819 unsigned long uninitialized_var(buddy_pfn);
820 struct page *buddy;
821 unsigned int max_order;
823 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
825 VM_BUG_ON(!zone_is_initialized(zone));
826 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
828 VM_BUG_ON(migratetype == -1);
829 if (likely(!is_migrate_isolate(migratetype)))
830 __mod_zone_freepage_state(zone, 1 << order, migratetype);
832 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
833 VM_BUG_ON_PAGE(bad_range(zone, page), page);
835 continue_merging:
836 while (order < max_order - 1) {
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
840 if (!pfn_valid_within(buddy_pfn))
841 goto done_merging;
842 if (!page_is_buddy(page, buddy, order))
843 goto done_merging;
845 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 * merge with it and move up one order.
848 if (page_is_guard(buddy)) {
849 clear_page_guard(zone, buddy, order, migratetype);
850 } else {
851 list_del(&buddy->lru);
852 zone->free_area[order].nr_free--;
853 rmv_page_order(buddy);
855 combined_pfn = buddy_pfn & pfn;
856 page = page + (combined_pfn - pfn);
857 pfn = combined_pfn;
858 order++;
860 if (max_order < MAX_ORDER) {
861 /* If we are here, it means order is >= pageblock_order.
862 * We want to prevent merge between freepages on isolate
863 * pageblock and normal pageblock. Without this, pageblock
864 * isolation could cause incorrect freepage or CMA accounting.
866 * We don't want to hit this code for the more frequent
867 * low-order merging.
869 if (unlikely(has_isolate_pageblock(zone))) {
870 int buddy_mt;
872 buddy_pfn = __find_buddy_pfn(pfn, order);
873 buddy = page + (buddy_pfn - pfn);
874 buddy_mt = get_pageblock_migratetype(buddy);
876 if (migratetype != buddy_mt
877 && (is_migrate_isolate(migratetype) ||
878 is_migrate_isolate(buddy_mt)))
879 goto done_merging;
881 max_order++;
882 goto continue_merging;
885 done_merging:
886 set_page_order(page, order);
889 * If this is not the largest possible page, check if the buddy
890 * of the next-highest order is free. If it is, it's possible
891 * that pages are being freed that will coalesce soon. In case,
892 * that is happening, add the free page to the tail of the list
893 * so it's less likely to be used soon and more likely to be merged
894 * as a higher order page
896 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
897 struct page *higher_page, *higher_buddy;
898 combined_pfn = buddy_pfn & pfn;
899 higher_page = page + (combined_pfn - pfn);
900 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
901 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
902 if (pfn_valid_within(buddy_pfn) &&
903 page_is_buddy(higher_page, higher_buddy, order + 1)) {
904 list_add_tail(&page->lru,
905 &zone->free_area[order].free_list[migratetype]);
906 goto out;
910 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
911 out:
912 zone->free_area[order].nr_free++;
916 * A bad page could be due to a number of fields. Instead of multiple branches,
917 * try and check multiple fields with one check. The caller must do a detailed
918 * check if necessary.
920 static inline bool page_expected_state(struct page *page,
921 unsigned long check_flags)
923 if (unlikely(atomic_read(&page->_mapcount) != -1))
924 return false;
926 if (unlikely((unsigned long)page->mapping |
927 page_ref_count(page) |
928 #ifdef CONFIG_MEMCG
929 (unsigned long)page->mem_cgroup |
930 #endif
931 (page->flags & check_flags)))
932 return false;
934 return true;
937 static void free_pages_check_bad(struct page *page)
939 const char *bad_reason;
940 unsigned long bad_flags;
942 bad_reason = NULL;
943 bad_flags = 0;
945 if (unlikely(atomic_read(&page->_mapcount) != -1))
946 bad_reason = "nonzero mapcount";
947 if (unlikely(page->mapping != NULL))
948 bad_reason = "non-NULL mapping";
949 if (unlikely(page_ref_count(page) != 0))
950 bad_reason = "nonzero _refcount";
951 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
952 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
953 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
955 #ifdef CONFIG_MEMCG
956 if (unlikely(page->mem_cgroup))
957 bad_reason = "page still charged to cgroup";
958 #endif
959 bad_page(page, bad_reason, bad_flags);
962 static inline int free_pages_check(struct page *page)
964 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
965 return 0;
967 /* Something has gone sideways, find it */
968 free_pages_check_bad(page);
969 return 1;
972 static int free_tail_pages_check(struct page *head_page, struct page *page)
974 int ret = 1;
977 * We rely page->lru.next never has bit 0 set, unless the page
978 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
980 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
982 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
983 ret = 0;
984 goto out;
986 switch (page - head_page) {
987 case 1:
988 /* the first tail page: ->mapping is compound_mapcount() */
989 if (unlikely(compound_mapcount(page))) {
990 bad_page(page, "nonzero compound_mapcount", 0);
991 goto out;
993 break;
994 case 2:
996 * the second tail page: ->mapping is
997 * page_deferred_list().next -- ignore value.
999 break;
1000 default:
1001 if (page->mapping != TAIL_MAPPING) {
1002 bad_page(page, "corrupted mapping in tail page", 0);
1003 goto out;
1005 break;
1007 if (unlikely(!PageTail(page))) {
1008 bad_page(page, "PageTail not set", 0);
1009 goto out;
1011 if (unlikely(compound_head(page) != head_page)) {
1012 bad_page(page, "compound_head not consistent", 0);
1013 goto out;
1015 ret = 0;
1016 out:
1017 page->mapping = NULL;
1018 clear_compound_head(page);
1019 return ret;
1022 static __always_inline bool free_pages_prepare(struct page *page,
1023 unsigned int order, bool check_free)
1025 int bad = 0;
1027 VM_BUG_ON_PAGE(PageTail(page), page);
1029 trace_mm_page_free(page, order);
1032 * Check tail pages before head page information is cleared to
1033 * avoid checking PageCompound for order-0 pages.
1035 if (unlikely(order)) {
1036 bool compound = PageCompound(page);
1037 int i;
1039 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1041 if (compound)
1042 ClearPageDoubleMap(page);
1043 for (i = 1; i < (1 << order); i++) {
1044 if (compound)
1045 bad += free_tail_pages_check(page, page + i);
1046 if (unlikely(free_pages_check(page + i))) {
1047 bad++;
1048 continue;
1050 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1053 if (PageMappingFlags(page))
1054 page->mapping = NULL;
1055 if (memcg_kmem_enabled() && PageKmemcg(page))
1056 memcg_kmem_uncharge(page, order);
1057 if (check_free)
1058 bad += free_pages_check(page);
1059 if (bad)
1060 return false;
1062 page_cpupid_reset_last(page);
1063 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1064 reset_page_owner(page, order);
1066 if (!PageHighMem(page)) {
1067 debug_check_no_locks_freed(page_address(page),
1068 PAGE_SIZE << order);
1069 debug_check_no_obj_freed(page_address(page),
1070 PAGE_SIZE << order);
1072 arch_free_page(page, order);
1073 kernel_poison_pages(page, 1 << order, 0);
1074 kernel_map_pages(page, 1 << order, 0);
1075 kasan_free_pages(page, order);
1077 return true;
1080 #ifdef CONFIG_DEBUG_VM
1081 static inline bool free_pcp_prepare(struct page *page)
1083 return free_pages_prepare(page, 0, true);
1086 static inline bool bulkfree_pcp_prepare(struct page *page)
1088 return false;
1090 #else
1091 static bool free_pcp_prepare(struct page *page)
1093 return free_pages_prepare(page, 0, false);
1096 static bool bulkfree_pcp_prepare(struct page *page)
1098 return free_pages_check(page);
1100 #endif /* CONFIG_DEBUG_VM */
1103 * Frees a number of pages from the PCP lists
1104 * Assumes all pages on list are in same zone, and of same order.
1105 * count is the number of pages to free.
1107 * If the zone was previously in an "all pages pinned" state then look to
1108 * see if this freeing clears that state.
1110 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1111 * pinned" detection logic.
1113 static void free_pcppages_bulk(struct zone *zone, int count,
1114 struct per_cpu_pages *pcp)
1116 int migratetype = 0;
1117 int batch_free = 0;
1118 bool isolated_pageblocks;
1120 spin_lock(&zone->lock);
1121 isolated_pageblocks = has_isolate_pageblock(zone);
1123 while (count) {
1124 struct page *page;
1125 struct list_head *list;
1128 * Remove pages from lists in a round-robin fashion. A
1129 * batch_free count is maintained that is incremented when an
1130 * empty list is encountered. This is so more pages are freed
1131 * off fuller lists instead of spinning excessively around empty
1132 * lists
1134 do {
1135 batch_free++;
1136 if (++migratetype == MIGRATE_PCPTYPES)
1137 migratetype = 0;
1138 list = &pcp->lists[migratetype];
1139 } while (list_empty(list));
1141 /* This is the only non-empty list. Free them all. */
1142 if (batch_free == MIGRATE_PCPTYPES)
1143 batch_free = count;
1145 do {
1146 int mt; /* migratetype of the to-be-freed page */
1148 page = list_last_entry(list, struct page, lru);
1149 /* must delete as __free_one_page list manipulates */
1150 list_del(&page->lru);
1152 mt = get_pcppage_migratetype(page);
1153 /* MIGRATE_ISOLATE page should not go to pcplists */
1154 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1155 /* Pageblock could have been isolated meanwhile */
1156 if (unlikely(isolated_pageblocks))
1157 mt = get_pageblock_migratetype(page);
1159 if (bulkfree_pcp_prepare(page))
1160 continue;
1162 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1163 trace_mm_page_pcpu_drain(page, 0, mt);
1164 } while (--count && --batch_free && !list_empty(list));
1166 spin_unlock(&zone->lock);
1169 static void free_one_page(struct zone *zone,
1170 struct page *page, unsigned long pfn,
1171 unsigned int order,
1172 int migratetype)
1174 spin_lock(&zone->lock);
1175 if (unlikely(has_isolate_pageblock(zone) ||
1176 is_migrate_isolate(migratetype))) {
1177 migratetype = get_pfnblock_migratetype(page, pfn);
1179 __free_one_page(page, pfn, zone, order, migratetype);
1180 spin_unlock(&zone->lock);
1183 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1184 unsigned long zone, int nid, bool zero)
1186 if (zero)
1187 mm_zero_struct_page(page);
1188 set_page_links(page, zone, nid, pfn);
1189 init_page_count(page);
1190 page_mapcount_reset(page);
1191 page_cpupid_reset_last(page);
1193 INIT_LIST_HEAD(&page->lru);
1194 #ifdef WANT_PAGE_VIRTUAL
1195 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1196 if (!is_highmem_idx(zone))
1197 set_page_address(page, __va(pfn << PAGE_SHIFT));
1198 #endif
1201 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1202 int nid, bool zero)
1204 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1207 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1208 static void __meminit init_reserved_page(unsigned long pfn)
1210 pg_data_t *pgdat;
1211 int nid, zid;
1213 if (!early_page_uninitialised(pfn))
1214 return;
1216 nid = early_pfn_to_nid(pfn);
1217 pgdat = NODE_DATA(nid);
1219 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1220 struct zone *zone = &pgdat->node_zones[zid];
1222 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1223 break;
1225 __init_single_pfn(pfn, zid, nid, true);
1227 #else
1228 static inline void init_reserved_page(unsigned long pfn)
1231 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1234 * Initialised pages do not have PageReserved set. This function is
1235 * called for each range allocated by the bootmem allocator and
1236 * marks the pages PageReserved. The remaining valid pages are later
1237 * sent to the buddy page allocator.
1239 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1241 unsigned long start_pfn = PFN_DOWN(start);
1242 unsigned long end_pfn = PFN_UP(end);
1244 for (; start_pfn < end_pfn; start_pfn++) {
1245 if (pfn_valid(start_pfn)) {
1246 struct page *page = pfn_to_page(start_pfn);
1248 init_reserved_page(start_pfn);
1250 /* Avoid false-positive PageTail() */
1251 INIT_LIST_HEAD(&page->lru);
1253 SetPageReserved(page);
1258 static void __free_pages_ok(struct page *page, unsigned int order)
1260 unsigned long flags;
1261 int migratetype;
1262 unsigned long pfn = page_to_pfn(page);
1264 if (!free_pages_prepare(page, order, true))
1265 return;
1267 migratetype = get_pfnblock_migratetype(page, pfn);
1268 local_irq_save(flags);
1269 __count_vm_events(PGFREE, 1 << order);
1270 free_one_page(page_zone(page), page, pfn, order, migratetype);
1271 local_irq_restore(flags);
1274 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1276 unsigned int nr_pages = 1 << order;
1277 struct page *p = page;
1278 unsigned int loop;
1280 prefetchw(p);
1281 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1282 prefetchw(p + 1);
1283 __ClearPageReserved(p);
1284 set_page_count(p, 0);
1286 __ClearPageReserved(p);
1287 set_page_count(p, 0);
1289 page_zone(page)->managed_pages += nr_pages;
1290 set_page_refcounted(page);
1291 __free_pages(page, order);
1294 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1295 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1297 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1299 int __meminit early_pfn_to_nid(unsigned long pfn)
1301 static DEFINE_SPINLOCK(early_pfn_lock);
1302 int nid;
1304 spin_lock(&early_pfn_lock);
1305 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1306 if (nid < 0)
1307 nid = first_online_node;
1308 spin_unlock(&early_pfn_lock);
1310 return nid;
1312 #endif
1314 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1315 static inline bool __meminit __maybe_unused
1316 meminit_pfn_in_nid(unsigned long pfn, int node,
1317 struct mminit_pfnnid_cache *state)
1319 int nid;
1321 nid = __early_pfn_to_nid(pfn, state);
1322 if (nid >= 0 && nid != node)
1323 return false;
1324 return true;
1327 /* Only safe to use early in boot when initialisation is single-threaded */
1328 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1330 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1333 #else
1335 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1337 return true;
1339 static inline bool __meminit __maybe_unused
1340 meminit_pfn_in_nid(unsigned long pfn, int node,
1341 struct mminit_pfnnid_cache *state)
1343 return true;
1345 #endif
1348 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1349 unsigned int order)
1351 if (early_page_uninitialised(pfn))
1352 return;
1353 return __free_pages_boot_core(page, order);
1357 * Check that the whole (or subset of) a pageblock given by the interval of
1358 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1359 * with the migration of free compaction scanner. The scanners then need to
1360 * use only pfn_valid_within() check for arches that allow holes within
1361 * pageblocks.
1363 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1365 * It's possible on some configurations to have a setup like node0 node1 node0
1366 * i.e. it's possible that all pages within a zones range of pages do not
1367 * belong to a single zone. We assume that a border between node0 and node1
1368 * can occur within a single pageblock, but not a node0 node1 node0
1369 * interleaving within a single pageblock. It is therefore sufficient to check
1370 * the first and last page of a pageblock and avoid checking each individual
1371 * page in a pageblock.
1373 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1374 unsigned long end_pfn, struct zone *zone)
1376 struct page *start_page;
1377 struct page *end_page;
1379 /* end_pfn is one past the range we are checking */
1380 end_pfn--;
1382 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1383 return NULL;
1385 start_page = pfn_to_online_page(start_pfn);
1386 if (!start_page)
1387 return NULL;
1389 if (page_zone(start_page) != zone)
1390 return NULL;
1392 end_page = pfn_to_page(end_pfn);
1394 /* This gives a shorter code than deriving page_zone(end_page) */
1395 if (page_zone_id(start_page) != page_zone_id(end_page))
1396 return NULL;
1398 return start_page;
1401 void set_zone_contiguous(struct zone *zone)
1403 unsigned long block_start_pfn = zone->zone_start_pfn;
1404 unsigned long block_end_pfn;
1406 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1407 for (; block_start_pfn < zone_end_pfn(zone);
1408 block_start_pfn = block_end_pfn,
1409 block_end_pfn += pageblock_nr_pages) {
1411 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1413 if (!__pageblock_pfn_to_page(block_start_pfn,
1414 block_end_pfn, zone))
1415 return;
1418 /* We confirm that there is no hole */
1419 zone->contiguous = true;
1422 void clear_zone_contiguous(struct zone *zone)
1424 zone->contiguous = false;
1427 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1428 static void __init deferred_free_range(unsigned long pfn,
1429 unsigned long nr_pages)
1431 struct page *page;
1432 unsigned long i;
1434 if (!nr_pages)
1435 return;
1437 page = pfn_to_page(pfn);
1439 /* Free a large naturally-aligned chunk if possible */
1440 if (nr_pages == pageblock_nr_pages &&
1441 (pfn & (pageblock_nr_pages - 1)) == 0) {
1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443 __free_pages_boot_core(page, pageblock_order);
1444 return;
1447 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1448 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1449 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1450 __free_pages_boot_core(page, 0);
1454 /* Completion tracking for deferred_init_memmap() threads */
1455 static atomic_t pgdat_init_n_undone __initdata;
1456 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1458 static inline void __init pgdat_init_report_one_done(void)
1460 if (atomic_dec_and_test(&pgdat_init_n_undone))
1461 complete(&pgdat_init_all_done_comp);
1465 * Returns true if page needs to be initialized or freed to buddy allocator.
1467 * First we check if pfn is valid on architectures where it is possible to have
1468 * holes within pageblock_nr_pages. On systems where it is not possible, this
1469 * function is optimized out.
1471 * Then, we check if a current large page is valid by only checking the validity
1472 * of the head pfn.
1474 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1475 * within a node: a pfn is between start and end of a node, but does not belong
1476 * to this memory node.
1478 static inline bool __init
1479 deferred_pfn_valid(int nid, unsigned long pfn,
1480 struct mminit_pfnnid_cache *nid_init_state)
1482 if (!pfn_valid_within(pfn))
1483 return false;
1484 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1485 return false;
1486 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1487 return false;
1488 return true;
1492 * Free pages to buddy allocator. Try to free aligned pages in
1493 * pageblock_nr_pages sizes.
1495 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1496 unsigned long end_pfn)
1498 struct mminit_pfnnid_cache nid_init_state = { };
1499 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1500 unsigned long nr_free = 0;
1502 for (; pfn < end_pfn; pfn++) {
1503 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1504 deferred_free_range(pfn - nr_free, nr_free);
1505 nr_free = 0;
1506 } else if (!(pfn & nr_pgmask)) {
1507 deferred_free_range(pfn - nr_free, nr_free);
1508 nr_free = 1;
1509 cond_resched();
1510 } else {
1511 nr_free++;
1514 /* Free the last block of pages to allocator */
1515 deferred_free_range(pfn - nr_free, nr_free);
1519 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1520 * by performing it only once every pageblock_nr_pages.
1521 * Return number of pages initialized.
1523 static unsigned long __init deferred_init_pages(int nid, int zid,
1524 unsigned long pfn,
1525 unsigned long end_pfn)
1527 struct mminit_pfnnid_cache nid_init_state = { };
1528 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1529 unsigned long nr_pages = 0;
1530 struct page *page = NULL;
1532 for (; pfn < end_pfn; pfn++) {
1533 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1534 page = NULL;
1535 continue;
1536 } else if (!page || !(pfn & nr_pgmask)) {
1537 page = pfn_to_page(pfn);
1538 cond_resched();
1539 } else {
1540 page++;
1542 __init_single_page(page, pfn, zid, nid, true);
1543 nr_pages++;
1545 return (nr_pages);
1548 /* Initialise remaining memory on a node */
1549 static int __init deferred_init_memmap(void *data)
1551 pg_data_t *pgdat = data;
1552 int nid = pgdat->node_id;
1553 unsigned long start = jiffies;
1554 unsigned long nr_pages = 0;
1555 unsigned long spfn, epfn;
1556 phys_addr_t spa, epa;
1557 int zid;
1558 struct zone *zone;
1559 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1560 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1561 u64 i;
1563 if (first_init_pfn == ULONG_MAX) {
1564 pgdat_init_report_one_done();
1565 return 0;
1568 /* Bind memory initialisation thread to a local node if possible */
1569 if (!cpumask_empty(cpumask))
1570 set_cpus_allowed_ptr(current, cpumask);
1572 /* Sanity check boundaries */
1573 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1574 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1575 pgdat->first_deferred_pfn = ULONG_MAX;
1577 /* Only the highest zone is deferred so find it */
1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 zone = pgdat->node_zones + zid;
1580 if (first_init_pfn < zone_end_pfn(zone))
1581 break;
1583 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1586 * Initialize and free pages. We do it in two loops: first we initialize
1587 * struct page, than free to buddy allocator, because while we are
1588 * freeing pages we can access pages that are ahead (computing buddy
1589 * page in __free_one_page()).
1591 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1592 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1593 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1594 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1596 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1597 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1598 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1599 deferred_free_pages(nid, zid, spfn, epfn);
1602 /* Sanity check that the next zone really is unpopulated */
1603 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1605 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1606 jiffies_to_msecs(jiffies - start));
1608 pgdat_init_report_one_done();
1609 return 0;
1611 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1613 void __init page_alloc_init_late(void)
1615 struct zone *zone;
1617 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1618 int nid;
1620 /* There will be num_node_state(N_MEMORY) threads */
1621 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1622 for_each_node_state(nid, N_MEMORY) {
1623 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1626 /* Block until all are initialised */
1627 wait_for_completion(&pgdat_init_all_done_comp);
1629 /* Reinit limits that are based on free pages after the kernel is up */
1630 files_maxfiles_init();
1631 #endif
1632 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1633 /* Discard memblock private memory */
1634 memblock_discard();
1635 #endif
1637 for_each_populated_zone(zone)
1638 set_zone_contiguous(zone);
1641 #ifdef CONFIG_CMA
1642 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1643 void __init init_cma_reserved_pageblock(struct page *page)
1645 unsigned i = pageblock_nr_pages;
1646 struct page *p = page;
1648 do {
1649 __ClearPageReserved(p);
1650 set_page_count(p, 0);
1651 } while (++p, --i);
1653 set_pageblock_migratetype(page, MIGRATE_CMA);
1655 if (pageblock_order >= MAX_ORDER) {
1656 i = pageblock_nr_pages;
1657 p = page;
1658 do {
1659 set_page_refcounted(p);
1660 __free_pages(p, MAX_ORDER - 1);
1661 p += MAX_ORDER_NR_PAGES;
1662 } while (i -= MAX_ORDER_NR_PAGES);
1663 } else {
1664 set_page_refcounted(page);
1665 __free_pages(page, pageblock_order);
1668 adjust_managed_page_count(page, pageblock_nr_pages);
1670 #endif
1673 * The order of subdivision here is critical for the IO subsystem.
1674 * Please do not alter this order without good reasons and regression
1675 * testing. Specifically, as large blocks of memory are subdivided,
1676 * the order in which smaller blocks are delivered depends on the order
1677 * they're subdivided in this function. This is the primary factor
1678 * influencing the order in which pages are delivered to the IO
1679 * subsystem according to empirical testing, and this is also justified
1680 * by considering the behavior of a buddy system containing a single
1681 * large block of memory acted on by a series of small allocations.
1682 * This behavior is a critical factor in sglist merging's success.
1684 * -- nyc
1686 static inline void expand(struct zone *zone, struct page *page,
1687 int low, int high, struct free_area *area,
1688 int migratetype)
1690 unsigned long size = 1 << high;
1692 while (high > low) {
1693 area--;
1694 high--;
1695 size >>= 1;
1696 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1699 * Mark as guard pages (or page), that will allow to
1700 * merge back to allocator when buddy will be freed.
1701 * Corresponding page table entries will not be touched,
1702 * pages will stay not present in virtual address space
1704 if (set_page_guard(zone, &page[size], high, migratetype))
1705 continue;
1707 list_add(&page[size].lru, &area->free_list[migratetype]);
1708 area->nr_free++;
1709 set_page_order(&page[size], high);
1713 static void check_new_page_bad(struct page *page)
1715 const char *bad_reason = NULL;
1716 unsigned long bad_flags = 0;
1718 if (unlikely(atomic_read(&page->_mapcount) != -1))
1719 bad_reason = "nonzero mapcount";
1720 if (unlikely(page->mapping != NULL))
1721 bad_reason = "non-NULL mapping";
1722 if (unlikely(page_ref_count(page) != 0))
1723 bad_reason = "nonzero _count";
1724 if (unlikely(page->flags & __PG_HWPOISON)) {
1725 bad_reason = "HWPoisoned (hardware-corrupted)";
1726 bad_flags = __PG_HWPOISON;
1727 /* Don't complain about hwpoisoned pages */
1728 page_mapcount_reset(page); /* remove PageBuddy */
1729 return;
1731 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1732 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1733 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1735 #ifdef CONFIG_MEMCG
1736 if (unlikely(page->mem_cgroup))
1737 bad_reason = "page still charged to cgroup";
1738 #endif
1739 bad_page(page, bad_reason, bad_flags);
1743 * This page is about to be returned from the page allocator
1745 static inline int check_new_page(struct page *page)
1747 if (likely(page_expected_state(page,
1748 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1749 return 0;
1751 check_new_page_bad(page);
1752 return 1;
1755 static inline bool free_pages_prezeroed(void)
1757 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1758 page_poisoning_enabled();
1761 #ifdef CONFIG_DEBUG_VM
1762 static bool check_pcp_refill(struct page *page)
1764 return false;
1767 static bool check_new_pcp(struct page *page)
1769 return check_new_page(page);
1771 #else
1772 static bool check_pcp_refill(struct page *page)
1774 return check_new_page(page);
1776 static bool check_new_pcp(struct page *page)
1778 return false;
1780 #endif /* CONFIG_DEBUG_VM */
1782 static bool check_new_pages(struct page *page, unsigned int order)
1784 int i;
1785 for (i = 0; i < (1 << order); i++) {
1786 struct page *p = page + i;
1788 if (unlikely(check_new_page(p)))
1789 return true;
1792 return false;
1795 inline void post_alloc_hook(struct page *page, unsigned int order,
1796 gfp_t gfp_flags)
1798 set_page_private(page, 0);
1799 set_page_refcounted(page);
1801 arch_alloc_page(page, order);
1802 kernel_map_pages(page, 1 << order, 1);
1803 kernel_poison_pages(page, 1 << order, 1);
1804 kasan_alloc_pages(page, order);
1805 set_page_owner(page, order, gfp_flags);
1808 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1809 unsigned int alloc_flags)
1811 int i;
1813 post_alloc_hook(page, order, gfp_flags);
1815 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1816 for (i = 0; i < (1 << order); i++)
1817 clear_highpage(page + i);
1819 if (order && (gfp_flags & __GFP_COMP))
1820 prep_compound_page(page, order);
1823 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1824 * allocate the page. The expectation is that the caller is taking
1825 * steps that will free more memory. The caller should avoid the page
1826 * being used for !PFMEMALLOC purposes.
1828 if (alloc_flags & ALLOC_NO_WATERMARKS)
1829 set_page_pfmemalloc(page);
1830 else
1831 clear_page_pfmemalloc(page);
1835 * Go through the free lists for the given migratetype and remove
1836 * the smallest available page from the freelists
1838 static __always_inline
1839 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1840 int migratetype)
1842 unsigned int current_order;
1843 struct free_area *area;
1844 struct page *page;
1846 /* Find a page of the appropriate size in the preferred list */
1847 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1848 area = &(zone->free_area[current_order]);
1849 page = list_first_entry_or_null(&area->free_list[migratetype],
1850 struct page, lru);
1851 if (!page)
1852 continue;
1853 list_del(&page->lru);
1854 rmv_page_order(page);
1855 area->nr_free--;
1856 expand(zone, page, order, current_order, area, migratetype);
1857 set_pcppage_migratetype(page, migratetype);
1858 return page;
1861 return NULL;
1866 * This array describes the order lists are fallen back to when
1867 * the free lists for the desirable migrate type are depleted
1869 static int fallbacks[MIGRATE_TYPES][4] = {
1870 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1871 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1872 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1873 #ifdef CONFIG_CMA
1874 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1875 #endif
1876 #ifdef CONFIG_MEMORY_ISOLATION
1877 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1878 #endif
1881 #ifdef CONFIG_CMA
1882 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1883 unsigned int order)
1885 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1887 #else
1888 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1889 unsigned int order) { return NULL; }
1890 #endif
1893 * Move the free pages in a range to the free lists of the requested type.
1894 * Note that start_page and end_pages are not aligned on a pageblock
1895 * boundary. If alignment is required, use move_freepages_block()
1897 static int move_freepages(struct zone *zone,
1898 struct page *start_page, struct page *end_page,
1899 int migratetype, int *num_movable)
1901 struct page *page;
1902 unsigned int order;
1903 int pages_moved = 0;
1905 #ifndef CONFIG_HOLES_IN_ZONE
1907 * page_zone is not safe to call in this context when
1908 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1909 * anyway as we check zone boundaries in move_freepages_block().
1910 * Remove at a later date when no bug reports exist related to
1911 * grouping pages by mobility
1913 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1914 #endif
1916 if (num_movable)
1917 *num_movable = 0;
1919 for (page = start_page; page <= end_page;) {
1920 if (!pfn_valid_within(page_to_pfn(page))) {
1921 page++;
1922 continue;
1925 /* Make sure we are not inadvertently changing nodes */
1926 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1928 if (!PageBuddy(page)) {
1930 * We assume that pages that could be isolated for
1931 * migration are movable. But we don't actually try
1932 * isolating, as that would be expensive.
1934 if (num_movable &&
1935 (PageLRU(page) || __PageMovable(page)))
1936 (*num_movable)++;
1938 page++;
1939 continue;
1942 order = page_order(page);
1943 list_move(&page->lru,
1944 &zone->free_area[order].free_list[migratetype]);
1945 page += 1 << order;
1946 pages_moved += 1 << order;
1949 return pages_moved;
1952 int move_freepages_block(struct zone *zone, struct page *page,
1953 int migratetype, int *num_movable)
1955 unsigned long start_pfn, end_pfn;
1956 struct page *start_page, *end_page;
1958 start_pfn = page_to_pfn(page);
1959 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1960 start_page = pfn_to_page(start_pfn);
1961 end_page = start_page + pageblock_nr_pages - 1;
1962 end_pfn = start_pfn + pageblock_nr_pages - 1;
1964 /* Do not cross zone boundaries */
1965 if (!zone_spans_pfn(zone, start_pfn))
1966 start_page = page;
1967 if (!zone_spans_pfn(zone, end_pfn))
1968 return 0;
1970 return move_freepages(zone, start_page, end_page, migratetype,
1971 num_movable);
1974 static void change_pageblock_range(struct page *pageblock_page,
1975 int start_order, int migratetype)
1977 int nr_pageblocks = 1 << (start_order - pageblock_order);
1979 while (nr_pageblocks--) {
1980 set_pageblock_migratetype(pageblock_page, migratetype);
1981 pageblock_page += pageblock_nr_pages;
1986 * When we are falling back to another migratetype during allocation, try to
1987 * steal extra free pages from the same pageblocks to satisfy further
1988 * allocations, instead of polluting multiple pageblocks.
1990 * If we are stealing a relatively large buddy page, it is likely there will
1991 * be more free pages in the pageblock, so try to steal them all. For
1992 * reclaimable and unmovable allocations, we steal regardless of page size,
1993 * as fragmentation caused by those allocations polluting movable pageblocks
1994 * is worse than movable allocations stealing from unmovable and reclaimable
1995 * pageblocks.
1997 static bool can_steal_fallback(unsigned int order, int start_mt)
2000 * Leaving this order check is intended, although there is
2001 * relaxed order check in next check. The reason is that
2002 * we can actually steal whole pageblock if this condition met,
2003 * but, below check doesn't guarantee it and that is just heuristic
2004 * so could be changed anytime.
2006 if (order >= pageblock_order)
2007 return true;
2009 if (order >= pageblock_order / 2 ||
2010 start_mt == MIGRATE_RECLAIMABLE ||
2011 start_mt == MIGRATE_UNMOVABLE ||
2012 page_group_by_mobility_disabled)
2013 return true;
2015 return false;
2019 * This function implements actual steal behaviour. If order is large enough,
2020 * we can steal whole pageblock. If not, we first move freepages in this
2021 * pageblock to our migratetype and determine how many already-allocated pages
2022 * are there in the pageblock with a compatible migratetype. If at least half
2023 * of pages are free or compatible, we can change migratetype of the pageblock
2024 * itself, so pages freed in the future will be put on the correct free list.
2026 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2027 int start_type, bool whole_block)
2029 unsigned int current_order = page_order(page);
2030 struct free_area *area;
2031 int free_pages, movable_pages, alike_pages;
2032 int old_block_type;
2034 old_block_type = get_pageblock_migratetype(page);
2037 * This can happen due to races and we want to prevent broken
2038 * highatomic accounting.
2040 if (is_migrate_highatomic(old_block_type))
2041 goto single_page;
2043 /* Take ownership for orders >= pageblock_order */
2044 if (current_order >= pageblock_order) {
2045 change_pageblock_range(page, current_order, start_type);
2046 goto single_page;
2049 /* We are not allowed to try stealing from the whole block */
2050 if (!whole_block)
2051 goto single_page;
2053 free_pages = move_freepages_block(zone, page, start_type,
2054 &movable_pages);
2056 * Determine how many pages are compatible with our allocation.
2057 * For movable allocation, it's the number of movable pages which
2058 * we just obtained. For other types it's a bit more tricky.
2060 if (start_type == MIGRATE_MOVABLE) {
2061 alike_pages = movable_pages;
2062 } else {
2064 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2065 * to MOVABLE pageblock, consider all non-movable pages as
2066 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2067 * vice versa, be conservative since we can't distinguish the
2068 * exact migratetype of non-movable pages.
2070 if (old_block_type == MIGRATE_MOVABLE)
2071 alike_pages = pageblock_nr_pages
2072 - (free_pages + movable_pages);
2073 else
2074 alike_pages = 0;
2077 /* moving whole block can fail due to zone boundary conditions */
2078 if (!free_pages)
2079 goto single_page;
2082 * If a sufficient number of pages in the block are either free or of
2083 * comparable migratability as our allocation, claim the whole block.
2085 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2086 page_group_by_mobility_disabled)
2087 set_pageblock_migratetype(page, start_type);
2089 return;
2091 single_page:
2092 area = &zone->free_area[current_order];
2093 list_move(&page->lru, &area->free_list[start_type]);
2097 * Check whether there is a suitable fallback freepage with requested order.
2098 * If only_stealable is true, this function returns fallback_mt only if
2099 * we can steal other freepages all together. This would help to reduce
2100 * fragmentation due to mixed migratetype pages in one pageblock.
2102 int find_suitable_fallback(struct free_area *area, unsigned int order,
2103 int migratetype, bool only_stealable, bool *can_steal)
2105 int i;
2106 int fallback_mt;
2108 if (area->nr_free == 0)
2109 return -1;
2111 *can_steal = false;
2112 for (i = 0;; i++) {
2113 fallback_mt = fallbacks[migratetype][i];
2114 if (fallback_mt == MIGRATE_TYPES)
2115 break;
2117 if (list_empty(&area->free_list[fallback_mt]))
2118 continue;
2120 if (can_steal_fallback(order, migratetype))
2121 *can_steal = true;
2123 if (!only_stealable)
2124 return fallback_mt;
2126 if (*can_steal)
2127 return fallback_mt;
2130 return -1;
2134 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2135 * there are no empty page blocks that contain a page with a suitable order
2137 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2138 unsigned int alloc_order)
2140 int mt;
2141 unsigned long max_managed, flags;
2144 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2145 * Check is race-prone but harmless.
2147 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2148 if (zone->nr_reserved_highatomic >= max_managed)
2149 return;
2151 spin_lock_irqsave(&zone->lock, flags);
2153 /* Recheck the nr_reserved_highatomic limit under the lock */
2154 if (zone->nr_reserved_highatomic >= max_managed)
2155 goto out_unlock;
2157 /* Yoink! */
2158 mt = get_pageblock_migratetype(page);
2159 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2160 && !is_migrate_cma(mt)) {
2161 zone->nr_reserved_highatomic += pageblock_nr_pages;
2162 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2163 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2166 out_unlock:
2167 spin_unlock_irqrestore(&zone->lock, flags);
2171 * Used when an allocation is about to fail under memory pressure. This
2172 * potentially hurts the reliability of high-order allocations when under
2173 * intense memory pressure but failed atomic allocations should be easier
2174 * to recover from than an OOM.
2176 * If @force is true, try to unreserve a pageblock even though highatomic
2177 * pageblock is exhausted.
2179 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2180 bool force)
2182 struct zonelist *zonelist = ac->zonelist;
2183 unsigned long flags;
2184 struct zoneref *z;
2185 struct zone *zone;
2186 struct page *page;
2187 int order;
2188 bool ret;
2190 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2191 ac->nodemask) {
2193 * Preserve at least one pageblock unless memory pressure
2194 * is really high.
2196 if (!force && zone->nr_reserved_highatomic <=
2197 pageblock_nr_pages)
2198 continue;
2200 spin_lock_irqsave(&zone->lock, flags);
2201 for (order = 0; order < MAX_ORDER; order++) {
2202 struct free_area *area = &(zone->free_area[order]);
2204 page = list_first_entry_or_null(
2205 &area->free_list[MIGRATE_HIGHATOMIC],
2206 struct page, lru);
2207 if (!page)
2208 continue;
2211 * In page freeing path, migratetype change is racy so
2212 * we can counter several free pages in a pageblock
2213 * in this loop althoug we changed the pageblock type
2214 * from highatomic to ac->migratetype. So we should
2215 * adjust the count once.
2217 if (is_migrate_highatomic_page(page)) {
2219 * It should never happen but changes to
2220 * locking could inadvertently allow a per-cpu
2221 * drain to add pages to MIGRATE_HIGHATOMIC
2222 * while unreserving so be safe and watch for
2223 * underflows.
2225 zone->nr_reserved_highatomic -= min(
2226 pageblock_nr_pages,
2227 zone->nr_reserved_highatomic);
2231 * Convert to ac->migratetype and avoid the normal
2232 * pageblock stealing heuristics. Minimally, the caller
2233 * is doing the work and needs the pages. More
2234 * importantly, if the block was always converted to
2235 * MIGRATE_UNMOVABLE or another type then the number
2236 * of pageblocks that cannot be completely freed
2237 * may increase.
2239 set_pageblock_migratetype(page, ac->migratetype);
2240 ret = move_freepages_block(zone, page, ac->migratetype,
2241 NULL);
2242 if (ret) {
2243 spin_unlock_irqrestore(&zone->lock, flags);
2244 return ret;
2247 spin_unlock_irqrestore(&zone->lock, flags);
2250 return false;
2254 * Try finding a free buddy page on the fallback list and put it on the free
2255 * list of requested migratetype, possibly along with other pages from the same
2256 * block, depending on fragmentation avoidance heuristics. Returns true if
2257 * fallback was found so that __rmqueue_smallest() can grab it.
2259 * The use of signed ints for order and current_order is a deliberate
2260 * deviation from the rest of this file, to make the for loop
2261 * condition simpler.
2263 static __always_inline bool
2264 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2266 struct free_area *area;
2267 int current_order;
2268 struct page *page;
2269 int fallback_mt;
2270 bool can_steal;
2273 * Find the largest available free page in the other list. This roughly
2274 * approximates finding the pageblock with the most free pages, which
2275 * would be too costly to do exactly.
2277 for (current_order = MAX_ORDER - 1; current_order >= order;
2278 --current_order) {
2279 area = &(zone->free_area[current_order]);
2280 fallback_mt = find_suitable_fallback(area, current_order,
2281 start_migratetype, false, &can_steal);
2282 if (fallback_mt == -1)
2283 continue;
2286 * We cannot steal all free pages from the pageblock and the
2287 * requested migratetype is movable. In that case it's better to
2288 * steal and split the smallest available page instead of the
2289 * largest available page, because even if the next movable
2290 * allocation falls back into a different pageblock than this
2291 * one, it won't cause permanent fragmentation.
2293 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2294 && current_order > order)
2295 goto find_smallest;
2297 goto do_steal;
2300 return false;
2302 find_smallest:
2303 for (current_order = order; current_order < MAX_ORDER;
2304 current_order++) {
2305 area = &(zone->free_area[current_order]);
2306 fallback_mt = find_suitable_fallback(area, current_order,
2307 start_migratetype, false, &can_steal);
2308 if (fallback_mt != -1)
2309 break;
2313 * This should not happen - we already found a suitable fallback
2314 * when looking for the largest page.
2316 VM_BUG_ON(current_order == MAX_ORDER);
2318 do_steal:
2319 page = list_first_entry(&area->free_list[fallback_mt],
2320 struct page, lru);
2322 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2324 trace_mm_page_alloc_extfrag(page, order, current_order,
2325 start_migratetype, fallback_mt);
2327 return true;
2332 * Do the hard work of removing an element from the buddy allocator.
2333 * Call me with the zone->lock already held.
2335 static __always_inline struct page *
2336 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2338 struct page *page;
2340 retry:
2341 page = __rmqueue_smallest(zone, order, migratetype);
2342 if (unlikely(!page)) {
2343 if (migratetype == MIGRATE_MOVABLE)
2344 page = __rmqueue_cma_fallback(zone, order);
2346 if (!page && __rmqueue_fallback(zone, order, migratetype))
2347 goto retry;
2350 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2351 return page;
2355 * Obtain a specified number of elements from the buddy allocator, all under
2356 * a single hold of the lock, for efficiency. Add them to the supplied list.
2357 * Returns the number of new pages which were placed at *list.
2359 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2360 unsigned long count, struct list_head *list,
2361 int migratetype)
2363 int i, alloced = 0;
2365 spin_lock(&zone->lock);
2366 for (i = 0; i < count; ++i) {
2367 struct page *page = __rmqueue(zone, order, migratetype);
2368 if (unlikely(page == NULL))
2369 break;
2371 if (unlikely(check_pcp_refill(page)))
2372 continue;
2375 * Split buddy pages returned by expand() are received here in
2376 * physical page order. The page is added to the tail of
2377 * caller's list. From the callers perspective, the linked list
2378 * is ordered by page number under some conditions. This is
2379 * useful for IO devices that can forward direction from the
2380 * head, thus also in the physical page order. This is useful
2381 * for IO devices that can merge IO requests if the physical
2382 * pages are ordered properly.
2384 list_add_tail(&page->lru, list);
2385 alloced++;
2386 if (is_migrate_cma(get_pcppage_migratetype(page)))
2387 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2388 -(1 << order));
2392 * i pages were removed from the buddy list even if some leak due
2393 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2394 * on i. Do not confuse with 'alloced' which is the number of
2395 * pages added to the pcp list.
2397 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2398 spin_unlock(&zone->lock);
2399 return alloced;
2402 #ifdef CONFIG_NUMA
2404 * Called from the vmstat counter updater to drain pagesets of this
2405 * currently executing processor on remote nodes after they have
2406 * expired.
2408 * Note that this function must be called with the thread pinned to
2409 * a single processor.
2411 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2413 unsigned long flags;
2414 int to_drain, batch;
2416 local_irq_save(flags);
2417 batch = READ_ONCE(pcp->batch);
2418 to_drain = min(pcp->count, batch);
2419 if (to_drain > 0) {
2420 free_pcppages_bulk(zone, to_drain, pcp);
2421 pcp->count -= to_drain;
2423 local_irq_restore(flags);
2425 #endif
2428 * Drain pcplists of the indicated processor and zone.
2430 * The processor must either be the current processor and the
2431 * thread pinned to the current processor or a processor that
2432 * is not online.
2434 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2436 unsigned long flags;
2437 struct per_cpu_pageset *pset;
2438 struct per_cpu_pages *pcp;
2440 local_irq_save(flags);
2441 pset = per_cpu_ptr(zone->pageset, cpu);
2443 pcp = &pset->pcp;
2444 if (pcp->count) {
2445 free_pcppages_bulk(zone, pcp->count, pcp);
2446 pcp->count = 0;
2448 local_irq_restore(flags);
2452 * Drain pcplists of all zones on the indicated processor.
2454 * The processor must either be the current processor and the
2455 * thread pinned to the current processor or a processor that
2456 * is not online.
2458 static void drain_pages(unsigned int cpu)
2460 struct zone *zone;
2462 for_each_populated_zone(zone) {
2463 drain_pages_zone(cpu, zone);
2468 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2470 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2471 * the single zone's pages.
2473 void drain_local_pages(struct zone *zone)
2475 int cpu = smp_processor_id();
2477 if (zone)
2478 drain_pages_zone(cpu, zone);
2479 else
2480 drain_pages(cpu);
2483 static void drain_local_pages_wq(struct work_struct *work)
2486 * drain_all_pages doesn't use proper cpu hotplug protection so
2487 * we can race with cpu offline when the WQ can move this from
2488 * a cpu pinned worker to an unbound one. We can operate on a different
2489 * cpu which is allright but we also have to make sure to not move to
2490 * a different one.
2492 preempt_disable();
2493 drain_local_pages(NULL);
2494 preempt_enable();
2498 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2500 * When zone parameter is non-NULL, spill just the single zone's pages.
2502 * Note that this can be extremely slow as the draining happens in a workqueue.
2504 void drain_all_pages(struct zone *zone)
2506 int cpu;
2509 * Allocate in the BSS so we wont require allocation in
2510 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2512 static cpumask_t cpus_with_pcps;
2515 * Make sure nobody triggers this path before mm_percpu_wq is fully
2516 * initialized.
2518 if (WARN_ON_ONCE(!mm_percpu_wq))
2519 return;
2522 * Do not drain if one is already in progress unless it's specific to
2523 * a zone. Such callers are primarily CMA and memory hotplug and need
2524 * the drain to be complete when the call returns.
2526 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2527 if (!zone)
2528 return;
2529 mutex_lock(&pcpu_drain_mutex);
2533 * We don't care about racing with CPU hotplug event
2534 * as offline notification will cause the notified
2535 * cpu to drain that CPU pcps and on_each_cpu_mask
2536 * disables preemption as part of its processing
2538 for_each_online_cpu(cpu) {
2539 struct per_cpu_pageset *pcp;
2540 struct zone *z;
2541 bool has_pcps = false;
2543 if (zone) {
2544 pcp = per_cpu_ptr(zone->pageset, cpu);
2545 if (pcp->pcp.count)
2546 has_pcps = true;
2547 } else {
2548 for_each_populated_zone(z) {
2549 pcp = per_cpu_ptr(z->pageset, cpu);
2550 if (pcp->pcp.count) {
2551 has_pcps = true;
2552 break;
2557 if (has_pcps)
2558 cpumask_set_cpu(cpu, &cpus_with_pcps);
2559 else
2560 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2563 for_each_cpu(cpu, &cpus_with_pcps) {
2564 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2565 INIT_WORK(work, drain_local_pages_wq);
2566 queue_work_on(cpu, mm_percpu_wq, work);
2568 for_each_cpu(cpu, &cpus_with_pcps)
2569 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2571 mutex_unlock(&pcpu_drain_mutex);
2574 #ifdef CONFIG_HIBERNATION
2577 * Touch the watchdog for every WD_PAGE_COUNT pages.
2579 #define WD_PAGE_COUNT (128*1024)
2581 void mark_free_pages(struct zone *zone)
2583 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2584 unsigned long flags;
2585 unsigned int order, t;
2586 struct page *page;
2588 if (zone_is_empty(zone))
2589 return;
2591 spin_lock_irqsave(&zone->lock, flags);
2593 max_zone_pfn = zone_end_pfn(zone);
2594 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2595 if (pfn_valid(pfn)) {
2596 page = pfn_to_page(pfn);
2598 if (!--page_count) {
2599 touch_nmi_watchdog();
2600 page_count = WD_PAGE_COUNT;
2603 if (page_zone(page) != zone)
2604 continue;
2606 if (!swsusp_page_is_forbidden(page))
2607 swsusp_unset_page_free(page);
2610 for_each_migratetype_order(order, t) {
2611 list_for_each_entry(page,
2612 &zone->free_area[order].free_list[t], lru) {
2613 unsigned long i;
2615 pfn = page_to_pfn(page);
2616 for (i = 0; i < (1UL << order); i++) {
2617 if (!--page_count) {
2618 touch_nmi_watchdog();
2619 page_count = WD_PAGE_COUNT;
2621 swsusp_set_page_free(pfn_to_page(pfn + i));
2625 spin_unlock_irqrestore(&zone->lock, flags);
2627 #endif /* CONFIG_PM */
2629 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2631 int migratetype;
2633 if (!free_pcp_prepare(page))
2634 return false;
2636 migratetype = get_pfnblock_migratetype(page, pfn);
2637 set_pcppage_migratetype(page, migratetype);
2638 return true;
2641 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2643 struct zone *zone = page_zone(page);
2644 struct per_cpu_pages *pcp;
2645 int migratetype;
2647 migratetype = get_pcppage_migratetype(page);
2648 __count_vm_event(PGFREE);
2651 * We only track unmovable, reclaimable and movable on pcp lists.
2652 * Free ISOLATE pages back to the allocator because they are being
2653 * offlined but treat HIGHATOMIC as movable pages so we can get those
2654 * areas back if necessary. Otherwise, we may have to free
2655 * excessively into the page allocator
2657 if (migratetype >= MIGRATE_PCPTYPES) {
2658 if (unlikely(is_migrate_isolate(migratetype))) {
2659 free_one_page(zone, page, pfn, 0, migratetype);
2660 return;
2662 migratetype = MIGRATE_MOVABLE;
2665 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2666 list_add(&page->lru, &pcp->lists[migratetype]);
2667 pcp->count++;
2668 if (pcp->count >= pcp->high) {
2669 unsigned long batch = READ_ONCE(pcp->batch);
2670 free_pcppages_bulk(zone, batch, pcp);
2671 pcp->count -= batch;
2676 * Free a 0-order page
2678 void free_unref_page(struct page *page)
2680 unsigned long flags;
2681 unsigned long pfn = page_to_pfn(page);
2683 if (!free_unref_page_prepare(page, pfn))
2684 return;
2686 local_irq_save(flags);
2687 free_unref_page_commit(page, pfn);
2688 local_irq_restore(flags);
2692 * Free a list of 0-order pages
2694 void free_unref_page_list(struct list_head *list)
2696 struct page *page, *next;
2697 unsigned long flags, pfn;
2698 int batch_count = 0;
2700 /* Prepare pages for freeing */
2701 list_for_each_entry_safe(page, next, list, lru) {
2702 pfn = page_to_pfn(page);
2703 if (!free_unref_page_prepare(page, pfn))
2704 list_del(&page->lru);
2705 set_page_private(page, pfn);
2708 local_irq_save(flags);
2709 list_for_each_entry_safe(page, next, list, lru) {
2710 unsigned long pfn = page_private(page);
2712 set_page_private(page, 0);
2713 trace_mm_page_free_batched(page);
2714 free_unref_page_commit(page, pfn);
2717 * Guard against excessive IRQ disabled times when we get
2718 * a large list of pages to free.
2720 if (++batch_count == SWAP_CLUSTER_MAX) {
2721 local_irq_restore(flags);
2722 batch_count = 0;
2723 local_irq_save(flags);
2726 local_irq_restore(flags);
2730 * split_page takes a non-compound higher-order page, and splits it into
2731 * n (1<<order) sub-pages: page[0..n]
2732 * Each sub-page must be freed individually.
2734 * Note: this is probably too low level an operation for use in drivers.
2735 * Please consult with lkml before using this in your driver.
2737 void split_page(struct page *page, unsigned int order)
2739 int i;
2741 VM_BUG_ON_PAGE(PageCompound(page), page);
2742 VM_BUG_ON_PAGE(!page_count(page), page);
2744 for (i = 1; i < (1 << order); i++)
2745 set_page_refcounted(page + i);
2746 split_page_owner(page, order);
2748 EXPORT_SYMBOL_GPL(split_page);
2750 int __isolate_free_page(struct page *page, unsigned int order)
2752 unsigned long watermark;
2753 struct zone *zone;
2754 int mt;
2756 BUG_ON(!PageBuddy(page));
2758 zone = page_zone(page);
2759 mt = get_pageblock_migratetype(page);
2761 if (!is_migrate_isolate(mt)) {
2763 * Obey watermarks as if the page was being allocated. We can
2764 * emulate a high-order watermark check with a raised order-0
2765 * watermark, because we already know our high-order page
2766 * exists.
2768 watermark = min_wmark_pages(zone) + (1UL << order);
2769 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2770 return 0;
2772 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2775 /* Remove page from free list */
2776 list_del(&page->lru);
2777 zone->free_area[order].nr_free--;
2778 rmv_page_order(page);
2781 * Set the pageblock if the isolated page is at least half of a
2782 * pageblock
2784 if (order >= pageblock_order - 1) {
2785 struct page *endpage = page + (1 << order) - 1;
2786 for (; page < endpage; page += pageblock_nr_pages) {
2787 int mt = get_pageblock_migratetype(page);
2788 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2789 && !is_migrate_highatomic(mt))
2790 set_pageblock_migratetype(page,
2791 MIGRATE_MOVABLE);
2796 return 1UL << order;
2800 * Update NUMA hit/miss statistics
2802 * Must be called with interrupts disabled.
2804 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2806 #ifdef CONFIG_NUMA
2807 enum numa_stat_item local_stat = NUMA_LOCAL;
2809 /* skip numa counters update if numa stats is disabled */
2810 if (!static_branch_likely(&vm_numa_stat_key))
2811 return;
2813 if (z->node != numa_node_id())
2814 local_stat = NUMA_OTHER;
2816 if (z->node == preferred_zone->node)
2817 __inc_numa_state(z, NUMA_HIT);
2818 else {
2819 __inc_numa_state(z, NUMA_MISS);
2820 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2822 __inc_numa_state(z, local_stat);
2823 #endif
2826 /* Remove page from the per-cpu list, caller must protect the list */
2827 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2828 struct per_cpu_pages *pcp,
2829 struct list_head *list)
2831 struct page *page;
2833 do {
2834 if (list_empty(list)) {
2835 pcp->count += rmqueue_bulk(zone, 0,
2836 pcp->batch, list,
2837 migratetype);
2838 if (unlikely(list_empty(list)))
2839 return NULL;
2842 page = list_first_entry(list, struct page, lru);
2843 list_del(&page->lru);
2844 pcp->count--;
2845 } while (check_new_pcp(page));
2847 return page;
2850 /* Lock and remove page from the per-cpu list */
2851 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2852 struct zone *zone, unsigned int order,
2853 gfp_t gfp_flags, int migratetype)
2855 struct per_cpu_pages *pcp;
2856 struct list_head *list;
2857 struct page *page;
2858 unsigned long flags;
2860 local_irq_save(flags);
2861 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2862 list = &pcp->lists[migratetype];
2863 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2864 if (page) {
2865 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2866 zone_statistics(preferred_zone, zone);
2868 local_irq_restore(flags);
2869 return page;
2873 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2875 static inline
2876 struct page *rmqueue(struct zone *preferred_zone,
2877 struct zone *zone, unsigned int order,
2878 gfp_t gfp_flags, unsigned int alloc_flags,
2879 int migratetype)
2881 unsigned long flags;
2882 struct page *page;
2884 if (likely(order == 0)) {
2885 page = rmqueue_pcplist(preferred_zone, zone, order,
2886 gfp_flags, migratetype);
2887 goto out;
2891 * We most definitely don't want callers attempting to
2892 * allocate greater than order-1 page units with __GFP_NOFAIL.
2894 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2895 spin_lock_irqsave(&zone->lock, flags);
2897 do {
2898 page = NULL;
2899 if (alloc_flags & ALLOC_HARDER) {
2900 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2901 if (page)
2902 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2904 if (!page)
2905 page = __rmqueue(zone, order, migratetype);
2906 } while (page && check_new_pages(page, order));
2907 spin_unlock(&zone->lock);
2908 if (!page)
2909 goto failed;
2910 __mod_zone_freepage_state(zone, -(1 << order),
2911 get_pcppage_migratetype(page));
2913 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2914 zone_statistics(preferred_zone, zone);
2915 local_irq_restore(flags);
2917 out:
2918 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2919 return page;
2921 failed:
2922 local_irq_restore(flags);
2923 return NULL;
2926 #ifdef CONFIG_FAIL_PAGE_ALLOC
2928 static struct {
2929 struct fault_attr attr;
2931 bool ignore_gfp_highmem;
2932 bool ignore_gfp_reclaim;
2933 u32 min_order;
2934 } fail_page_alloc = {
2935 .attr = FAULT_ATTR_INITIALIZER,
2936 .ignore_gfp_reclaim = true,
2937 .ignore_gfp_highmem = true,
2938 .min_order = 1,
2941 static int __init setup_fail_page_alloc(char *str)
2943 return setup_fault_attr(&fail_page_alloc.attr, str);
2945 __setup("fail_page_alloc=", setup_fail_page_alloc);
2947 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2949 if (order < fail_page_alloc.min_order)
2950 return false;
2951 if (gfp_mask & __GFP_NOFAIL)
2952 return false;
2953 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2954 return false;
2955 if (fail_page_alloc.ignore_gfp_reclaim &&
2956 (gfp_mask & __GFP_DIRECT_RECLAIM))
2957 return false;
2959 return should_fail(&fail_page_alloc.attr, 1 << order);
2962 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2964 static int __init fail_page_alloc_debugfs(void)
2966 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2967 struct dentry *dir;
2969 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2970 &fail_page_alloc.attr);
2971 if (IS_ERR(dir))
2972 return PTR_ERR(dir);
2974 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2975 &fail_page_alloc.ignore_gfp_reclaim))
2976 goto fail;
2977 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2978 &fail_page_alloc.ignore_gfp_highmem))
2979 goto fail;
2980 if (!debugfs_create_u32("min-order", mode, dir,
2981 &fail_page_alloc.min_order))
2982 goto fail;
2984 return 0;
2985 fail:
2986 debugfs_remove_recursive(dir);
2988 return -ENOMEM;
2991 late_initcall(fail_page_alloc_debugfs);
2993 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2995 #else /* CONFIG_FAIL_PAGE_ALLOC */
2997 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2999 return false;
3002 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3005 * Return true if free base pages are above 'mark'. For high-order checks it
3006 * will return true of the order-0 watermark is reached and there is at least
3007 * one free page of a suitable size. Checking now avoids taking the zone lock
3008 * to check in the allocation paths if no pages are free.
3010 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3011 int classzone_idx, unsigned int alloc_flags,
3012 long free_pages)
3014 long min = mark;
3015 int o;
3016 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3018 /* free_pages may go negative - that's OK */
3019 free_pages -= (1 << order) - 1;
3021 if (alloc_flags & ALLOC_HIGH)
3022 min -= min / 2;
3025 * If the caller does not have rights to ALLOC_HARDER then subtract
3026 * the high-atomic reserves. This will over-estimate the size of the
3027 * atomic reserve but it avoids a search.
3029 if (likely(!alloc_harder)) {
3030 free_pages -= z->nr_reserved_highatomic;
3031 } else {
3033 * OOM victims can try even harder than normal ALLOC_HARDER
3034 * users on the grounds that it's definitely going to be in
3035 * the exit path shortly and free memory. Any allocation it
3036 * makes during the free path will be small and short-lived.
3038 if (alloc_flags & ALLOC_OOM)
3039 min -= min / 2;
3040 else
3041 min -= min / 4;
3045 #ifdef CONFIG_CMA
3046 /* If allocation can't use CMA areas don't use free CMA pages */
3047 if (!(alloc_flags & ALLOC_CMA))
3048 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3049 #endif
3052 * Check watermarks for an order-0 allocation request. If these
3053 * are not met, then a high-order request also cannot go ahead
3054 * even if a suitable page happened to be free.
3056 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3057 return false;
3059 /* If this is an order-0 request then the watermark is fine */
3060 if (!order)
3061 return true;
3063 /* For a high-order request, check at least one suitable page is free */
3064 for (o = order; o < MAX_ORDER; o++) {
3065 struct free_area *area = &z->free_area[o];
3066 int mt;
3068 if (!area->nr_free)
3069 continue;
3071 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3072 if (!list_empty(&area->free_list[mt]))
3073 return true;
3076 #ifdef CONFIG_CMA
3077 if ((alloc_flags & ALLOC_CMA) &&
3078 !list_empty(&area->free_list[MIGRATE_CMA])) {
3079 return true;
3081 #endif
3082 if (alloc_harder &&
3083 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3084 return true;
3086 return false;
3089 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3090 int classzone_idx, unsigned int alloc_flags)
3092 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3093 zone_page_state(z, NR_FREE_PAGES));
3096 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3097 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3099 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3100 long cma_pages = 0;
3102 #ifdef CONFIG_CMA
3103 /* If allocation can't use CMA areas don't use free CMA pages */
3104 if (!(alloc_flags & ALLOC_CMA))
3105 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3106 #endif
3109 * Fast check for order-0 only. If this fails then the reserves
3110 * need to be calculated. There is a corner case where the check
3111 * passes but only the high-order atomic reserve are free. If
3112 * the caller is !atomic then it'll uselessly search the free
3113 * list. That corner case is then slower but it is harmless.
3115 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3116 return true;
3118 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3119 free_pages);
3122 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3123 unsigned long mark, int classzone_idx)
3125 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3127 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3128 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3130 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3131 free_pages);
3134 #ifdef CONFIG_NUMA
3135 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3137 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3138 RECLAIM_DISTANCE;
3140 #else /* CONFIG_NUMA */
3141 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3143 return true;
3145 #endif /* CONFIG_NUMA */
3148 * get_page_from_freelist goes through the zonelist trying to allocate
3149 * a page.
3151 static struct page *
3152 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3153 const struct alloc_context *ac)
3155 struct zoneref *z = ac->preferred_zoneref;
3156 struct zone *zone;
3157 struct pglist_data *last_pgdat_dirty_limit = NULL;
3160 * Scan zonelist, looking for a zone with enough free.
3161 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3163 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3164 ac->nodemask) {
3165 struct page *page;
3166 unsigned long mark;
3168 if (cpusets_enabled() &&
3169 (alloc_flags & ALLOC_CPUSET) &&
3170 !__cpuset_zone_allowed(zone, gfp_mask))
3171 continue;
3173 * When allocating a page cache page for writing, we
3174 * want to get it from a node that is within its dirty
3175 * limit, such that no single node holds more than its
3176 * proportional share of globally allowed dirty pages.
3177 * The dirty limits take into account the node's
3178 * lowmem reserves and high watermark so that kswapd
3179 * should be able to balance it without having to
3180 * write pages from its LRU list.
3182 * XXX: For now, allow allocations to potentially
3183 * exceed the per-node dirty limit in the slowpath
3184 * (spread_dirty_pages unset) before going into reclaim,
3185 * which is important when on a NUMA setup the allowed
3186 * nodes are together not big enough to reach the
3187 * global limit. The proper fix for these situations
3188 * will require awareness of nodes in the
3189 * dirty-throttling and the flusher threads.
3191 if (ac->spread_dirty_pages) {
3192 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3193 continue;
3195 if (!node_dirty_ok(zone->zone_pgdat)) {
3196 last_pgdat_dirty_limit = zone->zone_pgdat;
3197 continue;
3201 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3202 if (!zone_watermark_fast(zone, order, mark,
3203 ac_classzone_idx(ac), alloc_flags)) {
3204 int ret;
3206 /* Checked here to keep the fast path fast */
3207 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3208 if (alloc_flags & ALLOC_NO_WATERMARKS)
3209 goto try_this_zone;
3211 if (node_reclaim_mode == 0 ||
3212 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3213 continue;
3215 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3216 switch (ret) {
3217 case NODE_RECLAIM_NOSCAN:
3218 /* did not scan */
3219 continue;
3220 case NODE_RECLAIM_FULL:
3221 /* scanned but unreclaimable */
3222 continue;
3223 default:
3224 /* did we reclaim enough */
3225 if (zone_watermark_ok(zone, order, mark,
3226 ac_classzone_idx(ac), alloc_flags))
3227 goto try_this_zone;
3229 continue;
3233 try_this_zone:
3234 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3235 gfp_mask, alloc_flags, ac->migratetype);
3236 if (page) {
3237 prep_new_page(page, order, gfp_mask, alloc_flags);
3240 * If this is a high-order atomic allocation then check
3241 * if the pageblock should be reserved for the future
3243 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3244 reserve_highatomic_pageblock(page, zone, order);
3246 return page;
3250 return NULL;
3254 * Large machines with many possible nodes should not always dump per-node
3255 * meminfo in irq context.
3257 static inline bool should_suppress_show_mem(void)
3259 bool ret = false;
3261 #if NODES_SHIFT > 8
3262 ret = in_interrupt();
3263 #endif
3264 return ret;
3267 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3269 unsigned int filter = SHOW_MEM_FILTER_NODES;
3270 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3272 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3273 return;
3276 * This documents exceptions given to allocations in certain
3277 * contexts that are allowed to allocate outside current's set
3278 * of allowed nodes.
3280 if (!(gfp_mask & __GFP_NOMEMALLOC))
3281 if (tsk_is_oom_victim(current) ||
3282 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3283 filter &= ~SHOW_MEM_FILTER_NODES;
3284 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3285 filter &= ~SHOW_MEM_FILTER_NODES;
3287 show_mem(filter, nodemask);
3290 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3292 struct va_format vaf;
3293 va_list args;
3294 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3295 DEFAULT_RATELIMIT_BURST);
3297 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3298 return;
3300 va_start(args, fmt);
3301 vaf.fmt = fmt;
3302 vaf.va = &args;
3303 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3304 current->comm, &vaf, gfp_mask, &gfp_mask,
3305 nodemask_pr_args(nodemask));
3306 va_end(args);
3308 cpuset_print_current_mems_allowed();
3310 dump_stack();
3311 warn_alloc_show_mem(gfp_mask, nodemask);
3314 static inline struct page *
3315 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3316 unsigned int alloc_flags,
3317 const struct alloc_context *ac)
3319 struct page *page;
3321 page = get_page_from_freelist(gfp_mask, order,
3322 alloc_flags|ALLOC_CPUSET, ac);
3324 * fallback to ignore cpuset restriction if our nodes
3325 * are depleted
3327 if (!page)
3328 page = get_page_from_freelist(gfp_mask, order,
3329 alloc_flags, ac);
3331 return page;
3334 static inline struct page *
3335 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3336 const struct alloc_context *ac, unsigned long *did_some_progress)
3338 struct oom_control oc = {
3339 .zonelist = ac->zonelist,
3340 .nodemask = ac->nodemask,
3341 .memcg = NULL,
3342 .gfp_mask = gfp_mask,
3343 .order = order,
3345 struct page *page;
3347 *did_some_progress = 0;
3350 * Acquire the oom lock. If that fails, somebody else is
3351 * making progress for us.
3353 if (!mutex_trylock(&oom_lock)) {
3354 *did_some_progress = 1;
3355 schedule_timeout_uninterruptible(1);
3356 return NULL;
3360 * Go through the zonelist yet one more time, keep very high watermark
3361 * here, this is only to catch a parallel oom killing, we must fail if
3362 * we're still under heavy pressure. But make sure that this reclaim
3363 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3364 * allocation which will never fail due to oom_lock already held.
3366 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3367 ~__GFP_DIRECT_RECLAIM, order,
3368 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3369 if (page)
3370 goto out;
3372 /* Coredumps can quickly deplete all memory reserves */
3373 if (current->flags & PF_DUMPCORE)
3374 goto out;
3375 /* The OOM killer will not help higher order allocs */
3376 if (order > PAGE_ALLOC_COSTLY_ORDER)
3377 goto out;
3379 * We have already exhausted all our reclaim opportunities without any
3380 * success so it is time to admit defeat. We will skip the OOM killer
3381 * because it is very likely that the caller has a more reasonable
3382 * fallback than shooting a random task.
3384 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3385 goto out;
3386 /* The OOM killer does not needlessly kill tasks for lowmem */
3387 if (ac->high_zoneidx < ZONE_NORMAL)
3388 goto out;
3389 if (pm_suspended_storage())
3390 goto out;
3392 * XXX: GFP_NOFS allocations should rather fail than rely on
3393 * other request to make a forward progress.
3394 * We are in an unfortunate situation where out_of_memory cannot
3395 * do much for this context but let's try it to at least get
3396 * access to memory reserved if the current task is killed (see
3397 * out_of_memory). Once filesystems are ready to handle allocation
3398 * failures more gracefully we should just bail out here.
3401 /* The OOM killer may not free memory on a specific node */
3402 if (gfp_mask & __GFP_THISNODE)
3403 goto out;
3405 /* Exhausted what can be done so it's blame time */
3406 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3407 *did_some_progress = 1;
3410 * Help non-failing allocations by giving them access to memory
3411 * reserves
3413 if (gfp_mask & __GFP_NOFAIL)
3414 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3415 ALLOC_NO_WATERMARKS, ac);
3417 out:
3418 mutex_unlock(&oom_lock);
3419 return page;
3423 * Maximum number of compaction retries wit a progress before OOM
3424 * killer is consider as the only way to move forward.
3426 #define MAX_COMPACT_RETRIES 16
3428 #ifdef CONFIG_COMPACTION
3429 /* Try memory compaction for high-order allocations before reclaim */
3430 static struct page *
3431 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3432 unsigned int alloc_flags, const struct alloc_context *ac,
3433 enum compact_priority prio, enum compact_result *compact_result)
3435 struct page *page;
3436 unsigned int noreclaim_flag;
3438 if (!order)
3439 return NULL;
3441 noreclaim_flag = memalloc_noreclaim_save();
3442 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3443 prio);
3444 memalloc_noreclaim_restore(noreclaim_flag);
3446 if (*compact_result <= COMPACT_INACTIVE)
3447 return NULL;
3450 * At least in one zone compaction wasn't deferred or skipped, so let's
3451 * count a compaction stall
3453 count_vm_event(COMPACTSTALL);
3455 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3457 if (page) {
3458 struct zone *zone = page_zone(page);
3460 zone->compact_blockskip_flush = false;
3461 compaction_defer_reset(zone, order, true);
3462 count_vm_event(COMPACTSUCCESS);
3463 return page;
3467 * It's bad if compaction run occurs and fails. The most likely reason
3468 * is that pages exist, but not enough to satisfy watermarks.
3470 count_vm_event(COMPACTFAIL);
3472 cond_resched();
3474 return NULL;
3477 static inline bool
3478 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3479 enum compact_result compact_result,
3480 enum compact_priority *compact_priority,
3481 int *compaction_retries)
3483 int max_retries = MAX_COMPACT_RETRIES;
3484 int min_priority;
3485 bool ret = false;
3486 int retries = *compaction_retries;
3487 enum compact_priority priority = *compact_priority;
3489 if (!order)
3490 return false;
3492 if (compaction_made_progress(compact_result))
3493 (*compaction_retries)++;
3496 * compaction considers all the zone as desperately out of memory
3497 * so it doesn't really make much sense to retry except when the
3498 * failure could be caused by insufficient priority
3500 if (compaction_failed(compact_result))
3501 goto check_priority;
3504 * make sure the compaction wasn't deferred or didn't bail out early
3505 * due to locks contention before we declare that we should give up.
3506 * But do not retry if the given zonelist is not suitable for
3507 * compaction.
3509 if (compaction_withdrawn(compact_result)) {
3510 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3511 goto out;
3515 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3516 * costly ones because they are de facto nofail and invoke OOM
3517 * killer to move on while costly can fail and users are ready
3518 * to cope with that. 1/4 retries is rather arbitrary but we
3519 * would need much more detailed feedback from compaction to
3520 * make a better decision.
3522 if (order > PAGE_ALLOC_COSTLY_ORDER)
3523 max_retries /= 4;
3524 if (*compaction_retries <= max_retries) {
3525 ret = true;
3526 goto out;
3530 * Make sure there are attempts at the highest priority if we exhausted
3531 * all retries or failed at the lower priorities.
3533 check_priority:
3534 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3535 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3537 if (*compact_priority > min_priority) {
3538 (*compact_priority)--;
3539 *compaction_retries = 0;
3540 ret = true;
3542 out:
3543 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3544 return ret;
3546 #else
3547 static inline struct page *
3548 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3549 unsigned int alloc_flags, const struct alloc_context *ac,
3550 enum compact_priority prio, enum compact_result *compact_result)
3552 *compact_result = COMPACT_SKIPPED;
3553 return NULL;
3556 static inline bool
3557 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3558 enum compact_result compact_result,
3559 enum compact_priority *compact_priority,
3560 int *compaction_retries)
3562 struct zone *zone;
3563 struct zoneref *z;
3565 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3566 return false;
3569 * There are setups with compaction disabled which would prefer to loop
3570 * inside the allocator rather than hit the oom killer prematurely.
3571 * Let's give them a good hope and keep retrying while the order-0
3572 * watermarks are OK.
3574 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3575 ac->nodemask) {
3576 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3577 ac_classzone_idx(ac), alloc_flags))
3578 return true;
3580 return false;
3582 #endif /* CONFIG_COMPACTION */
3584 #ifdef CONFIG_LOCKDEP
3585 struct lockdep_map __fs_reclaim_map =
3586 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3588 static bool __need_fs_reclaim(gfp_t gfp_mask)
3590 gfp_mask = current_gfp_context(gfp_mask);
3592 /* no reclaim without waiting on it */
3593 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3594 return false;
3596 /* this guy won't enter reclaim */
3597 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3598 return false;
3600 /* We're only interested __GFP_FS allocations for now */
3601 if (!(gfp_mask & __GFP_FS))
3602 return false;
3604 if (gfp_mask & __GFP_NOLOCKDEP)
3605 return false;
3607 return true;
3610 void fs_reclaim_acquire(gfp_t gfp_mask)
3612 if (__need_fs_reclaim(gfp_mask))
3613 lock_map_acquire(&__fs_reclaim_map);
3615 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3617 void fs_reclaim_release(gfp_t gfp_mask)
3619 if (__need_fs_reclaim(gfp_mask))
3620 lock_map_release(&__fs_reclaim_map);
3622 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3623 #endif
3625 /* Perform direct synchronous page reclaim */
3626 static int
3627 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3628 const struct alloc_context *ac)
3630 struct reclaim_state reclaim_state;
3631 int progress;
3632 unsigned int noreclaim_flag;
3634 cond_resched();
3636 /* We now go into synchronous reclaim */
3637 cpuset_memory_pressure_bump();
3638 noreclaim_flag = memalloc_noreclaim_save();
3639 fs_reclaim_acquire(gfp_mask);
3640 reclaim_state.reclaimed_slab = 0;
3641 current->reclaim_state = &reclaim_state;
3643 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3644 ac->nodemask);
3646 current->reclaim_state = NULL;
3647 fs_reclaim_release(gfp_mask);
3648 memalloc_noreclaim_restore(noreclaim_flag);
3650 cond_resched();
3652 return progress;
3655 /* The really slow allocator path where we enter direct reclaim */
3656 static inline struct page *
3657 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3658 unsigned int alloc_flags, const struct alloc_context *ac,
3659 unsigned long *did_some_progress)
3661 struct page *page = NULL;
3662 bool drained = false;
3664 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3665 if (unlikely(!(*did_some_progress)))
3666 return NULL;
3668 retry:
3669 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3672 * If an allocation failed after direct reclaim, it could be because
3673 * pages are pinned on the per-cpu lists or in high alloc reserves.
3674 * Shrink them them and try again
3676 if (!page && !drained) {
3677 unreserve_highatomic_pageblock(ac, false);
3678 drain_all_pages(NULL);
3679 drained = true;
3680 goto retry;
3683 return page;
3686 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3688 struct zoneref *z;
3689 struct zone *zone;
3690 pg_data_t *last_pgdat = NULL;
3692 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3693 ac->high_zoneidx, ac->nodemask) {
3694 if (last_pgdat != zone->zone_pgdat)
3695 wakeup_kswapd(zone, order, ac->high_zoneidx);
3696 last_pgdat = zone->zone_pgdat;
3700 static inline unsigned int
3701 gfp_to_alloc_flags(gfp_t gfp_mask)
3703 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3705 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3706 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3709 * The caller may dip into page reserves a bit more if the caller
3710 * cannot run direct reclaim, or if the caller has realtime scheduling
3711 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3712 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3714 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3716 if (gfp_mask & __GFP_ATOMIC) {
3718 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3719 * if it can't schedule.
3721 if (!(gfp_mask & __GFP_NOMEMALLOC))
3722 alloc_flags |= ALLOC_HARDER;
3724 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3725 * comment for __cpuset_node_allowed().
3727 alloc_flags &= ~ALLOC_CPUSET;
3728 } else if (unlikely(rt_task(current)) && !in_interrupt())
3729 alloc_flags |= ALLOC_HARDER;
3731 #ifdef CONFIG_CMA
3732 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3733 alloc_flags |= ALLOC_CMA;
3734 #endif
3735 return alloc_flags;
3738 static bool oom_reserves_allowed(struct task_struct *tsk)
3740 if (!tsk_is_oom_victim(tsk))
3741 return false;
3744 * !MMU doesn't have oom reaper so give access to memory reserves
3745 * only to the thread with TIF_MEMDIE set
3747 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3748 return false;
3750 return true;
3754 * Distinguish requests which really need access to full memory
3755 * reserves from oom victims which can live with a portion of it
3757 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3759 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3760 return 0;
3761 if (gfp_mask & __GFP_MEMALLOC)
3762 return ALLOC_NO_WATERMARKS;
3763 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3764 return ALLOC_NO_WATERMARKS;
3765 if (!in_interrupt()) {
3766 if (current->flags & PF_MEMALLOC)
3767 return ALLOC_NO_WATERMARKS;
3768 else if (oom_reserves_allowed(current))
3769 return ALLOC_OOM;
3772 return 0;
3775 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3777 return !!__gfp_pfmemalloc_flags(gfp_mask);
3781 * Checks whether it makes sense to retry the reclaim to make a forward progress
3782 * for the given allocation request.
3784 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3785 * without success, or when we couldn't even meet the watermark if we
3786 * reclaimed all remaining pages on the LRU lists.
3788 * Returns true if a retry is viable or false to enter the oom path.
3790 static inline bool
3791 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3792 struct alloc_context *ac, int alloc_flags,
3793 bool did_some_progress, int *no_progress_loops)
3795 struct zone *zone;
3796 struct zoneref *z;
3799 * Costly allocations might have made a progress but this doesn't mean
3800 * their order will become available due to high fragmentation so
3801 * always increment the no progress counter for them
3803 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3804 *no_progress_loops = 0;
3805 else
3806 (*no_progress_loops)++;
3809 * Make sure we converge to OOM if we cannot make any progress
3810 * several times in the row.
3812 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3813 /* Before OOM, exhaust highatomic_reserve */
3814 return unreserve_highatomic_pageblock(ac, true);
3818 * Keep reclaiming pages while there is a chance this will lead
3819 * somewhere. If none of the target zones can satisfy our allocation
3820 * request even if all reclaimable pages are considered then we are
3821 * screwed and have to go OOM.
3823 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3824 ac->nodemask) {
3825 unsigned long available;
3826 unsigned long reclaimable;
3827 unsigned long min_wmark = min_wmark_pages(zone);
3828 bool wmark;
3830 available = reclaimable = zone_reclaimable_pages(zone);
3831 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3834 * Would the allocation succeed if we reclaimed all
3835 * reclaimable pages?
3837 wmark = __zone_watermark_ok(zone, order, min_wmark,
3838 ac_classzone_idx(ac), alloc_flags, available);
3839 trace_reclaim_retry_zone(z, order, reclaimable,
3840 available, min_wmark, *no_progress_loops, wmark);
3841 if (wmark) {
3843 * If we didn't make any progress and have a lot of
3844 * dirty + writeback pages then we should wait for
3845 * an IO to complete to slow down the reclaim and
3846 * prevent from pre mature OOM
3848 if (!did_some_progress) {
3849 unsigned long write_pending;
3851 write_pending = zone_page_state_snapshot(zone,
3852 NR_ZONE_WRITE_PENDING);
3854 if (2 * write_pending > reclaimable) {
3855 congestion_wait(BLK_RW_ASYNC, HZ/10);
3856 return true;
3861 * Memory allocation/reclaim might be called from a WQ
3862 * context and the current implementation of the WQ
3863 * concurrency control doesn't recognize that
3864 * a particular WQ is congested if the worker thread is
3865 * looping without ever sleeping. Therefore we have to
3866 * do a short sleep here rather than calling
3867 * cond_resched().
3869 if (current->flags & PF_WQ_WORKER)
3870 schedule_timeout_uninterruptible(1);
3871 else
3872 cond_resched();
3874 return true;
3878 return false;
3881 static inline bool
3882 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3885 * It's possible that cpuset's mems_allowed and the nodemask from
3886 * mempolicy don't intersect. This should be normally dealt with by
3887 * policy_nodemask(), but it's possible to race with cpuset update in
3888 * such a way the check therein was true, and then it became false
3889 * before we got our cpuset_mems_cookie here.
3890 * This assumes that for all allocations, ac->nodemask can come only
3891 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3892 * when it does not intersect with the cpuset restrictions) or the
3893 * caller can deal with a violated nodemask.
3895 if (cpusets_enabled() && ac->nodemask &&
3896 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3897 ac->nodemask = NULL;
3898 return true;
3902 * When updating a task's mems_allowed or mempolicy nodemask, it is
3903 * possible to race with parallel threads in such a way that our
3904 * allocation can fail while the mask is being updated. If we are about
3905 * to fail, check if the cpuset changed during allocation and if so,
3906 * retry.
3908 if (read_mems_allowed_retry(cpuset_mems_cookie))
3909 return true;
3911 return false;
3914 static inline struct page *
3915 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3916 struct alloc_context *ac)
3918 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3919 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3920 struct page *page = NULL;
3921 unsigned int alloc_flags;
3922 unsigned long did_some_progress;
3923 enum compact_priority compact_priority;
3924 enum compact_result compact_result;
3925 int compaction_retries;
3926 int no_progress_loops;
3927 unsigned int cpuset_mems_cookie;
3928 int reserve_flags;
3931 * In the slowpath, we sanity check order to avoid ever trying to
3932 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3933 * be using allocators in order of preference for an area that is
3934 * too large.
3936 if (order >= MAX_ORDER) {
3937 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3938 return NULL;
3942 * We also sanity check to catch abuse of atomic reserves being used by
3943 * callers that are not in atomic context.
3945 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3946 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3947 gfp_mask &= ~__GFP_ATOMIC;
3949 retry_cpuset:
3950 compaction_retries = 0;
3951 no_progress_loops = 0;
3952 compact_priority = DEF_COMPACT_PRIORITY;
3953 cpuset_mems_cookie = read_mems_allowed_begin();
3956 * The fast path uses conservative alloc_flags to succeed only until
3957 * kswapd needs to be woken up, and to avoid the cost of setting up
3958 * alloc_flags precisely. So we do that now.
3960 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3963 * We need to recalculate the starting point for the zonelist iterator
3964 * because we might have used different nodemask in the fast path, or
3965 * there was a cpuset modification and we are retrying - otherwise we
3966 * could end up iterating over non-eligible zones endlessly.
3968 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3969 ac->high_zoneidx, ac->nodemask);
3970 if (!ac->preferred_zoneref->zone)
3971 goto nopage;
3973 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3974 wake_all_kswapds(order, ac);
3977 * The adjusted alloc_flags might result in immediate success, so try
3978 * that first
3980 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3981 if (page)
3982 goto got_pg;
3985 * For costly allocations, try direct compaction first, as it's likely
3986 * that we have enough base pages and don't need to reclaim. For non-
3987 * movable high-order allocations, do that as well, as compaction will
3988 * try prevent permanent fragmentation by migrating from blocks of the
3989 * same migratetype.
3990 * Don't try this for allocations that are allowed to ignore
3991 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3993 if (can_direct_reclaim &&
3994 (costly_order ||
3995 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3996 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3997 page = __alloc_pages_direct_compact(gfp_mask, order,
3998 alloc_flags, ac,
3999 INIT_COMPACT_PRIORITY,
4000 &compact_result);
4001 if (page)
4002 goto got_pg;
4005 * Checks for costly allocations with __GFP_NORETRY, which
4006 * includes THP page fault allocations
4008 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4010 * If compaction is deferred for high-order allocations,
4011 * it is because sync compaction recently failed. If
4012 * this is the case and the caller requested a THP
4013 * allocation, we do not want to heavily disrupt the
4014 * system, so we fail the allocation instead of entering
4015 * direct reclaim.
4017 if (compact_result == COMPACT_DEFERRED)
4018 goto nopage;
4021 * Looks like reclaim/compaction is worth trying, but
4022 * sync compaction could be very expensive, so keep
4023 * using async compaction.
4025 compact_priority = INIT_COMPACT_PRIORITY;
4029 retry:
4030 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4031 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4032 wake_all_kswapds(order, ac);
4034 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4035 if (reserve_flags)
4036 alloc_flags = reserve_flags;
4039 * Reset the zonelist iterators if memory policies can be ignored.
4040 * These allocations are high priority and system rather than user
4041 * orientated.
4043 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4044 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4045 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4046 ac->high_zoneidx, ac->nodemask);
4049 /* Attempt with potentially adjusted zonelist and alloc_flags */
4050 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4051 if (page)
4052 goto got_pg;
4054 /* Caller is not willing to reclaim, we can't balance anything */
4055 if (!can_direct_reclaim)
4056 goto nopage;
4058 /* Avoid recursion of direct reclaim */
4059 if (current->flags & PF_MEMALLOC)
4060 goto nopage;
4062 /* Try direct reclaim and then allocating */
4063 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4064 &did_some_progress);
4065 if (page)
4066 goto got_pg;
4068 /* Try direct compaction and then allocating */
4069 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4070 compact_priority, &compact_result);
4071 if (page)
4072 goto got_pg;
4074 /* Do not loop if specifically requested */
4075 if (gfp_mask & __GFP_NORETRY)
4076 goto nopage;
4079 * Do not retry costly high order allocations unless they are
4080 * __GFP_RETRY_MAYFAIL
4082 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4083 goto nopage;
4085 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4086 did_some_progress > 0, &no_progress_loops))
4087 goto retry;
4090 * It doesn't make any sense to retry for the compaction if the order-0
4091 * reclaim is not able to make any progress because the current
4092 * implementation of the compaction depends on the sufficient amount
4093 * of free memory (see __compaction_suitable)
4095 if (did_some_progress > 0 &&
4096 should_compact_retry(ac, order, alloc_flags,
4097 compact_result, &compact_priority,
4098 &compaction_retries))
4099 goto retry;
4102 /* Deal with possible cpuset update races before we start OOM killing */
4103 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4104 goto retry_cpuset;
4106 /* Reclaim has failed us, start killing things */
4107 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4108 if (page)
4109 goto got_pg;
4111 /* Avoid allocations with no watermarks from looping endlessly */
4112 if (tsk_is_oom_victim(current) &&
4113 (alloc_flags == ALLOC_OOM ||
4114 (gfp_mask & __GFP_NOMEMALLOC)))
4115 goto nopage;
4117 /* Retry as long as the OOM killer is making progress */
4118 if (did_some_progress) {
4119 no_progress_loops = 0;
4120 goto retry;
4123 nopage:
4124 /* Deal with possible cpuset update races before we fail */
4125 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4126 goto retry_cpuset;
4129 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4130 * we always retry
4132 if (gfp_mask & __GFP_NOFAIL) {
4134 * All existing users of the __GFP_NOFAIL are blockable, so warn
4135 * of any new users that actually require GFP_NOWAIT
4137 if (WARN_ON_ONCE(!can_direct_reclaim))
4138 goto fail;
4141 * PF_MEMALLOC request from this context is rather bizarre
4142 * because we cannot reclaim anything and only can loop waiting
4143 * for somebody to do a work for us
4145 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4148 * non failing costly orders are a hard requirement which we
4149 * are not prepared for much so let's warn about these users
4150 * so that we can identify them and convert them to something
4151 * else.
4153 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4156 * Help non-failing allocations by giving them access to memory
4157 * reserves but do not use ALLOC_NO_WATERMARKS because this
4158 * could deplete whole memory reserves which would just make
4159 * the situation worse
4161 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4162 if (page)
4163 goto got_pg;
4165 cond_resched();
4166 goto retry;
4168 fail:
4169 warn_alloc(gfp_mask, ac->nodemask,
4170 "page allocation failure: order:%u", order);
4171 got_pg:
4172 return page;
4175 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4176 int preferred_nid, nodemask_t *nodemask,
4177 struct alloc_context *ac, gfp_t *alloc_mask,
4178 unsigned int *alloc_flags)
4180 ac->high_zoneidx = gfp_zone(gfp_mask);
4181 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4182 ac->nodemask = nodemask;
4183 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4185 if (cpusets_enabled()) {
4186 *alloc_mask |= __GFP_HARDWALL;
4187 if (!ac->nodemask)
4188 ac->nodemask = &cpuset_current_mems_allowed;
4189 else
4190 *alloc_flags |= ALLOC_CPUSET;
4193 fs_reclaim_acquire(gfp_mask);
4194 fs_reclaim_release(gfp_mask);
4196 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4198 if (should_fail_alloc_page(gfp_mask, order))
4199 return false;
4201 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4202 *alloc_flags |= ALLOC_CMA;
4204 return true;
4207 /* Determine whether to spread dirty pages and what the first usable zone */
4208 static inline void finalise_ac(gfp_t gfp_mask,
4209 unsigned int order, struct alloc_context *ac)
4211 /* Dirty zone balancing only done in the fast path */
4212 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4215 * The preferred zone is used for statistics but crucially it is
4216 * also used as the starting point for the zonelist iterator. It
4217 * may get reset for allocations that ignore memory policies.
4219 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4220 ac->high_zoneidx, ac->nodemask);
4224 * This is the 'heart' of the zoned buddy allocator.
4226 struct page *
4227 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4228 nodemask_t *nodemask)
4230 struct page *page;
4231 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4232 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4233 struct alloc_context ac = { };
4235 gfp_mask &= gfp_allowed_mask;
4236 alloc_mask = gfp_mask;
4237 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4238 return NULL;
4240 finalise_ac(gfp_mask, order, &ac);
4242 /* First allocation attempt */
4243 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4244 if (likely(page))
4245 goto out;
4248 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4249 * resp. GFP_NOIO which has to be inherited for all allocation requests
4250 * from a particular context which has been marked by
4251 * memalloc_no{fs,io}_{save,restore}.
4253 alloc_mask = current_gfp_context(gfp_mask);
4254 ac.spread_dirty_pages = false;
4257 * Restore the original nodemask if it was potentially replaced with
4258 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4260 if (unlikely(ac.nodemask != nodemask))
4261 ac.nodemask = nodemask;
4263 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4265 out:
4266 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4267 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4268 __free_pages(page, order);
4269 page = NULL;
4272 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4274 return page;
4276 EXPORT_SYMBOL(__alloc_pages_nodemask);
4279 * Common helper functions.
4281 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4283 struct page *page;
4286 * __get_free_pages() returns a virtual address, which cannot represent
4287 * a highmem page
4289 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4291 page = alloc_pages(gfp_mask, order);
4292 if (!page)
4293 return 0;
4294 return (unsigned long) page_address(page);
4296 EXPORT_SYMBOL(__get_free_pages);
4298 unsigned long get_zeroed_page(gfp_t gfp_mask)
4300 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4302 EXPORT_SYMBOL(get_zeroed_page);
4304 void __free_pages(struct page *page, unsigned int order)
4306 if (put_page_testzero(page)) {
4307 if (order == 0)
4308 free_unref_page(page);
4309 else
4310 __free_pages_ok(page, order);
4314 EXPORT_SYMBOL(__free_pages);
4316 void free_pages(unsigned long addr, unsigned int order)
4318 if (addr != 0) {
4319 VM_BUG_ON(!virt_addr_valid((void *)addr));
4320 __free_pages(virt_to_page((void *)addr), order);
4324 EXPORT_SYMBOL(free_pages);
4327 * Page Fragment:
4328 * An arbitrary-length arbitrary-offset area of memory which resides
4329 * within a 0 or higher order page. Multiple fragments within that page
4330 * are individually refcounted, in the page's reference counter.
4332 * The page_frag functions below provide a simple allocation framework for
4333 * page fragments. This is used by the network stack and network device
4334 * drivers to provide a backing region of memory for use as either an
4335 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4337 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4338 gfp_t gfp_mask)
4340 struct page *page = NULL;
4341 gfp_t gfp = gfp_mask;
4343 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4344 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4345 __GFP_NOMEMALLOC;
4346 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4347 PAGE_FRAG_CACHE_MAX_ORDER);
4348 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4349 #endif
4350 if (unlikely(!page))
4351 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4353 nc->va = page ? page_address(page) : NULL;
4355 return page;
4358 void __page_frag_cache_drain(struct page *page, unsigned int count)
4360 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4362 if (page_ref_sub_and_test(page, count)) {
4363 unsigned int order = compound_order(page);
4365 if (order == 0)
4366 free_unref_page(page);
4367 else
4368 __free_pages_ok(page, order);
4371 EXPORT_SYMBOL(__page_frag_cache_drain);
4373 void *page_frag_alloc(struct page_frag_cache *nc,
4374 unsigned int fragsz, gfp_t gfp_mask)
4376 unsigned int size = PAGE_SIZE;
4377 struct page *page;
4378 int offset;
4380 if (unlikely(!nc->va)) {
4381 refill:
4382 page = __page_frag_cache_refill(nc, gfp_mask);
4383 if (!page)
4384 return NULL;
4386 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4387 /* if size can vary use size else just use PAGE_SIZE */
4388 size = nc->size;
4389 #endif
4390 /* Even if we own the page, we do not use atomic_set().
4391 * This would break get_page_unless_zero() users.
4393 page_ref_add(page, size - 1);
4395 /* reset page count bias and offset to start of new frag */
4396 nc->pfmemalloc = page_is_pfmemalloc(page);
4397 nc->pagecnt_bias = size;
4398 nc->offset = size;
4401 offset = nc->offset - fragsz;
4402 if (unlikely(offset < 0)) {
4403 page = virt_to_page(nc->va);
4405 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4406 goto refill;
4408 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4409 /* if size can vary use size else just use PAGE_SIZE */
4410 size = nc->size;
4411 #endif
4412 /* OK, page count is 0, we can safely set it */
4413 set_page_count(page, size);
4415 /* reset page count bias and offset to start of new frag */
4416 nc->pagecnt_bias = size;
4417 offset = size - fragsz;
4420 nc->pagecnt_bias--;
4421 nc->offset = offset;
4423 return nc->va + offset;
4425 EXPORT_SYMBOL(page_frag_alloc);
4428 * Frees a page fragment allocated out of either a compound or order 0 page.
4430 void page_frag_free(void *addr)
4432 struct page *page = virt_to_head_page(addr);
4434 if (unlikely(put_page_testzero(page)))
4435 __free_pages_ok(page, compound_order(page));
4437 EXPORT_SYMBOL(page_frag_free);
4439 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4440 size_t size)
4442 if (addr) {
4443 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4444 unsigned long used = addr + PAGE_ALIGN(size);
4446 split_page(virt_to_page((void *)addr), order);
4447 while (used < alloc_end) {
4448 free_page(used);
4449 used += PAGE_SIZE;
4452 return (void *)addr;
4456 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4457 * @size: the number of bytes to allocate
4458 * @gfp_mask: GFP flags for the allocation
4460 * This function is similar to alloc_pages(), except that it allocates the
4461 * minimum number of pages to satisfy the request. alloc_pages() can only
4462 * allocate memory in power-of-two pages.
4464 * This function is also limited by MAX_ORDER.
4466 * Memory allocated by this function must be released by free_pages_exact().
4468 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4470 unsigned int order = get_order(size);
4471 unsigned long addr;
4473 addr = __get_free_pages(gfp_mask, order);
4474 return make_alloc_exact(addr, order, size);
4476 EXPORT_SYMBOL(alloc_pages_exact);
4479 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4480 * pages on a node.
4481 * @nid: the preferred node ID where memory should be allocated
4482 * @size: the number of bytes to allocate
4483 * @gfp_mask: GFP flags for the allocation
4485 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4486 * back.
4488 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4490 unsigned int order = get_order(size);
4491 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4492 if (!p)
4493 return NULL;
4494 return make_alloc_exact((unsigned long)page_address(p), order, size);
4498 * free_pages_exact - release memory allocated via alloc_pages_exact()
4499 * @virt: the value returned by alloc_pages_exact.
4500 * @size: size of allocation, same value as passed to alloc_pages_exact().
4502 * Release the memory allocated by a previous call to alloc_pages_exact.
4504 void free_pages_exact(void *virt, size_t size)
4506 unsigned long addr = (unsigned long)virt;
4507 unsigned long end = addr + PAGE_ALIGN(size);
4509 while (addr < end) {
4510 free_page(addr);
4511 addr += PAGE_SIZE;
4514 EXPORT_SYMBOL(free_pages_exact);
4517 * nr_free_zone_pages - count number of pages beyond high watermark
4518 * @offset: The zone index of the highest zone
4520 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4521 * high watermark within all zones at or below a given zone index. For each
4522 * zone, the number of pages is calculated as:
4524 * nr_free_zone_pages = managed_pages - high_pages
4526 static unsigned long nr_free_zone_pages(int offset)
4528 struct zoneref *z;
4529 struct zone *zone;
4531 /* Just pick one node, since fallback list is circular */
4532 unsigned long sum = 0;
4534 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4536 for_each_zone_zonelist(zone, z, zonelist, offset) {
4537 unsigned long size = zone->managed_pages;
4538 unsigned long high = high_wmark_pages(zone);
4539 if (size > high)
4540 sum += size - high;
4543 return sum;
4547 * nr_free_buffer_pages - count number of pages beyond high watermark
4549 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4550 * watermark within ZONE_DMA and ZONE_NORMAL.
4552 unsigned long nr_free_buffer_pages(void)
4554 return nr_free_zone_pages(gfp_zone(GFP_USER));
4556 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4559 * nr_free_pagecache_pages - count number of pages beyond high watermark
4561 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4562 * high watermark within all zones.
4564 unsigned long nr_free_pagecache_pages(void)
4566 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4569 static inline void show_node(struct zone *zone)
4571 if (IS_ENABLED(CONFIG_NUMA))
4572 printk("Node %d ", zone_to_nid(zone));
4575 long si_mem_available(void)
4577 long available;
4578 unsigned long pagecache;
4579 unsigned long wmark_low = 0;
4580 unsigned long pages[NR_LRU_LISTS];
4581 struct zone *zone;
4582 int lru;
4584 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4585 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4587 for_each_zone(zone)
4588 wmark_low += zone->watermark[WMARK_LOW];
4591 * Estimate the amount of memory available for userspace allocations,
4592 * without causing swapping.
4594 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4597 * Not all the page cache can be freed, otherwise the system will
4598 * start swapping. Assume at least half of the page cache, or the
4599 * low watermark worth of cache, needs to stay.
4601 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4602 pagecache -= min(pagecache / 2, wmark_low);
4603 available += pagecache;
4606 * Part of the reclaimable slab consists of items that are in use,
4607 * and cannot be freed. Cap this estimate at the low watermark.
4609 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4610 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4611 wmark_low);
4613 if (available < 0)
4614 available = 0;
4615 return available;
4617 EXPORT_SYMBOL_GPL(si_mem_available);
4619 void si_meminfo(struct sysinfo *val)
4621 val->totalram = totalram_pages;
4622 val->sharedram = global_node_page_state(NR_SHMEM);
4623 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4624 val->bufferram = nr_blockdev_pages();
4625 val->totalhigh = totalhigh_pages;
4626 val->freehigh = nr_free_highpages();
4627 val->mem_unit = PAGE_SIZE;
4630 EXPORT_SYMBOL(si_meminfo);
4632 #ifdef CONFIG_NUMA
4633 void si_meminfo_node(struct sysinfo *val, int nid)
4635 int zone_type; /* needs to be signed */
4636 unsigned long managed_pages = 0;
4637 unsigned long managed_highpages = 0;
4638 unsigned long free_highpages = 0;
4639 pg_data_t *pgdat = NODE_DATA(nid);
4641 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4642 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4643 val->totalram = managed_pages;
4644 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4645 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4646 #ifdef CONFIG_HIGHMEM
4647 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4648 struct zone *zone = &pgdat->node_zones[zone_type];
4650 if (is_highmem(zone)) {
4651 managed_highpages += zone->managed_pages;
4652 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4655 val->totalhigh = managed_highpages;
4656 val->freehigh = free_highpages;
4657 #else
4658 val->totalhigh = managed_highpages;
4659 val->freehigh = free_highpages;
4660 #endif
4661 val->mem_unit = PAGE_SIZE;
4663 #endif
4666 * Determine whether the node should be displayed or not, depending on whether
4667 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4669 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4671 if (!(flags & SHOW_MEM_FILTER_NODES))
4672 return false;
4675 * no node mask - aka implicit memory numa policy. Do not bother with
4676 * the synchronization - read_mems_allowed_begin - because we do not
4677 * have to be precise here.
4679 if (!nodemask)
4680 nodemask = &cpuset_current_mems_allowed;
4682 return !node_isset(nid, *nodemask);
4685 #define K(x) ((x) << (PAGE_SHIFT-10))
4687 static void show_migration_types(unsigned char type)
4689 static const char types[MIGRATE_TYPES] = {
4690 [MIGRATE_UNMOVABLE] = 'U',
4691 [MIGRATE_MOVABLE] = 'M',
4692 [MIGRATE_RECLAIMABLE] = 'E',
4693 [MIGRATE_HIGHATOMIC] = 'H',
4694 #ifdef CONFIG_CMA
4695 [MIGRATE_CMA] = 'C',
4696 #endif
4697 #ifdef CONFIG_MEMORY_ISOLATION
4698 [MIGRATE_ISOLATE] = 'I',
4699 #endif
4701 char tmp[MIGRATE_TYPES + 1];
4702 char *p = tmp;
4703 int i;
4705 for (i = 0; i < MIGRATE_TYPES; i++) {
4706 if (type & (1 << i))
4707 *p++ = types[i];
4710 *p = '\0';
4711 printk(KERN_CONT "(%s) ", tmp);
4715 * Show free area list (used inside shift_scroll-lock stuff)
4716 * We also calculate the percentage fragmentation. We do this by counting the
4717 * memory on each free list with the exception of the first item on the list.
4719 * Bits in @filter:
4720 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4721 * cpuset.
4723 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4725 unsigned long free_pcp = 0;
4726 int cpu;
4727 struct zone *zone;
4728 pg_data_t *pgdat;
4730 for_each_populated_zone(zone) {
4731 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4732 continue;
4734 for_each_online_cpu(cpu)
4735 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4738 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4739 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4740 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4741 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4742 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4743 " free:%lu free_pcp:%lu free_cma:%lu\n",
4744 global_node_page_state(NR_ACTIVE_ANON),
4745 global_node_page_state(NR_INACTIVE_ANON),
4746 global_node_page_state(NR_ISOLATED_ANON),
4747 global_node_page_state(NR_ACTIVE_FILE),
4748 global_node_page_state(NR_INACTIVE_FILE),
4749 global_node_page_state(NR_ISOLATED_FILE),
4750 global_node_page_state(NR_UNEVICTABLE),
4751 global_node_page_state(NR_FILE_DIRTY),
4752 global_node_page_state(NR_WRITEBACK),
4753 global_node_page_state(NR_UNSTABLE_NFS),
4754 global_node_page_state(NR_SLAB_RECLAIMABLE),
4755 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4756 global_node_page_state(NR_FILE_MAPPED),
4757 global_node_page_state(NR_SHMEM),
4758 global_zone_page_state(NR_PAGETABLE),
4759 global_zone_page_state(NR_BOUNCE),
4760 global_zone_page_state(NR_FREE_PAGES),
4761 free_pcp,
4762 global_zone_page_state(NR_FREE_CMA_PAGES));
4764 for_each_online_pgdat(pgdat) {
4765 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4766 continue;
4768 printk("Node %d"
4769 " active_anon:%lukB"
4770 " inactive_anon:%lukB"
4771 " active_file:%lukB"
4772 " inactive_file:%lukB"
4773 " unevictable:%lukB"
4774 " isolated(anon):%lukB"
4775 " isolated(file):%lukB"
4776 " mapped:%lukB"
4777 " dirty:%lukB"
4778 " writeback:%lukB"
4779 " shmem:%lukB"
4780 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4781 " shmem_thp: %lukB"
4782 " shmem_pmdmapped: %lukB"
4783 " anon_thp: %lukB"
4784 #endif
4785 " writeback_tmp:%lukB"
4786 " unstable:%lukB"
4787 " all_unreclaimable? %s"
4788 "\n",
4789 pgdat->node_id,
4790 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4791 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4792 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4793 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4794 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4795 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4796 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4797 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4798 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4799 K(node_page_state(pgdat, NR_WRITEBACK)),
4800 K(node_page_state(pgdat, NR_SHMEM)),
4801 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4802 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4803 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4804 * HPAGE_PMD_NR),
4805 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4806 #endif
4807 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4808 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4809 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4810 "yes" : "no");
4813 for_each_populated_zone(zone) {
4814 int i;
4816 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4817 continue;
4819 free_pcp = 0;
4820 for_each_online_cpu(cpu)
4821 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4823 show_node(zone);
4824 printk(KERN_CONT
4825 "%s"
4826 " free:%lukB"
4827 " min:%lukB"
4828 " low:%lukB"
4829 " high:%lukB"
4830 " active_anon:%lukB"
4831 " inactive_anon:%lukB"
4832 " active_file:%lukB"
4833 " inactive_file:%lukB"
4834 " unevictable:%lukB"
4835 " writepending:%lukB"
4836 " present:%lukB"
4837 " managed:%lukB"
4838 " mlocked:%lukB"
4839 " kernel_stack:%lukB"
4840 " pagetables:%lukB"
4841 " bounce:%lukB"
4842 " free_pcp:%lukB"
4843 " local_pcp:%ukB"
4844 " free_cma:%lukB"
4845 "\n",
4846 zone->name,
4847 K(zone_page_state(zone, NR_FREE_PAGES)),
4848 K(min_wmark_pages(zone)),
4849 K(low_wmark_pages(zone)),
4850 K(high_wmark_pages(zone)),
4851 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4852 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4853 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4854 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4855 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4856 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4857 K(zone->present_pages),
4858 K(zone->managed_pages),
4859 K(zone_page_state(zone, NR_MLOCK)),
4860 zone_page_state(zone, NR_KERNEL_STACK_KB),
4861 K(zone_page_state(zone, NR_PAGETABLE)),
4862 K(zone_page_state(zone, NR_BOUNCE)),
4863 K(free_pcp),
4864 K(this_cpu_read(zone->pageset->pcp.count)),
4865 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4866 printk("lowmem_reserve[]:");
4867 for (i = 0; i < MAX_NR_ZONES; i++)
4868 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4869 printk(KERN_CONT "\n");
4872 for_each_populated_zone(zone) {
4873 unsigned int order;
4874 unsigned long nr[MAX_ORDER], flags, total = 0;
4875 unsigned char types[MAX_ORDER];
4877 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4878 continue;
4879 show_node(zone);
4880 printk(KERN_CONT "%s: ", zone->name);
4882 spin_lock_irqsave(&zone->lock, flags);
4883 for (order = 0; order < MAX_ORDER; order++) {
4884 struct free_area *area = &zone->free_area[order];
4885 int type;
4887 nr[order] = area->nr_free;
4888 total += nr[order] << order;
4890 types[order] = 0;
4891 for (type = 0; type < MIGRATE_TYPES; type++) {
4892 if (!list_empty(&area->free_list[type]))
4893 types[order] |= 1 << type;
4896 spin_unlock_irqrestore(&zone->lock, flags);
4897 for (order = 0; order < MAX_ORDER; order++) {
4898 printk(KERN_CONT "%lu*%lukB ",
4899 nr[order], K(1UL) << order);
4900 if (nr[order])
4901 show_migration_types(types[order]);
4903 printk(KERN_CONT "= %lukB\n", K(total));
4906 hugetlb_show_meminfo();
4908 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4910 show_swap_cache_info();
4913 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4915 zoneref->zone = zone;
4916 zoneref->zone_idx = zone_idx(zone);
4920 * Builds allocation fallback zone lists.
4922 * Add all populated zones of a node to the zonelist.
4924 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4926 struct zone *zone;
4927 enum zone_type zone_type = MAX_NR_ZONES;
4928 int nr_zones = 0;
4930 do {
4931 zone_type--;
4932 zone = pgdat->node_zones + zone_type;
4933 if (managed_zone(zone)) {
4934 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4935 check_highest_zone(zone_type);
4937 } while (zone_type);
4939 return nr_zones;
4942 #ifdef CONFIG_NUMA
4944 static int __parse_numa_zonelist_order(char *s)
4947 * We used to support different zonlists modes but they turned
4948 * out to be just not useful. Let's keep the warning in place
4949 * if somebody still use the cmd line parameter so that we do
4950 * not fail it silently
4952 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4953 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4954 return -EINVAL;
4956 return 0;
4959 static __init int setup_numa_zonelist_order(char *s)
4961 if (!s)
4962 return 0;
4964 return __parse_numa_zonelist_order(s);
4966 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4968 char numa_zonelist_order[] = "Node";
4971 * sysctl handler for numa_zonelist_order
4973 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4974 void __user *buffer, size_t *length,
4975 loff_t *ppos)
4977 char *str;
4978 int ret;
4980 if (!write)
4981 return proc_dostring(table, write, buffer, length, ppos);
4982 str = memdup_user_nul(buffer, 16);
4983 if (IS_ERR(str))
4984 return PTR_ERR(str);
4986 ret = __parse_numa_zonelist_order(str);
4987 kfree(str);
4988 return ret;
4992 #define MAX_NODE_LOAD (nr_online_nodes)
4993 static int node_load[MAX_NUMNODES];
4996 * find_next_best_node - find the next node that should appear in a given node's fallback list
4997 * @node: node whose fallback list we're appending
4998 * @used_node_mask: nodemask_t of already used nodes
5000 * We use a number of factors to determine which is the next node that should
5001 * appear on a given node's fallback list. The node should not have appeared
5002 * already in @node's fallback list, and it should be the next closest node
5003 * according to the distance array (which contains arbitrary distance values
5004 * from each node to each node in the system), and should also prefer nodes
5005 * with no CPUs, since presumably they'll have very little allocation pressure
5006 * on them otherwise.
5007 * It returns -1 if no node is found.
5009 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5011 int n, val;
5012 int min_val = INT_MAX;
5013 int best_node = NUMA_NO_NODE;
5014 const struct cpumask *tmp = cpumask_of_node(0);
5016 /* Use the local node if we haven't already */
5017 if (!node_isset(node, *used_node_mask)) {
5018 node_set(node, *used_node_mask);
5019 return node;
5022 for_each_node_state(n, N_MEMORY) {
5024 /* Don't want a node to appear more than once */
5025 if (node_isset(n, *used_node_mask))
5026 continue;
5028 /* Use the distance array to find the distance */
5029 val = node_distance(node, n);
5031 /* Penalize nodes under us ("prefer the next node") */
5032 val += (n < node);
5034 /* Give preference to headless and unused nodes */
5035 tmp = cpumask_of_node(n);
5036 if (!cpumask_empty(tmp))
5037 val += PENALTY_FOR_NODE_WITH_CPUS;
5039 /* Slight preference for less loaded node */
5040 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5041 val += node_load[n];
5043 if (val < min_val) {
5044 min_val = val;
5045 best_node = n;
5049 if (best_node >= 0)
5050 node_set(best_node, *used_node_mask);
5052 return best_node;
5057 * Build zonelists ordered by node and zones within node.
5058 * This results in maximum locality--normal zone overflows into local
5059 * DMA zone, if any--but risks exhausting DMA zone.
5061 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5062 unsigned nr_nodes)
5064 struct zoneref *zonerefs;
5065 int i;
5067 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5069 for (i = 0; i < nr_nodes; i++) {
5070 int nr_zones;
5072 pg_data_t *node = NODE_DATA(node_order[i]);
5074 nr_zones = build_zonerefs_node(node, zonerefs);
5075 zonerefs += nr_zones;
5077 zonerefs->zone = NULL;
5078 zonerefs->zone_idx = 0;
5082 * Build gfp_thisnode zonelists
5084 static void build_thisnode_zonelists(pg_data_t *pgdat)
5086 struct zoneref *zonerefs;
5087 int nr_zones;
5089 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5090 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5091 zonerefs += nr_zones;
5092 zonerefs->zone = NULL;
5093 zonerefs->zone_idx = 0;
5097 * Build zonelists ordered by zone and nodes within zones.
5098 * This results in conserving DMA zone[s] until all Normal memory is
5099 * exhausted, but results in overflowing to remote node while memory
5100 * may still exist in local DMA zone.
5103 static void build_zonelists(pg_data_t *pgdat)
5105 static int node_order[MAX_NUMNODES];
5106 int node, load, nr_nodes = 0;
5107 nodemask_t used_mask;
5108 int local_node, prev_node;
5110 /* NUMA-aware ordering of nodes */
5111 local_node = pgdat->node_id;
5112 load = nr_online_nodes;
5113 prev_node = local_node;
5114 nodes_clear(used_mask);
5116 memset(node_order, 0, sizeof(node_order));
5117 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5119 * We don't want to pressure a particular node.
5120 * So adding penalty to the first node in same
5121 * distance group to make it round-robin.
5123 if (node_distance(local_node, node) !=
5124 node_distance(local_node, prev_node))
5125 node_load[node] = load;
5127 node_order[nr_nodes++] = node;
5128 prev_node = node;
5129 load--;
5132 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5133 build_thisnode_zonelists(pgdat);
5136 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5138 * Return node id of node used for "local" allocations.
5139 * I.e., first node id of first zone in arg node's generic zonelist.
5140 * Used for initializing percpu 'numa_mem', which is used primarily
5141 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5143 int local_memory_node(int node)
5145 struct zoneref *z;
5147 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5148 gfp_zone(GFP_KERNEL),
5149 NULL);
5150 return z->zone->node;
5152 #endif
5154 static void setup_min_unmapped_ratio(void);
5155 static void setup_min_slab_ratio(void);
5156 #else /* CONFIG_NUMA */
5158 static void build_zonelists(pg_data_t *pgdat)
5160 int node, local_node;
5161 struct zoneref *zonerefs;
5162 int nr_zones;
5164 local_node = pgdat->node_id;
5166 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5167 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5168 zonerefs += nr_zones;
5171 * Now we build the zonelist so that it contains the zones
5172 * of all the other nodes.
5173 * We don't want to pressure a particular node, so when
5174 * building the zones for node N, we make sure that the
5175 * zones coming right after the local ones are those from
5176 * node N+1 (modulo N)
5178 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5179 if (!node_online(node))
5180 continue;
5181 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5182 zonerefs += nr_zones;
5184 for (node = 0; node < local_node; node++) {
5185 if (!node_online(node))
5186 continue;
5187 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5188 zonerefs += nr_zones;
5191 zonerefs->zone = NULL;
5192 zonerefs->zone_idx = 0;
5195 #endif /* CONFIG_NUMA */
5198 * Boot pageset table. One per cpu which is going to be used for all
5199 * zones and all nodes. The parameters will be set in such a way
5200 * that an item put on a list will immediately be handed over to
5201 * the buddy list. This is safe since pageset manipulation is done
5202 * with interrupts disabled.
5204 * The boot_pagesets must be kept even after bootup is complete for
5205 * unused processors and/or zones. They do play a role for bootstrapping
5206 * hotplugged processors.
5208 * zoneinfo_show() and maybe other functions do
5209 * not check if the processor is online before following the pageset pointer.
5210 * Other parts of the kernel may not check if the zone is available.
5212 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5213 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5214 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5216 static void __build_all_zonelists(void *data)
5218 int nid;
5219 int __maybe_unused cpu;
5220 pg_data_t *self = data;
5221 static DEFINE_SPINLOCK(lock);
5223 spin_lock(&lock);
5225 #ifdef CONFIG_NUMA
5226 memset(node_load, 0, sizeof(node_load));
5227 #endif
5230 * This node is hotadded and no memory is yet present. So just
5231 * building zonelists is fine - no need to touch other nodes.
5233 if (self && !node_online(self->node_id)) {
5234 build_zonelists(self);
5235 } else {
5236 for_each_online_node(nid) {
5237 pg_data_t *pgdat = NODE_DATA(nid);
5239 build_zonelists(pgdat);
5242 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5244 * We now know the "local memory node" for each node--
5245 * i.e., the node of the first zone in the generic zonelist.
5246 * Set up numa_mem percpu variable for on-line cpus. During
5247 * boot, only the boot cpu should be on-line; we'll init the
5248 * secondary cpus' numa_mem as they come on-line. During
5249 * node/memory hotplug, we'll fixup all on-line cpus.
5251 for_each_online_cpu(cpu)
5252 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5253 #endif
5256 spin_unlock(&lock);
5259 static noinline void __init
5260 build_all_zonelists_init(void)
5262 int cpu;
5264 __build_all_zonelists(NULL);
5267 * Initialize the boot_pagesets that are going to be used
5268 * for bootstrapping processors. The real pagesets for
5269 * each zone will be allocated later when the per cpu
5270 * allocator is available.
5272 * boot_pagesets are used also for bootstrapping offline
5273 * cpus if the system is already booted because the pagesets
5274 * are needed to initialize allocators on a specific cpu too.
5275 * F.e. the percpu allocator needs the page allocator which
5276 * needs the percpu allocator in order to allocate its pagesets
5277 * (a chicken-egg dilemma).
5279 for_each_possible_cpu(cpu)
5280 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5282 mminit_verify_zonelist();
5283 cpuset_init_current_mems_allowed();
5287 * unless system_state == SYSTEM_BOOTING.
5289 * __ref due to call of __init annotated helper build_all_zonelists_init
5290 * [protected by SYSTEM_BOOTING].
5292 void __ref build_all_zonelists(pg_data_t *pgdat)
5294 if (system_state == SYSTEM_BOOTING) {
5295 build_all_zonelists_init();
5296 } else {
5297 __build_all_zonelists(pgdat);
5298 /* cpuset refresh routine should be here */
5300 vm_total_pages = nr_free_pagecache_pages();
5302 * Disable grouping by mobility if the number of pages in the
5303 * system is too low to allow the mechanism to work. It would be
5304 * more accurate, but expensive to check per-zone. This check is
5305 * made on memory-hotadd so a system can start with mobility
5306 * disabled and enable it later
5308 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5309 page_group_by_mobility_disabled = 1;
5310 else
5311 page_group_by_mobility_disabled = 0;
5313 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5314 nr_online_nodes,
5315 page_group_by_mobility_disabled ? "off" : "on",
5316 vm_total_pages);
5317 #ifdef CONFIG_NUMA
5318 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5319 #endif
5323 * Initially all pages are reserved - free ones are freed
5324 * up by free_all_bootmem() once the early boot process is
5325 * done. Non-atomic initialization, single-pass.
5327 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5328 unsigned long start_pfn, enum memmap_context context,
5329 struct vmem_altmap *altmap)
5331 unsigned long end_pfn = start_pfn + size;
5332 pg_data_t *pgdat = NODE_DATA(nid);
5333 unsigned long pfn;
5334 unsigned long nr_initialised = 0;
5335 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5336 struct memblock_region *r = NULL, *tmp;
5337 #endif
5339 if (highest_memmap_pfn < end_pfn - 1)
5340 highest_memmap_pfn = end_pfn - 1;
5343 * Honor reservation requested by the driver for this ZONE_DEVICE
5344 * memory
5346 if (altmap && start_pfn == altmap->base_pfn)
5347 start_pfn += altmap->reserve;
5349 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5351 * There can be holes in boot-time mem_map[]s handed to this
5352 * function. They do not exist on hotplugged memory.
5354 if (context != MEMMAP_EARLY)
5355 goto not_early;
5357 if (!early_pfn_valid(pfn)) {
5358 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5360 * Skip to the pfn preceding the next valid one (or
5361 * end_pfn), such that we hit a valid pfn (or end_pfn)
5362 * on our next iteration of the loop.
5364 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5365 #endif
5366 continue;
5368 if (!early_pfn_in_nid(pfn, nid))
5369 continue;
5370 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5371 break;
5373 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5375 * Check given memblock attribute by firmware which can affect
5376 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5377 * mirrored, it's an overlapped memmap init. skip it.
5379 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5380 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5381 for_each_memblock(memory, tmp)
5382 if (pfn < memblock_region_memory_end_pfn(tmp))
5383 break;
5384 r = tmp;
5386 if (pfn >= memblock_region_memory_base_pfn(r) &&
5387 memblock_is_mirror(r)) {
5388 /* already initialized as NORMAL */
5389 pfn = memblock_region_memory_end_pfn(r);
5390 continue;
5393 #endif
5395 not_early:
5397 * Mark the block movable so that blocks are reserved for
5398 * movable at startup. This will force kernel allocations
5399 * to reserve their blocks rather than leaking throughout
5400 * the address space during boot when many long-lived
5401 * kernel allocations are made.
5403 * bitmap is created for zone's valid pfn range. but memmap
5404 * can be created for invalid pages (for alignment)
5405 * check here not to call set_pageblock_migratetype() against
5406 * pfn out of zone.
5408 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5409 * because this is done early in sparse_add_one_section
5411 if (!(pfn & (pageblock_nr_pages - 1))) {
5412 struct page *page = pfn_to_page(pfn);
5414 __init_single_page(page, pfn, zone, nid,
5415 context != MEMMAP_HOTPLUG);
5416 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5417 cond_resched();
5418 } else {
5419 __init_single_pfn(pfn, zone, nid,
5420 context != MEMMAP_HOTPLUG);
5425 static void __meminit zone_init_free_lists(struct zone *zone)
5427 unsigned int order, t;
5428 for_each_migratetype_order(order, t) {
5429 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5430 zone->free_area[order].nr_free = 0;
5434 #ifndef __HAVE_ARCH_MEMMAP_INIT
5435 #define memmap_init(size, nid, zone, start_pfn) \
5436 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5437 #endif
5439 static int zone_batchsize(struct zone *zone)
5441 #ifdef CONFIG_MMU
5442 int batch;
5445 * The per-cpu-pages pools are set to around 1000th of the
5446 * size of the zone. But no more than 1/2 of a meg.
5448 * OK, so we don't know how big the cache is. So guess.
5450 batch = zone->managed_pages / 1024;
5451 if (batch * PAGE_SIZE > 512 * 1024)
5452 batch = (512 * 1024) / PAGE_SIZE;
5453 batch /= 4; /* We effectively *= 4 below */
5454 if (batch < 1)
5455 batch = 1;
5458 * Clamp the batch to a 2^n - 1 value. Having a power
5459 * of 2 value was found to be more likely to have
5460 * suboptimal cache aliasing properties in some cases.
5462 * For example if 2 tasks are alternately allocating
5463 * batches of pages, one task can end up with a lot
5464 * of pages of one half of the possible page colors
5465 * and the other with pages of the other colors.
5467 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5469 return batch;
5471 #else
5472 /* The deferral and batching of frees should be suppressed under NOMMU
5473 * conditions.
5475 * The problem is that NOMMU needs to be able to allocate large chunks
5476 * of contiguous memory as there's no hardware page translation to
5477 * assemble apparent contiguous memory from discontiguous pages.
5479 * Queueing large contiguous runs of pages for batching, however,
5480 * causes the pages to actually be freed in smaller chunks. As there
5481 * can be a significant delay between the individual batches being
5482 * recycled, this leads to the once large chunks of space being
5483 * fragmented and becoming unavailable for high-order allocations.
5485 return 0;
5486 #endif
5490 * pcp->high and pcp->batch values are related and dependent on one another:
5491 * ->batch must never be higher then ->high.
5492 * The following function updates them in a safe manner without read side
5493 * locking.
5495 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5496 * those fields changing asynchronously (acording the the above rule).
5498 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5499 * outside of boot time (or some other assurance that no concurrent updaters
5500 * exist).
5502 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5503 unsigned long batch)
5505 /* start with a fail safe value for batch */
5506 pcp->batch = 1;
5507 smp_wmb();
5509 /* Update high, then batch, in order */
5510 pcp->high = high;
5511 smp_wmb();
5513 pcp->batch = batch;
5516 /* a companion to pageset_set_high() */
5517 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5519 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5522 static void pageset_init(struct per_cpu_pageset *p)
5524 struct per_cpu_pages *pcp;
5525 int migratetype;
5527 memset(p, 0, sizeof(*p));
5529 pcp = &p->pcp;
5530 pcp->count = 0;
5531 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5532 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5535 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5537 pageset_init(p);
5538 pageset_set_batch(p, batch);
5542 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5543 * to the value high for the pageset p.
5545 static void pageset_set_high(struct per_cpu_pageset *p,
5546 unsigned long high)
5548 unsigned long batch = max(1UL, high / 4);
5549 if ((high / 4) > (PAGE_SHIFT * 8))
5550 batch = PAGE_SHIFT * 8;
5552 pageset_update(&p->pcp, high, batch);
5555 static void pageset_set_high_and_batch(struct zone *zone,
5556 struct per_cpu_pageset *pcp)
5558 if (percpu_pagelist_fraction)
5559 pageset_set_high(pcp,
5560 (zone->managed_pages /
5561 percpu_pagelist_fraction));
5562 else
5563 pageset_set_batch(pcp, zone_batchsize(zone));
5566 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5568 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5570 pageset_init(pcp);
5571 pageset_set_high_and_batch(zone, pcp);
5574 void __meminit setup_zone_pageset(struct zone *zone)
5576 int cpu;
5577 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5578 for_each_possible_cpu(cpu)
5579 zone_pageset_init(zone, cpu);
5583 * Allocate per cpu pagesets and initialize them.
5584 * Before this call only boot pagesets were available.
5586 void __init setup_per_cpu_pageset(void)
5588 struct pglist_data *pgdat;
5589 struct zone *zone;
5591 for_each_populated_zone(zone)
5592 setup_zone_pageset(zone);
5594 for_each_online_pgdat(pgdat)
5595 pgdat->per_cpu_nodestats =
5596 alloc_percpu(struct per_cpu_nodestat);
5599 static __meminit void zone_pcp_init(struct zone *zone)
5602 * per cpu subsystem is not up at this point. The following code
5603 * relies on the ability of the linker to provide the
5604 * offset of a (static) per cpu variable into the per cpu area.
5606 zone->pageset = &boot_pageset;
5608 if (populated_zone(zone))
5609 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5610 zone->name, zone->present_pages,
5611 zone_batchsize(zone));
5614 void __meminit init_currently_empty_zone(struct zone *zone,
5615 unsigned long zone_start_pfn,
5616 unsigned long size)
5618 struct pglist_data *pgdat = zone->zone_pgdat;
5620 pgdat->nr_zones = zone_idx(zone) + 1;
5622 zone->zone_start_pfn = zone_start_pfn;
5624 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5625 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5626 pgdat->node_id,
5627 (unsigned long)zone_idx(zone),
5628 zone_start_pfn, (zone_start_pfn + size));
5630 zone_init_free_lists(zone);
5631 zone->initialized = 1;
5634 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5635 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5638 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5640 int __meminit __early_pfn_to_nid(unsigned long pfn,
5641 struct mminit_pfnnid_cache *state)
5643 unsigned long start_pfn, end_pfn;
5644 int nid;
5646 if (state->last_start <= pfn && pfn < state->last_end)
5647 return state->last_nid;
5649 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5650 if (nid != -1) {
5651 state->last_start = start_pfn;
5652 state->last_end = end_pfn;
5653 state->last_nid = nid;
5656 return nid;
5658 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5661 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5662 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5663 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5665 * If an architecture guarantees that all ranges registered contain no holes
5666 * and may be freed, this this function may be used instead of calling
5667 * memblock_free_early_nid() manually.
5669 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5671 unsigned long start_pfn, end_pfn;
5672 int i, this_nid;
5674 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5675 start_pfn = min(start_pfn, max_low_pfn);
5676 end_pfn = min(end_pfn, max_low_pfn);
5678 if (start_pfn < end_pfn)
5679 memblock_free_early_nid(PFN_PHYS(start_pfn),
5680 (end_pfn - start_pfn) << PAGE_SHIFT,
5681 this_nid);
5686 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5687 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5689 * If an architecture guarantees that all ranges registered contain no holes and may
5690 * be freed, this function may be used instead of calling memory_present() manually.
5692 void __init sparse_memory_present_with_active_regions(int nid)
5694 unsigned long start_pfn, end_pfn;
5695 int i, this_nid;
5697 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5698 memory_present(this_nid, start_pfn, end_pfn);
5702 * get_pfn_range_for_nid - Return the start and end page frames for a node
5703 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5704 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5705 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5707 * It returns the start and end page frame of a node based on information
5708 * provided by memblock_set_node(). If called for a node
5709 * with no available memory, a warning is printed and the start and end
5710 * PFNs will be 0.
5712 void __meminit get_pfn_range_for_nid(unsigned int nid,
5713 unsigned long *start_pfn, unsigned long *end_pfn)
5715 unsigned long this_start_pfn, this_end_pfn;
5716 int i;
5718 *start_pfn = -1UL;
5719 *end_pfn = 0;
5721 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5722 *start_pfn = min(*start_pfn, this_start_pfn);
5723 *end_pfn = max(*end_pfn, this_end_pfn);
5726 if (*start_pfn == -1UL)
5727 *start_pfn = 0;
5731 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5732 * assumption is made that zones within a node are ordered in monotonic
5733 * increasing memory addresses so that the "highest" populated zone is used
5735 static void __init find_usable_zone_for_movable(void)
5737 int zone_index;
5738 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5739 if (zone_index == ZONE_MOVABLE)
5740 continue;
5742 if (arch_zone_highest_possible_pfn[zone_index] >
5743 arch_zone_lowest_possible_pfn[zone_index])
5744 break;
5747 VM_BUG_ON(zone_index == -1);
5748 movable_zone = zone_index;
5752 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5753 * because it is sized independent of architecture. Unlike the other zones,
5754 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5755 * in each node depending on the size of each node and how evenly kernelcore
5756 * is distributed. This helper function adjusts the zone ranges
5757 * provided by the architecture for a given node by using the end of the
5758 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5759 * zones within a node are in order of monotonic increases memory addresses
5761 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5762 unsigned long zone_type,
5763 unsigned long node_start_pfn,
5764 unsigned long node_end_pfn,
5765 unsigned long *zone_start_pfn,
5766 unsigned long *zone_end_pfn)
5768 /* Only adjust if ZONE_MOVABLE is on this node */
5769 if (zone_movable_pfn[nid]) {
5770 /* Size ZONE_MOVABLE */
5771 if (zone_type == ZONE_MOVABLE) {
5772 *zone_start_pfn = zone_movable_pfn[nid];
5773 *zone_end_pfn = min(node_end_pfn,
5774 arch_zone_highest_possible_pfn[movable_zone]);
5776 /* Adjust for ZONE_MOVABLE starting within this range */
5777 } else if (!mirrored_kernelcore &&
5778 *zone_start_pfn < zone_movable_pfn[nid] &&
5779 *zone_end_pfn > zone_movable_pfn[nid]) {
5780 *zone_end_pfn = zone_movable_pfn[nid];
5782 /* Check if this whole range is within ZONE_MOVABLE */
5783 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5784 *zone_start_pfn = *zone_end_pfn;
5789 * Return the number of pages a zone spans in a node, including holes
5790 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5792 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5793 unsigned long zone_type,
5794 unsigned long node_start_pfn,
5795 unsigned long node_end_pfn,
5796 unsigned long *zone_start_pfn,
5797 unsigned long *zone_end_pfn,
5798 unsigned long *ignored)
5800 /* When hotadd a new node from cpu_up(), the node should be empty */
5801 if (!node_start_pfn && !node_end_pfn)
5802 return 0;
5804 /* Get the start and end of the zone */
5805 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5806 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5807 adjust_zone_range_for_zone_movable(nid, zone_type,
5808 node_start_pfn, node_end_pfn,
5809 zone_start_pfn, zone_end_pfn);
5811 /* Check that this node has pages within the zone's required range */
5812 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5813 return 0;
5815 /* Move the zone boundaries inside the node if necessary */
5816 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5817 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5819 /* Return the spanned pages */
5820 return *zone_end_pfn - *zone_start_pfn;
5824 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5825 * then all holes in the requested range will be accounted for.
5827 unsigned long __meminit __absent_pages_in_range(int nid,
5828 unsigned long range_start_pfn,
5829 unsigned long range_end_pfn)
5831 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5832 unsigned long start_pfn, end_pfn;
5833 int i;
5835 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5836 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5837 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5838 nr_absent -= end_pfn - start_pfn;
5840 return nr_absent;
5844 * absent_pages_in_range - Return number of page frames in holes within a range
5845 * @start_pfn: The start PFN to start searching for holes
5846 * @end_pfn: The end PFN to stop searching for holes
5848 * It returns the number of pages frames in memory holes within a range.
5850 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5851 unsigned long end_pfn)
5853 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5856 /* Return the number of page frames in holes in a zone on a node */
5857 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5858 unsigned long zone_type,
5859 unsigned long node_start_pfn,
5860 unsigned long node_end_pfn,
5861 unsigned long *ignored)
5863 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5864 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5865 unsigned long zone_start_pfn, zone_end_pfn;
5866 unsigned long nr_absent;
5868 /* When hotadd a new node from cpu_up(), the node should be empty */
5869 if (!node_start_pfn && !node_end_pfn)
5870 return 0;
5872 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5873 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5875 adjust_zone_range_for_zone_movable(nid, zone_type,
5876 node_start_pfn, node_end_pfn,
5877 &zone_start_pfn, &zone_end_pfn);
5878 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5881 * ZONE_MOVABLE handling.
5882 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5883 * and vice versa.
5885 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5886 unsigned long start_pfn, end_pfn;
5887 struct memblock_region *r;
5889 for_each_memblock(memory, r) {
5890 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5891 zone_start_pfn, zone_end_pfn);
5892 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5893 zone_start_pfn, zone_end_pfn);
5895 if (zone_type == ZONE_MOVABLE &&
5896 memblock_is_mirror(r))
5897 nr_absent += end_pfn - start_pfn;
5899 if (zone_type == ZONE_NORMAL &&
5900 !memblock_is_mirror(r))
5901 nr_absent += end_pfn - start_pfn;
5905 return nr_absent;
5908 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5909 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5910 unsigned long zone_type,
5911 unsigned long node_start_pfn,
5912 unsigned long node_end_pfn,
5913 unsigned long *zone_start_pfn,
5914 unsigned long *zone_end_pfn,
5915 unsigned long *zones_size)
5917 unsigned int zone;
5919 *zone_start_pfn = node_start_pfn;
5920 for (zone = 0; zone < zone_type; zone++)
5921 *zone_start_pfn += zones_size[zone];
5923 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5925 return zones_size[zone_type];
5928 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5929 unsigned long zone_type,
5930 unsigned long node_start_pfn,
5931 unsigned long node_end_pfn,
5932 unsigned long *zholes_size)
5934 if (!zholes_size)
5935 return 0;
5937 return zholes_size[zone_type];
5940 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5942 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5943 unsigned long node_start_pfn,
5944 unsigned long node_end_pfn,
5945 unsigned long *zones_size,
5946 unsigned long *zholes_size)
5948 unsigned long realtotalpages = 0, totalpages = 0;
5949 enum zone_type i;
5951 for (i = 0; i < MAX_NR_ZONES; i++) {
5952 struct zone *zone = pgdat->node_zones + i;
5953 unsigned long zone_start_pfn, zone_end_pfn;
5954 unsigned long size, real_size;
5956 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5957 node_start_pfn,
5958 node_end_pfn,
5959 &zone_start_pfn,
5960 &zone_end_pfn,
5961 zones_size);
5962 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5963 node_start_pfn, node_end_pfn,
5964 zholes_size);
5965 if (size)
5966 zone->zone_start_pfn = zone_start_pfn;
5967 else
5968 zone->zone_start_pfn = 0;
5969 zone->spanned_pages = size;
5970 zone->present_pages = real_size;
5972 totalpages += size;
5973 realtotalpages += real_size;
5976 pgdat->node_spanned_pages = totalpages;
5977 pgdat->node_present_pages = realtotalpages;
5978 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5979 realtotalpages);
5982 #ifndef CONFIG_SPARSEMEM
5984 * Calculate the size of the zone->blockflags rounded to an unsigned long
5985 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5986 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5987 * round what is now in bits to nearest long in bits, then return it in
5988 * bytes.
5990 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5992 unsigned long usemapsize;
5994 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5995 usemapsize = roundup(zonesize, pageblock_nr_pages);
5996 usemapsize = usemapsize >> pageblock_order;
5997 usemapsize *= NR_PAGEBLOCK_BITS;
5998 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6000 return usemapsize / 8;
6003 static void __init setup_usemap(struct pglist_data *pgdat,
6004 struct zone *zone,
6005 unsigned long zone_start_pfn,
6006 unsigned long zonesize)
6008 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6009 zone->pageblock_flags = NULL;
6010 if (usemapsize)
6011 zone->pageblock_flags =
6012 memblock_virt_alloc_node_nopanic(usemapsize,
6013 pgdat->node_id);
6015 #else
6016 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6017 unsigned long zone_start_pfn, unsigned long zonesize) {}
6018 #endif /* CONFIG_SPARSEMEM */
6020 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6022 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6023 void __paginginit set_pageblock_order(void)
6025 unsigned int order;
6027 /* Check that pageblock_nr_pages has not already been setup */
6028 if (pageblock_order)
6029 return;
6031 if (HPAGE_SHIFT > PAGE_SHIFT)
6032 order = HUGETLB_PAGE_ORDER;
6033 else
6034 order = MAX_ORDER - 1;
6037 * Assume the largest contiguous order of interest is a huge page.
6038 * This value may be variable depending on boot parameters on IA64 and
6039 * powerpc.
6041 pageblock_order = order;
6043 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6046 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6047 * is unused as pageblock_order is set at compile-time. See
6048 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6049 * the kernel config
6051 void __paginginit set_pageblock_order(void)
6055 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6057 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6058 unsigned long present_pages)
6060 unsigned long pages = spanned_pages;
6063 * Provide a more accurate estimation if there are holes within
6064 * the zone and SPARSEMEM is in use. If there are holes within the
6065 * zone, each populated memory region may cost us one or two extra
6066 * memmap pages due to alignment because memmap pages for each
6067 * populated regions may not be naturally aligned on page boundary.
6068 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6070 if (spanned_pages > present_pages + (present_pages >> 4) &&
6071 IS_ENABLED(CONFIG_SPARSEMEM))
6072 pages = present_pages;
6074 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6078 * Set up the zone data structures:
6079 * - mark all pages reserved
6080 * - mark all memory queues empty
6081 * - clear the memory bitmaps
6083 * NOTE: pgdat should get zeroed by caller.
6085 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6087 enum zone_type j;
6088 int nid = pgdat->node_id;
6090 pgdat_resize_init(pgdat);
6091 #ifdef CONFIG_NUMA_BALANCING
6092 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6093 pgdat->numabalancing_migrate_nr_pages = 0;
6094 pgdat->numabalancing_migrate_next_window = jiffies;
6095 #endif
6096 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6097 spin_lock_init(&pgdat->split_queue_lock);
6098 INIT_LIST_HEAD(&pgdat->split_queue);
6099 pgdat->split_queue_len = 0;
6100 #endif
6101 init_waitqueue_head(&pgdat->kswapd_wait);
6102 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6103 #ifdef CONFIG_COMPACTION
6104 init_waitqueue_head(&pgdat->kcompactd_wait);
6105 #endif
6106 pgdat_page_ext_init(pgdat);
6107 spin_lock_init(&pgdat->lru_lock);
6108 lruvec_init(node_lruvec(pgdat));
6110 pgdat->per_cpu_nodestats = &boot_nodestats;
6112 for (j = 0; j < MAX_NR_ZONES; j++) {
6113 struct zone *zone = pgdat->node_zones + j;
6114 unsigned long size, realsize, freesize, memmap_pages;
6115 unsigned long zone_start_pfn = zone->zone_start_pfn;
6117 size = zone->spanned_pages;
6118 realsize = freesize = zone->present_pages;
6121 * Adjust freesize so that it accounts for how much memory
6122 * is used by this zone for memmap. This affects the watermark
6123 * and per-cpu initialisations
6125 memmap_pages = calc_memmap_size(size, realsize);
6126 if (!is_highmem_idx(j)) {
6127 if (freesize >= memmap_pages) {
6128 freesize -= memmap_pages;
6129 if (memmap_pages)
6130 printk(KERN_DEBUG
6131 " %s zone: %lu pages used for memmap\n",
6132 zone_names[j], memmap_pages);
6133 } else
6134 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6135 zone_names[j], memmap_pages, freesize);
6138 /* Account for reserved pages */
6139 if (j == 0 && freesize > dma_reserve) {
6140 freesize -= dma_reserve;
6141 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6142 zone_names[0], dma_reserve);
6145 if (!is_highmem_idx(j))
6146 nr_kernel_pages += freesize;
6147 /* Charge for highmem memmap if there are enough kernel pages */
6148 else if (nr_kernel_pages > memmap_pages * 2)
6149 nr_kernel_pages -= memmap_pages;
6150 nr_all_pages += freesize;
6153 * Set an approximate value for lowmem here, it will be adjusted
6154 * when the bootmem allocator frees pages into the buddy system.
6155 * And all highmem pages will be managed by the buddy system.
6157 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6158 #ifdef CONFIG_NUMA
6159 zone->node = nid;
6160 #endif
6161 zone->name = zone_names[j];
6162 zone->zone_pgdat = pgdat;
6163 spin_lock_init(&zone->lock);
6164 zone_seqlock_init(zone);
6165 zone_pcp_init(zone);
6167 if (!size)
6168 continue;
6170 set_pageblock_order();
6171 setup_usemap(pgdat, zone, zone_start_pfn, size);
6172 init_currently_empty_zone(zone, zone_start_pfn, size);
6173 memmap_init(size, nid, j, zone_start_pfn);
6177 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6178 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6180 unsigned long __maybe_unused start = 0;
6181 unsigned long __maybe_unused offset = 0;
6183 /* Skip empty nodes */
6184 if (!pgdat->node_spanned_pages)
6185 return;
6187 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6188 offset = pgdat->node_start_pfn - start;
6189 /* ia64 gets its own node_mem_map, before this, without bootmem */
6190 if (!pgdat->node_mem_map) {
6191 unsigned long size, end;
6192 struct page *map;
6195 * The zone's endpoints aren't required to be MAX_ORDER
6196 * aligned but the node_mem_map endpoints must be in order
6197 * for the buddy allocator to function correctly.
6199 end = pgdat_end_pfn(pgdat);
6200 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6201 size = (end - start) * sizeof(struct page);
6202 map = alloc_remap(pgdat->node_id, size);
6203 if (!map)
6204 map = memblock_virt_alloc_node_nopanic(size,
6205 pgdat->node_id);
6206 pgdat->node_mem_map = map + offset;
6208 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6209 __func__, pgdat->node_id, (unsigned long)pgdat,
6210 (unsigned long)pgdat->node_mem_map);
6211 #ifndef CONFIG_NEED_MULTIPLE_NODES
6213 * With no DISCONTIG, the global mem_map is just set as node 0's
6215 if (pgdat == NODE_DATA(0)) {
6216 mem_map = NODE_DATA(0)->node_mem_map;
6217 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6218 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6219 mem_map -= offset;
6220 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6222 #endif
6224 #else
6225 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6226 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6228 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6229 unsigned long node_start_pfn, unsigned long *zholes_size)
6231 pg_data_t *pgdat = NODE_DATA(nid);
6232 unsigned long start_pfn = 0;
6233 unsigned long end_pfn = 0;
6235 /* pg_data_t should be reset to zero when it's allocated */
6236 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6238 pgdat->node_id = nid;
6239 pgdat->node_start_pfn = node_start_pfn;
6240 pgdat->per_cpu_nodestats = NULL;
6241 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6242 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6243 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6244 (u64)start_pfn << PAGE_SHIFT,
6245 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6246 #else
6247 start_pfn = node_start_pfn;
6248 #endif
6249 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6250 zones_size, zholes_size);
6252 alloc_node_mem_map(pgdat);
6254 reset_deferred_meminit(pgdat);
6255 free_area_init_core(pgdat);
6258 #ifdef CONFIG_HAVE_MEMBLOCK
6260 * Only struct pages that are backed by physical memory are zeroed and
6261 * initialized by going through __init_single_page(). But, there are some
6262 * struct pages which are reserved in memblock allocator and their fields
6263 * may be accessed (for example page_to_pfn() on some configuration accesses
6264 * flags). We must explicitly zero those struct pages.
6266 void __paginginit zero_resv_unavail(void)
6268 phys_addr_t start, end;
6269 unsigned long pfn;
6270 u64 i, pgcnt;
6273 * Loop through ranges that are reserved, but do not have reported
6274 * physical memory backing.
6276 pgcnt = 0;
6277 for_each_resv_unavail_range(i, &start, &end) {
6278 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6279 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6280 continue;
6281 mm_zero_struct_page(pfn_to_page(pfn));
6282 pgcnt++;
6287 * Struct pages that do not have backing memory. This could be because
6288 * firmware is using some of this memory, or for some other reasons.
6289 * Once memblock is changed so such behaviour is not allowed: i.e.
6290 * list of "reserved" memory must be a subset of list of "memory", then
6291 * this code can be removed.
6293 if (pgcnt)
6294 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6296 #endif /* CONFIG_HAVE_MEMBLOCK */
6298 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6300 #if MAX_NUMNODES > 1
6302 * Figure out the number of possible node ids.
6304 void __init setup_nr_node_ids(void)
6306 unsigned int highest;
6308 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6309 nr_node_ids = highest + 1;
6311 #endif
6314 * node_map_pfn_alignment - determine the maximum internode alignment
6316 * This function should be called after node map is populated and sorted.
6317 * It calculates the maximum power of two alignment which can distinguish
6318 * all the nodes.
6320 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6321 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6322 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6323 * shifted, 1GiB is enough and this function will indicate so.
6325 * This is used to test whether pfn -> nid mapping of the chosen memory
6326 * model has fine enough granularity to avoid incorrect mapping for the
6327 * populated node map.
6329 * Returns the determined alignment in pfn's. 0 if there is no alignment
6330 * requirement (single node).
6332 unsigned long __init node_map_pfn_alignment(void)
6334 unsigned long accl_mask = 0, last_end = 0;
6335 unsigned long start, end, mask;
6336 int last_nid = -1;
6337 int i, nid;
6339 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6340 if (!start || last_nid < 0 || last_nid == nid) {
6341 last_nid = nid;
6342 last_end = end;
6343 continue;
6347 * Start with a mask granular enough to pin-point to the
6348 * start pfn and tick off bits one-by-one until it becomes
6349 * too coarse to separate the current node from the last.
6351 mask = ~((1 << __ffs(start)) - 1);
6352 while (mask && last_end <= (start & (mask << 1)))
6353 mask <<= 1;
6355 /* accumulate all internode masks */
6356 accl_mask |= mask;
6359 /* convert mask to number of pages */
6360 return ~accl_mask + 1;
6363 /* Find the lowest pfn for a node */
6364 static unsigned long __init find_min_pfn_for_node(int nid)
6366 unsigned long min_pfn = ULONG_MAX;
6367 unsigned long start_pfn;
6368 int i;
6370 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6371 min_pfn = min(min_pfn, start_pfn);
6373 if (min_pfn == ULONG_MAX) {
6374 pr_warn("Could not find start_pfn for node %d\n", nid);
6375 return 0;
6378 return min_pfn;
6382 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6384 * It returns the minimum PFN based on information provided via
6385 * memblock_set_node().
6387 unsigned long __init find_min_pfn_with_active_regions(void)
6389 return find_min_pfn_for_node(MAX_NUMNODES);
6393 * early_calculate_totalpages()
6394 * Sum pages in active regions for movable zone.
6395 * Populate N_MEMORY for calculating usable_nodes.
6397 static unsigned long __init early_calculate_totalpages(void)
6399 unsigned long totalpages = 0;
6400 unsigned long start_pfn, end_pfn;
6401 int i, nid;
6403 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6404 unsigned long pages = end_pfn - start_pfn;
6406 totalpages += pages;
6407 if (pages)
6408 node_set_state(nid, N_MEMORY);
6410 return totalpages;
6414 * Find the PFN the Movable zone begins in each node. Kernel memory
6415 * is spread evenly between nodes as long as the nodes have enough
6416 * memory. When they don't, some nodes will have more kernelcore than
6417 * others
6419 static void __init find_zone_movable_pfns_for_nodes(void)
6421 int i, nid;
6422 unsigned long usable_startpfn;
6423 unsigned long kernelcore_node, kernelcore_remaining;
6424 /* save the state before borrow the nodemask */
6425 nodemask_t saved_node_state = node_states[N_MEMORY];
6426 unsigned long totalpages = early_calculate_totalpages();
6427 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6428 struct memblock_region *r;
6430 /* Need to find movable_zone earlier when movable_node is specified. */
6431 find_usable_zone_for_movable();
6434 * If movable_node is specified, ignore kernelcore and movablecore
6435 * options.
6437 if (movable_node_is_enabled()) {
6438 for_each_memblock(memory, r) {
6439 if (!memblock_is_hotpluggable(r))
6440 continue;
6442 nid = r->nid;
6444 usable_startpfn = PFN_DOWN(r->base);
6445 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6446 min(usable_startpfn, zone_movable_pfn[nid]) :
6447 usable_startpfn;
6450 goto out2;
6454 * If kernelcore=mirror is specified, ignore movablecore option
6456 if (mirrored_kernelcore) {
6457 bool mem_below_4gb_not_mirrored = false;
6459 for_each_memblock(memory, r) {
6460 if (memblock_is_mirror(r))
6461 continue;
6463 nid = r->nid;
6465 usable_startpfn = memblock_region_memory_base_pfn(r);
6467 if (usable_startpfn < 0x100000) {
6468 mem_below_4gb_not_mirrored = true;
6469 continue;
6472 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6473 min(usable_startpfn, zone_movable_pfn[nid]) :
6474 usable_startpfn;
6477 if (mem_below_4gb_not_mirrored)
6478 pr_warn("This configuration results in unmirrored kernel memory.");
6480 goto out2;
6484 * If movablecore=nn[KMG] was specified, calculate what size of
6485 * kernelcore that corresponds so that memory usable for
6486 * any allocation type is evenly spread. If both kernelcore
6487 * and movablecore are specified, then the value of kernelcore
6488 * will be used for required_kernelcore if it's greater than
6489 * what movablecore would have allowed.
6491 if (required_movablecore) {
6492 unsigned long corepages;
6495 * Round-up so that ZONE_MOVABLE is at least as large as what
6496 * was requested by the user
6498 required_movablecore =
6499 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6500 required_movablecore = min(totalpages, required_movablecore);
6501 corepages = totalpages - required_movablecore;
6503 required_kernelcore = max(required_kernelcore, corepages);
6507 * If kernelcore was not specified or kernelcore size is larger
6508 * than totalpages, there is no ZONE_MOVABLE.
6510 if (!required_kernelcore || required_kernelcore >= totalpages)
6511 goto out;
6513 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6514 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6516 restart:
6517 /* Spread kernelcore memory as evenly as possible throughout nodes */
6518 kernelcore_node = required_kernelcore / usable_nodes;
6519 for_each_node_state(nid, N_MEMORY) {
6520 unsigned long start_pfn, end_pfn;
6523 * Recalculate kernelcore_node if the division per node
6524 * now exceeds what is necessary to satisfy the requested
6525 * amount of memory for the kernel
6527 if (required_kernelcore < kernelcore_node)
6528 kernelcore_node = required_kernelcore / usable_nodes;
6531 * As the map is walked, we track how much memory is usable
6532 * by the kernel using kernelcore_remaining. When it is
6533 * 0, the rest of the node is usable by ZONE_MOVABLE
6535 kernelcore_remaining = kernelcore_node;
6537 /* Go through each range of PFNs within this node */
6538 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6539 unsigned long size_pages;
6541 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6542 if (start_pfn >= end_pfn)
6543 continue;
6545 /* Account for what is only usable for kernelcore */
6546 if (start_pfn < usable_startpfn) {
6547 unsigned long kernel_pages;
6548 kernel_pages = min(end_pfn, usable_startpfn)
6549 - start_pfn;
6551 kernelcore_remaining -= min(kernel_pages,
6552 kernelcore_remaining);
6553 required_kernelcore -= min(kernel_pages,
6554 required_kernelcore);
6556 /* Continue if range is now fully accounted */
6557 if (end_pfn <= usable_startpfn) {
6560 * Push zone_movable_pfn to the end so
6561 * that if we have to rebalance
6562 * kernelcore across nodes, we will
6563 * not double account here
6565 zone_movable_pfn[nid] = end_pfn;
6566 continue;
6568 start_pfn = usable_startpfn;
6572 * The usable PFN range for ZONE_MOVABLE is from
6573 * start_pfn->end_pfn. Calculate size_pages as the
6574 * number of pages used as kernelcore
6576 size_pages = end_pfn - start_pfn;
6577 if (size_pages > kernelcore_remaining)
6578 size_pages = kernelcore_remaining;
6579 zone_movable_pfn[nid] = start_pfn + size_pages;
6582 * Some kernelcore has been met, update counts and
6583 * break if the kernelcore for this node has been
6584 * satisfied
6586 required_kernelcore -= min(required_kernelcore,
6587 size_pages);
6588 kernelcore_remaining -= size_pages;
6589 if (!kernelcore_remaining)
6590 break;
6595 * If there is still required_kernelcore, we do another pass with one
6596 * less node in the count. This will push zone_movable_pfn[nid] further
6597 * along on the nodes that still have memory until kernelcore is
6598 * satisfied
6600 usable_nodes--;
6601 if (usable_nodes && required_kernelcore > usable_nodes)
6602 goto restart;
6604 out2:
6605 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6606 for (nid = 0; nid < MAX_NUMNODES; nid++)
6607 zone_movable_pfn[nid] =
6608 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6610 out:
6611 /* restore the node_state */
6612 node_states[N_MEMORY] = saved_node_state;
6615 /* Any regular or high memory on that node ? */
6616 static void check_for_memory(pg_data_t *pgdat, int nid)
6618 enum zone_type zone_type;
6620 if (N_MEMORY == N_NORMAL_MEMORY)
6621 return;
6623 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6624 struct zone *zone = &pgdat->node_zones[zone_type];
6625 if (populated_zone(zone)) {
6626 node_set_state(nid, N_HIGH_MEMORY);
6627 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6628 zone_type <= ZONE_NORMAL)
6629 node_set_state(nid, N_NORMAL_MEMORY);
6630 break;
6636 * free_area_init_nodes - Initialise all pg_data_t and zone data
6637 * @max_zone_pfn: an array of max PFNs for each zone
6639 * This will call free_area_init_node() for each active node in the system.
6640 * Using the page ranges provided by memblock_set_node(), the size of each
6641 * zone in each node and their holes is calculated. If the maximum PFN
6642 * between two adjacent zones match, it is assumed that the zone is empty.
6643 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6644 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6645 * starts where the previous one ended. For example, ZONE_DMA32 starts
6646 * at arch_max_dma_pfn.
6648 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6650 unsigned long start_pfn, end_pfn;
6651 int i, nid;
6653 /* Record where the zone boundaries are */
6654 memset(arch_zone_lowest_possible_pfn, 0,
6655 sizeof(arch_zone_lowest_possible_pfn));
6656 memset(arch_zone_highest_possible_pfn, 0,
6657 sizeof(arch_zone_highest_possible_pfn));
6659 start_pfn = find_min_pfn_with_active_regions();
6661 for (i = 0; i < MAX_NR_ZONES; i++) {
6662 if (i == ZONE_MOVABLE)
6663 continue;
6665 end_pfn = max(max_zone_pfn[i], start_pfn);
6666 arch_zone_lowest_possible_pfn[i] = start_pfn;
6667 arch_zone_highest_possible_pfn[i] = end_pfn;
6669 start_pfn = end_pfn;
6672 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6673 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6674 find_zone_movable_pfns_for_nodes();
6676 /* Print out the zone ranges */
6677 pr_info("Zone ranges:\n");
6678 for (i = 0; i < MAX_NR_ZONES; i++) {
6679 if (i == ZONE_MOVABLE)
6680 continue;
6681 pr_info(" %-8s ", zone_names[i]);
6682 if (arch_zone_lowest_possible_pfn[i] ==
6683 arch_zone_highest_possible_pfn[i])
6684 pr_cont("empty\n");
6685 else
6686 pr_cont("[mem %#018Lx-%#018Lx]\n",
6687 (u64)arch_zone_lowest_possible_pfn[i]
6688 << PAGE_SHIFT,
6689 ((u64)arch_zone_highest_possible_pfn[i]
6690 << PAGE_SHIFT) - 1);
6693 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6694 pr_info("Movable zone start for each node\n");
6695 for (i = 0; i < MAX_NUMNODES; i++) {
6696 if (zone_movable_pfn[i])
6697 pr_info(" Node %d: %#018Lx\n", i,
6698 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6701 /* Print out the early node map */
6702 pr_info("Early memory node ranges\n");
6703 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6704 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6705 (u64)start_pfn << PAGE_SHIFT,
6706 ((u64)end_pfn << PAGE_SHIFT) - 1);
6708 /* Initialise every node */
6709 mminit_verify_pageflags_layout();
6710 setup_nr_node_ids();
6711 for_each_online_node(nid) {
6712 pg_data_t *pgdat = NODE_DATA(nid);
6713 free_area_init_node(nid, NULL,
6714 find_min_pfn_for_node(nid), NULL);
6716 /* Any memory on that node */
6717 if (pgdat->node_present_pages)
6718 node_set_state(nid, N_MEMORY);
6719 check_for_memory(pgdat, nid);
6721 zero_resv_unavail();
6724 static int __init cmdline_parse_core(char *p, unsigned long *core)
6726 unsigned long long coremem;
6727 if (!p)
6728 return -EINVAL;
6730 coremem = memparse(p, &p);
6731 *core = coremem >> PAGE_SHIFT;
6733 /* Paranoid check that UL is enough for the coremem value */
6734 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6736 return 0;
6740 * kernelcore=size sets the amount of memory for use for allocations that
6741 * cannot be reclaimed or migrated.
6743 static int __init cmdline_parse_kernelcore(char *p)
6745 /* parse kernelcore=mirror */
6746 if (parse_option_str(p, "mirror")) {
6747 mirrored_kernelcore = true;
6748 return 0;
6751 return cmdline_parse_core(p, &required_kernelcore);
6755 * movablecore=size sets the amount of memory for use for allocations that
6756 * can be reclaimed or migrated.
6758 static int __init cmdline_parse_movablecore(char *p)
6760 return cmdline_parse_core(p, &required_movablecore);
6763 early_param("kernelcore", cmdline_parse_kernelcore);
6764 early_param("movablecore", cmdline_parse_movablecore);
6766 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6768 void adjust_managed_page_count(struct page *page, long count)
6770 spin_lock(&managed_page_count_lock);
6771 page_zone(page)->managed_pages += count;
6772 totalram_pages += count;
6773 #ifdef CONFIG_HIGHMEM
6774 if (PageHighMem(page))
6775 totalhigh_pages += count;
6776 #endif
6777 spin_unlock(&managed_page_count_lock);
6779 EXPORT_SYMBOL(adjust_managed_page_count);
6781 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6783 void *pos;
6784 unsigned long pages = 0;
6786 start = (void *)PAGE_ALIGN((unsigned long)start);
6787 end = (void *)((unsigned long)end & PAGE_MASK);
6788 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6789 if ((unsigned int)poison <= 0xFF)
6790 memset(pos, poison, PAGE_SIZE);
6791 free_reserved_page(virt_to_page(pos));
6794 if (pages && s)
6795 pr_info("Freeing %s memory: %ldK\n",
6796 s, pages << (PAGE_SHIFT - 10));
6798 return pages;
6800 EXPORT_SYMBOL(free_reserved_area);
6802 #ifdef CONFIG_HIGHMEM
6803 void free_highmem_page(struct page *page)
6805 __free_reserved_page(page);
6806 totalram_pages++;
6807 page_zone(page)->managed_pages++;
6808 totalhigh_pages++;
6810 #endif
6813 void __init mem_init_print_info(const char *str)
6815 unsigned long physpages, codesize, datasize, rosize, bss_size;
6816 unsigned long init_code_size, init_data_size;
6818 physpages = get_num_physpages();
6819 codesize = _etext - _stext;
6820 datasize = _edata - _sdata;
6821 rosize = __end_rodata - __start_rodata;
6822 bss_size = __bss_stop - __bss_start;
6823 init_data_size = __init_end - __init_begin;
6824 init_code_size = _einittext - _sinittext;
6827 * Detect special cases and adjust section sizes accordingly:
6828 * 1) .init.* may be embedded into .data sections
6829 * 2) .init.text.* may be out of [__init_begin, __init_end],
6830 * please refer to arch/tile/kernel/vmlinux.lds.S.
6831 * 3) .rodata.* may be embedded into .text or .data sections.
6833 #define adj_init_size(start, end, size, pos, adj) \
6834 do { \
6835 if (start <= pos && pos < end && size > adj) \
6836 size -= adj; \
6837 } while (0)
6839 adj_init_size(__init_begin, __init_end, init_data_size,
6840 _sinittext, init_code_size);
6841 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6842 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6843 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6844 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6846 #undef adj_init_size
6848 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6849 #ifdef CONFIG_HIGHMEM
6850 ", %luK highmem"
6851 #endif
6852 "%s%s)\n",
6853 nr_free_pages() << (PAGE_SHIFT - 10),
6854 physpages << (PAGE_SHIFT - 10),
6855 codesize >> 10, datasize >> 10, rosize >> 10,
6856 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6857 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6858 totalcma_pages << (PAGE_SHIFT - 10),
6859 #ifdef CONFIG_HIGHMEM
6860 totalhigh_pages << (PAGE_SHIFT - 10),
6861 #endif
6862 str ? ", " : "", str ? str : "");
6866 * set_dma_reserve - set the specified number of pages reserved in the first zone
6867 * @new_dma_reserve: The number of pages to mark reserved
6869 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6870 * In the DMA zone, a significant percentage may be consumed by kernel image
6871 * and other unfreeable allocations which can skew the watermarks badly. This
6872 * function may optionally be used to account for unfreeable pages in the
6873 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6874 * smaller per-cpu batchsize.
6876 void __init set_dma_reserve(unsigned long new_dma_reserve)
6878 dma_reserve = new_dma_reserve;
6881 void __init free_area_init(unsigned long *zones_size)
6883 free_area_init_node(0, zones_size,
6884 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6885 zero_resv_unavail();
6888 static int page_alloc_cpu_dead(unsigned int cpu)
6891 lru_add_drain_cpu(cpu);
6892 drain_pages(cpu);
6895 * Spill the event counters of the dead processor
6896 * into the current processors event counters.
6897 * This artificially elevates the count of the current
6898 * processor.
6900 vm_events_fold_cpu(cpu);
6903 * Zero the differential counters of the dead processor
6904 * so that the vm statistics are consistent.
6906 * This is only okay since the processor is dead and cannot
6907 * race with what we are doing.
6909 cpu_vm_stats_fold(cpu);
6910 return 0;
6913 void __init page_alloc_init(void)
6915 int ret;
6917 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6918 "mm/page_alloc:dead", NULL,
6919 page_alloc_cpu_dead);
6920 WARN_ON(ret < 0);
6924 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6925 * or min_free_kbytes changes.
6927 static void calculate_totalreserve_pages(void)
6929 struct pglist_data *pgdat;
6930 unsigned long reserve_pages = 0;
6931 enum zone_type i, j;
6933 for_each_online_pgdat(pgdat) {
6935 pgdat->totalreserve_pages = 0;
6937 for (i = 0; i < MAX_NR_ZONES; i++) {
6938 struct zone *zone = pgdat->node_zones + i;
6939 long max = 0;
6941 /* Find valid and maximum lowmem_reserve in the zone */
6942 for (j = i; j < MAX_NR_ZONES; j++) {
6943 if (zone->lowmem_reserve[j] > max)
6944 max = zone->lowmem_reserve[j];
6947 /* we treat the high watermark as reserved pages. */
6948 max += high_wmark_pages(zone);
6950 if (max > zone->managed_pages)
6951 max = zone->managed_pages;
6953 pgdat->totalreserve_pages += max;
6955 reserve_pages += max;
6958 totalreserve_pages = reserve_pages;
6962 * setup_per_zone_lowmem_reserve - called whenever
6963 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6964 * has a correct pages reserved value, so an adequate number of
6965 * pages are left in the zone after a successful __alloc_pages().
6967 static void setup_per_zone_lowmem_reserve(void)
6969 struct pglist_data *pgdat;
6970 enum zone_type j, idx;
6972 for_each_online_pgdat(pgdat) {
6973 for (j = 0; j < MAX_NR_ZONES; j++) {
6974 struct zone *zone = pgdat->node_zones + j;
6975 unsigned long managed_pages = zone->managed_pages;
6977 zone->lowmem_reserve[j] = 0;
6979 idx = j;
6980 while (idx) {
6981 struct zone *lower_zone;
6983 idx--;
6985 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6986 sysctl_lowmem_reserve_ratio[idx] = 1;
6988 lower_zone = pgdat->node_zones + idx;
6989 lower_zone->lowmem_reserve[j] = managed_pages /
6990 sysctl_lowmem_reserve_ratio[idx];
6991 managed_pages += lower_zone->managed_pages;
6996 /* update totalreserve_pages */
6997 calculate_totalreserve_pages();
7000 static void __setup_per_zone_wmarks(void)
7002 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7003 unsigned long lowmem_pages = 0;
7004 struct zone *zone;
7005 unsigned long flags;
7007 /* Calculate total number of !ZONE_HIGHMEM pages */
7008 for_each_zone(zone) {
7009 if (!is_highmem(zone))
7010 lowmem_pages += zone->managed_pages;
7013 for_each_zone(zone) {
7014 u64 tmp;
7016 spin_lock_irqsave(&zone->lock, flags);
7017 tmp = (u64)pages_min * zone->managed_pages;
7018 do_div(tmp, lowmem_pages);
7019 if (is_highmem(zone)) {
7021 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7022 * need highmem pages, so cap pages_min to a small
7023 * value here.
7025 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7026 * deltas control asynch page reclaim, and so should
7027 * not be capped for highmem.
7029 unsigned long min_pages;
7031 min_pages = zone->managed_pages / 1024;
7032 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7033 zone->watermark[WMARK_MIN] = min_pages;
7034 } else {
7036 * If it's a lowmem zone, reserve a number of pages
7037 * proportionate to the zone's size.
7039 zone->watermark[WMARK_MIN] = tmp;
7043 * Set the kswapd watermarks distance according to the
7044 * scale factor in proportion to available memory, but
7045 * ensure a minimum size on small systems.
7047 tmp = max_t(u64, tmp >> 2,
7048 mult_frac(zone->managed_pages,
7049 watermark_scale_factor, 10000));
7051 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7052 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7054 spin_unlock_irqrestore(&zone->lock, flags);
7057 /* update totalreserve_pages */
7058 calculate_totalreserve_pages();
7062 * setup_per_zone_wmarks - called when min_free_kbytes changes
7063 * or when memory is hot-{added|removed}
7065 * Ensures that the watermark[min,low,high] values for each zone are set
7066 * correctly with respect to min_free_kbytes.
7068 void setup_per_zone_wmarks(void)
7070 static DEFINE_SPINLOCK(lock);
7072 spin_lock(&lock);
7073 __setup_per_zone_wmarks();
7074 spin_unlock(&lock);
7078 * Initialise min_free_kbytes.
7080 * For small machines we want it small (128k min). For large machines
7081 * we want it large (64MB max). But it is not linear, because network
7082 * bandwidth does not increase linearly with machine size. We use
7084 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7085 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7087 * which yields
7089 * 16MB: 512k
7090 * 32MB: 724k
7091 * 64MB: 1024k
7092 * 128MB: 1448k
7093 * 256MB: 2048k
7094 * 512MB: 2896k
7095 * 1024MB: 4096k
7096 * 2048MB: 5792k
7097 * 4096MB: 8192k
7098 * 8192MB: 11584k
7099 * 16384MB: 16384k
7101 int __meminit init_per_zone_wmark_min(void)
7103 unsigned long lowmem_kbytes;
7104 int new_min_free_kbytes;
7106 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7107 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7109 if (new_min_free_kbytes > user_min_free_kbytes) {
7110 min_free_kbytes = new_min_free_kbytes;
7111 if (min_free_kbytes < 128)
7112 min_free_kbytes = 128;
7113 if (min_free_kbytes > 65536)
7114 min_free_kbytes = 65536;
7115 } else {
7116 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7117 new_min_free_kbytes, user_min_free_kbytes);
7119 setup_per_zone_wmarks();
7120 refresh_zone_stat_thresholds();
7121 setup_per_zone_lowmem_reserve();
7123 #ifdef CONFIG_NUMA
7124 setup_min_unmapped_ratio();
7125 setup_min_slab_ratio();
7126 #endif
7128 return 0;
7130 core_initcall(init_per_zone_wmark_min)
7133 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7134 * that we can call two helper functions whenever min_free_kbytes
7135 * changes.
7137 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7138 void __user *buffer, size_t *length, loff_t *ppos)
7140 int rc;
7142 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7143 if (rc)
7144 return rc;
7146 if (write) {
7147 user_min_free_kbytes = min_free_kbytes;
7148 setup_per_zone_wmarks();
7150 return 0;
7153 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7154 void __user *buffer, size_t *length, loff_t *ppos)
7156 int rc;
7158 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7159 if (rc)
7160 return rc;
7162 if (write)
7163 setup_per_zone_wmarks();
7165 return 0;
7168 #ifdef CONFIG_NUMA
7169 static void setup_min_unmapped_ratio(void)
7171 pg_data_t *pgdat;
7172 struct zone *zone;
7174 for_each_online_pgdat(pgdat)
7175 pgdat->min_unmapped_pages = 0;
7177 for_each_zone(zone)
7178 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7179 sysctl_min_unmapped_ratio) / 100;
7183 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7184 void __user *buffer, size_t *length, loff_t *ppos)
7186 int rc;
7188 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7189 if (rc)
7190 return rc;
7192 setup_min_unmapped_ratio();
7194 return 0;
7197 static void setup_min_slab_ratio(void)
7199 pg_data_t *pgdat;
7200 struct zone *zone;
7202 for_each_online_pgdat(pgdat)
7203 pgdat->min_slab_pages = 0;
7205 for_each_zone(zone)
7206 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7207 sysctl_min_slab_ratio) / 100;
7210 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7211 void __user *buffer, size_t *length, loff_t *ppos)
7213 int rc;
7215 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7216 if (rc)
7217 return rc;
7219 setup_min_slab_ratio();
7221 return 0;
7223 #endif
7226 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7227 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7228 * whenever sysctl_lowmem_reserve_ratio changes.
7230 * The reserve ratio obviously has absolutely no relation with the
7231 * minimum watermarks. The lowmem reserve ratio can only make sense
7232 * if in function of the boot time zone sizes.
7234 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7235 void __user *buffer, size_t *length, loff_t *ppos)
7237 proc_dointvec_minmax(table, write, buffer, length, ppos);
7238 setup_per_zone_lowmem_reserve();
7239 return 0;
7243 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7244 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7245 * pagelist can have before it gets flushed back to buddy allocator.
7247 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7248 void __user *buffer, size_t *length, loff_t *ppos)
7250 struct zone *zone;
7251 int old_percpu_pagelist_fraction;
7252 int ret;
7254 mutex_lock(&pcp_batch_high_lock);
7255 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7257 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7258 if (!write || ret < 0)
7259 goto out;
7261 /* Sanity checking to avoid pcp imbalance */
7262 if (percpu_pagelist_fraction &&
7263 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7264 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7265 ret = -EINVAL;
7266 goto out;
7269 /* No change? */
7270 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7271 goto out;
7273 for_each_populated_zone(zone) {
7274 unsigned int cpu;
7276 for_each_possible_cpu(cpu)
7277 pageset_set_high_and_batch(zone,
7278 per_cpu_ptr(zone->pageset, cpu));
7280 out:
7281 mutex_unlock(&pcp_batch_high_lock);
7282 return ret;
7285 #ifdef CONFIG_NUMA
7286 int hashdist = HASHDIST_DEFAULT;
7288 static int __init set_hashdist(char *str)
7290 if (!str)
7291 return 0;
7292 hashdist = simple_strtoul(str, &str, 0);
7293 return 1;
7295 __setup("hashdist=", set_hashdist);
7296 #endif
7298 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7300 * Returns the number of pages that arch has reserved but
7301 * is not known to alloc_large_system_hash().
7303 static unsigned long __init arch_reserved_kernel_pages(void)
7305 return 0;
7307 #endif
7310 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7311 * machines. As memory size is increased the scale is also increased but at
7312 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7313 * quadruples the scale is increased by one, which means the size of hash table
7314 * only doubles, instead of quadrupling as well.
7315 * Because 32-bit systems cannot have large physical memory, where this scaling
7316 * makes sense, it is disabled on such platforms.
7318 #if __BITS_PER_LONG > 32
7319 #define ADAPT_SCALE_BASE (64ul << 30)
7320 #define ADAPT_SCALE_SHIFT 2
7321 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7322 #endif
7325 * allocate a large system hash table from bootmem
7326 * - it is assumed that the hash table must contain an exact power-of-2
7327 * quantity of entries
7328 * - limit is the number of hash buckets, not the total allocation size
7330 void *__init alloc_large_system_hash(const char *tablename,
7331 unsigned long bucketsize,
7332 unsigned long numentries,
7333 int scale,
7334 int flags,
7335 unsigned int *_hash_shift,
7336 unsigned int *_hash_mask,
7337 unsigned long low_limit,
7338 unsigned long high_limit)
7340 unsigned long long max = high_limit;
7341 unsigned long log2qty, size;
7342 void *table = NULL;
7343 gfp_t gfp_flags;
7345 /* allow the kernel cmdline to have a say */
7346 if (!numentries) {
7347 /* round applicable memory size up to nearest megabyte */
7348 numentries = nr_kernel_pages;
7349 numentries -= arch_reserved_kernel_pages();
7351 /* It isn't necessary when PAGE_SIZE >= 1MB */
7352 if (PAGE_SHIFT < 20)
7353 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7355 #if __BITS_PER_LONG > 32
7356 if (!high_limit) {
7357 unsigned long adapt;
7359 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7360 adapt <<= ADAPT_SCALE_SHIFT)
7361 scale++;
7363 #endif
7365 /* limit to 1 bucket per 2^scale bytes of low memory */
7366 if (scale > PAGE_SHIFT)
7367 numentries >>= (scale - PAGE_SHIFT);
7368 else
7369 numentries <<= (PAGE_SHIFT - scale);
7371 /* Make sure we've got at least a 0-order allocation.. */
7372 if (unlikely(flags & HASH_SMALL)) {
7373 /* Makes no sense without HASH_EARLY */
7374 WARN_ON(!(flags & HASH_EARLY));
7375 if (!(numentries >> *_hash_shift)) {
7376 numentries = 1UL << *_hash_shift;
7377 BUG_ON(!numentries);
7379 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7380 numentries = PAGE_SIZE / bucketsize;
7382 numentries = roundup_pow_of_two(numentries);
7384 /* limit allocation size to 1/16 total memory by default */
7385 if (max == 0) {
7386 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7387 do_div(max, bucketsize);
7389 max = min(max, 0x80000000ULL);
7391 if (numentries < low_limit)
7392 numentries = low_limit;
7393 if (numentries > max)
7394 numentries = max;
7396 log2qty = ilog2(numentries);
7398 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7399 do {
7400 size = bucketsize << log2qty;
7401 if (flags & HASH_EARLY) {
7402 if (flags & HASH_ZERO)
7403 table = memblock_virt_alloc_nopanic(size, 0);
7404 else
7405 table = memblock_virt_alloc_raw(size, 0);
7406 } else if (hashdist) {
7407 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7408 } else {
7410 * If bucketsize is not a power-of-two, we may free
7411 * some pages at the end of hash table which
7412 * alloc_pages_exact() automatically does
7414 if (get_order(size) < MAX_ORDER) {
7415 table = alloc_pages_exact(size, gfp_flags);
7416 kmemleak_alloc(table, size, 1, gfp_flags);
7419 } while (!table && size > PAGE_SIZE && --log2qty);
7421 if (!table)
7422 panic("Failed to allocate %s hash table\n", tablename);
7424 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7425 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7427 if (_hash_shift)
7428 *_hash_shift = log2qty;
7429 if (_hash_mask)
7430 *_hash_mask = (1 << log2qty) - 1;
7432 return table;
7436 * This function checks whether pageblock includes unmovable pages or not.
7437 * If @count is not zero, it is okay to include less @count unmovable pages
7439 * PageLRU check without isolation or lru_lock could race so that
7440 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7441 * check without lock_page also may miss some movable non-lru pages at
7442 * race condition. So you can't expect this function should be exact.
7444 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7445 int migratetype,
7446 bool skip_hwpoisoned_pages)
7448 unsigned long pfn, iter, found;
7451 * For avoiding noise data, lru_add_drain_all() should be called
7452 * If ZONE_MOVABLE, the zone never contains unmovable pages
7454 if (zone_idx(zone) == ZONE_MOVABLE)
7455 return false;
7458 * CMA allocations (alloc_contig_range) really need to mark isolate
7459 * CMA pageblocks even when they are not movable in fact so consider
7460 * them movable here.
7462 if (is_migrate_cma(migratetype) &&
7463 is_migrate_cma(get_pageblock_migratetype(page)))
7464 return false;
7466 pfn = page_to_pfn(page);
7467 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7468 unsigned long check = pfn + iter;
7470 if (!pfn_valid_within(check))
7471 continue;
7473 page = pfn_to_page(check);
7475 if (PageReserved(page))
7476 return true;
7479 * Hugepages are not in LRU lists, but they're movable.
7480 * We need not scan over tail pages bacause we don't
7481 * handle each tail page individually in migration.
7483 if (PageHuge(page)) {
7484 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7485 continue;
7489 * We can't use page_count without pin a page
7490 * because another CPU can free compound page.
7491 * This check already skips compound tails of THP
7492 * because their page->_refcount is zero at all time.
7494 if (!page_ref_count(page)) {
7495 if (PageBuddy(page))
7496 iter += (1 << page_order(page)) - 1;
7497 continue;
7501 * The HWPoisoned page may be not in buddy system, and
7502 * page_count() is not 0.
7504 if (skip_hwpoisoned_pages && PageHWPoison(page))
7505 continue;
7507 if (__PageMovable(page))
7508 continue;
7510 if (!PageLRU(page))
7511 found++;
7513 * If there are RECLAIMABLE pages, we need to check
7514 * it. But now, memory offline itself doesn't call
7515 * shrink_node_slabs() and it still to be fixed.
7518 * If the page is not RAM, page_count()should be 0.
7519 * we don't need more check. This is an _used_ not-movable page.
7521 * The problematic thing here is PG_reserved pages. PG_reserved
7522 * is set to both of a memory hole page and a _used_ kernel
7523 * page at boot.
7525 if (found > count)
7526 return true;
7528 return false;
7531 bool is_pageblock_removable_nolock(struct page *page)
7533 struct zone *zone;
7534 unsigned long pfn;
7537 * We have to be careful here because we are iterating over memory
7538 * sections which are not zone aware so we might end up outside of
7539 * the zone but still within the section.
7540 * We have to take care about the node as well. If the node is offline
7541 * its NODE_DATA will be NULL - see page_zone.
7543 if (!node_online(page_to_nid(page)))
7544 return false;
7546 zone = page_zone(page);
7547 pfn = page_to_pfn(page);
7548 if (!zone_spans_pfn(zone, pfn))
7549 return false;
7551 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7554 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7556 static unsigned long pfn_max_align_down(unsigned long pfn)
7558 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7559 pageblock_nr_pages) - 1);
7562 static unsigned long pfn_max_align_up(unsigned long pfn)
7564 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7565 pageblock_nr_pages));
7568 /* [start, end) must belong to a single zone. */
7569 static int __alloc_contig_migrate_range(struct compact_control *cc,
7570 unsigned long start, unsigned long end)
7572 /* This function is based on compact_zone() from compaction.c. */
7573 unsigned long nr_reclaimed;
7574 unsigned long pfn = start;
7575 unsigned int tries = 0;
7576 int ret = 0;
7578 migrate_prep();
7580 while (pfn < end || !list_empty(&cc->migratepages)) {
7581 if (fatal_signal_pending(current)) {
7582 ret = -EINTR;
7583 break;
7586 if (list_empty(&cc->migratepages)) {
7587 cc->nr_migratepages = 0;
7588 pfn = isolate_migratepages_range(cc, pfn, end);
7589 if (!pfn) {
7590 ret = -EINTR;
7591 break;
7593 tries = 0;
7594 } else if (++tries == 5) {
7595 ret = ret < 0 ? ret : -EBUSY;
7596 break;
7599 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7600 &cc->migratepages);
7601 cc->nr_migratepages -= nr_reclaimed;
7603 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7604 NULL, 0, cc->mode, MR_CMA);
7606 if (ret < 0) {
7607 putback_movable_pages(&cc->migratepages);
7608 return ret;
7610 return 0;
7614 * alloc_contig_range() -- tries to allocate given range of pages
7615 * @start: start PFN to allocate
7616 * @end: one-past-the-last PFN to allocate
7617 * @migratetype: migratetype of the underlaying pageblocks (either
7618 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7619 * in range must have the same migratetype and it must
7620 * be either of the two.
7621 * @gfp_mask: GFP mask to use during compaction
7623 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7624 * aligned, however it's the caller's responsibility to guarantee that
7625 * we are the only thread that changes migrate type of pageblocks the
7626 * pages fall in.
7628 * The PFN range must belong to a single zone.
7630 * Returns zero on success or negative error code. On success all
7631 * pages which PFN is in [start, end) are allocated for the caller and
7632 * need to be freed with free_contig_range().
7634 int alloc_contig_range(unsigned long start, unsigned long end,
7635 unsigned migratetype, gfp_t gfp_mask)
7637 unsigned long outer_start, outer_end;
7638 unsigned int order;
7639 int ret = 0;
7641 struct compact_control cc = {
7642 .nr_migratepages = 0,
7643 .order = -1,
7644 .zone = page_zone(pfn_to_page(start)),
7645 .mode = MIGRATE_SYNC,
7646 .ignore_skip_hint = true,
7647 .no_set_skip_hint = true,
7648 .gfp_mask = current_gfp_context(gfp_mask),
7650 INIT_LIST_HEAD(&cc.migratepages);
7653 * What we do here is we mark all pageblocks in range as
7654 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7655 * have different sizes, and due to the way page allocator
7656 * work, we align the range to biggest of the two pages so
7657 * that page allocator won't try to merge buddies from
7658 * different pageblocks and change MIGRATE_ISOLATE to some
7659 * other migration type.
7661 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7662 * migrate the pages from an unaligned range (ie. pages that
7663 * we are interested in). This will put all the pages in
7664 * range back to page allocator as MIGRATE_ISOLATE.
7666 * When this is done, we take the pages in range from page
7667 * allocator removing them from the buddy system. This way
7668 * page allocator will never consider using them.
7670 * This lets us mark the pageblocks back as
7671 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7672 * aligned range but not in the unaligned, original range are
7673 * put back to page allocator so that buddy can use them.
7676 ret = start_isolate_page_range(pfn_max_align_down(start),
7677 pfn_max_align_up(end), migratetype,
7678 false);
7679 if (ret)
7680 return ret;
7683 * In case of -EBUSY, we'd like to know which page causes problem.
7684 * So, just fall through. test_pages_isolated() has a tracepoint
7685 * which will report the busy page.
7687 * It is possible that busy pages could become available before
7688 * the call to test_pages_isolated, and the range will actually be
7689 * allocated. So, if we fall through be sure to clear ret so that
7690 * -EBUSY is not accidentally used or returned to caller.
7692 ret = __alloc_contig_migrate_range(&cc, start, end);
7693 if (ret && ret != -EBUSY)
7694 goto done;
7695 ret =0;
7698 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7699 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7700 * more, all pages in [start, end) are free in page allocator.
7701 * What we are going to do is to allocate all pages from
7702 * [start, end) (that is remove them from page allocator).
7704 * The only problem is that pages at the beginning and at the
7705 * end of interesting range may be not aligned with pages that
7706 * page allocator holds, ie. they can be part of higher order
7707 * pages. Because of this, we reserve the bigger range and
7708 * once this is done free the pages we are not interested in.
7710 * We don't have to hold zone->lock here because the pages are
7711 * isolated thus they won't get removed from buddy.
7714 lru_add_drain_all();
7715 drain_all_pages(cc.zone);
7717 order = 0;
7718 outer_start = start;
7719 while (!PageBuddy(pfn_to_page(outer_start))) {
7720 if (++order >= MAX_ORDER) {
7721 outer_start = start;
7722 break;
7724 outer_start &= ~0UL << order;
7727 if (outer_start != start) {
7728 order = page_order(pfn_to_page(outer_start));
7731 * outer_start page could be small order buddy page and
7732 * it doesn't include start page. Adjust outer_start
7733 * in this case to report failed page properly
7734 * on tracepoint in test_pages_isolated()
7736 if (outer_start + (1UL << order) <= start)
7737 outer_start = start;
7740 /* Make sure the range is really isolated. */
7741 if (test_pages_isolated(outer_start, end, false)) {
7742 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7743 __func__, outer_start, end);
7744 ret = -EBUSY;
7745 goto done;
7748 /* Grab isolated pages from freelists. */
7749 outer_end = isolate_freepages_range(&cc, outer_start, end);
7750 if (!outer_end) {
7751 ret = -EBUSY;
7752 goto done;
7755 /* Free head and tail (if any) */
7756 if (start != outer_start)
7757 free_contig_range(outer_start, start - outer_start);
7758 if (end != outer_end)
7759 free_contig_range(end, outer_end - end);
7761 done:
7762 undo_isolate_page_range(pfn_max_align_down(start),
7763 pfn_max_align_up(end), migratetype);
7764 return ret;
7767 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7769 unsigned int count = 0;
7771 for (; nr_pages--; pfn++) {
7772 struct page *page = pfn_to_page(pfn);
7774 count += page_count(page) != 1;
7775 __free_page(page);
7777 WARN(count != 0, "%d pages are still in use!\n", count);
7779 #endif
7781 #ifdef CONFIG_MEMORY_HOTPLUG
7783 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7784 * page high values need to be recalulated.
7786 void __meminit zone_pcp_update(struct zone *zone)
7788 unsigned cpu;
7789 mutex_lock(&pcp_batch_high_lock);
7790 for_each_possible_cpu(cpu)
7791 pageset_set_high_and_batch(zone,
7792 per_cpu_ptr(zone->pageset, cpu));
7793 mutex_unlock(&pcp_batch_high_lock);
7795 #endif
7797 void zone_pcp_reset(struct zone *zone)
7799 unsigned long flags;
7800 int cpu;
7801 struct per_cpu_pageset *pset;
7803 /* avoid races with drain_pages() */
7804 local_irq_save(flags);
7805 if (zone->pageset != &boot_pageset) {
7806 for_each_online_cpu(cpu) {
7807 pset = per_cpu_ptr(zone->pageset, cpu);
7808 drain_zonestat(zone, pset);
7810 free_percpu(zone->pageset);
7811 zone->pageset = &boot_pageset;
7813 local_irq_restore(flags);
7816 #ifdef CONFIG_MEMORY_HOTREMOVE
7818 * All pages in the range must be in a single zone and isolated
7819 * before calling this.
7821 void
7822 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7824 struct page *page;
7825 struct zone *zone;
7826 unsigned int order, i;
7827 unsigned long pfn;
7828 unsigned long flags;
7829 /* find the first valid pfn */
7830 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7831 if (pfn_valid(pfn))
7832 break;
7833 if (pfn == end_pfn)
7834 return;
7835 offline_mem_sections(pfn, end_pfn);
7836 zone = page_zone(pfn_to_page(pfn));
7837 spin_lock_irqsave(&zone->lock, flags);
7838 pfn = start_pfn;
7839 while (pfn < end_pfn) {
7840 if (!pfn_valid(pfn)) {
7841 pfn++;
7842 continue;
7844 page = pfn_to_page(pfn);
7846 * The HWPoisoned page may be not in buddy system, and
7847 * page_count() is not 0.
7849 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7850 pfn++;
7851 SetPageReserved(page);
7852 continue;
7855 BUG_ON(page_count(page));
7856 BUG_ON(!PageBuddy(page));
7857 order = page_order(page);
7858 #ifdef CONFIG_DEBUG_VM
7859 pr_info("remove from free list %lx %d %lx\n",
7860 pfn, 1 << order, end_pfn);
7861 #endif
7862 list_del(&page->lru);
7863 rmv_page_order(page);
7864 zone->free_area[order].nr_free--;
7865 for (i = 0; i < (1 << order); i++)
7866 SetPageReserved((page+i));
7867 pfn += (1 << order);
7869 spin_unlock_irqrestore(&zone->lock, flags);
7871 #endif
7873 bool is_free_buddy_page(struct page *page)
7875 struct zone *zone = page_zone(page);
7876 unsigned long pfn = page_to_pfn(page);
7877 unsigned long flags;
7878 unsigned int order;
7880 spin_lock_irqsave(&zone->lock, flags);
7881 for (order = 0; order < MAX_ORDER; order++) {
7882 struct page *page_head = page - (pfn & ((1 << order) - 1));
7884 if (PageBuddy(page_head) && page_order(page_head) >= order)
7885 break;
7887 spin_unlock_irqrestore(&zone->lock, flags);
7889 return order < MAX_ORDER;