2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
82 void putback_movable_pages(struct list_head
*l
)
87 list_for_each_entry_safe(page
, page2
, l
, lru
) {
88 if (unlikely(PageHuge(page
))) {
89 putback_active_hugepage(page
);
93 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
94 page_is_file_cache(page
));
95 if (unlikely(isolated_balloon_page(page
)))
96 balloon_page_putback(page
);
98 putback_lru_page(page
);
103 * Restore a potential migration pte to a working pte entry
105 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
106 unsigned long addr
, void *old
)
108 struct mm_struct
*mm
= vma
->vm_mm
;
114 if (unlikely(PageHuge(new))) {
115 ptep
= huge_pte_offset(mm
, addr
);
118 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, ptep
);
120 pmd
= mm_find_pmd(mm
, addr
);
124 ptep
= pte_offset_map(pmd
, addr
);
127 * Peek to check is_swap_pte() before taking ptlock? No, we
128 * can race mremap's move_ptes(), which skips anon_vma lock.
131 ptl
= pte_lockptr(mm
, pmd
);
136 if (!is_swap_pte(pte
))
139 entry
= pte_to_swp_entry(pte
);
141 if (!is_migration_entry(entry
) ||
142 migration_entry_to_page(entry
) != old
)
146 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
147 if (pte_swp_soft_dirty(*ptep
))
148 pte
= pte_mksoft_dirty(pte
);
150 /* Recheck VMA as permissions can change since migration started */
151 if (is_write_migration_entry(entry
))
152 pte
= maybe_mkwrite(pte
, vma
);
154 #ifdef CONFIG_HUGETLB_PAGE
156 pte
= pte_mkhuge(pte
);
157 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
160 flush_dcache_page(new);
161 set_pte_at(mm
, addr
, ptep
, pte
);
165 hugepage_add_anon_rmap(new, vma
, addr
);
168 } else if (PageAnon(new))
169 page_add_anon_rmap(new, vma
, addr
);
171 page_add_file_rmap(new);
173 /* No need to invalidate - it was non-present before */
174 update_mmu_cache(vma
, addr
, ptep
);
176 pte_unmap_unlock(ptep
, ptl
);
182 * Congratulations to trinity for discovering this bug.
183 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
184 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
185 * replace the specified range by file ptes throughout (maybe populated after).
186 * If page migration finds a page within that range, while it's still located
187 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
188 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
189 * But if the migrating page is in a part of the vma outside the range to be
190 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
191 * deal with it. Fortunately, this part of the vma is of course still linear,
192 * so we just need to use linear location on the nonlinear list.
194 static int remove_linear_migration_ptes_from_nonlinear(struct page
*page
,
195 struct address_space
*mapping
, void *arg
)
197 struct vm_area_struct
*vma
;
198 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */
199 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
202 list_for_each_entry(vma
,
203 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
205 addr
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
206 if (addr
>= vma
->vm_start
&& addr
< vma
->vm_end
)
207 remove_migration_pte(page
, vma
, addr
, arg
);
213 * Get rid of all migration entries and replace them by
214 * references to the indicated page.
216 static void remove_migration_ptes(struct page
*old
, struct page
*new)
218 struct rmap_walk_control rwc
= {
219 .rmap_one
= remove_migration_pte
,
221 .file_nonlinear
= remove_linear_migration_ptes_from_nonlinear
,
224 rmap_walk(new, &rwc
);
228 * Something used the pte of a page under migration. We need to
229 * get to the page and wait until migration is finished.
230 * When we return from this function the fault will be retried.
232 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
241 if (!is_swap_pte(pte
))
244 entry
= pte_to_swp_entry(pte
);
245 if (!is_migration_entry(entry
))
248 page
= migration_entry_to_page(entry
);
251 * Once radix-tree replacement of page migration started, page_count
252 * *must* be zero. And, we don't want to call wait_on_page_locked()
253 * against a page without get_page().
254 * So, we use get_page_unless_zero(), here. Even failed, page fault
257 if (!get_page_unless_zero(page
))
259 pte_unmap_unlock(ptep
, ptl
);
260 wait_on_page_locked(page
);
264 pte_unmap_unlock(ptep
, ptl
);
267 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
268 unsigned long address
)
270 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
271 pte_t
*ptep
= pte_offset_map(pmd
, address
);
272 __migration_entry_wait(mm
, ptep
, ptl
);
275 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
276 struct mm_struct
*mm
, pte_t
*pte
)
278 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
279 __migration_entry_wait(mm
, pte
, ptl
);
283 /* Returns true if all buffers are successfully locked */
284 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
285 enum migrate_mode mode
)
287 struct buffer_head
*bh
= head
;
289 /* Simple case, sync compaction */
290 if (mode
!= MIGRATE_ASYNC
) {
294 bh
= bh
->b_this_page
;
296 } while (bh
!= head
);
301 /* async case, we cannot block on lock_buffer so use trylock_buffer */
304 if (!trylock_buffer(bh
)) {
306 * We failed to lock the buffer and cannot stall in
307 * async migration. Release the taken locks
309 struct buffer_head
*failed_bh
= bh
;
312 while (bh
!= failed_bh
) {
315 bh
= bh
->b_this_page
;
320 bh
= bh
->b_this_page
;
321 } while (bh
!= head
);
325 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
326 enum migrate_mode mode
)
330 #endif /* CONFIG_BLOCK */
333 * Replace the page in the mapping.
335 * The number of remaining references must be:
336 * 1 for anonymous pages without a mapping
337 * 2 for pages with a mapping
338 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
340 int migrate_page_move_mapping(struct address_space
*mapping
,
341 struct page
*newpage
, struct page
*page
,
342 struct buffer_head
*head
, enum migrate_mode mode
,
345 int expected_count
= 1 + extra_count
;
349 /* Anonymous page without mapping */
350 if (page_count(page
) != expected_count
)
352 return MIGRATEPAGE_SUCCESS
;
355 spin_lock_irq(&mapping
->tree_lock
);
357 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
360 expected_count
+= 1 + page_has_private(page
);
361 if (page_count(page
) != expected_count
||
362 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
363 spin_unlock_irq(&mapping
->tree_lock
);
367 if (!page_freeze_refs(page
, expected_count
)) {
368 spin_unlock_irq(&mapping
->tree_lock
);
373 * In the async migration case of moving a page with buffers, lock the
374 * buffers using trylock before the mapping is moved. If the mapping
375 * was moved, we later failed to lock the buffers and could not move
376 * the mapping back due to an elevated page count, we would have to
377 * block waiting on other references to be dropped.
379 if (mode
== MIGRATE_ASYNC
&& head
&&
380 !buffer_migrate_lock_buffers(head
, mode
)) {
381 page_unfreeze_refs(page
, expected_count
);
382 spin_unlock_irq(&mapping
->tree_lock
);
387 * Now we know that no one else is looking at the page.
389 get_page(newpage
); /* add cache reference */
390 if (PageSwapCache(page
)) {
391 SetPageSwapCache(newpage
);
392 set_page_private(newpage
, page_private(page
));
395 radix_tree_replace_slot(pslot
, newpage
);
398 * Drop cache reference from old page by unfreezing
399 * to one less reference.
400 * We know this isn't the last reference.
402 page_unfreeze_refs(page
, expected_count
- 1);
405 * If moved to a different zone then also account
406 * the page for that zone. Other VM counters will be
407 * taken care of when we establish references to the
408 * new page and drop references to the old page.
410 * Note that anonymous pages are accounted for
411 * via NR_FILE_PAGES and NR_ANON_PAGES if they
412 * are mapped to swap space.
414 __dec_zone_page_state(page
, NR_FILE_PAGES
);
415 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
416 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
417 __dec_zone_page_state(page
, NR_SHMEM
);
418 __inc_zone_page_state(newpage
, NR_SHMEM
);
420 spin_unlock_irq(&mapping
->tree_lock
);
422 return MIGRATEPAGE_SUCCESS
;
426 * The expected number of remaining references is the same as that
427 * of migrate_page_move_mapping().
429 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
430 struct page
*newpage
, struct page
*page
)
436 if (page_count(page
) != 1)
438 return MIGRATEPAGE_SUCCESS
;
441 spin_lock_irq(&mapping
->tree_lock
);
443 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
446 expected_count
= 2 + page_has_private(page
);
447 if (page_count(page
) != expected_count
||
448 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
449 spin_unlock_irq(&mapping
->tree_lock
);
453 if (!page_freeze_refs(page
, expected_count
)) {
454 spin_unlock_irq(&mapping
->tree_lock
);
460 radix_tree_replace_slot(pslot
, newpage
);
462 page_unfreeze_refs(page
, expected_count
- 1);
464 spin_unlock_irq(&mapping
->tree_lock
);
465 return MIGRATEPAGE_SUCCESS
;
469 * Gigantic pages are so large that we do not guarantee that page++ pointer
470 * arithmetic will work across the entire page. We need something more
473 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
477 struct page
*dst_base
= dst
;
478 struct page
*src_base
= src
;
480 for (i
= 0; i
< nr_pages
; ) {
482 copy_highpage(dst
, src
);
485 dst
= mem_map_next(dst
, dst_base
, i
);
486 src
= mem_map_next(src
, src_base
, i
);
490 static void copy_huge_page(struct page
*dst
, struct page
*src
)
497 struct hstate
*h
= page_hstate(src
);
498 nr_pages
= pages_per_huge_page(h
);
500 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
501 __copy_gigantic_page(dst
, src
, nr_pages
);
506 BUG_ON(!PageTransHuge(src
));
507 nr_pages
= hpage_nr_pages(src
);
510 for (i
= 0; i
< nr_pages
; i
++) {
512 copy_highpage(dst
+ i
, src
+ i
);
517 * Copy the page to its new location
519 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
523 if (PageHuge(page
) || PageTransHuge(page
))
524 copy_huge_page(newpage
, page
);
526 copy_highpage(newpage
, page
);
529 SetPageError(newpage
);
530 if (PageReferenced(page
))
531 SetPageReferenced(newpage
);
532 if (PageUptodate(page
))
533 SetPageUptodate(newpage
);
534 if (TestClearPageActive(page
)) {
535 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
536 SetPageActive(newpage
);
537 } else if (TestClearPageUnevictable(page
))
538 SetPageUnevictable(newpage
);
539 if (PageChecked(page
))
540 SetPageChecked(newpage
);
541 if (PageMappedToDisk(page
))
542 SetPageMappedToDisk(newpage
);
544 if (PageDirty(page
)) {
545 clear_page_dirty_for_io(page
);
547 * Want to mark the page and the radix tree as dirty, and
548 * redo the accounting that clear_page_dirty_for_io undid,
549 * but we can't use set_page_dirty because that function
550 * is actually a signal that all of the page has become dirty.
551 * Whereas only part of our page may be dirty.
553 if (PageSwapBacked(page
))
554 SetPageDirty(newpage
);
556 __set_page_dirty_nobuffers(newpage
);
560 * Copy NUMA information to the new page, to prevent over-eager
561 * future migrations of this same page.
563 cpupid
= page_cpupid_xchg_last(page
, -1);
564 page_cpupid_xchg_last(newpage
, cpupid
);
566 mlock_migrate_page(newpage
, page
);
567 ksm_migrate_page(newpage
, page
);
569 * Please do not reorder this without considering how mm/ksm.c's
570 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
572 ClearPageSwapCache(page
);
573 ClearPagePrivate(page
);
574 set_page_private(page
, 0);
577 * If any waiters have accumulated on the new page then
580 if (PageWriteback(newpage
))
581 end_page_writeback(newpage
);
584 /************************************************************
585 * Migration functions
586 ***********************************************************/
589 * Common logic to directly migrate a single page suitable for
590 * pages that do not use PagePrivate/PagePrivate2.
592 * Pages are locked upon entry and exit.
594 int migrate_page(struct address_space
*mapping
,
595 struct page
*newpage
, struct page
*page
,
596 enum migrate_mode mode
)
600 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
602 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
604 if (rc
!= MIGRATEPAGE_SUCCESS
)
607 migrate_page_copy(newpage
, page
);
608 return MIGRATEPAGE_SUCCESS
;
610 EXPORT_SYMBOL(migrate_page
);
614 * Migration function for pages with buffers. This function can only be used
615 * if the underlying filesystem guarantees that no other references to "page"
618 int buffer_migrate_page(struct address_space
*mapping
,
619 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
621 struct buffer_head
*bh
, *head
;
624 if (!page_has_buffers(page
))
625 return migrate_page(mapping
, newpage
, page
, mode
);
627 head
= page_buffers(page
);
629 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
631 if (rc
!= MIGRATEPAGE_SUCCESS
)
635 * In the async case, migrate_page_move_mapping locked the buffers
636 * with an IRQ-safe spinlock held. In the sync case, the buffers
637 * need to be locked now
639 if (mode
!= MIGRATE_ASYNC
)
640 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
642 ClearPagePrivate(page
);
643 set_page_private(newpage
, page_private(page
));
644 set_page_private(page
, 0);
650 set_bh_page(bh
, newpage
, bh_offset(bh
));
651 bh
= bh
->b_this_page
;
653 } while (bh
!= head
);
655 SetPagePrivate(newpage
);
657 migrate_page_copy(newpage
, page
);
663 bh
= bh
->b_this_page
;
665 } while (bh
!= head
);
667 return MIGRATEPAGE_SUCCESS
;
669 EXPORT_SYMBOL(buffer_migrate_page
);
673 * Writeback a page to clean the dirty state
675 static int writeout(struct address_space
*mapping
, struct page
*page
)
677 struct writeback_control wbc
= {
678 .sync_mode
= WB_SYNC_NONE
,
681 .range_end
= LLONG_MAX
,
686 if (!mapping
->a_ops
->writepage
)
687 /* No write method for the address space */
690 if (!clear_page_dirty_for_io(page
))
691 /* Someone else already triggered a write */
695 * A dirty page may imply that the underlying filesystem has
696 * the page on some queue. So the page must be clean for
697 * migration. Writeout may mean we loose the lock and the
698 * page state is no longer what we checked for earlier.
699 * At this point we know that the migration attempt cannot
702 remove_migration_ptes(page
, page
);
704 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
706 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
707 /* unlocked. Relock */
710 return (rc
< 0) ? -EIO
: -EAGAIN
;
714 * Default handling if a filesystem does not provide a migration function.
716 static int fallback_migrate_page(struct address_space
*mapping
,
717 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
719 if (PageDirty(page
)) {
720 /* Only writeback pages in full synchronous migration */
721 if (mode
!= MIGRATE_SYNC
)
723 return writeout(mapping
, page
);
727 * Buffers may be managed in a filesystem specific way.
728 * We must have no buffers or drop them.
730 if (page_has_private(page
) &&
731 !try_to_release_page(page
, GFP_KERNEL
))
734 return migrate_page(mapping
, newpage
, page
, mode
);
738 * Move a page to a newly allocated page
739 * The page is locked and all ptes have been successfully removed.
741 * The new page will have replaced the old page if this function
746 * MIGRATEPAGE_SUCCESS - success
748 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
749 int remap_swapcache
, enum migrate_mode mode
)
751 struct address_space
*mapping
;
755 * Block others from accessing the page when we get around to
756 * establishing additional references. We are the only one
757 * holding a reference to the new page at this point.
759 if (!trylock_page(newpage
))
762 /* Prepare mapping for the new page.*/
763 newpage
->index
= page
->index
;
764 newpage
->mapping
= page
->mapping
;
765 if (PageSwapBacked(page
))
766 SetPageSwapBacked(newpage
);
768 mapping
= page_mapping(page
);
770 rc
= migrate_page(mapping
, newpage
, page
, mode
);
771 else if (mapping
->a_ops
->migratepage
)
773 * Most pages have a mapping and most filesystems provide a
774 * migratepage callback. Anonymous pages are part of swap
775 * space which also has its own migratepage callback. This
776 * is the most common path for page migration.
778 rc
= mapping
->a_ops
->migratepage(mapping
,
779 newpage
, page
, mode
);
781 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
783 if (rc
!= MIGRATEPAGE_SUCCESS
) {
784 newpage
->mapping
= NULL
;
787 remove_migration_ptes(page
, newpage
);
788 page
->mapping
= NULL
;
791 unlock_page(newpage
);
796 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
797 int force
, enum migrate_mode mode
)
800 int remap_swapcache
= 1;
801 struct mem_cgroup
*mem
;
802 struct anon_vma
*anon_vma
= NULL
;
804 if (!trylock_page(page
)) {
805 if (!force
|| mode
== MIGRATE_ASYNC
)
809 * It's not safe for direct compaction to call lock_page.
810 * For example, during page readahead pages are added locked
811 * to the LRU. Later, when the IO completes the pages are
812 * marked uptodate and unlocked. However, the queueing
813 * could be merging multiple pages for one bio (e.g.
814 * mpage_readpages). If an allocation happens for the
815 * second or third page, the process can end up locking
816 * the same page twice and deadlocking. Rather than
817 * trying to be clever about what pages can be locked,
818 * avoid the use of lock_page for direct compaction
821 if (current
->flags
& PF_MEMALLOC
)
827 /* charge against new page */
828 mem_cgroup_prepare_migration(page
, newpage
, &mem
);
830 if (PageWriteback(page
)) {
832 * Only in the case of a full synchronous migration is it
833 * necessary to wait for PageWriteback. In the async case,
834 * the retry loop is too short and in the sync-light case,
835 * the overhead of stalling is too much
837 if (mode
!= MIGRATE_SYNC
) {
843 wait_on_page_writeback(page
);
846 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
847 * we cannot notice that anon_vma is freed while we migrates a page.
848 * This get_anon_vma() delays freeing anon_vma pointer until the end
849 * of migration. File cache pages are no problem because of page_lock()
850 * File Caches may use write_page() or lock_page() in migration, then,
851 * just care Anon page here.
853 if (PageAnon(page
) && !PageKsm(page
)) {
855 * Only page_lock_anon_vma_read() understands the subtleties of
856 * getting a hold on an anon_vma from outside one of its mms.
858 anon_vma
= page_get_anon_vma(page
);
863 } else if (PageSwapCache(page
)) {
865 * We cannot be sure that the anon_vma of an unmapped
866 * swapcache page is safe to use because we don't
867 * know in advance if the VMA that this page belonged
868 * to still exists. If the VMA and others sharing the
869 * data have been freed, then the anon_vma could
870 * already be invalid.
872 * To avoid this possibility, swapcache pages get
873 * migrated but are not remapped when migration
882 if (unlikely(balloon_page_movable(page
))) {
884 * A ballooned page does not need any special attention from
885 * physical to virtual reverse mapping procedures.
886 * Skip any attempt to unmap PTEs or to remap swap cache,
887 * in order to avoid burning cycles at rmap level, and perform
888 * the page migration right away (proteced by page lock).
890 rc
= balloon_page_migrate(newpage
, page
, mode
);
895 * Corner case handling:
896 * 1. When a new swap-cache page is read into, it is added to the LRU
897 * and treated as swapcache but it has no rmap yet.
898 * Calling try_to_unmap() against a page->mapping==NULL page will
899 * trigger a BUG. So handle it here.
900 * 2. An orphaned page (see truncate_complete_page) might have
901 * fs-private metadata. The page can be picked up due to memory
902 * offlining. Everywhere else except page reclaim, the page is
903 * invisible to the vm, so the page can not be migrated. So try to
904 * free the metadata, so the page can be freed.
906 if (!page
->mapping
) {
907 VM_BUG_ON_PAGE(PageAnon(page
), page
);
908 if (page_has_private(page
)) {
909 try_to_free_buffers(page
);
915 /* Establish migration ptes or remove ptes */
916 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
919 if (!page_mapped(page
))
920 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
922 if (rc
&& remap_swapcache
)
923 remove_migration_ptes(page
, page
);
925 /* Drop an anon_vma reference if we took one */
927 put_anon_vma(anon_vma
);
930 mem_cgroup_end_migration(mem
, page
, newpage
,
931 (rc
== MIGRATEPAGE_SUCCESS
||
932 rc
== MIGRATEPAGE_BALLOON_SUCCESS
));
939 * Obtain the lock on page, remove all ptes and migrate the page
940 * to the newly allocated page in newpage.
942 static int unmap_and_move(new_page_t get_new_page
, free_page_t put_new_page
,
943 unsigned long private, struct page
*page
, int force
,
944 enum migrate_mode mode
)
948 struct page
*newpage
= get_new_page(page
, private, &result
);
953 if (page_count(page
) == 1) {
954 /* page was freed from under us. So we are done. */
958 if (unlikely(PageTransHuge(page
)))
959 if (unlikely(split_huge_page(page
)))
962 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
964 if (unlikely(rc
== MIGRATEPAGE_BALLOON_SUCCESS
)) {
966 * A ballooned page has been migrated already.
967 * Now, it's the time to wrap-up counters,
968 * handle the page back to Buddy and return.
970 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
971 page_is_file_cache(page
));
972 balloon_page_free(page
);
973 return MIGRATEPAGE_SUCCESS
;
978 * A page that has been migrated has all references
979 * removed and will be freed. A page that has not been
980 * migrated will have kepts its references and be
983 list_del(&page
->lru
);
984 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
985 page_is_file_cache(page
));
986 putback_lru_page(page
);
990 * If migration was not successful and there's a freeing callback, use
991 * it. Otherwise, putback_lru_page() will drop the reference grabbed
994 if (rc
!= MIGRATEPAGE_SUCCESS
&& put_new_page
) {
995 ClearPageSwapBacked(newpage
);
996 put_new_page(newpage
, private);
998 putback_lru_page(newpage
);
1004 *result
= page_to_nid(newpage
);
1010 * Counterpart of unmap_and_move_page() for hugepage migration.
1012 * This function doesn't wait the completion of hugepage I/O
1013 * because there is no race between I/O and migration for hugepage.
1014 * Note that currently hugepage I/O occurs only in direct I/O
1015 * where no lock is held and PG_writeback is irrelevant,
1016 * and writeback status of all subpages are counted in the reference
1017 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1018 * under direct I/O, the reference of the head page is 512 and a bit more.)
1019 * This means that when we try to migrate hugepage whose subpages are
1020 * doing direct I/O, some references remain after try_to_unmap() and
1021 * hugepage migration fails without data corruption.
1023 * There is also no race when direct I/O is issued on the page under migration,
1024 * because then pte is replaced with migration swap entry and direct I/O code
1025 * will wait in the page fault for migration to complete.
1027 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1028 free_page_t put_new_page
, unsigned long private,
1029 struct page
*hpage
, int force
,
1030 enum migrate_mode mode
)
1034 struct page
*new_hpage
;
1035 struct anon_vma
*anon_vma
= NULL
;
1038 * Movability of hugepages depends on architectures and hugepage size.
1039 * This check is necessary because some callers of hugepage migration
1040 * like soft offline and memory hotremove don't walk through page
1041 * tables or check whether the hugepage is pmd-based or not before
1042 * kicking migration.
1044 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1045 putback_active_hugepage(hpage
);
1049 new_hpage
= get_new_page(hpage
, private, &result
);
1055 if (!trylock_page(hpage
)) {
1056 if (!force
|| mode
!= MIGRATE_SYNC
)
1061 if (PageAnon(hpage
))
1062 anon_vma
= page_get_anon_vma(hpage
);
1064 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1066 if (!page_mapped(hpage
))
1067 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
1069 if (rc
!= MIGRATEPAGE_SUCCESS
)
1070 remove_migration_ptes(hpage
, hpage
);
1073 put_anon_vma(anon_vma
);
1075 if (rc
== MIGRATEPAGE_SUCCESS
)
1076 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1081 putback_active_hugepage(hpage
);
1084 * If migration was not successful and there's a freeing callback, use
1085 * it. Otherwise, put_page() will drop the reference grabbed during
1088 if (rc
!= MIGRATEPAGE_SUCCESS
&& put_new_page
)
1089 put_new_page(new_hpage
, private);
1091 put_page(new_hpage
);
1097 *result
= page_to_nid(new_hpage
);
1103 * migrate_pages - migrate the pages specified in a list, to the free pages
1104 * supplied as the target for the page migration
1106 * @from: The list of pages to be migrated.
1107 * @get_new_page: The function used to allocate free pages to be used
1108 * as the target of the page migration.
1109 * @put_new_page: The function used to free target pages if migration
1110 * fails, or NULL if no special handling is necessary.
1111 * @private: Private data to be passed on to get_new_page()
1112 * @mode: The migration mode that specifies the constraints for
1113 * page migration, if any.
1114 * @reason: The reason for page migration.
1116 * The function returns after 10 attempts or if no pages are movable any more
1117 * because the list has become empty or no retryable pages exist any more.
1118 * The caller should call putback_lru_pages() to return pages to the LRU
1119 * or free list only if ret != 0.
1121 * Returns the number of pages that were not migrated, or an error code.
1123 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1124 free_page_t put_new_page
, unsigned long private,
1125 enum migrate_mode mode
, int reason
)
1129 int nr_succeeded
= 0;
1133 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1137 current
->flags
|= PF_SWAPWRITE
;
1139 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1142 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1146 rc
= unmap_and_move_huge_page(get_new_page
,
1147 put_new_page
, private, page
,
1150 rc
= unmap_and_move(get_new_page
, put_new_page
,
1151 private, page
, pass
> 2, mode
);
1159 case MIGRATEPAGE_SUCCESS
:
1164 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1165 * unlike -EAGAIN case, the failed page is
1166 * removed from migration page list and not
1167 * retried in the next outer loop.
1174 rc
= nr_failed
+ retry
;
1177 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1179 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1180 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1183 current
->flags
&= ~PF_SWAPWRITE
;
1190 * Move a list of individual pages
1192 struct page_to_node
{
1199 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1202 struct page_to_node
*pm
= (struct page_to_node
*)private;
1204 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1207 if (pm
->node
== MAX_NUMNODES
)
1210 *result
= &pm
->status
;
1213 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1216 return alloc_pages_exact_node(pm
->node
,
1217 GFP_HIGHUSER_MOVABLE
| __GFP_THISNODE
, 0);
1221 * Move a set of pages as indicated in the pm array. The addr
1222 * field must be set to the virtual address of the page to be moved
1223 * and the node number must contain a valid target node.
1224 * The pm array ends with node = MAX_NUMNODES.
1226 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1227 struct page_to_node
*pm
,
1231 struct page_to_node
*pp
;
1232 LIST_HEAD(pagelist
);
1234 down_read(&mm
->mmap_sem
);
1237 * Build a list of pages to migrate
1239 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1240 struct vm_area_struct
*vma
;
1244 vma
= find_vma(mm
, pp
->addr
);
1245 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1248 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1250 err
= PTR_ERR(page
);
1258 /* Use PageReserved to check for zero page */
1259 if (PageReserved(page
))
1263 err
= page_to_nid(page
);
1265 if (err
== pp
->node
)
1267 * Node already in the right place
1272 if (page_mapcount(page
) > 1 &&
1276 if (PageHuge(page
)) {
1278 isolate_huge_page(page
, &pagelist
);
1282 err
= isolate_lru_page(page
);
1284 list_add_tail(&page
->lru
, &pagelist
);
1285 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1286 page_is_file_cache(page
));
1290 * Either remove the duplicate refcount from
1291 * isolate_lru_page() or drop the page ref if it was
1300 if (!list_empty(&pagelist
)) {
1301 err
= migrate_pages(&pagelist
, new_page_node
, NULL
,
1302 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1304 putback_movable_pages(&pagelist
);
1307 up_read(&mm
->mmap_sem
);
1312 * Migrate an array of page address onto an array of nodes and fill
1313 * the corresponding array of status.
1315 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1316 unsigned long nr_pages
,
1317 const void __user
* __user
*pages
,
1318 const int __user
*nodes
,
1319 int __user
*status
, int flags
)
1321 struct page_to_node
*pm
;
1322 unsigned long chunk_nr_pages
;
1323 unsigned long chunk_start
;
1327 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1334 * Store a chunk of page_to_node array in a page,
1335 * but keep the last one as a marker
1337 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1339 for (chunk_start
= 0;
1340 chunk_start
< nr_pages
;
1341 chunk_start
+= chunk_nr_pages
) {
1344 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1345 chunk_nr_pages
= nr_pages
- chunk_start
;
1347 /* fill the chunk pm with addrs and nodes from user-space */
1348 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1349 const void __user
*p
;
1353 if (get_user(p
, pages
+ j
+ chunk_start
))
1355 pm
[j
].addr
= (unsigned long) p
;
1357 if (get_user(node
, nodes
+ j
+ chunk_start
))
1361 if (node
< 0 || node
>= MAX_NUMNODES
)
1364 if (!node_state(node
, N_MEMORY
))
1368 if (!node_isset(node
, task_nodes
))
1374 /* End marker for this chunk */
1375 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1377 /* Migrate this chunk */
1378 err
= do_move_page_to_node_array(mm
, pm
,
1379 flags
& MPOL_MF_MOVE_ALL
);
1383 /* Return status information */
1384 for (j
= 0; j
< chunk_nr_pages
; j
++)
1385 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1393 free_page((unsigned long)pm
);
1399 * Determine the nodes of an array of pages and store it in an array of status.
1401 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1402 const void __user
**pages
, int *status
)
1406 down_read(&mm
->mmap_sem
);
1408 for (i
= 0; i
< nr_pages
; i
++) {
1409 unsigned long addr
= (unsigned long)(*pages
);
1410 struct vm_area_struct
*vma
;
1414 vma
= find_vma(mm
, addr
);
1415 if (!vma
|| addr
< vma
->vm_start
)
1418 page
= follow_page(vma
, addr
, 0);
1420 err
= PTR_ERR(page
);
1425 /* Use PageReserved to check for zero page */
1426 if (!page
|| PageReserved(page
))
1429 err
= page_to_nid(page
);
1437 up_read(&mm
->mmap_sem
);
1441 * Determine the nodes of a user array of pages and store it in
1442 * a user array of status.
1444 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1445 const void __user
* __user
*pages
,
1448 #define DO_PAGES_STAT_CHUNK_NR 16
1449 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1450 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1453 unsigned long chunk_nr
;
1455 chunk_nr
= nr_pages
;
1456 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1457 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1459 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1462 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1464 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1469 nr_pages
-= chunk_nr
;
1471 return nr_pages
? -EFAULT
: 0;
1475 * Move a list of pages in the address space of the currently executing
1478 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1479 const void __user
* __user
*, pages
,
1480 const int __user
*, nodes
,
1481 int __user
*, status
, int, flags
)
1483 const struct cred
*cred
= current_cred(), *tcred
;
1484 struct task_struct
*task
;
1485 struct mm_struct
*mm
;
1487 nodemask_t task_nodes
;
1490 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1493 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1496 /* Find the mm_struct */
1498 task
= pid
? find_task_by_vpid(pid
) : current
;
1503 get_task_struct(task
);
1506 * Check if this process has the right to modify the specified
1507 * process. The right exists if the process has administrative
1508 * capabilities, superuser privileges or the same
1509 * userid as the target process.
1511 tcred
= __task_cred(task
);
1512 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1513 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1514 !capable(CAP_SYS_NICE
)) {
1521 err
= security_task_movememory(task
);
1525 task_nodes
= cpuset_mems_allowed(task
);
1526 mm
= get_task_mm(task
);
1527 put_task_struct(task
);
1533 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1534 nodes
, status
, flags
);
1536 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1542 put_task_struct(task
);
1547 * Call migration functions in the vma_ops that may prepare
1548 * memory in a vm for migration. migration functions may perform
1549 * the migration for vmas that do not have an underlying page struct.
1551 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1552 const nodemask_t
*from
, unsigned long flags
)
1554 struct vm_area_struct
*vma
;
1557 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1558 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1559 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);
1567 #ifdef CONFIG_NUMA_BALANCING
1569 * Returns true if this is a safe migration target node for misplaced NUMA
1570 * pages. Currently it only checks the watermarks which crude
1572 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1573 unsigned long nr_migrate_pages
)
1576 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1577 struct zone
*zone
= pgdat
->node_zones
+ z
;
1579 if (!populated_zone(zone
))
1582 if (!zone_reclaimable(zone
))
1585 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1586 if (!zone_watermark_ok(zone
, 0,
1587 high_wmark_pages(zone
) +
1596 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1600 int nid
= (int) data
;
1601 struct page
*newpage
;
1603 newpage
= alloc_pages_exact_node(nid
,
1604 (GFP_HIGHUSER_MOVABLE
|
1605 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1606 __GFP_NORETRY
| __GFP_NOWARN
) &
1613 * page migration rate limiting control.
1614 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1615 * window of time. Default here says do not migrate more than 1280M per second.
1616 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1617 * as it is faults that reset the window, pte updates will happen unconditionally
1618 * if there has not been a fault since @pteupdate_interval_millisecs after the
1619 * throttle window closed.
1621 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1622 static unsigned int pteupdate_interval_millisecs __read_mostly
= 1000;
1623 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1625 /* Returns true if NUMA migration is currently rate limited */
1626 bool migrate_ratelimited(int node
)
1628 pg_data_t
*pgdat
= NODE_DATA(node
);
1630 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
+
1631 msecs_to_jiffies(pteupdate_interval_millisecs
)))
1634 if (pgdat
->numabalancing_migrate_nr_pages
< ratelimit_pages
)
1640 /* Returns true if the node is migrate rate-limited after the update */
1641 static bool numamigrate_update_ratelimit(pg_data_t
*pgdat
,
1642 unsigned long nr_pages
)
1645 * Rate-limit the amount of data that is being migrated to a node.
1646 * Optimal placement is no good if the memory bus is saturated and
1647 * all the time is being spent migrating!
1649 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1650 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1651 pgdat
->numabalancing_migrate_nr_pages
= 0;
1652 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1653 msecs_to_jiffies(migrate_interval_millisecs
);
1654 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1656 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
) {
1657 trace_mm_numa_migrate_ratelimit(current
, pgdat
->node_id
,
1663 * This is an unlocked non-atomic update so errors are possible.
1664 * The consequences are failing to migrate when we potentiall should
1665 * have which is not severe enough to warrant locking. If it is ever
1666 * a problem, it can be converted to a per-cpu counter.
1668 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1672 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1676 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1678 /* Avoid migrating to a node that is nearly full */
1679 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1682 if (isolate_lru_page(page
))
1686 * migrate_misplaced_transhuge_page() skips page migration's usual
1687 * check on page_count(), so we must do it here, now that the page
1688 * has been isolated: a GUP pin, or any other pin, prevents migration.
1689 * The expected page count is 3: 1 for page's mapcount and 1 for the
1690 * caller's pin and 1 for the reference taken by isolate_lru_page().
1692 if (PageTransHuge(page
) && page_count(page
) != 3) {
1693 putback_lru_page(page
);
1697 page_lru
= page_is_file_cache(page
);
1698 mod_zone_page_state(page_zone(page
), NR_ISOLATED_ANON
+ page_lru
,
1699 hpage_nr_pages(page
));
1702 * Isolating the page has taken another reference, so the
1703 * caller's reference can be safely dropped without the page
1704 * disappearing underneath us during migration.
1710 bool pmd_trans_migrating(pmd_t pmd
)
1712 struct page
*page
= pmd_page(pmd
);
1713 return PageLocked(page
);
1716 void wait_migrate_huge_page(struct anon_vma
*anon_vma
, pmd_t
*pmd
)
1718 struct page
*page
= pmd_page(*pmd
);
1719 wait_on_page_locked(page
);
1723 * Attempt to migrate a misplaced page to the specified destination
1724 * node. Caller is expected to have an elevated reference count on
1725 * the page that will be dropped by this function before returning.
1727 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1730 pg_data_t
*pgdat
= NODE_DATA(node
);
1733 LIST_HEAD(migratepages
);
1736 * Don't migrate file pages that are mapped in multiple processes
1737 * with execute permissions as they are probably shared libraries.
1739 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1740 (vma
->vm_flags
& VM_EXEC
))
1744 * Rate-limit the amount of data that is being migrated to a node.
1745 * Optimal placement is no good if the memory bus is saturated and
1746 * all the time is being spent migrating!
1748 if (numamigrate_update_ratelimit(pgdat
, 1))
1751 isolated
= numamigrate_isolate_page(pgdat
, page
);
1755 list_add(&page
->lru
, &migratepages
);
1756 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1757 NULL
, node
, MIGRATE_ASYNC
,
1760 if (!list_empty(&migratepages
)) {
1761 list_del(&page
->lru
);
1762 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
1763 page_is_file_cache(page
));
1764 putback_lru_page(page
);
1768 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1769 BUG_ON(!list_empty(&migratepages
));
1776 #endif /* CONFIG_NUMA_BALANCING */
1778 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1780 * Migrates a THP to a given target node. page must be locked and is unlocked
1783 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1784 struct vm_area_struct
*vma
,
1785 pmd_t
*pmd
, pmd_t entry
,
1786 unsigned long address
,
1787 struct page
*page
, int node
)
1790 pg_data_t
*pgdat
= NODE_DATA(node
);
1792 struct page
*new_page
= NULL
;
1793 struct mem_cgroup
*memcg
= NULL
;
1794 int page_lru
= page_is_file_cache(page
);
1795 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
1796 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
1800 * Rate-limit the amount of data that is being migrated to a node.
1801 * Optimal placement is no good if the memory bus is saturated and
1802 * all the time is being spent migrating!
1804 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
1807 new_page
= alloc_pages_node(node
,
1808 (GFP_TRANSHUGE
| __GFP_THISNODE
) & ~__GFP_WAIT
,
1813 isolated
= numamigrate_isolate_page(pgdat
, page
);
1819 if (mm_tlb_flush_pending(mm
))
1820 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1822 /* Prepare a page as a migration target */
1823 __set_page_locked(new_page
);
1824 SetPageSwapBacked(new_page
);
1826 /* anon mapping, we can simply copy page->mapping to the new page: */
1827 new_page
->mapping
= page
->mapping
;
1828 new_page
->index
= page
->index
;
1829 migrate_page_copy(new_page
, page
);
1830 WARN_ON(PageLRU(new_page
));
1832 /* Recheck the target PMD */
1833 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1834 ptl
= pmd_lock(mm
, pmd
);
1835 if (unlikely(!pmd_same(*pmd
, entry
) || page_count(page
) != 2)) {
1838 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1840 /* Reverse changes made by migrate_page_copy() */
1841 if (TestClearPageActive(new_page
))
1842 SetPageActive(page
);
1843 if (TestClearPageUnevictable(new_page
))
1844 SetPageUnevictable(page
);
1845 mlock_migrate_page(page
, new_page
);
1847 unlock_page(new_page
);
1848 put_page(new_page
); /* Free it */
1850 /* Retake the callers reference and putback on LRU */
1852 putback_lru_page(page
);
1853 mod_zone_page_state(page_zone(page
),
1854 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
1860 * Traditional migration needs to prepare the memcg charge
1861 * transaction early to prevent the old page from being
1862 * uncharged when installing migration entries. Here we can
1863 * save the potential rollback and start the charge transfer
1864 * only when migration is already known to end successfully.
1866 mem_cgroup_prepare_migration(page
, new_page
, &memcg
);
1869 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
1870 entry
= pmd_mkhuge(entry
);
1871 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1874 * Clear the old entry under pagetable lock and establish the new PTE.
1875 * Any parallel GUP will either observe the old page blocking on the
1876 * page lock, block on the page table lock or observe the new page.
1877 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1878 * guarantee the copy is visible before the pagetable update.
1880 flush_cache_range(vma
, mmun_start
, mmun_end
);
1881 page_add_anon_rmap(new_page
, vma
, mmun_start
);
1882 pmdp_clear_flush(vma
, mmun_start
, pmd
);
1883 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1884 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1885 update_mmu_cache_pmd(vma
, address
, &entry
);
1887 if (page_count(page
) != 2) {
1888 set_pmd_at(mm
, mmun_start
, pmd
, orig_entry
);
1889 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1890 update_mmu_cache_pmd(vma
, address
, &entry
);
1891 page_remove_rmap(new_page
);
1895 page_remove_rmap(page
);
1898 * Finish the charge transaction under the page table lock to
1899 * prevent split_huge_page() from dividing up the charge
1900 * before it's fully transferred to the new page.
1902 mem_cgroup_end_migration(memcg
, page
, new_page
, true);
1904 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1906 /* Take an "isolate" reference and put new page on the LRU. */
1908 putback_lru_page(new_page
);
1910 unlock_page(new_page
);
1912 put_page(page
); /* Drop the rmap reference */
1913 put_page(page
); /* Drop the LRU isolation reference */
1915 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
1916 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
1918 mod_zone_page_state(page_zone(page
),
1919 NR_ISOLATED_ANON
+ page_lru
,
1924 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1926 ptl
= pmd_lock(mm
, pmd
);
1927 if (pmd_same(*pmd
, entry
)) {
1928 entry
= pmd_mknonnuma(entry
);
1929 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1930 update_mmu_cache_pmd(vma
, address
, &entry
);
1939 #endif /* CONFIG_NUMA_BALANCING */
1941 #endif /* CONFIG_NUMA */