jme: Fix device PM wakeup API usage
[linux/fpc-iii.git] / mm / migrate.c
blobf6296904a324433f16e80f36b04bb55e957b8d84
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
46 #include "internal.h"
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
61 lru_add_drain_all();
63 return 0;
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
69 lru_add_drain();
71 return 0;
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
82 void putback_movable_pages(struct list_head *l)
84 struct page *page;
85 struct page *page2;
87 list_for_each_entry_safe(page, page2, l, lru) {
88 if (unlikely(PageHuge(page))) {
89 putback_active_hugepage(page);
90 continue;
92 list_del(&page->lru);
93 dec_zone_page_state(page, NR_ISOLATED_ANON +
94 page_is_file_cache(page));
95 if (unlikely(isolated_balloon_page(page)))
96 balloon_page_putback(page);
97 else
98 putback_lru_page(page);
103 * Restore a potential migration pte to a working pte entry
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 unsigned long addr, void *old)
108 struct mm_struct *mm = vma->vm_mm;
109 swp_entry_t entry;
110 pmd_t *pmd;
111 pte_t *ptep, pte;
112 spinlock_t *ptl;
114 if (unlikely(PageHuge(new))) {
115 ptep = huge_pte_offset(mm, addr);
116 if (!ptep)
117 goto out;
118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 } else {
120 pmd = mm_find_pmd(mm, addr);
121 if (!pmd)
122 goto out;
124 ptep = pte_offset_map(pmd, addr);
127 * Peek to check is_swap_pte() before taking ptlock? No, we
128 * can race mremap's move_ptes(), which skips anon_vma lock.
131 ptl = pte_lockptr(mm, pmd);
134 spin_lock(ptl);
135 pte = *ptep;
136 if (!is_swap_pte(pte))
137 goto unlock;
139 entry = pte_to_swp_entry(pte);
141 if (!is_migration_entry(entry) ||
142 migration_entry_to_page(entry) != old)
143 goto unlock;
145 get_page(new);
146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 if (pte_swp_soft_dirty(*ptep))
148 pte = pte_mksoft_dirty(pte);
150 /* Recheck VMA as permissions can change since migration started */
151 if (is_write_migration_entry(entry))
152 pte = maybe_mkwrite(pte, vma);
154 #ifdef CONFIG_HUGETLB_PAGE
155 if (PageHuge(new)) {
156 pte = pte_mkhuge(pte);
157 pte = arch_make_huge_pte(pte, vma, new, 0);
159 #endif
160 flush_dcache_page(new);
161 set_pte_at(mm, addr, ptep, pte);
163 if (PageHuge(new)) {
164 if (PageAnon(new))
165 hugepage_add_anon_rmap(new, vma, addr);
166 else
167 page_dup_rmap(new);
168 } else if (PageAnon(new))
169 page_add_anon_rmap(new, vma, addr);
170 else
171 page_add_file_rmap(new);
173 /* No need to invalidate - it was non-present before */
174 update_mmu_cache(vma, addr, ptep);
175 unlock:
176 pte_unmap_unlock(ptep, ptl);
177 out:
178 return SWAP_AGAIN;
182 * Congratulations to trinity for discovering this bug.
183 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
184 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
185 * replace the specified range by file ptes throughout (maybe populated after).
186 * If page migration finds a page within that range, while it's still located
187 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
188 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
189 * But if the migrating page is in a part of the vma outside the range to be
190 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
191 * deal with it. Fortunately, this part of the vma is of course still linear,
192 * so we just need to use linear location on the nonlinear list.
194 static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
195 struct address_space *mapping, void *arg)
197 struct vm_area_struct *vma;
198 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */
199 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
200 unsigned long addr;
202 list_for_each_entry(vma,
203 &mapping->i_mmap_nonlinear, shared.nonlinear) {
205 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
206 if (addr >= vma->vm_start && addr < vma->vm_end)
207 remove_migration_pte(page, vma, addr, arg);
209 return SWAP_AGAIN;
213 * Get rid of all migration entries and replace them by
214 * references to the indicated page.
216 static void remove_migration_ptes(struct page *old, struct page *new)
218 struct rmap_walk_control rwc = {
219 .rmap_one = remove_migration_pte,
220 .arg = old,
221 .file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
224 rmap_walk(new, &rwc);
228 * Something used the pte of a page under migration. We need to
229 * get to the page and wait until migration is finished.
230 * When we return from this function the fault will be retried.
232 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
233 spinlock_t *ptl)
235 pte_t pte;
236 swp_entry_t entry;
237 struct page *page;
239 spin_lock(ptl);
240 pte = *ptep;
241 if (!is_swap_pte(pte))
242 goto out;
244 entry = pte_to_swp_entry(pte);
245 if (!is_migration_entry(entry))
246 goto out;
248 page = migration_entry_to_page(entry);
251 * Once radix-tree replacement of page migration started, page_count
252 * *must* be zero. And, we don't want to call wait_on_page_locked()
253 * against a page without get_page().
254 * So, we use get_page_unless_zero(), here. Even failed, page fault
255 * will occur again.
257 if (!get_page_unless_zero(page))
258 goto out;
259 pte_unmap_unlock(ptep, ptl);
260 wait_on_page_locked(page);
261 put_page(page);
262 return;
263 out:
264 pte_unmap_unlock(ptep, ptl);
267 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
268 unsigned long address)
270 spinlock_t *ptl = pte_lockptr(mm, pmd);
271 pte_t *ptep = pte_offset_map(pmd, address);
272 __migration_entry_wait(mm, ptep, ptl);
275 void migration_entry_wait_huge(struct vm_area_struct *vma,
276 struct mm_struct *mm, pte_t *pte)
278 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
279 __migration_entry_wait(mm, pte, ptl);
282 #ifdef CONFIG_BLOCK
283 /* Returns true if all buffers are successfully locked */
284 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
285 enum migrate_mode mode)
287 struct buffer_head *bh = head;
289 /* Simple case, sync compaction */
290 if (mode != MIGRATE_ASYNC) {
291 do {
292 get_bh(bh);
293 lock_buffer(bh);
294 bh = bh->b_this_page;
296 } while (bh != head);
298 return true;
301 /* async case, we cannot block on lock_buffer so use trylock_buffer */
302 do {
303 get_bh(bh);
304 if (!trylock_buffer(bh)) {
306 * We failed to lock the buffer and cannot stall in
307 * async migration. Release the taken locks
309 struct buffer_head *failed_bh = bh;
310 put_bh(failed_bh);
311 bh = head;
312 while (bh != failed_bh) {
313 unlock_buffer(bh);
314 put_bh(bh);
315 bh = bh->b_this_page;
317 return false;
320 bh = bh->b_this_page;
321 } while (bh != head);
322 return true;
324 #else
325 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
326 enum migrate_mode mode)
328 return true;
330 #endif /* CONFIG_BLOCK */
333 * Replace the page in the mapping.
335 * The number of remaining references must be:
336 * 1 for anonymous pages without a mapping
337 * 2 for pages with a mapping
338 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
340 int migrate_page_move_mapping(struct address_space *mapping,
341 struct page *newpage, struct page *page,
342 struct buffer_head *head, enum migrate_mode mode,
343 int extra_count)
345 int expected_count = 1 + extra_count;
346 void **pslot;
348 if (!mapping) {
349 /* Anonymous page without mapping */
350 if (page_count(page) != expected_count)
351 return -EAGAIN;
352 return MIGRATEPAGE_SUCCESS;
355 spin_lock_irq(&mapping->tree_lock);
357 pslot = radix_tree_lookup_slot(&mapping->page_tree,
358 page_index(page));
360 expected_count += 1 + page_has_private(page);
361 if (page_count(page) != expected_count ||
362 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
363 spin_unlock_irq(&mapping->tree_lock);
364 return -EAGAIN;
367 if (!page_freeze_refs(page, expected_count)) {
368 spin_unlock_irq(&mapping->tree_lock);
369 return -EAGAIN;
373 * In the async migration case of moving a page with buffers, lock the
374 * buffers using trylock before the mapping is moved. If the mapping
375 * was moved, we later failed to lock the buffers and could not move
376 * the mapping back due to an elevated page count, we would have to
377 * block waiting on other references to be dropped.
379 if (mode == MIGRATE_ASYNC && head &&
380 !buffer_migrate_lock_buffers(head, mode)) {
381 page_unfreeze_refs(page, expected_count);
382 spin_unlock_irq(&mapping->tree_lock);
383 return -EAGAIN;
387 * Now we know that no one else is looking at the page.
389 get_page(newpage); /* add cache reference */
390 if (PageSwapCache(page)) {
391 SetPageSwapCache(newpage);
392 set_page_private(newpage, page_private(page));
395 radix_tree_replace_slot(pslot, newpage);
398 * Drop cache reference from old page by unfreezing
399 * to one less reference.
400 * We know this isn't the last reference.
402 page_unfreeze_refs(page, expected_count - 1);
405 * If moved to a different zone then also account
406 * the page for that zone. Other VM counters will be
407 * taken care of when we establish references to the
408 * new page and drop references to the old page.
410 * Note that anonymous pages are accounted for
411 * via NR_FILE_PAGES and NR_ANON_PAGES if they
412 * are mapped to swap space.
414 __dec_zone_page_state(page, NR_FILE_PAGES);
415 __inc_zone_page_state(newpage, NR_FILE_PAGES);
416 if (!PageSwapCache(page) && PageSwapBacked(page)) {
417 __dec_zone_page_state(page, NR_SHMEM);
418 __inc_zone_page_state(newpage, NR_SHMEM);
420 spin_unlock_irq(&mapping->tree_lock);
422 return MIGRATEPAGE_SUCCESS;
426 * The expected number of remaining references is the same as that
427 * of migrate_page_move_mapping().
429 int migrate_huge_page_move_mapping(struct address_space *mapping,
430 struct page *newpage, struct page *page)
432 int expected_count;
433 void **pslot;
435 if (!mapping) {
436 if (page_count(page) != 1)
437 return -EAGAIN;
438 return MIGRATEPAGE_SUCCESS;
441 spin_lock_irq(&mapping->tree_lock);
443 pslot = radix_tree_lookup_slot(&mapping->page_tree,
444 page_index(page));
446 expected_count = 2 + page_has_private(page);
447 if (page_count(page) != expected_count ||
448 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
449 spin_unlock_irq(&mapping->tree_lock);
450 return -EAGAIN;
453 if (!page_freeze_refs(page, expected_count)) {
454 spin_unlock_irq(&mapping->tree_lock);
455 return -EAGAIN;
458 get_page(newpage);
460 radix_tree_replace_slot(pslot, newpage);
462 page_unfreeze_refs(page, expected_count - 1);
464 spin_unlock_irq(&mapping->tree_lock);
465 return MIGRATEPAGE_SUCCESS;
469 * Gigantic pages are so large that we do not guarantee that page++ pointer
470 * arithmetic will work across the entire page. We need something more
471 * specialized.
473 static void __copy_gigantic_page(struct page *dst, struct page *src,
474 int nr_pages)
476 int i;
477 struct page *dst_base = dst;
478 struct page *src_base = src;
480 for (i = 0; i < nr_pages; ) {
481 cond_resched();
482 copy_highpage(dst, src);
484 i++;
485 dst = mem_map_next(dst, dst_base, i);
486 src = mem_map_next(src, src_base, i);
490 static void copy_huge_page(struct page *dst, struct page *src)
492 int i;
493 int nr_pages;
495 if (PageHuge(src)) {
496 /* hugetlbfs page */
497 struct hstate *h = page_hstate(src);
498 nr_pages = pages_per_huge_page(h);
500 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
501 __copy_gigantic_page(dst, src, nr_pages);
502 return;
504 } else {
505 /* thp page */
506 BUG_ON(!PageTransHuge(src));
507 nr_pages = hpage_nr_pages(src);
510 for (i = 0; i < nr_pages; i++) {
511 cond_resched();
512 copy_highpage(dst + i, src + i);
517 * Copy the page to its new location
519 void migrate_page_copy(struct page *newpage, struct page *page)
521 int cpupid;
523 if (PageHuge(page) || PageTransHuge(page))
524 copy_huge_page(newpage, page);
525 else
526 copy_highpage(newpage, page);
528 if (PageError(page))
529 SetPageError(newpage);
530 if (PageReferenced(page))
531 SetPageReferenced(newpage);
532 if (PageUptodate(page))
533 SetPageUptodate(newpage);
534 if (TestClearPageActive(page)) {
535 VM_BUG_ON_PAGE(PageUnevictable(page), page);
536 SetPageActive(newpage);
537 } else if (TestClearPageUnevictable(page))
538 SetPageUnevictable(newpage);
539 if (PageChecked(page))
540 SetPageChecked(newpage);
541 if (PageMappedToDisk(page))
542 SetPageMappedToDisk(newpage);
544 if (PageDirty(page)) {
545 clear_page_dirty_for_io(page);
547 * Want to mark the page and the radix tree as dirty, and
548 * redo the accounting that clear_page_dirty_for_io undid,
549 * but we can't use set_page_dirty because that function
550 * is actually a signal that all of the page has become dirty.
551 * Whereas only part of our page may be dirty.
553 if (PageSwapBacked(page))
554 SetPageDirty(newpage);
555 else
556 __set_page_dirty_nobuffers(newpage);
560 * Copy NUMA information to the new page, to prevent over-eager
561 * future migrations of this same page.
563 cpupid = page_cpupid_xchg_last(page, -1);
564 page_cpupid_xchg_last(newpage, cpupid);
566 mlock_migrate_page(newpage, page);
567 ksm_migrate_page(newpage, page);
569 * Please do not reorder this without considering how mm/ksm.c's
570 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
572 ClearPageSwapCache(page);
573 ClearPagePrivate(page);
574 set_page_private(page, 0);
577 * If any waiters have accumulated on the new page then
578 * wake them up.
580 if (PageWriteback(newpage))
581 end_page_writeback(newpage);
584 /************************************************************
585 * Migration functions
586 ***********************************************************/
589 * Common logic to directly migrate a single page suitable for
590 * pages that do not use PagePrivate/PagePrivate2.
592 * Pages are locked upon entry and exit.
594 int migrate_page(struct address_space *mapping,
595 struct page *newpage, struct page *page,
596 enum migrate_mode mode)
598 int rc;
600 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
602 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
604 if (rc != MIGRATEPAGE_SUCCESS)
605 return rc;
607 migrate_page_copy(newpage, page);
608 return MIGRATEPAGE_SUCCESS;
610 EXPORT_SYMBOL(migrate_page);
612 #ifdef CONFIG_BLOCK
614 * Migration function for pages with buffers. This function can only be used
615 * if the underlying filesystem guarantees that no other references to "page"
616 * exist.
618 int buffer_migrate_page(struct address_space *mapping,
619 struct page *newpage, struct page *page, enum migrate_mode mode)
621 struct buffer_head *bh, *head;
622 int rc;
624 if (!page_has_buffers(page))
625 return migrate_page(mapping, newpage, page, mode);
627 head = page_buffers(page);
629 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
631 if (rc != MIGRATEPAGE_SUCCESS)
632 return rc;
635 * In the async case, migrate_page_move_mapping locked the buffers
636 * with an IRQ-safe spinlock held. In the sync case, the buffers
637 * need to be locked now
639 if (mode != MIGRATE_ASYNC)
640 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
642 ClearPagePrivate(page);
643 set_page_private(newpage, page_private(page));
644 set_page_private(page, 0);
645 put_page(page);
646 get_page(newpage);
648 bh = head;
649 do {
650 set_bh_page(bh, newpage, bh_offset(bh));
651 bh = bh->b_this_page;
653 } while (bh != head);
655 SetPagePrivate(newpage);
657 migrate_page_copy(newpage, page);
659 bh = head;
660 do {
661 unlock_buffer(bh);
662 put_bh(bh);
663 bh = bh->b_this_page;
665 } while (bh != head);
667 return MIGRATEPAGE_SUCCESS;
669 EXPORT_SYMBOL(buffer_migrate_page);
670 #endif
673 * Writeback a page to clean the dirty state
675 static int writeout(struct address_space *mapping, struct page *page)
677 struct writeback_control wbc = {
678 .sync_mode = WB_SYNC_NONE,
679 .nr_to_write = 1,
680 .range_start = 0,
681 .range_end = LLONG_MAX,
682 .for_reclaim = 1
684 int rc;
686 if (!mapping->a_ops->writepage)
687 /* No write method for the address space */
688 return -EINVAL;
690 if (!clear_page_dirty_for_io(page))
691 /* Someone else already triggered a write */
692 return -EAGAIN;
695 * A dirty page may imply that the underlying filesystem has
696 * the page on some queue. So the page must be clean for
697 * migration. Writeout may mean we loose the lock and the
698 * page state is no longer what we checked for earlier.
699 * At this point we know that the migration attempt cannot
700 * be successful.
702 remove_migration_ptes(page, page);
704 rc = mapping->a_ops->writepage(page, &wbc);
706 if (rc != AOP_WRITEPAGE_ACTIVATE)
707 /* unlocked. Relock */
708 lock_page(page);
710 return (rc < 0) ? -EIO : -EAGAIN;
714 * Default handling if a filesystem does not provide a migration function.
716 static int fallback_migrate_page(struct address_space *mapping,
717 struct page *newpage, struct page *page, enum migrate_mode mode)
719 if (PageDirty(page)) {
720 /* Only writeback pages in full synchronous migration */
721 if (mode != MIGRATE_SYNC)
722 return -EBUSY;
723 return writeout(mapping, page);
727 * Buffers may be managed in a filesystem specific way.
728 * We must have no buffers or drop them.
730 if (page_has_private(page) &&
731 !try_to_release_page(page, GFP_KERNEL))
732 return -EAGAIN;
734 return migrate_page(mapping, newpage, page, mode);
738 * Move a page to a newly allocated page
739 * The page is locked and all ptes have been successfully removed.
741 * The new page will have replaced the old page if this function
742 * is successful.
744 * Return value:
745 * < 0 - error code
746 * MIGRATEPAGE_SUCCESS - success
748 static int move_to_new_page(struct page *newpage, struct page *page,
749 int remap_swapcache, enum migrate_mode mode)
751 struct address_space *mapping;
752 int rc;
755 * Block others from accessing the page when we get around to
756 * establishing additional references. We are the only one
757 * holding a reference to the new page at this point.
759 if (!trylock_page(newpage))
760 BUG();
762 /* Prepare mapping for the new page.*/
763 newpage->index = page->index;
764 newpage->mapping = page->mapping;
765 if (PageSwapBacked(page))
766 SetPageSwapBacked(newpage);
768 mapping = page_mapping(page);
769 if (!mapping)
770 rc = migrate_page(mapping, newpage, page, mode);
771 else if (mapping->a_ops->migratepage)
773 * Most pages have a mapping and most filesystems provide a
774 * migratepage callback. Anonymous pages are part of swap
775 * space which also has its own migratepage callback. This
776 * is the most common path for page migration.
778 rc = mapping->a_ops->migratepage(mapping,
779 newpage, page, mode);
780 else
781 rc = fallback_migrate_page(mapping, newpage, page, mode);
783 if (rc != MIGRATEPAGE_SUCCESS) {
784 newpage->mapping = NULL;
785 } else {
786 if (remap_swapcache)
787 remove_migration_ptes(page, newpage);
788 page->mapping = NULL;
791 unlock_page(newpage);
793 return rc;
796 static int __unmap_and_move(struct page *page, struct page *newpage,
797 int force, enum migrate_mode mode)
799 int rc = -EAGAIN;
800 int remap_swapcache = 1;
801 struct mem_cgroup *mem;
802 struct anon_vma *anon_vma = NULL;
804 if (!trylock_page(page)) {
805 if (!force || mode == MIGRATE_ASYNC)
806 goto out;
809 * It's not safe for direct compaction to call lock_page.
810 * For example, during page readahead pages are added locked
811 * to the LRU. Later, when the IO completes the pages are
812 * marked uptodate and unlocked. However, the queueing
813 * could be merging multiple pages for one bio (e.g.
814 * mpage_readpages). If an allocation happens for the
815 * second or third page, the process can end up locking
816 * the same page twice and deadlocking. Rather than
817 * trying to be clever about what pages can be locked,
818 * avoid the use of lock_page for direct compaction
819 * altogether.
821 if (current->flags & PF_MEMALLOC)
822 goto out;
824 lock_page(page);
827 /* charge against new page */
828 mem_cgroup_prepare_migration(page, newpage, &mem);
830 if (PageWriteback(page)) {
832 * Only in the case of a full synchronous migration is it
833 * necessary to wait for PageWriteback. In the async case,
834 * the retry loop is too short and in the sync-light case,
835 * the overhead of stalling is too much
837 if (mode != MIGRATE_SYNC) {
838 rc = -EBUSY;
839 goto uncharge;
841 if (!force)
842 goto uncharge;
843 wait_on_page_writeback(page);
846 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
847 * we cannot notice that anon_vma is freed while we migrates a page.
848 * This get_anon_vma() delays freeing anon_vma pointer until the end
849 * of migration. File cache pages are no problem because of page_lock()
850 * File Caches may use write_page() or lock_page() in migration, then,
851 * just care Anon page here.
853 if (PageAnon(page) && !PageKsm(page)) {
855 * Only page_lock_anon_vma_read() understands the subtleties of
856 * getting a hold on an anon_vma from outside one of its mms.
858 anon_vma = page_get_anon_vma(page);
859 if (anon_vma) {
861 * Anon page
863 } else if (PageSwapCache(page)) {
865 * We cannot be sure that the anon_vma of an unmapped
866 * swapcache page is safe to use because we don't
867 * know in advance if the VMA that this page belonged
868 * to still exists. If the VMA and others sharing the
869 * data have been freed, then the anon_vma could
870 * already be invalid.
872 * To avoid this possibility, swapcache pages get
873 * migrated but are not remapped when migration
874 * completes
876 remap_swapcache = 0;
877 } else {
878 goto uncharge;
882 if (unlikely(balloon_page_movable(page))) {
884 * A ballooned page does not need any special attention from
885 * physical to virtual reverse mapping procedures.
886 * Skip any attempt to unmap PTEs or to remap swap cache,
887 * in order to avoid burning cycles at rmap level, and perform
888 * the page migration right away (proteced by page lock).
890 rc = balloon_page_migrate(newpage, page, mode);
891 goto uncharge;
895 * Corner case handling:
896 * 1. When a new swap-cache page is read into, it is added to the LRU
897 * and treated as swapcache but it has no rmap yet.
898 * Calling try_to_unmap() against a page->mapping==NULL page will
899 * trigger a BUG. So handle it here.
900 * 2. An orphaned page (see truncate_complete_page) might have
901 * fs-private metadata. The page can be picked up due to memory
902 * offlining. Everywhere else except page reclaim, the page is
903 * invisible to the vm, so the page can not be migrated. So try to
904 * free the metadata, so the page can be freed.
906 if (!page->mapping) {
907 VM_BUG_ON_PAGE(PageAnon(page), page);
908 if (page_has_private(page)) {
909 try_to_free_buffers(page);
910 goto uncharge;
912 goto skip_unmap;
915 /* Establish migration ptes or remove ptes */
916 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
918 skip_unmap:
919 if (!page_mapped(page))
920 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
922 if (rc && remap_swapcache)
923 remove_migration_ptes(page, page);
925 /* Drop an anon_vma reference if we took one */
926 if (anon_vma)
927 put_anon_vma(anon_vma);
929 uncharge:
930 mem_cgroup_end_migration(mem, page, newpage,
931 (rc == MIGRATEPAGE_SUCCESS ||
932 rc == MIGRATEPAGE_BALLOON_SUCCESS));
933 unlock_page(page);
934 out:
935 return rc;
939 * Obtain the lock on page, remove all ptes and migrate the page
940 * to the newly allocated page in newpage.
942 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
943 unsigned long private, struct page *page, int force,
944 enum migrate_mode mode)
946 int rc = 0;
947 int *result = NULL;
948 struct page *newpage = get_new_page(page, private, &result);
950 if (!newpage)
951 return -ENOMEM;
953 if (page_count(page) == 1) {
954 /* page was freed from under us. So we are done. */
955 goto out;
958 if (unlikely(PageTransHuge(page)))
959 if (unlikely(split_huge_page(page)))
960 goto out;
962 rc = __unmap_and_move(page, newpage, force, mode);
964 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
966 * A ballooned page has been migrated already.
967 * Now, it's the time to wrap-up counters,
968 * handle the page back to Buddy and return.
970 dec_zone_page_state(page, NR_ISOLATED_ANON +
971 page_is_file_cache(page));
972 balloon_page_free(page);
973 return MIGRATEPAGE_SUCCESS;
975 out:
976 if (rc != -EAGAIN) {
978 * A page that has been migrated has all references
979 * removed and will be freed. A page that has not been
980 * migrated will have kepts its references and be
981 * restored.
983 list_del(&page->lru);
984 dec_zone_page_state(page, NR_ISOLATED_ANON +
985 page_is_file_cache(page));
986 putback_lru_page(page);
990 * If migration was not successful and there's a freeing callback, use
991 * it. Otherwise, putback_lru_page() will drop the reference grabbed
992 * during isolation.
994 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
995 ClearPageSwapBacked(newpage);
996 put_new_page(newpage, private);
997 } else
998 putback_lru_page(newpage);
1000 if (result) {
1001 if (rc)
1002 *result = rc;
1003 else
1004 *result = page_to_nid(newpage);
1006 return rc;
1010 * Counterpart of unmap_and_move_page() for hugepage migration.
1012 * This function doesn't wait the completion of hugepage I/O
1013 * because there is no race between I/O and migration for hugepage.
1014 * Note that currently hugepage I/O occurs only in direct I/O
1015 * where no lock is held and PG_writeback is irrelevant,
1016 * and writeback status of all subpages are counted in the reference
1017 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1018 * under direct I/O, the reference of the head page is 512 and a bit more.)
1019 * This means that when we try to migrate hugepage whose subpages are
1020 * doing direct I/O, some references remain after try_to_unmap() and
1021 * hugepage migration fails without data corruption.
1023 * There is also no race when direct I/O is issued on the page under migration,
1024 * because then pte is replaced with migration swap entry and direct I/O code
1025 * will wait in the page fault for migration to complete.
1027 static int unmap_and_move_huge_page(new_page_t get_new_page,
1028 free_page_t put_new_page, unsigned long private,
1029 struct page *hpage, int force,
1030 enum migrate_mode mode)
1032 int rc = 0;
1033 int *result = NULL;
1034 struct page *new_hpage;
1035 struct anon_vma *anon_vma = NULL;
1038 * Movability of hugepages depends on architectures and hugepage size.
1039 * This check is necessary because some callers of hugepage migration
1040 * like soft offline and memory hotremove don't walk through page
1041 * tables or check whether the hugepage is pmd-based or not before
1042 * kicking migration.
1044 if (!hugepage_migration_supported(page_hstate(hpage))) {
1045 putback_active_hugepage(hpage);
1046 return -ENOSYS;
1049 new_hpage = get_new_page(hpage, private, &result);
1050 if (!new_hpage)
1051 return -ENOMEM;
1053 rc = -EAGAIN;
1055 if (!trylock_page(hpage)) {
1056 if (!force || mode != MIGRATE_SYNC)
1057 goto out;
1058 lock_page(hpage);
1061 if (PageAnon(hpage))
1062 anon_vma = page_get_anon_vma(hpage);
1064 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1066 if (!page_mapped(hpage))
1067 rc = move_to_new_page(new_hpage, hpage, 1, mode);
1069 if (rc != MIGRATEPAGE_SUCCESS)
1070 remove_migration_ptes(hpage, hpage);
1072 if (anon_vma)
1073 put_anon_vma(anon_vma);
1075 if (rc == MIGRATEPAGE_SUCCESS)
1076 hugetlb_cgroup_migrate(hpage, new_hpage);
1078 unlock_page(hpage);
1079 out:
1080 if (rc != -EAGAIN)
1081 putback_active_hugepage(hpage);
1084 * If migration was not successful and there's a freeing callback, use
1085 * it. Otherwise, put_page() will drop the reference grabbed during
1086 * isolation.
1088 if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1089 put_new_page(new_hpage, private);
1090 else
1091 put_page(new_hpage);
1093 if (result) {
1094 if (rc)
1095 *result = rc;
1096 else
1097 *result = page_to_nid(new_hpage);
1099 return rc;
1103 * migrate_pages - migrate the pages specified in a list, to the free pages
1104 * supplied as the target for the page migration
1106 * @from: The list of pages to be migrated.
1107 * @get_new_page: The function used to allocate free pages to be used
1108 * as the target of the page migration.
1109 * @put_new_page: The function used to free target pages if migration
1110 * fails, or NULL if no special handling is necessary.
1111 * @private: Private data to be passed on to get_new_page()
1112 * @mode: The migration mode that specifies the constraints for
1113 * page migration, if any.
1114 * @reason: The reason for page migration.
1116 * The function returns after 10 attempts or if no pages are movable any more
1117 * because the list has become empty or no retryable pages exist any more.
1118 * The caller should call putback_lru_pages() to return pages to the LRU
1119 * or free list only if ret != 0.
1121 * Returns the number of pages that were not migrated, or an error code.
1123 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1124 free_page_t put_new_page, unsigned long private,
1125 enum migrate_mode mode, int reason)
1127 int retry = 1;
1128 int nr_failed = 0;
1129 int nr_succeeded = 0;
1130 int pass = 0;
1131 struct page *page;
1132 struct page *page2;
1133 int swapwrite = current->flags & PF_SWAPWRITE;
1134 int rc;
1136 if (!swapwrite)
1137 current->flags |= PF_SWAPWRITE;
1139 for(pass = 0; pass < 10 && retry; pass++) {
1140 retry = 0;
1142 list_for_each_entry_safe(page, page2, from, lru) {
1143 cond_resched();
1145 if (PageHuge(page))
1146 rc = unmap_and_move_huge_page(get_new_page,
1147 put_new_page, private, page,
1148 pass > 2, mode);
1149 else
1150 rc = unmap_and_move(get_new_page, put_new_page,
1151 private, page, pass > 2, mode);
1153 switch(rc) {
1154 case -ENOMEM:
1155 goto out;
1156 case -EAGAIN:
1157 retry++;
1158 break;
1159 case MIGRATEPAGE_SUCCESS:
1160 nr_succeeded++;
1161 break;
1162 default:
1164 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1165 * unlike -EAGAIN case, the failed page is
1166 * removed from migration page list and not
1167 * retried in the next outer loop.
1169 nr_failed++;
1170 break;
1174 rc = nr_failed + retry;
1175 out:
1176 if (nr_succeeded)
1177 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1178 if (nr_failed)
1179 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1180 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1182 if (!swapwrite)
1183 current->flags &= ~PF_SWAPWRITE;
1185 return rc;
1188 #ifdef CONFIG_NUMA
1190 * Move a list of individual pages
1192 struct page_to_node {
1193 unsigned long addr;
1194 struct page *page;
1195 int node;
1196 int status;
1199 static struct page *new_page_node(struct page *p, unsigned long private,
1200 int **result)
1202 struct page_to_node *pm = (struct page_to_node *)private;
1204 while (pm->node != MAX_NUMNODES && pm->page != p)
1205 pm++;
1207 if (pm->node == MAX_NUMNODES)
1208 return NULL;
1210 *result = &pm->status;
1212 if (PageHuge(p))
1213 return alloc_huge_page_node(page_hstate(compound_head(p)),
1214 pm->node);
1215 else
1216 return alloc_pages_exact_node(pm->node,
1217 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1221 * Move a set of pages as indicated in the pm array. The addr
1222 * field must be set to the virtual address of the page to be moved
1223 * and the node number must contain a valid target node.
1224 * The pm array ends with node = MAX_NUMNODES.
1226 static int do_move_page_to_node_array(struct mm_struct *mm,
1227 struct page_to_node *pm,
1228 int migrate_all)
1230 int err;
1231 struct page_to_node *pp;
1232 LIST_HEAD(pagelist);
1234 down_read(&mm->mmap_sem);
1237 * Build a list of pages to migrate
1239 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1240 struct vm_area_struct *vma;
1241 struct page *page;
1243 err = -EFAULT;
1244 vma = find_vma(mm, pp->addr);
1245 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1246 goto set_status;
1248 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1250 err = PTR_ERR(page);
1251 if (IS_ERR(page))
1252 goto set_status;
1254 err = -ENOENT;
1255 if (!page)
1256 goto set_status;
1258 /* Use PageReserved to check for zero page */
1259 if (PageReserved(page))
1260 goto put_and_set;
1262 pp->page = page;
1263 err = page_to_nid(page);
1265 if (err == pp->node)
1267 * Node already in the right place
1269 goto put_and_set;
1271 err = -EACCES;
1272 if (page_mapcount(page) > 1 &&
1273 !migrate_all)
1274 goto put_and_set;
1276 if (PageHuge(page)) {
1277 if (PageHead(page))
1278 isolate_huge_page(page, &pagelist);
1279 goto put_and_set;
1282 err = isolate_lru_page(page);
1283 if (!err) {
1284 list_add_tail(&page->lru, &pagelist);
1285 inc_zone_page_state(page, NR_ISOLATED_ANON +
1286 page_is_file_cache(page));
1288 put_and_set:
1290 * Either remove the duplicate refcount from
1291 * isolate_lru_page() or drop the page ref if it was
1292 * not isolated.
1294 put_page(page);
1295 set_status:
1296 pp->status = err;
1299 err = 0;
1300 if (!list_empty(&pagelist)) {
1301 err = migrate_pages(&pagelist, new_page_node, NULL,
1302 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1303 if (err)
1304 putback_movable_pages(&pagelist);
1307 up_read(&mm->mmap_sem);
1308 return err;
1312 * Migrate an array of page address onto an array of nodes and fill
1313 * the corresponding array of status.
1315 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1316 unsigned long nr_pages,
1317 const void __user * __user *pages,
1318 const int __user *nodes,
1319 int __user *status, int flags)
1321 struct page_to_node *pm;
1322 unsigned long chunk_nr_pages;
1323 unsigned long chunk_start;
1324 int err;
1326 err = -ENOMEM;
1327 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1328 if (!pm)
1329 goto out;
1331 migrate_prep();
1334 * Store a chunk of page_to_node array in a page,
1335 * but keep the last one as a marker
1337 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1339 for (chunk_start = 0;
1340 chunk_start < nr_pages;
1341 chunk_start += chunk_nr_pages) {
1342 int j;
1344 if (chunk_start + chunk_nr_pages > nr_pages)
1345 chunk_nr_pages = nr_pages - chunk_start;
1347 /* fill the chunk pm with addrs and nodes from user-space */
1348 for (j = 0; j < chunk_nr_pages; j++) {
1349 const void __user *p;
1350 int node;
1352 err = -EFAULT;
1353 if (get_user(p, pages + j + chunk_start))
1354 goto out_pm;
1355 pm[j].addr = (unsigned long) p;
1357 if (get_user(node, nodes + j + chunk_start))
1358 goto out_pm;
1360 err = -ENODEV;
1361 if (node < 0 || node >= MAX_NUMNODES)
1362 goto out_pm;
1364 if (!node_state(node, N_MEMORY))
1365 goto out_pm;
1367 err = -EACCES;
1368 if (!node_isset(node, task_nodes))
1369 goto out_pm;
1371 pm[j].node = node;
1374 /* End marker for this chunk */
1375 pm[chunk_nr_pages].node = MAX_NUMNODES;
1377 /* Migrate this chunk */
1378 err = do_move_page_to_node_array(mm, pm,
1379 flags & MPOL_MF_MOVE_ALL);
1380 if (err < 0)
1381 goto out_pm;
1383 /* Return status information */
1384 for (j = 0; j < chunk_nr_pages; j++)
1385 if (put_user(pm[j].status, status + j + chunk_start)) {
1386 err = -EFAULT;
1387 goto out_pm;
1390 err = 0;
1392 out_pm:
1393 free_page((unsigned long)pm);
1394 out:
1395 return err;
1399 * Determine the nodes of an array of pages and store it in an array of status.
1401 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1402 const void __user **pages, int *status)
1404 unsigned long i;
1406 down_read(&mm->mmap_sem);
1408 for (i = 0; i < nr_pages; i++) {
1409 unsigned long addr = (unsigned long)(*pages);
1410 struct vm_area_struct *vma;
1411 struct page *page;
1412 int err = -EFAULT;
1414 vma = find_vma(mm, addr);
1415 if (!vma || addr < vma->vm_start)
1416 goto set_status;
1418 page = follow_page(vma, addr, 0);
1420 err = PTR_ERR(page);
1421 if (IS_ERR(page))
1422 goto set_status;
1424 err = -ENOENT;
1425 /* Use PageReserved to check for zero page */
1426 if (!page || PageReserved(page))
1427 goto set_status;
1429 err = page_to_nid(page);
1430 set_status:
1431 *status = err;
1433 pages++;
1434 status++;
1437 up_read(&mm->mmap_sem);
1441 * Determine the nodes of a user array of pages and store it in
1442 * a user array of status.
1444 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1445 const void __user * __user *pages,
1446 int __user *status)
1448 #define DO_PAGES_STAT_CHUNK_NR 16
1449 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1450 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1452 while (nr_pages) {
1453 unsigned long chunk_nr;
1455 chunk_nr = nr_pages;
1456 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1457 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1459 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1460 break;
1462 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1464 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1465 break;
1467 pages += chunk_nr;
1468 status += chunk_nr;
1469 nr_pages -= chunk_nr;
1471 return nr_pages ? -EFAULT : 0;
1475 * Move a list of pages in the address space of the currently executing
1476 * process.
1478 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1479 const void __user * __user *, pages,
1480 const int __user *, nodes,
1481 int __user *, status, int, flags)
1483 const struct cred *cred = current_cred(), *tcred;
1484 struct task_struct *task;
1485 struct mm_struct *mm;
1486 int err;
1487 nodemask_t task_nodes;
1489 /* Check flags */
1490 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1491 return -EINVAL;
1493 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1494 return -EPERM;
1496 /* Find the mm_struct */
1497 rcu_read_lock();
1498 task = pid ? find_task_by_vpid(pid) : current;
1499 if (!task) {
1500 rcu_read_unlock();
1501 return -ESRCH;
1503 get_task_struct(task);
1506 * Check if this process has the right to modify the specified
1507 * process. The right exists if the process has administrative
1508 * capabilities, superuser privileges or the same
1509 * userid as the target process.
1511 tcred = __task_cred(task);
1512 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1513 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1514 !capable(CAP_SYS_NICE)) {
1515 rcu_read_unlock();
1516 err = -EPERM;
1517 goto out;
1519 rcu_read_unlock();
1521 err = security_task_movememory(task);
1522 if (err)
1523 goto out;
1525 task_nodes = cpuset_mems_allowed(task);
1526 mm = get_task_mm(task);
1527 put_task_struct(task);
1529 if (!mm)
1530 return -EINVAL;
1532 if (nodes)
1533 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1534 nodes, status, flags);
1535 else
1536 err = do_pages_stat(mm, nr_pages, pages, status);
1538 mmput(mm);
1539 return err;
1541 out:
1542 put_task_struct(task);
1543 return err;
1547 * Call migration functions in the vma_ops that may prepare
1548 * memory in a vm for migration. migration functions may perform
1549 * the migration for vmas that do not have an underlying page struct.
1551 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1552 const nodemask_t *from, unsigned long flags)
1554 struct vm_area_struct *vma;
1555 int err = 0;
1557 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1558 if (vma->vm_ops && vma->vm_ops->migrate) {
1559 err = vma->vm_ops->migrate(vma, to, from, flags);
1560 if (err)
1561 break;
1564 return err;
1567 #ifdef CONFIG_NUMA_BALANCING
1569 * Returns true if this is a safe migration target node for misplaced NUMA
1570 * pages. Currently it only checks the watermarks which crude
1572 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1573 unsigned long nr_migrate_pages)
1575 int z;
1576 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1577 struct zone *zone = pgdat->node_zones + z;
1579 if (!populated_zone(zone))
1580 continue;
1582 if (!zone_reclaimable(zone))
1583 continue;
1585 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1586 if (!zone_watermark_ok(zone, 0,
1587 high_wmark_pages(zone) +
1588 nr_migrate_pages,
1589 0, 0))
1590 continue;
1591 return true;
1593 return false;
1596 static struct page *alloc_misplaced_dst_page(struct page *page,
1597 unsigned long data,
1598 int **result)
1600 int nid = (int) data;
1601 struct page *newpage;
1603 newpage = alloc_pages_exact_node(nid,
1604 (GFP_HIGHUSER_MOVABLE |
1605 __GFP_THISNODE | __GFP_NOMEMALLOC |
1606 __GFP_NORETRY | __GFP_NOWARN) &
1607 ~GFP_IOFS, 0);
1609 return newpage;
1613 * page migration rate limiting control.
1614 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1615 * window of time. Default here says do not migrate more than 1280M per second.
1616 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1617 * as it is faults that reset the window, pte updates will happen unconditionally
1618 * if there has not been a fault since @pteupdate_interval_millisecs after the
1619 * throttle window closed.
1621 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1622 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1623 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1625 /* Returns true if NUMA migration is currently rate limited */
1626 bool migrate_ratelimited(int node)
1628 pg_data_t *pgdat = NODE_DATA(node);
1630 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1631 msecs_to_jiffies(pteupdate_interval_millisecs)))
1632 return false;
1634 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1635 return false;
1637 return true;
1640 /* Returns true if the node is migrate rate-limited after the update */
1641 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1642 unsigned long nr_pages)
1645 * Rate-limit the amount of data that is being migrated to a node.
1646 * Optimal placement is no good if the memory bus is saturated and
1647 * all the time is being spent migrating!
1649 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1650 spin_lock(&pgdat->numabalancing_migrate_lock);
1651 pgdat->numabalancing_migrate_nr_pages = 0;
1652 pgdat->numabalancing_migrate_next_window = jiffies +
1653 msecs_to_jiffies(migrate_interval_millisecs);
1654 spin_unlock(&pgdat->numabalancing_migrate_lock);
1656 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1657 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1658 nr_pages);
1659 return true;
1663 * This is an unlocked non-atomic update so errors are possible.
1664 * The consequences are failing to migrate when we potentiall should
1665 * have which is not severe enough to warrant locking. If it is ever
1666 * a problem, it can be converted to a per-cpu counter.
1668 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1669 return false;
1672 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1674 int page_lru;
1676 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1678 /* Avoid migrating to a node that is nearly full */
1679 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1680 return 0;
1682 if (isolate_lru_page(page))
1683 return 0;
1686 * migrate_misplaced_transhuge_page() skips page migration's usual
1687 * check on page_count(), so we must do it here, now that the page
1688 * has been isolated: a GUP pin, or any other pin, prevents migration.
1689 * The expected page count is 3: 1 for page's mapcount and 1 for the
1690 * caller's pin and 1 for the reference taken by isolate_lru_page().
1692 if (PageTransHuge(page) && page_count(page) != 3) {
1693 putback_lru_page(page);
1694 return 0;
1697 page_lru = page_is_file_cache(page);
1698 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1699 hpage_nr_pages(page));
1702 * Isolating the page has taken another reference, so the
1703 * caller's reference can be safely dropped without the page
1704 * disappearing underneath us during migration.
1706 put_page(page);
1707 return 1;
1710 bool pmd_trans_migrating(pmd_t pmd)
1712 struct page *page = pmd_page(pmd);
1713 return PageLocked(page);
1716 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1718 struct page *page = pmd_page(*pmd);
1719 wait_on_page_locked(page);
1723 * Attempt to migrate a misplaced page to the specified destination
1724 * node. Caller is expected to have an elevated reference count on
1725 * the page that will be dropped by this function before returning.
1727 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1728 int node)
1730 pg_data_t *pgdat = NODE_DATA(node);
1731 int isolated;
1732 int nr_remaining;
1733 LIST_HEAD(migratepages);
1736 * Don't migrate file pages that are mapped in multiple processes
1737 * with execute permissions as they are probably shared libraries.
1739 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1740 (vma->vm_flags & VM_EXEC))
1741 goto out;
1744 * Rate-limit the amount of data that is being migrated to a node.
1745 * Optimal placement is no good if the memory bus is saturated and
1746 * all the time is being spent migrating!
1748 if (numamigrate_update_ratelimit(pgdat, 1))
1749 goto out;
1751 isolated = numamigrate_isolate_page(pgdat, page);
1752 if (!isolated)
1753 goto out;
1755 list_add(&page->lru, &migratepages);
1756 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1757 NULL, node, MIGRATE_ASYNC,
1758 MR_NUMA_MISPLACED);
1759 if (nr_remaining) {
1760 if (!list_empty(&migratepages)) {
1761 list_del(&page->lru);
1762 dec_zone_page_state(page, NR_ISOLATED_ANON +
1763 page_is_file_cache(page));
1764 putback_lru_page(page);
1766 isolated = 0;
1767 } else
1768 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1769 BUG_ON(!list_empty(&migratepages));
1770 return isolated;
1772 out:
1773 put_page(page);
1774 return 0;
1776 #endif /* CONFIG_NUMA_BALANCING */
1778 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1780 * Migrates a THP to a given target node. page must be locked and is unlocked
1781 * before returning.
1783 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1784 struct vm_area_struct *vma,
1785 pmd_t *pmd, pmd_t entry,
1786 unsigned long address,
1787 struct page *page, int node)
1789 spinlock_t *ptl;
1790 pg_data_t *pgdat = NODE_DATA(node);
1791 int isolated = 0;
1792 struct page *new_page = NULL;
1793 struct mem_cgroup *memcg = NULL;
1794 int page_lru = page_is_file_cache(page);
1795 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1796 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1797 pmd_t orig_entry;
1800 * Rate-limit the amount of data that is being migrated to a node.
1801 * Optimal placement is no good if the memory bus is saturated and
1802 * all the time is being spent migrating!
1804 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1805 goto out_dropref;
1807 new_page = alloc_pages_node(node,
1808 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1809 HPAGE_PMD_ORDER);
1810 if (!new_page)
1811 goto out_fail;
1813 isolated = numamigrate_isolate_page(pgdat, page);
1814 if (!isolated) {
1815 put_page(new_page);
1816 goto out_fail;
1819 if (mm_tlb_flush_pending(mm))
1820 flush_tlb_range(vma, mmun_start, mmun_end);
1822 /* Prepare a page as a migration target */
1823 __set_page_locked(new_page);
1824 SetPageSwapBacked(new_page);
1826 /* anon mapping, we can simply copy page->mapping to the new page: */
1827 new_page->mapping = page->mapping;
1828 new_page->index = page->index;
1829 migrate_page_copy(new_page, page);
1830 WARN_ON(PageLRU(new_page));
1832 /* Recheck the target PMD */
1833 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1834 ptl = pmd_lock(mm, pmd);
1835 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1836 fail_putback:
1837 spin_unlock(ptl);
1838 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1840 /* Reverse changes made by migrate_page_copy() */
1841 if (TestClearPageActive(new_page))
1842 SetPageActive(page);
1843 if (TestClearPageUnevictable(new_page))
1844 SetPageUnevictable(page);
1845 mlock_migrate_page(page, new_page);
1847 unlock_page(new_page);
1848 put_page(new_page); /* Free it */
1850 /* Retake the callers reference and putback on LRU */
1851 get_page(page);
1852 putback_lru_page(page);
1853 mod_zone_page_state(page_zone(page),
1854 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1856 goto out_unlock;
1860 * Traditional migration needs to prepare the memcg charge
1861 * transaction early to prevent the old page from being
1862 * uncharged when installing migration entries. Here we can
1863 * save the potential rollback and start the charge transfer
1864 * only when migration is already known to end successfully.
1866 mem_cgroup_prepare_migration(page, new_page, &memcg);
1868 orig_entry = *pmd;
1869 entry = mk_pmd(new_page, vma->vm_page_prot);
1870 entry = pmd_mkhuge(entry);
1871 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1874 * Clear the old entry under pagetable lock and establish the new PTE.
1875 * Any parallel GUP will either observe the old page blocking on the
1876 * page lock, block on the page table lock or observe the new page.
1877 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1878 * guarantee the copy is visible before the pagetable update.
1880 flush_cache_range(vma, mmun_start, mmun_end);
1881 page_add_anon_rmap(new_page, vma, mmun_start);
1882 pmdp_clear_flush(vma, mmun_start, pmd);
1883 set_pmd_at(mm, mmun_start, pmd, entry);
1884 flush_tlb_range(vma, mmun_start, mmun_end);
1885 update_mmu_cache_pmd(vma, address, &entry);
1887 if (page_count(page) != 2) {
1888 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1889 flush_tlb_range(vma, mmun_start, mmun_end);
1890 update_mmu_cache_pmd(vma, address, &entry);
1891 page_remove_rmap(new_page);
1892 goto fail_putback;
1895 page_remove_rmap(page);
1898 * Finish the charge transaction under the page table lock to
1899 * prevent split_huge_page() from dividing up the charge
1900 * before it's fully transferred to the new page.
1902 mem_cgroup_end_migration(memcg, page, new_page, true);
1903 spin_unlock(ptl);
1904 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1906 /* Take an "isolate" reference and put new page on the LRU. */
1907 get_page(new_page);
1908 putback_lru_page(new_page);
1910 unlock_page(new_page);
1911 unlock_page(page);
1912 put_page(page); /* Drop the rmap reference */
1913 put_page(page); /* Drop the LRU isolation reference */
1915 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1916 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1918 mod_zone_page_state(page_zone(page),
1919 NR_ISOLATED_ANON + page_lru,
1920 -HPAGE_PMD_NR);
1921 return isolated;
1923 out_fail:
1924 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1925 out_dropref:
1926 ptl = pmd_lock(mm, pmd);
1927 if (pmd_same(*pmd, entry)) {
1928 entry = pmd_mknonnuma(entry);
1929 set_pmd_at(mm, mmun_start, pmd, entry);
1930 update_mmu_cache_pmd(vma, address, &entry);
1932 spin_unlock(ptl);
1934 out_unlock:
1935 unlock_page(page);
1936 put_page(page);
1937 return 0;
1939 #endif /* CONFIG_NUMA_BALANCING */
1941 #endif /* CONFIG_NUMA */