jme: Fix device PM wakeup API usage
[linux/fpc-iii.git] / mm / page_alloc.c
blob9ddea0200c94adeabc9615a2a415e28e9f6c59ec
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 #endif
91 * Array of node states.
93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 [N_POSSIBLE] = NODE_MASK_ALL,
95 [N_ONLINE] = { { [0] = 1UL } },
96 #ifndef CONFIG_NUMA
97 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
98 #ifdef CONFIG_HIGHMEM
99 [N_HIGH_MEMORY] = { { [0] = 1UL } },
100 #endif
101 #ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY] = { { [0] = 1UL } },
103 #endif
104 [N_CPU] = { { [0] = 1UL } },
105 #endif /* NUMA */
107 EXPORT_SYMBOL(node_states);
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock);
112 unsigned long totalram_pages __read_mostly;
113 unsigned long totalreserve_pages __read_mostly;
115 * When calculating the number of globally allowed dirty pages, there
116 * is a certain number of per-zone reserves that should not be
117 * considered dirtyable memory. This is the sum of those reserves
118 * over all existing zones that contribute dirtyable memory.
120 unsigned long dirty_balance_reserve __read_mostly;
122 int percpu_pagelist_fraction;
123 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
125 #ifdef CONFIG_PM_SLEEP
127 * The following functions are used by the suspend/hibernate code to temporarily
128 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
129 * while devices are suspended. To avoid races with the suspend/hibernate code,
130 * they should always be called with pm_mutex held (gfp_allowed_mask also should
131 * only be modified with pm_mutex held, unless the suspend/hibernate code is
132 * guaranteed not to run in parallel with that modification).
135 static gfp_t saved_gfp_mask;
137 void pm_restore_gfp_mask(void)
139 WARN_ON(!mutex_is_locked(&pm_mutex));
140 if (saved_gfp_mask) {
141 gfp_allowed_mask = saved_gfp_mask;
142 saved_gfp_mask = 0;
146 void pm_restrict_gfp_mask(void)
148 WARN_ON(!mutex_is_locked(&pm_mutex));
149 WARN_ON(saved_gfp_mask);
150 saved_gfp_mask = gfp_allowed_mask;
151 gfp_allowed_mask &= ~GFP_IOFS;
154 bool pm_suspended_storage(void)
156 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
157 return false;
158 return true;
160 #endif /* CONFIG_PM_SLEEP */
162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
163 int pageblock_order __read_mostly;
164 #endif
166 static void __free_pages_ok(struct page *page, unsigned int order);
169 * results with 256, 32 in the lowmem_reserve sysctl:
170 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
171 * 1G machine -> (16M dma, 784M normal, 224M high)
172 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
173 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
174 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
176 * TBD: should special case ZONE_DMA32 machines here - in those we normally
177 * don't need any ZONE_NORMAL reservation
179 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
180 #ifdef CONFIG_ZONE_DMA
181 256,
182 #endif
183 #ifdef CONFIG_ZONE_DMA32
184 256,
185 #endif
186 #ifdef CONFIG_HIGHMEM
188 #endif
192 EXPORT_SYMBOL(totalram_pages);
194 static char * const zone_names[MAX_NR_ZONES] = {
195 #ifdef CONFIG_ZONE_DMA
196 "DMA",
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 "DMA32",
200 #endif
201 "Normal",
202 #ifdef CONFIG_HIGHMEM
203 "HighMem",
204 #endif
205 "Movable",
208 int min_free_kbytes = 1024;
209 int user_min_free_kbytes = -1;
211 static unsigned long __meminitdata nr_kernel_pages;
212 static unsigned long __meminitdata nr_all_pages;
213 static unsigned long __meminitdata dma_reserve;
215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
216 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __initdata required_kernelcore;
219 static unsigned long __initdata required_movablecore;
220 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
222 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223 int movable_zone;
224 EXPORT_SYMBOL(movable_zone);
225 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227 #if MAX_NUMNODES > 1
228 int nr_node_ids __read_mostly = MAX_NUMNODES;
229 int nr_online_nodes __read_mostly = 1;
230 EXPORT_SYMBOL(nr_node_ids);
231 EXPORT_SYMBOL(nr_online_nodes);
232 #endif
234 int page_group_by_mobility_disabled __read_mostly;
236 void set_pageblock_migratetype(struct page *page, int migratetype)
238 if (unlikely(page_group_by_mobility_disabled &&
239 migratetype < MIGRATE_PCPTYPES))
240 migratetype = MIGRATE_UNMOVABLE;
242 set_pageblock_flags_group(page, (unsigned long)migratetype,
243 PB_migrate, PB_migrate_end);
246 bool oom_killer_disabled __read_mostly;
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
254 unsigned long sp, start_pfn;
256 do {
257 seq = zone_span_seqbegin(zone);
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
260 if (!zone_spans_pfn(zone, pfn))
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
264 if (ret)
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
269 return ret;
272 static int page_is_consistent(struct zone *zone, struct page *page)
274 if (!pfn_valid_within(page_to_pfn(page)))
275 return 0;
276 if (zone != page_zone(page))
277 return 0;
279 return 1;
282 * Temporary debugging check for pages not lying within a given zone.
284 static int bad_range(struct zone *zone, struct page *page)
286 if (page_outside_zone_boundaries(zone, page))
287 return 1;
288 if (!page_is_consistent(zone, page))
289 return 1;
291 return 0;
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
296 return 0;
298 #endif
300 static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
309 page_mapcount_reset(page); /* remove PageBuddy */
310 return;
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
322 if (nr_unshown) {
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
325 nr_unshown);
326 nr_unshown = 0;
328 nr_shown = 0;
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
334 current->comm, page_to_pfn(page));
335 dump_page_badflags(page, reason, bad_flags);
337 print_modules();
338 dump_stack();
339 out:
340 /* Leave bad fields for debug, except PageBuddy could make trouble */
341 page_mapcount_reset(page); /* remove PageBuddy */
342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
346 * Higher-order pages are called "compound pages". They are structured thusly:
348 * The first PAGE_SIZE page is called the "head page".
350 * The remaining PAGE_SIZE pages are called "tail pages".
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
360 static void free_compound_page(struct page *page)
362 __free_pages_ok(page, compound_order(page));
365 void prep_compound_page(struct page *page, unsigned long order)
367 int i;
368 int nr_pages = 1 << order;
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
375 set_page_count(p, 0);
376 p->first_page = page;
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
383 /* update __split_huge_page_refcount if you change this function */
384 static int destroy_compound_page(struct page *page, unsigned long order)
386 int i;
387 int nr_pages = 1 << order;
388 int bad = 0;
390 if (unlikely(compound_order(page) != order)) {
391 bad_page(page, "wrong compound order", 0);
392 bad++;
395 __ClearPageHead(page);
397 for (i = 1; i < nr_pages; i++) {
398 struct page *p = page + i;
400 if (unlikely(!PageTail(p))) {
401 bad_page(page, "PageTail not set", 0);
402 bad++;
403 } else if (unlikely(p->first_page != page)) {
404 bad_page(page, "first_page not consistent", 0);
405 bad++;
407 __ClearPageTail(p);
410 return bad;
413 static inline void prep_zero_page(struct page *page, unsigned int order,
414 gfp_t gfp_flags)
416 int i;
419 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
420 * and __GFP_HIGHMEM from hard or soft interrupt context.
422 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
423 for (i = 0; i < (1 << order); i++)
424 clear_highpage(page + i);
427 #ifdef CONFIG_DEBUG_PAGEALLOC
428 unsigned int _debug_guardpage_minorder;
430 static int __init debug_guardpage_minorder_setup(char *buf)
432 unsigned long res;
434 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
435 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
436 return 0;
438 _debug_guardpage_minorder = res;
439 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
440 return 0;
442 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
444 static inline void set_page_guard_flag(struct page *page)
446 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
449 static inline void clear_page_guard_flag(struct page *page)
451 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
453 #else
454 static inline void set_page_guard_flag(struct page *page) { }
455 static inline void clear_page_guard_flag(struct page *page) { }
456 #endif
458 static inline void set_page_order(struct page *page, unsigned int order)
460 set_page_private(page, order);
461 __SetPageBuddy(page);
464 static inline void rmv_page_order(struct page *page)
466 __ClearPageBuddy(page);
467 set_page_private(page, 0);
471 * Locate the struct page for both the matching buddy in our
472 * pair (buddy1) and the combined O(n+1) page they form (page).
474 * 1) Any buddy B1 will have an order O twin B2 which satisfies
475 * the following equation:
476 * B2 = B1 ^ (1 << O)
477 * For example, if the starting buddy (buddy2) is #8 its order
478 * 1 buddy is #10:
479 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
481 * 2) Any buddy B will have an order O+1 parent P which
482 * satisfies the following equation:
483 * P = B & ~(1 << O)
485 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
487 static inline unsigned long
488 __find_buddy_index(unsigned long page_idx, unsigned int order)
490 return page_idx ^ (1 << order);
494 * This function checks whether a page is free && is the buddy
495 * we can do coalesce a page and its buddy if
496 * (a) the buddy is not in a hole &&
497 * (b) the buddy is in the buddy system &&
498 * (c) a page and its buddy have the same order &&
499 * (d) a page and its buddy are in the same zone.
501 * For recording whether a page is in the buddy system, we set ->_mapcount
502 * PAGE_BUDDY_MAPCOUNT_VALUE.
503 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
504 * serialized by zone->lock.
506 * For recording page's order, we use page_private(page).
508 static inline int page_is_buddy(struct page *page, struct page *buddy,
509 unsigned int order)
511 if (!pfn_valid_within(page_to_pfn(buddy)))
512 return 0;
514 if (page_is_guard(buddy) && page_order(buddy) == order) {
515 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
517 if (page_zone_id(page) != page_zone_id(buddy))
518 return 0;
520 return 1;
523 if (PageBuddy(buddy) && page_order(buddy) == order) {
524 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
527 * zone check is done late to avoid uselessly
528 * calculating zone/node ids for pages that could
529 * never merge.
531 if (page_zone_id(page) != page_zone_id(buddy))
532 return 0;
534 return 1;
536 return 0;
540 * Freeing function for a buddy system allocator.
542 * The concept of a buddy system is to maintain direct-mapped table
543 * (containing bit values) for memory blocks of various "orders".
544 * The bottom level table contains the map for the smallest allocatable
545 * units of memory (here, pages), and each level above it describes
546 * pairs of units from the levels below, hence, "buddies".
547 * At a high level, all that happens here is marking the table entry
548 * at the bottom level available, and propagating the changes upward
549 * as necessary, plus some accounting needed to play nicely with other
550 * parts of the VM system.
551 * At each level, we keep a list of pages, which are heads of continuous
552 * free pages of length of (1 << order) and marked with _mapcount
553 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
554 * field.
555 * So when we are allocating or freeing one, we can derive the state of the
556 * other. That is, if we allocate a small block, and both were
557 * free, the remainder of the region must be split into blocks.
558 * If a block is freed, and its buddy is also free, then this
559 * triggers coalescing into a block of larger size.
561 * -- nyc
564 static inline void __free_one_page(struct page *page,
565 unsigned long pfn,
566 struct zone *zone, unsigned int order,
567 int migratetype)
569 unsigned long page_idx;
570 unsigned long combined_idx;
571 unsigned long uninitialized_var(buddy_idx);
572 struct page *buddy;
574 VM_BUG_ON(!zone_is_initialized(zone));
576 if (unlikely(PageCompound(page)))
577 if (unlikely(destroy_compound_page(page, order)))
578 return;
580 VM_BUG_ON(migratetype == -1);
582 page_idx = pfn & ((1 << MAX_ORDER) - 1);
584 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
585 VM_BUG_ON_PAGE(bad_range(zone, page), page);
587 while (order < MAX_ORDER-1) {
588 buddy_idx = __find_buddy_index(page_idx, order);
589 buddy = page + (buddy_idx - page_idx);
590 if (!page_is_buddy(page, buddy, order))
591 break;
593 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
594 * merge with it and move up one order.
596 if (page_is_guard(buddy)) {
597 clear_page_guard_flag(buddy);
598 set_page_private(page, 0);
599 __mod_zone_freepage_state(zone, 1 << order,
600 migratetype);
601 } else {
602 list_del(&buddy->lru);
603 zone->free_area[order].nr_free--;
604 rmv_page_order(buddy);
606 combined_idx = buddy_idx & page_idx;
607 page = page + (combined_idx - page_idx);
608 page_idx = combined_idx;
609 order++;
611 set_page_order(page, order);
614 * If this is not the largest possible page, check if the buddy
615 * of the next-highest order is free. If it is, it's possible
616 * that pages are being freed that will coalesce soon. In case,
617 * that is happening, add the free page to the tail of the list
618 * so it's less likely to be used soon and more likely to be merged
619 * as a higher order page
621 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
622 struct page *higher_page, *higher_buddy;
623 combined_idx = buddy_idx & page_idx;
624 higher_page = page + (combined_idx - page_idx);
625 buddy_idx = __find_buddy_index(combined_idx, order + 1);
626 higher_buddy = higher_page + (buddy_idx - combined_idx);
627 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
628 list_add_tail(&page->lru,
629 &zone->free_area[order].free_list[migratetype]);
630 goto out;
634 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
635 out:
636 zone->free_area[order].nr_free++;
639 static inline int free_pages_check(struct page *page)
641 const char *bad_reason = NULL;
642 unsigned long bad_flags = 0;
644 if (unlikely(page_mapcount(page)))
645 bad_reason = "nonzero mapcount";
646 if (unlikely(page->mapping != NULL))
647 bad_reason = "non-NULL mapping";
648 if (unlikely(atomic_read(&page->_count) != 0))
649 bad_reason = "nonzero _count";
650 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
651 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
652 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
654 if (unlikely(mem_cgroup_bad_page_check(page)))
655 bad_reason = "cgroup check failed";
656 if (unlikely(bad_reason)) {
657 bad_page(page, bad_reason, bad_flags);
658 return 1;
660 page_cpupid_reset_last(page);
661 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
662 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
663 return 0;
667 * Frees a number of pages from the PCP lists
668 * Assumes all pages on list are in same zone, and of same order.
669 * count is the number of pages to free.
671 * If the zone was previously in an "all pages pinned" state then look to
672 * see if this freeing clears that state.
674 * And clear the zone's pages_scanned counter, to hold off the "all pages are
675 * pinned" detection logic.
677 static void free_pcppages_bulk(struct zone *zone, int count,
678 struct per_cpu_pages *pcp)
680 int migratetype = 0;
681 int batch_free = 0;
682 int to_free = count;
684 spin_lock(&zone->lock);
685 zone->pages_scanned = 0;
687 while (to_free) {
688 struct page *page;
689 struct list_head *list;
692 * Remove pages from lists in a round-robin fashion. A
693 * batch_free count is maintained that is incremented when an
694 * empty list is encountered. This is so more pages are freed
695 * off fuller lists instead of spinning excessively around empty
696 * lists
698 do {
699 batch_free++;
700 if (++migratetype == MIGRATE_PCPTYPES)
701 migratetype = 0;
702 list = &pcp->lists[migratetype];
703 } while (list_empty(list));
705 /* This is the only non-empty list. Free them all. */
706 if (batch_free == MIGRATE_PCPTYPES)
707 batch_free = to_free;
709 do {
710 int mt; /* migratetype of the to-be-freed page */
712 page = list_entry(list->prev, struct page, lru);
713 /* must delete as __free_one_page list manipulates */
714 list_del(&page->lru);
715 mt = get_freepage_migratetype(page);
716 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
717 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
718 trace_mm_page_pcpu_drain(page, 0, mt);
719 if (likely(!is_migrate_isolate_page(page))) {
720 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
721 if (is_migrate_cma(mt))
722 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
724 } while (--to_free && --batch_free && !list_empty(list));
726 spin_unlock(&zone->lock);
729 static void free_one_page(struct zone *zone,
730 struct page *page, unsigned long pfn,
731 unsigned int order,
732 int migratetype)
734 spin_lock(&zone->lock);
735 zone->pages_scanned = 0;
737 __free_one_page(page, pfn, zone, order, migratetype);
738 if (unlikely(!is_migrate_isolate(migratetype)))
739 __mod_zone_freepage_state(zone, 1 << order, migratetype);
740 spin_unlock(&zone->lock);
743 static bool free_pages_prepare(struct page *page, unsigned int order)
745 int i;
746 int bad = 0;
748 trace_mm_page_free(page, order);
749 kmemcheck_free_shadow(page, order);
751 if (PageAnon(page))
752 page->mapping = NULL;
753 for (i = 0; i < (1 << order); i++)
754 bad += free_pages_check(page + i);
755 if (bad)
756 return false;
758 if (!PageHighMem(page)) {
759 debug_check_no_locks_freed(page_address(page),
760 PAGE_SIZE << order);
761 debug_check_no_obj_freed(page_address(page),
762 PAGE_SIZE << order);
764 arch_free_page(page, order);
765 kernel_map_pages(page, 1 << order, 0);
767 return true;
770 static void __free_pages_ok(struct page *page, unsigned int order)
772 unsigned long flags;
773 int migratetype;
774 unsigned long pfn = page_to_pfn(page);
776 if (!free_pages_prepare(page, order))
777 return;
779 migratetype = get_pfnblock_migratetype(page, pfn);
780 local_irq_save(flags);
781 __count_vm_events(PGFREE, 1 << order);
782 set_freepage_migratetype(page, migratetype);
783 free_one_page(page_zone(page), page, pfn, order, migratetype);
784 local_irq_restore(flags);
787 void __init __free_pages_bootmem(struct page *page, unsigned int order)
789 unsigned int nr_pages = 1 << order;
790 struct page *p = page;
791 unsigned int loop;
793 prefetchw(p);
794 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
795 prefetchw(p + 1);
796 __ClearPageReserved(p);
797 set_page_count(p, 0);
799 __ClearPageReserved(p);
800 set_page_count(p, 0);
802 page_zone(page)->managed_pages += nr_pages;
803 set_page_refcounted(page);
804 __free_pages(page, order);
807 #ifdef CONFIG_CMA
808 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
809 void __init init_cma_reserved_pageblock(struct page *page)
811 unsigned i = pageblock_nr_pages;
812 struct page *p = page;
814 do {
815 __ClearPageReserved(p);
816 set_page_count(p, 0);
817 } while (++p, --i);
819 set_pageblock_migratetype(page, MIGRATE_CMA);
821 if (pageblock_order >= MAX_ORDER) {
822 i = pageblock_nr_pages;
823 p = page;
824 do {
825 set_page_refcounted(p);
826 __free_pages(p, MAX_ORDER - 1);
827 p += MAX_ORDER_NR_PAGES;
828 } while (i -= MAX_ORDER_NR_PAGES);
829 } else {
830 set_page_refcounted(page);
831 __free_pages(page, pageblock_order);
834 adjust_managed_page_count(page, pageblock_nr_pages);
836 #endif
839 * The order of subdivision here is critical for the IO subsystem.
840 * Please do not alter this order without good reasons and regression
841 * testing. Specifically, as large blocks of memory are subdivided,
842 * the order in which smaller blocks are delivered depends on the order
843 * they're subdivided in this function. This is the primary factor
844 * influencing the order in which pages are delivered to the IO
845 * subsystem according to empirical testing, and this is also justified
846 * by considering the behavior of a buddy system containing a single
847 * large block of memory acted on by a series of small allocations.
848 * This behavior is a critical factor in sglist merging's success.
850 * -- nyc
852 static inline void expand(struct zone *zone, struct page *page,
853 int low, int high, struct free_area *area,
854 int migratetype)
856 unsigned long size = 1 << high;
858 while (high > low) {
859 area--;
860 high--;
861 size >>= 1;
862 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
864 #ifdef CONFIG_DEBUG_PAGEALLOC
865 if (high < debug_guardpage_minorder()) {
867 * Mark as guard pages (or page), that will allow to
868 * merge back to allocator when buddy will be freed.
869 * Corresponding page table entries will not be touched,
870 * pages will stay not present in virtual address space
872 INIT_LIST_HEAD(&page[size].lru);
873 set_page_guard_flag(&page[size]);
874 set_page_private(&page[size], high);
875 /* Guard pages are not available for any usage */
876 __mod_zone_freepage_state(zone, -(1 << high),
877 migratetype);
878 continue;
880 #endif
881 list_add(&page[size].lru, &area->free_list[migratetype]);
882 area->nr_free++;
883 set_page_order(&page[size], high);
888 * This page is about to be returned from the page allocator
890 static inline int check_new_page(struct page *page)
892 const char *bad_reason = NULL;
893 unsigned long bad_flags = 0;
895 if (unlikely(page_mapcount(page)))
896 bad_reason = "nonzero mapcount";
897 if (unlikely(page->mapping != NULL))
898 bad_reason = "non-NULL mapping";
899 if (unlikely(atomic_read(&page->_count) != 0))
900 bad_reason = "nonzero _count";
901 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
902 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
903 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
905 if (unlikely(mem_cgroup_bad_page_check(page)))
906 bad_reason = "cgroup check failed";
907 if (unlikely(bad_reason)) {
908 bad_page(page, bad_reason, bad_flags);
909 return 1;
911 return 0;
914 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
916 int i;
918 for (i = 0; i < (1 << order); i++) {
919 struct page *p = page + i;
920 if (unlikely(check_new_page(p)))
921 return 1;
924 set_page_private(page, 0);
925 set_page_refcounted(page);
927 arch_alloc_page(page, order);
928 kernel_map_pages(page, 1 << order, 1);
930 if (gfp_flags & __GFP_ZERO)
931 prep_zero_page(page, order, gfp_flags);
933 if (order && (gfp_flags & __GFP_COMP))
934 prep_compound_page(page, order);
936 return 0;
940 * Go through the free lists for the given migratetype and remove
941 * the smallest available page from the freelists
943 static inline
944 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
945 int migratetype)
947 unsigned int current_order;
948 struct free_area *area;
949 struct page *page;
951 /* Find a page of the appropriate size in the preferred list */
952 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
953 area = &(zone->free_area[current_order]);
954 if (list_empty(&area->free_list[migratetype]))
955 continue;
957 page = list_entry(area->free_list[migratetype].next,
958 struct page, lru);
959 list_del(&page->lru);
960 rmv_page_order(page);
961 area->nr_free--;
962 expand(zone, page, order, current_order, area, migratetype);
963 set_freepage_migratetype(page, migratetype);
964 return page;
967 return NULL;
972 * This array describes the order lists are fallen back to when
973 * the free lists for the desirable migrate type are depleted
975 static int fallbacks[MIGRATE_TYPES][4] = {
976 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
977 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
978 #ifdef CONFIG_CMA
979 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
980 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
981 #else
982 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
983 #endif
984 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
985 #ifdef CONFIG_MEMORY_ISOLATION
986 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
987 #endif
991 * Move the free pages in a range to the free lists of the requested type.
992 * Note that start_page and end_pages are not aligned on a pageblock
993 * boundary. If alignment is required, use move_freepages_block()
995 int move_freepages(struct zone *zone,
996 struct page *start_page, struct page *end_page,
997 int migratetype)
999 struct page *page;
1000 unsigned long order;
1001 int pages_moved = 0;
1003 #ifndef CONFIG_HOLES_IN_ZONE
1005 * page_zone is not safe to call in this context when
1006 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1007 * anyway as we check zone boundaries in move_freepages_block().
1008 * Remove at a later date when no bug reports exist related to
1009 * grouping pages by mobility
1011 BUG_ON(page_zone(start_page) != page_zone(end_page));
1012 #endif
1014 for (page = start_page; page <= end_page;) {
1015 /* Make sure we are not inadvertently changing nodes */
1016 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1018 if (!pfn_valid_within(page_to_pfn(page))) {
1019 page++;
1020 continue;
1023 if (!PageBuddy(page)) {
1024 page++;
1025 continue;
1028 order = page_order(page);
1029 list_move(&page->lru,
1030 &zone->free_area[order].free_list[migratetype]);
1031 set_freepage_migratetype(page, migratetype);
1032 page += 1 << order;
1033 pages_moved += 1 << order;
1036 return pages_moved;
1039 int move_freepages_block(struct zone *zone, struct page *page,
1040 int migratetype)
1042 unsigned long start_pfn, end_pfn;
1043 struct page *start_page, *end_page;
1045 start_pfn = page_to_pfn(page);
1046 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1047 start_page = pfn_to_page(start_pfn);
1048 end_page = start_page + pageblock_nr_pages - 1;
1049 end_pfn = start_pfn + pageblock_nr_pages - 1;
1051 /* Do not cross zone boundaries */
1052 if (!zone_spans_pfn(zone, start_pfn))
1053 start_page = page;
1054 if (!zone_spans_pfn(zone, end_pfn))
1055 return 0;
1057 return move_freepages(zone, start_page, end_page, migratetype);
1060 static void change_pageblock_range(struct page *pageblock_page,
1061 int start_order, int migratetype)
1063 int nr_pageblocks = 1 << (start_order - pageblock_order);
1065 while (nr_pageblocks--) {
1066 set_pageblock_migratetype(pageblock_page, migratetype);
1067 pageblock_page += pageblock_nr_pages;
1072 * If breaking a large block of pages, move all free pages to the preferred
1073 * allocation list. If falling back for a reclaimable kernel allocation, be
1074 * more aggressive about taking ownership of free pages.
1076 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1077 * nor move CMA pages to different free lists. We don't want unmovable pages
1078 * to be allocated from MIGRATE_CMA areas.
1080 * Returns the allocation migratetype if free pages were stolen, or the
1081 * fallback migratetype if it was decided not to steal.
1083 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1084 int start_type, int fallback_type)
1086 int current_order = page_order(page);
1089 * When borrowing from MIGRATE_CMA, we need to release the excess
1090 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1091 * is set to CMA so it is returned to the correct freelist in case
1092 * the page ends up being not actually allocated from the pcp lists.
1094 if (is_migrate_cma(fallback_type))
1095 return fallback_type;
1097 /* Take ownership for orders >= pageblock_order */
1098 if (current_order >= pageblock_order) {
1099 change_pageblock_range(page, current_order, start_type);
1100 return start_type;
1103 if (current_order >= pageblock_order / 2 ||
1104 start_type == MIGRATE_RECLAIMABLE ||
1105 page_group_by_mobility_disabled) {
1106 int pages;
1108 pages = move_freepages_block(zone, page, start_type);
1110 /* Claim the whole block if over half of it is free */
1111 if (pages >= (1 << (pageblock_order-1)) ||
1112 page_group_by_mobility_disabled)
1113 set_pageblock_migratetype(page, start_type);
1115 return start_type;
1118 return fallback_type;
1121 /* Remove an element from the buddy allocator from the fallback list */
1122 static inline struct page *
1123 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1125 struct free_area *area;
1126 unsigned int current_order;
1127 struct page *page;
1128 int migratetype, new_type, i;
1130 /* Find the largest possible block of pages in the other list */
1131 for (current_order = MAX_ORDER-1;
1132 current_order >= order && current_order <= MAX_ORDER-1;
1133 --current_order) {
1134 for (i = 0;; i++) {
1135 migratetype = fallbacks[start_migratetype][i];
1137 /* MIGRATE_RESERVE handled later if necessary */
1138 if (migratetype == MIGRATE_RESERVE)
1139 break;
1141 area = &(zone->free_area[current_order]);
1142 if (list_empty(&area->free_list[migratetype]))
1143 continue;
1145 page = list_entry(area->free_list[migratetype].next,
1146 struct page, lru);
1147 area->nr_free--;
1149 new_type = try_to_steal_freepages(zone, page,
1150 start_migratetype,
1151 migratetype);
1153 /* Remove the page from the freelists */
1154 list_del(&page->lru);
1155 rmv_page_order(page);
1157 expand(zone, page, order, current_order, area,
1158 new_type);
1159 /* The freepage_migratetype may differ from pageblock's
1160 * migratetype depending on the decisions in
1161 * try_to_steal_freepages. This is OK as long as it does
1162 * not differ for MIGRATE_CMA type.
1164 set_freepage_migratetype(page, new_type);
1166 trace_mm_page_alloc_extfrag(page, order, current_order,
1167 start_migratetype, migratetype);
1169 return page;
1173 return NULL;
1177 * Do the hard work of removing an element from the buddy allocator.
1178 * Call me with the zone->lock already held.
1180 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1181 int migratetype)
1183 struct page *page;
1185 retry_reserve:
1186 page = __rmqueue_smallest(zone, order, migratetype);
1188 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1189 page = __rmqueue_fallback(zone, order, migratetype);
1192 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1193 * is used because __rmqueue_smallest is an inline function
1194 * and we want just one call site
1196 if (!page) {
1197 migratetype = MIGRATE_RESERVE;
1198 goto retry_reserve;
1202 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1203 return page;
1207 * Obtain a specified number of elements from the buddy allocator, all under
1208 * a single hold of the lock, for efficiency. Add them to the supplied list.
1209 * Returns the number of new pages which were placed at *list.
1211 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1212 unsigned long count, struct list_head *list,
1213 int migratetype, bool cold)
1215 int i;
1217 spin_lock(&zone->lock);
1218 for (i = 0; i < count; ++i) {
1219 struct page *page = __rmqueue(zone, order, migratetype);
1220 if (unlikely(page == NULL))
1221 break;
1224 * Split buddy pages returned by expand() are received here
1225 * in physical page order. The page is added to the callers and
1226 * list and the list head then moves forward. From the callers
1227 * perspective, the linked list is ordered by page number in
1228 * some conditions. This is useful for IO devices that can
1229 * merge IO requests if the physical pages are ordered
1230 * properly.
1232 if (likely(!cold))
1233 list_add(&page->lru, list);
1234 else
1235 list_add_tail(&page->lru, list);
1236 list = &page->lru;
1237 if (is_migrate_cma(get_freepage_migratetype(page)))
1238 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1239 -(1 << order));
1241 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1242 spin_unlock(&zone->lock);
1243 return i;
1246 #ifdef CONFIG_NUMA
1248 * Called from the vmstat counter updater to drain pagesets of this
1249 * currently executing processor on remote nodes after they have
1250 * expired.
1252 * Note that this function must be called with the thread pinned to
1253 * a single processor.
1255 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1257 unsigned long flags;
1258 int to_drain;
1259 unsigned long batch;
1261 local_irq_save(flags);
1262 batch = ACCESS_ONCE(pcp->batch);
1263 if (pcp->count >= batch)
1264 to_drain = batch;
1265 else
1266 to_drain = pcp->count;
1267 if (to_drain > 0) {
1268 free_pcppages_bulk(zone, to_drain, pcp);
1269 pcp->count -= to_drain;
1271 local_irq_restore(flags);
1273 #endif
1276 * Drain pages of the indicated processor.
1278 * The processor must either be the current processor and the
1279 * thread pinned to the current processor or a processor that
1280 * is not online.
1282 static void drain_pages(unsigned int cpu)
1284 unsigned long flags;
1285 struct zone *zone;
1287 for_each_populated_zone(zone) {
1288 struct per_cpu_pageset *pset;
1289 struct per_cpu_pages *pcp;
1291 local_irq_save(flags);
1292 pset = per_cpu_ptr(zone->pageset, cpu);
1294 pcp = &pset->pcp;
1295 if (pcp->count) {
1296 free_pcppages_bulk(zone, pcp->count, pcp);
1297 pcp->count = 0;
1299 local_irq_restore(flags);
1304 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1306 void drain_local_pages(void *arg)
1308 drain_pages(smp_processor_id());
1312 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1314 * Note that this code is protected against sending an IPI to an offline
1315 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1316 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1317 * nothing keeps CPUs from showing up after we populated the cpumask and
1318 * before the call to on_each_cpu_mask().
1320 void drain_all_pages(void)
1322 int cpu;
1323 struct per_cpu_pageset *pcp;
1324 struct zone *zone;
1327 * Allocate in the BSS so we wont require allocation in
1328 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1330 static cpumask_t cpus_with_pcps;
1333 * We don't care about racing with CPU hotplug event
1334 * as offline notification will cause the notified
1335 * cpu to drain that CPU pcps and on_each_cpu_mask
1336 * disables preemption as part of its processing
1338 for_each_online_cpu(cpu) {
1339 bool has_pcps = false;
1340 for_each_populated_zone(zone) {
1341 pcp = per_cpu_ptr(zone->pageset, cpu);
1342 if (pcp->pcp.count) {
1343 has_pcps = true;
1344 break;
1347 if (has_pcps)
1348 cpumask_set_cpu(cpu, &cpus_with_pcps);
1349 else
1350 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1352 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1355 #ifdef CONFIG_HIBERNATION
1357 void mark_free_pages(struct zone *zone)
1359 unsigned long pfn, max_zone_pfn;
1360 unsigned long flags;
1361 unsigned int order, t;
1362 struct list_head *curr;
1364 if (zone_is_empty(zone))
1365 return;
1367 spin_lock_irqsave(&zone->lock, flags);
1369 max_zone_pfn = zone_end_pfn(zone);
1370 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1371 if (pfn_valid(pfn)) {
1372 struct page *page = pfn_to_page(pfn);
1374 if (!swsusp_page_is_forbidden(page))
1375 swsusp_unset_page_free(page);
1378 for_each_migratetype_order(order, t) {
1379 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1380 unsigned long i;
1382 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1383 for (i = 0; i < (1UL << order); i++)
1384 swsusp_set_page_free(pfn_to_page(pfn + i));
1387 spin_unlock_irqrestore(&zone->lock, flags);
1389 #endif /* CONFIG_PM */
1392 * Free a 0-order page
1393 * cold == true ? free a cold page : free a hot page
1395 void free_hot_cold_page(struct page *page, bool cold)
1397 struct zone *zone = page_zone(page);
1398 struct per_cpu_pages *pcp;
1399 unsigned long flags;
1400 unsigned long pfn = page_to_pfn(page);
1401 int migratetype;
1403 if (!free_pages_prepare(page, 0))
1404 return;
1406 migratetype = get_pfnblock_migratetype(page, pfn);
1407 set_freepage_migratetype(page, migratetype);
1408 local_irq_save(flags);
1409 __count_vm_event(PGFREE);
1412 * We only track unmovable, reclaimable and movable on pcp lists.
1413 * Free ISOLATE pages back to the allocator because they are being
1414 * offlined but treat RESERVE as movable pages so we can get those
1415 * areas back if necessary. Otherwise, we may have to free
1416 * excessively into the page allocator
1418 if (migratetype >= MIGRATE_PCPTYPES) {
1419 if (unlikely(is_migrate_isolate(migratetype))) {
1420 free_one_page(zone, page, pfn, 0, migratetype);
1421 goto out;
1423 migratetype = MIGRATE_MOVABLE;
1426 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1427 if (!cold)
1428 list_add(&page->lru, &pcp->lists[migratetype]);
1429 else
1430 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1431 pcp->count++;
1432 if (pcp->count >= pcp->high) {
1433 unsigned long batch = ACCESS_ONCE(pcp->batch);
1434 free_pcppages_bulk(zone, batch, pcp);
1435 pcp->count -= batch;
1438 out:
1439 local_irq_restore(flags);
1443 * Free a list of 0-order pages
1445 void free_hot_cold_page_list(struct list_head *list, bool cold)
1447 struct page *page, *next;
1449 list_for_each_entry_safe(page, next, list, lru) {
1450 trace_mm_page_free_batched(page, cold);
1451 free_hot_cold_page(page, cold);
1456 * split_page takes a non-compound higher-order page, and splits it into
1457 * n (1<<order) sub-pages: page[0..n]
1458 * Each sub-page must be freed individually.
1460 * Note: this is probably too low level an operation for use in drivers.
1461 * Please consult with lkml before using this in your driver.
1463 void split_page(struct page *page, unsigned int order)
1465 int i;
1467 VM_BUG_ON_PAGE(PageCompound(page), page);
1468 VM_BUG_ON_PAGE(!page_count(page), page);
1470 #ifdef CONFIG_KMEMCHECK
1472 * Split shadow pages too, because free(page[0]) would
1473 * otherwise free the whole shadow.
1475 if (kmemcheck_page_is_tracked(page))
1476 split_page(virt_to_page(page[0].shadow), order);
1477 #endif
1479 for (i = 1; i < (1 << order); i++)
1480 set_page_refcounted(page + i);
1482 EXPORT_SYMBOL_GPL(split_page);
1484 static int __isolate_free_page(struct page *page, unsigned int order)
1486 unsigned long watermark;
1487 struct zone *zone;
1488 int mt;
1490 BUG_ON(!PageBuddy(page));
1492 zone = page_zone(page);
1493 mt = get_pageblock_migratetype(page);
1495 if (!is_migrate_isolate(mt)) {
1496 /* Obey watermarks as if the page was being allocated */
1497 watermark = low_wmark_pages(zone) + (1 << order);
1498 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1499 return 0;
1501 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1504 /* Remove page from free list */
1505 list_del(&page->lru);
1506 zone->free_area[order].nr_free--;
1507 rmv_page_order(page);
1509 /* Set the pageblock if the isolated page is at least a pageblock */
1510 if (order >= pageblock_order - 1) {
1511 struct page *endpage = page + (1 << order) - 1;
1512 for (; page < endpage; page += pageblock_nr_pages) {
1513 int mt = get_pageblock_migratetype(page);
1514 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1515 set_pageblock_migratetype(page,
1516 MIGRATE_MOVABLE);
1520 return 1UL << order;
1524 * Similar to split_page except the page is already free. As this is only
1525 * being used for migration, the migratetype of the block also changes.
1526 * As this is called with interrupts disabled, the caller is responsible
1527 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1528 * are enabled.
1530 * Note: this is probably too low level an operation for use in drivers.
1531 * Please consult with lkml before using this in your driver.
1533 int split_free_page(struct page *page)
1535 unsigned int order;
1536 int nr_pages;
1538 order = page_order(page);
1540 nr_pages = __isolate_free_page(page, order);
1541 if (!nr_pages)
1542 return 0;
1544 /* Split into individual pages */
1545 set_page_refcounted(page);
1546 split_page(page, order);
1547 return nr_pages;
1551 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1552 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1553 * or two.
1555 static inline
1556 struct page *buffered_rmqueue(struct zone *preferred_zone,
1557 struct zone *zone, unsigned int order,
1558 gfp_t gfp_flags, int migratetype)
1560 unsigned long flags;
1561 struct page *page;
1562 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1564 again:
1565 if (likely(order == 0)) {
1566 struct per_cpu_pages *pcp;
1567 struct list_head *list;
1569 local_irq_save(flags);
1570 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1571 list = &pcp->lists[migratetype];
1572 if (list_empty(list)) {
1573 pcp->count += rmqueue_bulk(zone, 0,
1574 pcp->batch, list,
1575 migratetype, cold);
1576 if (unlikely(list_empty(list)))
1577 goto failed;
1580 if (cold)
1581 page = list_entry(list->prev, struct page, lru);
1582 else
1583 page = list_entry(list->next, struct page, lru);
1585 list_del(&page->lru);
1586 pcp->count--;
1587 } else {
1588 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1590 * __GFP_NOFAIL is not to be used in new code.
1592 * All __GFP_NOFAIL callers should be fixed so that they
1593 * properly detect and handle allocation failures.
1595 * We most definitely don't want callers attempting to
1596 * allocate greater than order-1 page units with
1597 * __GFP_NOFAIL.
1599 WARN_ON_ONCE(order > 1);
1601 spin_lock_irqsave(&zone->lock, flags);
1602 page = __rmqueue(zone, order, migratetype);
1603 spin_unlock(&zone->lock);
1604 if (!page)
1605 goto failed;
1606 __mod_zone_freepage_state(zone, -(1 << order),
1607 get_freepage_migratetype(page));
1610 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1612 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1613 zone_statistics(preferred_zone, zone, gfp_flags);
1614 local_irq_restore(flags);
1616 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1617 if (prep_new_page(page, order, gfp_flags))
1618 goto again;
1619 return page;
1621 failed:
1622 local_irq_restore(flags);
1623 return NULL;
1626 #ifdef CONFIG_FAIL_PAGE_ALLOC
1628 static struct {
1629 struct fault_attr attr;
1631 u32 ignore_gfp_highmem;
1632 u32 ignore_gfp_wait;
1633 u32 min_order;
1634 } fail_page_alloc = {
1635 .attr = FAULT_ATTR_INITIALIZER,
1636 .ignore_gfp_wait = 1,
1637 .ignore_gfp_highmem = 1,
1638 .min_order = 1,
1641 static int __init setup_fail_page_alloc(char *str)
1643 return setup_fault_attr(&fail_page_alloc.attr, str);
1645 __setup("fail_page_alloc=", setup_fail_page_alloc);
1647 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1649 if (order < fail_page_alloc.min_order)
1650 return false;
1651 if (gfp_mask & __GFP_NOFAIL)
1652 return false;
1653 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1654 return false;
1655 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1656 return false;
1658 return should_fail(&fail_page_alloc.attr, 1 << order);
1661 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1663 static int __init fail_page_alloc_debugfs(void)
1665 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1666 struct dentry *dir;
1668 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1669 &fail_page_alloc.attr);
1670 if (IS_ERR(dir))
1671 return PTR_ERR(dir);
1673 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1674 &fail_page_alloc.ignore_gfp_wait))
1675 goto fail;
1676 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1677 &fail_page_alloc.ignore_gfp_highmem))
1678 goto fail;
1679 if (!debugfs_create_u32("min-order", mode, dir,
1680 &fail_page_alloc.min_order))
1681 goto fail;
1683 return 0;
1684 fail:
1685 debugfs_remove_recursive(dir);
1687 return -ENOMEM;
1690 late_initcall(fail_page_alloc_debugfs);
1692 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1694 #else /* CONFIG_FAIL_PAGE_ALLOC */
1696 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1698 return false;
1701 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1704 * Return true if free pages are above 'mark'. This takes into account the order
1705 * of the allocation.
1707 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1708 unsigned long mark, int classzone_idx, int alloc_flags,
1709 long free_pages)
1711 /* free_pages my go negative - that's OK */
1712 long min = mark;
1713 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1714 int o;
1715 long free_cma = 0;
1717 free_pages -= (1 << order) - 1;
1718 if (alloc_flags & ALLOC_HIGH)
1719 min -= min / 2;
1720 if (alloc_flags & ALLOC_HARDER)
1721 min -= min / 4;
1722 #ifdef CONFIG_CMA
1723 /* If allocation can't use CMA areas don't use free CMA pages */
1724 if (!(alloc_flags & ALLOC_CMA))
1725 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1726 #endif
1728 if (free_pages - free_cma <= min + lowmem_reserve)
1729 return false;
1730 for (o = 0; o < order; o++) {
1731 /* At the next order, this order's pages become unavailable */
1732 free_pages -= z->free_area[o].nr_free << o;
1734 /* Require fewer higher order pages to be free */
1735 min >>= 1;
1737 if (free_pages <= min)
1738 return false;
1740 return true;
1743 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1744 int classzone_idx, int alloc_flags)
1746 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1747 zone_page_state(z, NR_FREE_PAGES));
1750 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1751 unsigned long mark, int classzone_idx, int alloc_flags)
1753 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1755 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1756 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1758 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1759 free_pages);
1762 #ifdef CONFIG_NUMA
1764 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1765 * skip over zones that are not allowed by the cpuset, or that have
1766 * been recently (in last second) found to be nearly full. See further
1767 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1768 * that have to skip over a lot of full or unallowed zones.
1770 * If the zonelist cache is present in the passed zonelist, then
1771 * returns a pointer to the allowed node mask (either the current
1772 * tasks mems_allowed, or node_states[N_MEMORY].)
1774 * If the zonelist cache is not available for this zonelist, does
1775 * nothing and returns NULL.
1777 * If the fullzones BITMAP in the zonelist cache is stale (more than
1778 * a second since last zap'd) then we zap it out (clear its bits.)
1780 * We hold off even calling zlc_setup, until after we've checked the
1781 * first zone in the zonelist, on the theory that most allocations will
1782 * be satisfied from that first zone, so best to examine that zone as
1783 * quickly as we can.
1785 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1787 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1788 nodemask_t *allowednodes; /* zonelist_cache approximation */
1790 zlc = zonelist->zlcache_ptr;
1791 if (!zlc)
1792 return NULL;
1794 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1795 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1796 zlc->last_full_zap = jiffies;
1799 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1800 &cpuset_current_mems_allowed :
1801 &node_states[N_MEMORY];
1802 return allowednodes;
1806 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1807 * if it is worth looking at further for free memory:
1808 * 1) Check that the zone isn't thought to be full (doesn't have its
1809 * bit set in the zonelist_cache fullzones BITMAP).
1810 * 2) Check that the zones node (obtained from the zonelist_cache
1811 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1812 * Return true (non-zero) if zone is worth looking at further, or
1813 * else return false (zero) if it is not.
1815 * This check -ignores- the distinction between various watermarks,
1816 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1817 * found to be full for any variation of these watermarks, it will
1818 * be considered full for up to one second by all requests, unless
1819 * we are so low on memory on all allowed nodes that we are forced
1820 * into the second scan of the zonelist.
1822 * In the second scan we ignore this zonelist cache and exactly
1823 * apply the watermarks to all zones, even it is slower to do so.
1824 * We are low on memory in the second scan, and should leave no stone
1825 * unturned looking for a free page.
1827 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1828 nodemask_t *allowednodes)
1830 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1831 int i; /* index of *z in zonelist zones */
1832 int n; /* node that zone *z is on */
1834 zlc = zonelist->zlcache_ptr;
1835 if (!zlc)
1836 return 1;
1838 i = z - zonelist->_zonerefs;
1839 n = zlc->z_to_n[i];
1841 /* This zone is worth trying if it is allowed but not full */
1842 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1846 * Given 'z' scanning a zonelist, set the corresponding bit in
1847 * zlc->fullzones, so that subsequent attempts to allocate a page
1848 * from that zone don't waste time re-examining it.
1850 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1852 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1853 int i; /* index of *z in zonelist zones */
1855 zlc = zonelist->zlcache_ptr;
1856 if (!zlc)
1857 return;
1859 i = z - zonelist->_zonerefs;
1861 set_bit(i, zlc->fullzones);
1865 * clear all zones full, called after direct reclaim makes progress so that
1866 * a zone that was recently full is not skipped over for up to a second
1868 static void zlc_clear_zones_full(struct zonelist *zonelist)
1870 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1872 zlc = zonelist->zlcache_ptr;
1873 if (!zlc)
1874 return;
1876 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1879 static bool zone_local(struct zone *local_zone, struct zone *zone)
1881 return local_zone->node == zone->node;
1884 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1886 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1887 RECLAIM_DISTANCE;
1890 #else /* CONFIG_NUMA */
1892 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1894 return NULL;
1897 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1898 nodemask_t *allowednodes)
1900 return 1;
1903 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1907 static void zlc_clear_zones_full(struct zonelist *zonelist)
1911 static bool zone_local(struct zone *local_zone, struct zone *zone)
1913 return true;
1916 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1918 return true;
1921 #endif /* CONFIG_NUMA */
1924 * get_page_from_freelist goes through the zonelist trying to allocate
1925 * a page.
1927 static struct page *
1928 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1929 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1930 struct zone *preferred_zone, int classzone_idx, int migratetype)
1932 struct zoneref *z;
1933 struct page *page = NULL;
1934 struct zone *zone;
1935 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1936 int zlc_active = 0; /* set if using zonelist_cache */
1937 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1938 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1939 (gfp_mask & __GFP_WRITE);
1941 zonelist_scan:
1943 * Scan zonelist, looking for a zone with enough free.
1944 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1946 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1947 high_zoneidx, nodemask) {
1948 unsigned long mark;
1950 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1951 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1952 continue;
1953 if (cpusets_enabled() &&
1954 (alloc_flags & ALLOC_CPUSET) &&
1955 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1956 continue;
1958 * Distribute pages in proportion to the individual
1959 * zone size to ensure fair page aging. The zone a
1960 * page was allocated in should have no effect on the
1961 * time the page has in memory before being reclaimed.
1963 if (alloc_flags & ALLOC_FAIR) {
1964 if (!zone_local(preferred_zone, zone))
1965 continue;
1966 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0)
1967 continue;
1970 * When allocating a page cache page for writing, we
1971 * want to get it from a zone that is within its dirty
1972 * limit, such that no single zone holds more than its
1973 * proportional share of globally allowed dirty pages.
1974 * The dirty limits take into account the zone's
1975 * lowmem reserves and high watermark so that kswapd
1976 * should be able to balance it without having to
1977 * write pages from its LRU list.
1979 * This may look like it could increase pressure on
1980 * lower zones by failing allocations in higher zones
1981 * before they are full. But the pages that do spill
1982 * over are limited as the lower zones are protected
1983 * by this very same mechanism. It should not become
1984 * a practical burden to them.
1986 * XXX: For now, allow allocations to potentially
1987 * exceed the per-zone dirty limit in the slowpath
1988 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1989 * which is important when on a NUMA setup the allowed
1990 * zones are together not big enough to reach the
1991 * global limit. The proper fix for these situations
1992 * will require awareness of zones in the
1993 * dirty-throttling and the flusher threads.
1995 if (consider_zone_dirty && !zone_dirty_ok(zone))
1996 continue;
1998 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1999 if (!zone_watermark_ok(zone, order, mark,
2000 classzone_idx, alloc_flags)) {
2001 int ret;
2003 /* Checked here to keep the fast path fast */
2004 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2005 if (alloc_flags & ALLOC_NO_WATERMARKS)
2006 goto try_this_zone;
2008 if (IS_ENABLED(CONFIG_NUMA) &&
2009 !did_zlc_setup && nr_online_nodes > 1) {
2011 * we do zlc_setup if there are multiple nodes
2012 * and before considering the first zone allowed
2013 * by the cpuset.
2015 allowednodes = zlc_setup(zonelist, alloc_flags);
2016 zlc_active = 1;
2017 did_zlc_setup = 1;
2020 if (zone_reclaim_mode == 0 ||
2021 !zone_allows_reclaim(preferred_zone, zone))
2022 goto this_zone_full;
2025 * As we may have just activated ZLC, check if the first
2026 * eligible zone has failed zone_reclaim recently.
2028 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2029 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2030 continue;
2032 ret = zone_reclaim(zone, gfp_mask, order);
2033 switch (ret) {
2034 case ZONE_RECLAIM_NOSCAN:
2035 /* did not scan */
2036 continue;
2037 case ZONE_RECLAIM_FULL:
2038 /* scanned but unreclaimable */
2039 continue;
2040 default:
2041 /* did we reclaim enough */
2042 if (zone_watermark_ok(zone, order, mark,
2043 classzone_idx, alloc_flags))
2044 goto try_this_zone;
2047 * Failed to reclaim enough to meet watermark.
2048 * Only mark the zone full if checking the min
2049 * watermark or if we failed to reclaim just
2050 * 1<<order pages or else the page allocator
2051 * fastpath will prematurely mark zones full
2052 * when the watermark is between the low and
2053 * min watermarks.
2055 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2056 ret == ZONE_RECLAIM_SOME)
2057 goto this_zone_full;
2059 continue;
2063 try_this_zone:
2064 page = buffered_rmqueue(preferred_zone, zone, order,
2065 gfp_mask, migratetype);
2066 if (page)
2067 break;
2068 this_zone_full:
2069 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2070 zlc_mark_zone_full(zonelist, z);
2073 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2074 /* Disable zlc cache for second zonelist scan */
2075 zlc_active = 0;
2076 goto zonelist_scan;
2079 if (page)
2081 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2082 * necessary to allocate the page. The expectation is
2083 * that the caller is taking steps that will free more
2084 * memory. The caller should avoid the page being used
2085 * for !PFMEMALLOC purposes.
2087 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2089 return page;
2093 * Large machines with many possible nodes should not always dump per-node
2094 * meminfo in irq context.
2096 static inline bool should_suppress_show_mem(void)
2098 bool ret = false;
2100 #if NODES_SHIFT > 8
2101 ret = in_interrupt();
2102 #endif
2103 return ret;
2106 static DEFINE_RATELIMIT_STATE(nopage_rs,
2107 DEFAULT_RATELIMIT_INTERVAL,
2108 DEFAULT_RATELIMIT_BURST);
2110 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2112 unsigned int filter = SHOW_MEM_FILTER_NODES;
2114 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2115 debug_guardpage_minorder() > 0)
2116 return;
2119 * This documents exceptions given to allocations in certain
2120 * contexts that are allowed to allocate outside current's set
2121 * of allowed nodes.
2123 if (!(gfp_mask & __GFP_NOMEMALLOC))
2124 if (test_thread_flag(TIF_MEMDIE) ||
2125 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2126 filter &= ~SHOW_MEM_FILTER_NODES;
2127 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2128 filter &= ~SHOW_MEM_FILTER_NODES;
2130 if (fmt) {
2131 struct va_format vaf;
2132 va_list args;
2134 va_start(args, fmt);
2136 vaf.fmt = fmt;
2137 vaf.va = &args;
2139 pr_warn("%pV", &vaf);
2141 va_end(args);
2144 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2145 current->comm, order, gfp_mask);
2147 dump_stack();
2148 if (!should_suppress_show_mem())
2149 show_mem(filter);
2152 static inline int
2153 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2154 unsigned long did_some_progress,
2155 unsigned long pages_reclaimed)
2157 /* Do not loop if specifically requested */
2158 if (gfp_mask & __GFP_NORETRY)
2159 return 0;
2161 /* Always retry if specifically requested */
2162 if (gfp_mask & __GFP_NOFAIL)
2163 return 1;
2166 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2167 * making forward progress without invoking OOM. Suspend also disables
2168 * storage devices so kswapd will not help. Bail if we are suspending.
2170 if (!did_some_progress && pm_suspended_storage())
2171 return 0;
2174 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2175 * means __GFP_NOFAIL, but that may not be true in other
2176 * implementations.
2178 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2179 return 1;
2182 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2183 * specified, then we retry until we no longer reclaim any pages
2184 * (above), or we've reclaimed an order of pages at least as
2185 * large as the allocation's order. In both cases, if the
2186 * allocation still fails, we stop retrying.
2188 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2189 return 1;
2191 return 0;
2194 static inline struct page *
2195 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2196 struct zonelist *zonelist, enum zone_type high_zoneidx,
2197 nodemask_t *nodemask, struct zone *preferred_zone,
2198 int classzone_idx, int migratetype)
2200 struct page *page;
2202 /* Acquire the OOM killer lock for the zones in zonelist */
2203 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2204 schedule_timeout_uninterruptible(1);
2205 return NULL;
2209 * PM-freezer should be notified that there might be an OOM killer on
2210 * its way to kill and wake somebody up. This is too early and we might
2211 * end up not killing anything but false positives are acceptable.
2212 * See freeze_processes.
2214 note_oom_kill();
2217 * Go through the zonelist yet one more time, keep very high watermark
2218 * here, this is only to catch a parallel oom killing, we must fail if
2219 * we're still under heavy pressure.
2221 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2222 order, zonelist, high_zoneidx,
2223 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2224 preferred_zone, classzone_idx, migratetype);
2225 if (page)
2226 goto out;
2228 if (!(gfp_mask & __GFP_NOFAIL)) {
2229 /* The OOM killer will not help higher order allocs */
2230 if (order > PAGE_ALLOC_COSTLY_ORDER)
2231 goto out;
2232 /* The OOM killer does not needlessly kill tasks for lowmem */
2233 if (high_zoneidx < ZONE_NORMAL)
2234 goto out;
2236 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2237 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2238 * The caller should handle page allocation failure by itself if
2239 * it specifies __GFP_THISNODE.
2240 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2242 if (gfp_mask & __GFP_THISNODE)
2243 goto out;
2245 /* Exhausted what can be done so it's blamo time */
2246 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2248 out:
2249 clear_zonelist_oom(zonelist, gfp_mask);
2250 return page;
2253 #ifdef CONFIG_COMPACTION
2254 /* Try memory compaction for high-order allocations before reclaim */
2255 static struct page *
2256 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2257 struct zonelist *zonelist, enum zone_type high_zoneidx,
2258 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2259 int classzone_idx, int migratetype, enum migrate_mode mode,
2260 bool *contended_compaction, bool *deferred_compaction,
2261 unsigned long *did_some_progress)
2263 if (!order)
2264 return NULL;
2266 if (compaction_deferred(preferred_zone, order)) {
2267 *deferred_compaction = true;
2268 return NULL;
2271 current->flags |= PF_MEMALLOC;
2272 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2273 nodemask, mode,
2274 contended_compaction);
2275 current->flags &= ~PF_MEMALLOC;
2277 if (*did_some_progress != COMPACT_SKIPPED) {
2278 struct page *page;
2280 /* Page migration frees to the PCP lists but we want merging */
2281 drain_pages(get_cpu());
2282 put_cpu();
2284 page = get_page_from_freelist(gfp_mask, nodemask,
2285 order, zonelist, high_zoneidx,
2286 alloc_flags & ~ALLOC_NO_WATERMARKS,
2287 preferred_zone, classzone_idx, migratetype);
2288 if (page) {
2289 preferred_zone->compact_blockskip_flush = false;
2290 compaction_defer_reset(preferred_zone, order, true);
2291 count_vm_event(COMPACTSUCCESS);
2292 return page;
2296 * It's bad if compaction run occurs and fails.
2297 * The most likely reason is that pages exist,
2298 * but not enough to satisfy watermarks.
2300 count_vm_event(COMPACTFAIL);
2303 * As async compaction considers a subset of pageblocks, only
2304 * defer if the failure was a sync compaction failure.
2306 if (mode != MIGRATE_ASYNC)
2307 defer_compaction(preferred_zone, order);
2309 cond_resched();
2312 return NULL;
2314 #else
2315 static inline struct page *
2316 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2317 struct zonelist *zonelist, enum zone_type high_zoneidx,
2318 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2319 int classzone_idx, int migratetype,
2320 enum migrate_mode mode, bool *contended_compaction,
2321 bool *deferred_compaction, unsigned long *did_some_progress)
2323 return NULL;
2325 #endif /* CONFIG_COMPACTION */
2327 /* Perform direct synchronous page reclaim */
2328 static int
2329 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2330 nodemask_t *nodemask)
2332 struct reclaim_state reclaim_state;
2333 int progress;
2335 cond_resched();
2337 /* We now go into synchronous reclaim */
2338 cpuset_memory_pressure_bump();
2339 current->flags |= PF_MEMALLOC;
2340 lockdep_set_current_reclaim_state(gfp_mask);
2341 reclaim_state.reclaimed_slab = 0;
2342 current->reclaim_state = &reclaim_state;
2344 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2346 current->reclaim_state = NULL;
2347 lockdep_clear_current_reclaim_state();
2348 current->flags &= ~PF_MEMALLOC;
2350 cond_resched();
2352 return progress;
2355 /* The really slow allocator path where we enter direct reclaim */
2356 static inline struct page *
2357 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2358 struct zonelist *zonelist, enum zone_type high_zoneidx,
2359 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2360 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2362 struct page *page = NULL;
2363 bool drained = false;
2365 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2366 nodemask);
2367 if (unlikely(!(*did_some_progress)))
2368 return NULL;
2370 /* After successful reclaim, reconsider all zones for allocation */
2371 if (IS_ENABLED(CONFIG_NUMA))
2372 zlc_clear_zones_full(zonelist);
2374 retry:
2375 page = get_page_from_freelist(gfp_mask, nodemask, order,
2376 zonelist, high_zoneidx,
2377 alloc_flags & ~ALLOC_NO_WATERMARKS,
2378 preferred_zone, classzone_idx,
2379 migratetype);
2382 * If an allocation failed after direct reclaim, it could be because
2383 * pages are pinned on the per-cpu lists. Drain them and try again
2385 if (!page && !drained) {
2386 drain_all_pages();
2387 drained = true;
2388 goto retry;
2391 return page;
2395 * This is called in the allocator slow-path if the allocation request is of
2396 * sufficient urgency to ignore watermarks and take other desperate measures
2398 static inline struct page *
2399 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2400 struct zonelist *zonelist, enum zone_type high_zoneidx,
2401 nodemask_t *nodemask, struct zone *preferred_zone,
2402 int classzone_idx, int migratetype)
2404 struct page *page;
2406 do {
2407 page = get_page_from_freelist(gfp_mask, nodemask, order,
2408 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2409 preferred_zone, classzone_idx, migratetype);
2411 if (!page && gfp_mask & __GFP_NOFAIL)
2412 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2413 } while (!page && (gfp_mask & __GFP_NOFAIL));
2415 return page;
2418 static void reset_alloc_batches(struct zonelist *zonelist,
2419 enum zone_type high_zoneidx,
2420 struct zone *preferred_zone)
2422 struct zoneref *z;
2423 struct zone *zone;
2425 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2427 * Only reset the batches of zones that were actually
2428 * considered in the fairness pass, we don't want to
2429 * trash fairness information for zones that are not
2430 * actually part of this zonelist's round-robin cycle.
2432 if (!zone_local(preferred_zone, zone))
2433 continue;
2434 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2435 high_wmark_pages(zone) - low_wmark_pages(zone) -
2436 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2440 static void wake_all_kswapds(unsigned int order,
2441 struct zonelist *zonelist,
2442 enum zone_type high_zoneidx,
2443 struct zone *preferred_zone)
2445 struct zoneref *z;
2446 struct zone *zone;
2448 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2449 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2452 static inline int
2453 gfp_to_alloc_flags(gfp_t gfp_mask)
2455 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2456 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2458 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2459 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2462 * The caller may dip into page reserves a bit more if the caller
2463 * cannot run direct reclaim, or if the caller has realtime scheduling
2464 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2465 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2467 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2469 if (atomic) {
2471 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2472 * if it can't schedule.
2474 if (!(gfp_mask & __GFP_NOMEMALLOC))
2475 alloc_flags |= ALLOC_HARDER;
2477 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2478 * comment for __cpuset_node_allowed_softwall().
2480 alloc_flags &= ~ALLOC_CPUSET;
2481 } else if (unlikely(rt_task(current)) && !in_interrupt())
2482 alloc_flags |= ALLOC_HARDER;
2484 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2485 if (gfp_mask & __GFP_MEMALLOC)
2486 alloc_flags |= ALLOC_NO_WATERMARKS;
2487 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2488 alloc_flags |= ALLOC_NO_WATERMARKS;
2489 else if (!in_interrupt() &&
2490 ((current->flags & PF_MEMALLOC) ||
2491 unlikely(test_thread_flag(TIF_MEMDIE))))
2492 alloc_flags |= ALLOC_NO_WATERMARKS;
2494 #ifdef CONFIG_CMA
2495 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2496 alloc_flags |= ALLOC_CMA;
2497 #endif
2498 return alloc_flags;
2501 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2503 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2506 static inline struct page *
2507 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2508 struct zonelist *zonelist, enum zone_type high_zoneidx,
2509 nodemask_t *nodemask, struct zone *preferred_zone,
2510 int classzone_idx, int migratetype)
2512 const gfp_t wait = gfp_mask & __GFP_WAIT;
2513 struct page *page = NULL;
2514 int alloc_flags;
2515 unsigned long pages_reclaimed = 0;
2516 unsigned long did_some_progress;
2517 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2518 bool deferred_compaction = false;
2519 bool contended_compaction = false;
2522 * In the slowpath, we sanity check order to avoid ever trying to
2523 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2524 * be using allocators in order of preference for an area that is
2525 * too large.
2527 if (order >= MAX_ORDER) {
2528 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2529 return NULL;
2533 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2534 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2535 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2536 * using a larger set of nodes after it has established that the
2537 * allowed per node queues are empty and that nodes are
2538 * over allocated.
2540 if (IS_ENABLED(CONFIG_NUMA) &&
2541 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2542 goto nopage;
2544 restart:
2545 if (!(gfp_mask & __GFP_NO_KSWAPD))
2546 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
2549 * OK, we're below the kswapd watermark and have kicked background
2550 * reclaim. Now things get more complex, so set up alloc_flags according
2551 * to how we want to proceed.
2553 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2556 * Find the true preferred zone if the allocation is unconstrained by
2557 * cpusets.
2559 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2560 struct zoneref *preferred_zoneref;
2561 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2562 NULL, &preferred_zone);
2563 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2566 rebalance:
2567 /* This is the last chance, in general, before the goto nopage. */
2568 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2569 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2570 preferred_zone, classzone_idx, migratetype);
2571 if (page)
2572 goto got_pg;
2574 /* Allocate without watermarks if the context allows */
2575 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2577 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2578 * the allocation is high priority and these type of
2579 * allocations are system rather than user orientated
2581 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2583 page = __alloc_pages_high_priority(gfp_mask, order,
2584 zonelist, high_zoneidx, nodemask,
2585 preferred_zone, classzone_idx, migratetype);
2586 if (page) {
2587 goto got_pg;
2591 /* Atomic allocations - we can't balance anything */
2592 if (!wait) {
2594 * All existing users of the deprecated __GFP_NOFAIL are
2595 * blockable, so warn of any new users that actually allow this
2596 * type of allocation to fail.
2598 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2599 goto nopage;
2602 /* Avoid recursion of direct reclaim */
2603 if (current->flags & PF_MEMALLOC)
2604 goto nopage;
2606 /* Avoid allocations with no watermarks from looping endlessly */
2607 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2608 goto nopage;
2611 * Try direct compaction. The first pass is asynchronous. Subsequent
2612 * attempts after direct reclaim are synchronous
2614 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2615 high_zoneidx, nodemask, alloc_flags,
2616 preferred_zone,
2617 classzone_idx, migratetype,
2618 migration_mode, &contended_compaction,
2619 &deferred_compaction,
2620 &did_some_progress);
2621 if (page)
2622 goto got_pg;
2625 * It can become very expensive to allocate transparent hugepages at
2626 * fault, so use asynchronous memory compaction for THP unless it is
2627 * khugepaged trying to collapse.
2629 if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD))
2630 migration_mode = MIGRATE_SYNC_LIGHT;
2633 * If compaction is deferred for high-order allocations, it is because
2634 * sync compaction recently failed. In this is the case and the caller
2635 * requested a movable allocation that does not heavily disrupt the
2636 * system then fail the allocation instead of entering direct reclaim.
2638 if ((deferred_compaction || contended_compaction) &&
2639 (gfp_mask & __GFP_NO_KSWAPD))
2640 goto nopage;
2642 /* Try direct reclaim and then allocating */
2643 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2644 zonelist, high_zoneidx,
2645 nodemask,
2646 alloc_flags, preferred_zone,
2647 classzone_idx, migratetype,
2648 &did_some_progress);
2649 if (page)
2650 goto got_pg;
2653 * If we failed to make any progress reclaiming, then we are
2654 * running out of options and have to consider going OOM
2656 if (!did_some_progress) {
2657 if (oom_gfp_allowed(gfp_mask)) {
2658 if (oom_killer_disabled)
2659 goto nopage;
2660 /* Coredumps can quickly deplete all memory reserves */
2661 if ((current->flags & PF_DUMPCORE) &&
2662 !(gfp_mask & __GFP_NOFAIL))
2663 goto nopage;
2664 page = __alloc_pages_may_oom(gfp_mask, order,
2665 zonelist, high_zoneidx,
2666 nodemask, preferred_zone,
2667 classzone_idx, migratetype);
2668 if (page)
2669 goto got_pg;
2671 if (!(gfp_mask & __GFP_NOFAIL)) {
2673 * The oom killer is not called for high-order
2674 * allocations that may fail, so if no progress
2675 * is being made, there are no other options and
2676 * retrying is unlikely to help.
2678 if (order > PAGE_ALLOC_COSTLY_ORDER)
2679 goto nopage;
2681 * The oom killer is not called for lowmem
2682 * allocations to prevent needlessly killing
2683 * innocent tasks.
2685 if (high_zoneidx < ZONE_NORMAL)
2686 goto nopage;
2689 goto restart;
2693 /* Check if we should retry the allocation */
2694 pages_reclaimed += did_some_progress;
2695 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2696 pages_reclaimed)) {
2697 /* Wait for some write requests to complete then retry */
2698 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2699 goto rebalance;
2700 } else {
2702 * High-order allocations do not necessarily loop after
2703 * direct reclaim and reclaim/compaction depends on compaction
2704 * being called after reclaim so call directly if necessary
2706 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2707 high_zoneidx, nodemask, alloc_flags,
2708 preferred_zone,
2709 classzone_idx, migratetype,
2710 migration_mode, &contended_compaction,
2711 &deferred_compaction,
2712 &did_some_progress);
2713 if (page)
2714 goto got_pg;
2717 nopage:
2718 warn_alloc_failed(gfp_mask, order, NULL);
2719 return page;
2720 got_pg:
2721 if (kmemcheck_enabled)
2722 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2724 return page;
2728 * This is the 'heart' of the zoned buddy allocator.
2730 struct page *
2731 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2732 struct zonelist *zonelist, nodemask_t *nodemask)
2734 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2735 struct zone *preferred_zone;
2736 struct zoneref *preferred_zoneref;
2737 struct page *page = NULL;
2738 int migratetype = allocflags_to_migratetype(gfp_mask);
2739 unsigned int cpuset_mems_cookie;
2740 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2741 int classzone_idx;
2743 gfp_mask &= gfp_allowed_mask;
2745 lockdep_trace_alloc(gfp_mask);
2747 might_sleep_if(gfp_mask & __GFP_WAIT);
2749 if (should_fail_alloc_page(gfp_mask, order))
2750 return NULL;
2753 * Check the zones suitable for the gfp_mask contain at least one
2754 * valid zone. It's possible to have an empty zonelist as a result
2755 * of GFP_THISNODE and a memoryless node
2757 if (unlikely(!zonelist->_zonerefs->zone))
2758 return NULL;
2760 retry_cpuset:
2761 cpuset_mems_cookie = read_mems_allowed_begin();
2763 /* The preferred zone is used for statistics later */
2764 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2765 nodemask ? : &cpuset_current_mems_allowed,
2766 &preferred_zone);
2767 if (!preferred_zone)
2768 goto out;
2769 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2771 #ifdef CONFIG_CMA
2772 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2773 alloc_flags |= ALLOC_CMA;
2774 #endif
2775 retry:
2776 /* First allocation attempt */
2777 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2778 zonelist, high_zoneidx, alloc_flags,
2779 preferred_zone, classzone_idx, migratetype);
2780 if (unlikely(!page)) {
2782 * The first pass makes sure allocations are spread
2783 * fairly within the local node. However, the local
2784 * node might have free pages left after the fairness
2785 * batches are exhausted, and remote zones haven't
2786 * even been considered yet. Try once more without
2787 * fairness, and include remote zones now, before
2788 * entering the slowpath and waking kswapd: prefer
2789 * spilling to a remote zone over swapping locally.
2791 if (alloc_flags & ALLOC_FAIR) {
2792 reset_alloc_batches(zonelist, high_zoneidx,
2793 preferred_zone);
2794 alloc_flags &= ~ALLOC_FAIR;
2795 goto retry;
2798 * Runtime PM, block IO and its error handling path
2799 * can deadlock because I/O on the device might not
2800 * complete.
2802 gfp_mask = memalloc_noio_flags(gfp_mask);
2803 page = __alloc_pages_slowpath(gfp_mask, order,
2804 zonelist, high_zoneidx, nodemask,
2805 preferred_zone, classzone_idx, migratetype);
2808 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2810 out:
2812 * When updating a task's mems_allowed, it is possible to race with
2813 * parallel threads in such a way that an allocation can fail while
2814 * the mask is being updated. If a page allocation is about to fail,
2815 * check if the cpuset changed during allocation and if so, retry.
2817 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2818 goto retry_cpuset;
2820 return page;
2822 EXPORT_SYMBOL(__alloc_pages_nodemask);
2825 * Common helper functions.
2827 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2829 struct page *page;
2832 * __get_free_pages() returns a 32-bit address, which cannot represent
2833 * a highmem page
2835 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2837 page = alloc_pages(gfp_mask, order);
2838 if (!page)
2839 return 0;
2840 return (unsigned long) page_address(page);
2842 EXPORT_SYMBOL(__get_free_pages);
2844 unsigned long get_zeroed_page(gfp_t gfp_mask)
2846 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2848 EXPORT_SYMBOL(get_zeroed_page);
2850 void __free_pages(struct page *page, unsigned int order)
2852 if (put_page_testzero(page)) {
2853 if (order == 0)
2854 free_hot_cold_page(page, false);
2855 else
2856 __free_pages_ok(page, order);
2860 EXPORT_SYMBOL(__free_pages);
2862 void free_pages(unsigned long addr, unsigned int order)
2864 if (addr != 0) {
2865 VM_BUG_ON(!virt_addr_valid((void *)addr));
2866 __free_pages(virt_to_page((void *)addr), order);
2870 EXPORT_SYMBOL(free_pages);
2873 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2874 * of the current memory cgroup.
2876 * It should be used when the caller would like to use kmalloc, but since the
2877 * allocation is large, it has to fall back to the page allocator.
2879 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2881 struct page *page;
2882 struct mem_cgroup *memcg = NULL;
2884 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2885 return NULL;
2886 page = alloc_pages(gfp_mask, order);
2887 memcg_kmem_commit_charge(page, memcg, order);
2888 return page;
2891 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2893 struct page *page;
2894 struct mem_cgroup *memcg = NULL;
2896 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2897 return NULL;
2898 page = alloc_pages_node(nid, gfp_mask, order);
2899 memcg_kmem_commit_charge(page, memcg, order);
2900 return page;
2904 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2905 * alloc_kmem_pages.
2907 void __free_kmem_pages(struct page *page, unsigned int order)
2909 memcg_kmem_uncharge_pages(page, order);
2910 __free_pages(page, order);
2913 void free_kmem_pages(unsigned long addr, unsigned int order)
2915 if (addr != 0) {
2916 VM_BUG_ON(!virt_addr_valid((void *)addr));
2917 __free_kmem_pages(virt_to_page((void *)addr), order);
2921 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2923 if (addr) {
2924 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2925 unsigned long used = addr + PAGE_ALIGN(size);
2927 split_page(virt_to_page((void *)addr), order);
2928 while (used < alloc_end) {
2929 free_page(used);
2930 used += PAGE_SIZE;
2933 return (void *)addr;
2937 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2938 * @size: the number of bytes to allocate
2939 * @gfp_mask: GFP flags for the allocation
2941 * This function is similar to alloc_pages(), except that it allocates the
2942 * minimum number of pages to satisfy the request. alloc_pages() can only
2943 * allocate memory in power-of-two pages.
2945 * This function is also limited by MAX_ORDER.
2947 * Memory allocated by this function must be released by free_pages_exact().
2949 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2951 unsigned int order = get_order(size);
2952 unsigned long addr;
2954 addr = __get_free_pages(gfp_mask, order);
2955 return make_alloc_exact(addr, order, size);
2957 EXPORT_SYMBOL(alloc_pages_exact);
2960 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2961 * pages on a node.
2962 * @nid: the preferred node ID where memory should be allocated
2963 * @size: the number of bytes to allocate
2964 * @gfp_mask: GFP flags for the allocation
2966 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2967 * back.
2968 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2969 * but is not exact.
2971 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2973 unsigned order = get_order(size);
2974 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2975 if (!p)
2976 return NULL;
2977 return make_alloc_exact((unsigned long)page_address(p), order, size);
2979 EXPORT_SYMBOL(alloc_pages_exact_nid);
2982 * free_pages_exact - release memory allocated via alloc_pages_exact()
2983 * @virt: the value returned by alloc_pages_exact.
2984 * @size: size of allocation, same value as passed to alloc_pages_exact().
2986 * Release the memory allocated by a previous call to alloc_pages_exact.
2988 void free_pages_exact(void *virt, size_t size)
2990 unsigned long addr = (unsigned long)virt;
2991 unsigned long end = addr + PAGE_ALIGN(size);
2993 while (addr < end) {
2994 free_page(addr);
2995 addr += PAGE_SIZE;
2998 EXPORT_SYMBOL(free_pages_exact);
3001 * nr_free_zone_pages - count number of pages beyond high watermark
3002 * @offset: The zone index of the highest zone
3004 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3005 * high watermark within all zones at or below a given zone index. For each
3006 * zone, the number of pages is calculated as:
3007 * managed_pages - high_pages
3009 static unsigned long nr_free_zone_pages(int offset)
3011 struct zoneref *z;
3012 struct zone *zone;
3014 /* Just pick one node, since fallback list is circular */
3015 unsigned long sum = 0;
3017 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3019 for_each_zone_zonelist(zone, z, zonelist, offset) {
3020 unsigned long size = zone->managed_pages;
3021 unsigned long high = high_wmark_pages(zone);
3022 if (size > high)
3023 sum += size - high;
3026 return sum;
3030 * nr_free_buffer_pages - count number of pages beyond high watermark
3032 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3033 * watermark within ZONE_DMA and ZONE_NORMAL.
3035 unsigned long nr_free_buffer_pages(void)
3037 return nr_free_zone_pages(gfp_zone(GFP_USER));
3039 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3042 * nr_free_pagecache_pages - count number of pages beyond high watermark
3044 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3045 * high watermark within all zones.
3047 unsigned long nr_free_pagecache_pages(void)
3049 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3052 static inline void show_node(struct zone *zone)
3054 if (IS_ENABLED(CONFIG_NUMA))
3055 printk("Node %d ", zone_to_nid(zone));
3058 void si_meminfo(struct sysinfo *val)
3060 val->totalram = totalram_pages;
3061 val->sharedram = 0;
3062 val->freeram = global_page_state(NR_FREE_PAGES);
3063 val->bufferram = nr_blockdev_pages();
3064 val->totalhigh = totalhigh_pages;
3065 val->freehigh = nr_free_highpages();
3066 val->mem_unit = PAGE_SIZE;
3069 EXPORT_SYMBOL(si_meminfo);
3071 #ifdef CONFIG_NUMA
3072 void si_meminfo_node(struct sysinfo *val, int nid)
3074 int zone_type; /* needs to be signed */
3075 unsigned long managed_pages = 0;
3076 pg_data_t *pgdat = NODE_DATA(nid);
3078 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3079 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3080 val->totalram = managed_pages;
3081 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3082 #ifdef CONFIG_HIGHMEM
3083 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3084 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3085 NR_FREE_PAGES);
3086 #else
3087 val->totalhigh = 0;
3088 val->freehigh = 0;
3089 #endif
3090 val->mem_unit = PAGE_SIZE;
3092 #endif
3095 * Determine whether the node should be displayed or not, depending on whether
3096 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3098 bool skip_free_areas_node(unsigned int flags, int nid)
3100 bool ret = false;
3101 unsigned int cpuset_mems_cookie;
3103 if (!(flags & SHOW_MEM_FILTER_NODES))
3104 goto out;
3106 do {
3107 cpuset_mems_cookie = read_mems_allowed_begin();
3108 ret = !node_isset(nid, cpuset_current_mems_allowed);
3109 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3110 out:
3111 return ret;
3114 #define K(x) ((x) << (PAGE_SHIFT-10))
3116 static void show_migration_types(unsigned char type)
3118 static const char types[MIGRATE_TYPES] = {
3119 [MIGRATE_UNMOVABLE] = 'U',
3120 [MIGRATE_RECLAIMABLE] = 'E',
3121 [MIGRATE_MOVABLE] = 'M',
3122 [MIGRATE_RESERVE] = 'R',
3123 #ifdef CONFIG_CMA
3124 [MIGRATE_CMA] = 'C',
3125 #endif
3126 #ifdef CONFIG_MEMORY_ISOLATION
3127 [MIGRATE_ISOLATE] = 'I',
3128 #endif
3130 char tmp[MIGRATE_TYPES + 1];
3131 char *p = tmp;
3132 int i;
3134 for (i = 0; i < MIGRATE_TYPES; i++) {
3135 if (type & (1 << i))
3136 *p++ = types[i];
3139 *p = '\0';
3140 printk("(%s) ", tmp);
3144 * Show free area list (used inside shift_scroll-lock stuff)
3145 * We also calculate the percentage fragmentation. We do this by counting the
3146 * memory on each free list with the exception of the first item on the list.
3147 * Suppresses nodes that are not allowed by current's cpuset if
3148 * SHOW_MEM_FILTER_NODES is passed.
3150 void show_free_areas(unsigned int filter)
3152 int cpu;
3153 struct zone *zone;
3155 for_each_populated_zone(zone) {
3156 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3157 continue;
3158 show_node(zone);
3159 printk("%s per-cpu:\n", zone->name);
3161 for_each_online_cpu(cpu) {
3162 struct per_cpu_pageset *pageset;
3164 pageset = per_cpu_ptr(zone->pageset, cpu);
3166 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3167 cpu, pageset->pcp.high,
3168 pageset->pcp.batch, pageset->pcp.count);
3172 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3173 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3174 " unevictable:%lu"
3175 " dirty:%lu writeback:%lu unstable:%lu\n"
3176 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3177 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3178 " free_cma:%lu\n",
3179 global_page_state(NR_ACTIVE_ANON),
3180 global_page_state(NR_INACTIVE_ANON),
3181 global_page_state(NR_ISOLATED_ANON),
3182 global_page_state(NR_ACTIVE_FILE),
3183 global_page_state(NR_INACTIVE_FILE),
3184 global_page_state(NR_ISOLATED_FILE),
3185 global_page_state(NR_UNEVICTABLE),
3186 global_page_state(NR_FILE_DIRTY),
3187 global_page_state(NR_WRITEBACK),
3188 global_page_state(NR_UNSTABLE_NFS),
3189 global_page_state(NR_FREE_PAGES),
3190 global_page_state(NR_SLAB_RECLAIMABLE),
3191 global_page_state(NR_SLAB_UNRECLAIMABLE),
3192 global_page_state(NR_FILE_MAPPED),
3193 global_page_state(NR_SHMEM),
3194 global_page_state(NR_PAGETABLE),
3195 global_page_state(NR_BOUNCE),
3196 global_page_state(NR_FREE_CMA_PAGES));
3198 for_each_populated_zone(zone) {
3199 int i;
3201 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3202 continue;
3203 show_node(zone);
3204 printk("%s"
3205 " free:%lukB"
3206 " min:%lukB"
3207 " low:%lukB"
3208 " high:%lukB"
3209 " active_anon:%lukB"
3210 " inactive_anon:%lukB"
3211 " active_file:%lukB"
3212 " inactive_file:%lukB"
3213 " unevictable:%lukB"
3214 " isolated(anon):%lukB"
3215 " isolated(file):%lukB"
3216 " present:%lukB"
3217 " managed:%lukB"
3218 " mlocked:%lukB"
3219 " dirty:%lukB"
3220 " writeback:%lukB"
3221 " mapped:%lukB"
3222 " shmem:%lukB"
3223 " slab_reclaimable:%lukB"
3224 " slab_unreclaimable:%lukB"
3225 " kernel_stack:%lukB"
3226 " pagetables:%lukB"
3227 " unstable:%lukB"
3228 " bounce:%lukB"
3229 " free_cma:%lukB"
3230 " writeback_tmp:%lukB"
3231 " pages_scanned:%lu"
3232 " all_unreclaimable? %s"
3233 "\n",
3234 zone->name,
3235 K(zone_page_state(zone, NR_FREE_PAGES)),
3236 K(min_wmark_pages(zone)),
3237 K(low_wmark_pages(zone)),
3238 K(high_wmark_pages(zone)),
3239 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3240 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3241 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3242 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3243 K(zone_page_state(zone, NR_UNEVICTABLE)),
3244 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3245 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3246 K(zone->present_pages),
3247 K(zone->managed_pages),
3248 K(zone_page_state(zone, NR_MLOCK)),
3249 K(zone_page_state(zone, NR_FILE_DIRTY)),
3250 K(zone_page_state(zone, NR_WRITEBACK)),
3251 K(zone_page_state(zone, NR_FILE_MAPPED)),
3252 K(zone_page_state(zone, NR_SHMEM)),
3253 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3254 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3255 zone_page_state(zone, NR_KERNEL_STACK) *
3256 THREAD_SIZE / 1024,
3257 K(zone_page_state(zone, NR_PAGETABLE)),
3258 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3259 K(zone_page_state(zone, NR_BOUNCE)),
3260 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3261 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3262 zone->pages_scanned,
3263 (!zone_reclaimable(zone) ? "yes" : "no")
3265 printk("lowmem_reserve[]:");
3266 for (i = 0; i < MAX_NR_ZONES; i++)
3267 printk(" %lu", zone->lowmem_reserve[i]);
3268 printk("\n");
3271 for_each_populated_zone(zone) {
3272 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3273 unsigned char types[MAX_ORDER];
3275 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3276 continue;
3277 show_node(zone);
3278 printk("%s: ", zone->name);
3280 spin_lock_irqsave(&zone->lock, flags);
3281 for (order = 0; order < MAX_ORDER; order++) {
3282 struct free_area *area = &zone->free_area[order];
3283 int type;
3285 nr[order] = area->nr_free;
3286 total += nr[order] << order;
3288 types[order] = 0;
3289 for (type = 0; type < MIGRATE_TYPES; type++) {
3290 if (!list_empty(&area->free_list[type]))
3291 types[order] |= 1 << type;
3294 spin_unlock_irqrestore(&zone->lock, flags);
3295 for (order = 0; order < MAX_ORDER; order++) {
3296 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3297 if (nr[order])
3298 show_migration_types(types[order]);
3300 printk("= %lukB\n", K(total));
3303 hugetlb_show_meminfo();
3305 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3307 show_swap_cache_info();
3310 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3312 zoneref->zone = zone;
3313 zoneref->zone_idx = zone_idx(zone);
3317 * Builds allocation fallback zone lists.
3319 * Add all populated zones of a node to the zonelist.
3321 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3322 int nr_zones)
3324 struct zone *zone;
3325 enum zone_type zone_type = MAX_NR_ZONES;
3327 do {
3328 zone_type--;
3329 zone = pgdat->node_zones + zone_type;
3330 if (populated_zone(zone)) {
3331 zoneref_set_zone(zone,
3332 &zonelist->_zonerefs[nr_zones++]);
3333 check_highest_zone(zone_type);
3335 } while (zone_type);
3337 return nr_zones;
3342 * zonelist_order:
3343 * 0 = automatic detection of better ordering.
3344 * 1 = order by ([node] distance, -zonetype)
3345 * 2 = order by (-zonetype, [node] distance)
3347 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3348 * the same zonelist. So only NUMA can configure this param.
3350 #define ZONELIST_ORDER_DEFAULT 0
3351 #define ZONELIST_ORDER_NODE 1
3352 #define ZONELIST_ORDER_ZONE 2
3354 /* zonelist order in the kernel.
3355 * set_zonelist_order() will set this to NODE or ZONE.
3357 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3358 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3361 #ifdef CONFIG_NUMA
3362 /* The value user specified ....changed by config */
3363 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3364 /* string for sysctl */
3365 #define NUMA_ZONELIST_ORDER_LEN 16
3366 char numa_zonelist_order[16] = "default";
3369 * interface for configure zonelist ordering.
3370 * command line option "numa_zonelist_order"
3371 * = "[dD]efault - default, automatic configuration.
3372 * = "[nN]ode - order by node locality, then by zone within node
3373 * = "[zZ]one - order by zone, then by locality within zone
3376 static int __parse_numa_zonelist_order(char *s)
3378 if (*s == 'd' || *s == 'D') {
3379 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3380 } else if (*s == 'n' || *s == 'N') {
3381 user_zonelist_order = ZONELIST_ORDER_NODE;
3382 } else if (*s == 'z' || *s == 'Z') {
3383 user_zonelist_order = ZONELIST_ORDER_ZONE;
3384 } else {
3385 printk(KERN_WARNING
3386 "Ignoring invalid numa_zonelist_order value: "
3387 "%s\n", s);
3388 return -EINVAL;
3390 return 0;
3393 static __init int setup_numa_zonelist_order(char *s)
3395 int ret;
3397 if (!s)
3398 return 0;
3400 ret = __parse_numa_zonelist_order(s);
3401 if (ret == 0)
3402 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3404 return ret;
3406 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3409 * sysctl handler for numa_zonelist_order
3411 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3412 void __user *buffer, size_t *length,
3413 loff_t *ppos)
3415 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3416 int ret;
3417 static DEFINE_MUTEX(zl_order_mutex);
3419 mutex_lock(&zl_order_mutex);
3420 if (write) {
3421 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3422 ret = -EINVAL;
3423 goto out;
3425 strcpy(saved_string, (char *)table->data);
3427 ret = proc_dostring(table, write, buffer, length, ppos);
3428 if (ret)
3429 goto out;
3430 if (write) {
3431 int oldval = user_zonelist_order;
3433 ret = __parse_numa_zonelist_order((char *)table->data);
3434 if (ret) {
3436 * bogus value. restore saved string
3438 strncpy((char *)table->data, saved_string,
3439 NUMA_ZONELIST_ORDER_LEN);
3440 user_zonelist_order = oldval;
3441 } else if (oldval != user_zonelist_order) {
3442 mutex_lock(&zonelists_mutex);
3443 build_all_zonelists(NULL, NULL);
3444 mutex_unlock(&zonelists_mutex);
3447 out:
3448 mutex_unlock(&zl_order_mutex);
3449 return ret;
3453 #define MAX_NODE_LOAD (nr_online_nodes)
3454 static int node_load[MAX_NUMNODES];
3457 * find_next_best_node - find the next node that should appear in a given node's fallback list
3458 * @node: node whose fallback list we're appending
3459 * @used_node_mask: nodemask_t of already used nodes
3461 * We use a number of factors to determine which is the next node that should
3462 * appear on a given node's fallback list. The node should not have appeared
3463 * already in @node's fallback list, and it should be the next closest node
3464 * according to the distance array (which contains arbitrary distance values
3465 * from each node to each node in the system), and should also prefer nodes
3466 * with no CPUs, since presumably they'll have very little allocation pressure
3467 * on them otherwise.
3468 * It returns -1 if no node is found.
3470 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3472 int n, val;
3473 int min_val = INT_MAX;
3474 int best_node = NUMA_NO_NODE;
3475 const struct cpumask *tmp = cpumask_of_node(0);
3477 /* Use the local node if we haven't already */
3478 if (!node_isset(node, *used_node_mask)) {
3479 node_set(node, *used_node_mask);
3480 return node;
3483 for_each_node_state(n, N_MEMORY) {
3485 /* Don't want a node to appear more than once */
3486 if (node_isset(n, *used_node_mask))
3487 continue;
3489 /* Use the distance array to find the distance */
3490 val = node_distance(node, n);
3492 /* Penalize nodes under us ("prefer the next node") */
3493 val += (n < node);
3495 /* Give preference to headless and unused nodes */
3496 tmp = cpumask_of_node(n);
3497 if (!cpumask_empty(tmp))
3498 val += PENALTY_FOR_NODE_WITH_CPUS;
3500 /* Slight preference for less loaded node */
3501 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3502 val += node_load[n];
3504 if (val < min_val) {
3505 min_val = val;
3506 best_node = n;
3510 if (best_node >= 0)
3511 node_set(best_node, *used_node_mask);
3513 return best_node;
3518 * Build zonelists ordered by node and zones within node.
3519 * This results in maximum locality--normal zone overflows into local
3520 * DMA zone, if any--but risks exhausting DMA zone.
3522 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3524 int j;
3525 struct zonelist *zonelist;
3527 zonelist = &pgdat->node_zonelists[0];
3528 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3530 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3531 zonelist->_zonerefs[j].zone = NULL;
3532 zonelist->_zonerefs[j].zone_idx = 0;
3536 * Build gfp_thisnode zonelists
3538 static void build_thisnode_zonelists(pg_data_t *pgdat)
3540 int j;
3541 struct zonelist *zonelist;
3543 zonelist = &pgdat->node_zonelists[1];
3544 j = build_zonelists_node(pgdat, zonelist, 0);
3545 zonelist->_zonerefs[j].zone = NULL;
3546 zonelist->_zonerefs[j].zone_idx = 0;
3550 * Build zonelists ordered by zone and nodes within zones.
3551 * This results in conserving DMA zone[s] until all Normal memory is
3552 * exhausted, but results in overflowing to remote node while memory
3553 * may still exist in local DMA zone.
3555 static int node_order[MAX_NUMNODES];
3557 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3559 int pos, j, node;
3560 int zone_type; /* needs to be signed */
3561 struct zone *z;
3562 struct zonelist *zonelist;
3564 zonelist = &pgdat->node_zonelists[0];
3565 pos = 0;
3566 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3567 for (j = 0; j < nr_nodes; j++) {
3568 node = node_order[j];
3569 z = &NODE_DATA(node)->node_zones[zone_type];
3570 if (populated_zone(z)) {
3571 zoneref_set_zone(z,
3572 &zonelist->_zonerefs[pos++]);
3573 check_highest_zone(zone_type);
3577 zonelist->_zonerefs[pos].zone = NULL;
3578 zonelist->_zonerefs[pos].zone_idx = 0;
3581 static int default_zonelist_order(void)
3583 int nid, zone_type;
3584 unsigned long low_kmem_size, total_size;
3585 struct zone *z;
3586 int average_size;
3588 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3589 * If they are really small and used heavily, the system can fall
3590 * into OOM very easily.
3591 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3593 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3594 low_kmem_size = 0;
3595 total_size = 0;
3596 for_each_online_node(nid) {
3597 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3598 z = &NODE_DATA(nid)->node_zones[zone_type];
3599 if (populated_zone(z)) {
3600 if (zone_type < ZONE_NORMAL)
3601 low_kmem_size += z->managed_pages;
3602 total_size += z->managed_pages;
3603 } else if (zone_type == ZONE_NORMAL) {
3605 * If any node has only lowmem, then node order
3606 * is preferred to allow kernel allocations
3607 * locally; otherwise, they can easily infringe
3608 * on other nodes when there is an abundance of
3609 * lowmem available to allocate from.
3611 return ZONELIST_ORDER_NODE;
3615 if (!low_kmem_size || /* there are no DMA area. */
3616 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3617 return ZONELIST_ORDER_NODE;
3619 * look into each node's config.
3620 * If there is a node whose DMA/DMA32 memory is very big area on
3621 * local memory, NODE_ORDER may be suitable.
3623 average_size = total_size /
3624 (nodes_weight(node_states[N_MEMORY]) + 1);
3625 for_each_online_node(nid) {
3626 low_kmem_size = 0;
3627 total_size = 0;
3628 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3629 z = &NODE_DATA(nid)->node_zones[zone_type];
3630 if (populated_zone(z)) {
3631 if (zone_type < ZONE_NORMAL)
3632 low_kmem_size += z->present_pages;
3633 total_size += z->present_pages;
3636 if (low_kmem_size &&
3637 total_size > average_size && /* ignore small node */
3638 low_kmem_size > total_size * 70/100)
3639 return ZONELIST_ORDER_NODE;
3641 return ZONELIST_ORDER_ZONE;
3644 static void set_zonelist_order(void)
3646 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3647 current_zonelist_order = default_zonelist_order();
3648 else
3649 current_zonelist_order = user_zonelist_order;
3652 static void build_zonelists(pg_data_t *pgdat)
3654 int j, node, load;
3655 enum zone_type i;
3656 nodemask_t used_mask;
3657 int local_node, prev_node;
3658 struct zonelist *zonelist;
3659 int order = current_zonelist_order;
3661 /* initialize zonelists */
3662 for (i = 0; i < MAX_ZONELISTS; i++) {
3663 zonelist = pgdat->node_zonelists + i;
3664 zonelist->_zonerefs[0].zone = NULL;
3665 zonelist->_zonerefs[0].zone_idx = 0;
3668 /* NUMA-aware ordering of nodes */
3669 local_node = pgdat->node_id;
3670 load = nr_online_nodes;
3671 prev_node = local_node;
3672 nodes_clear(used_mask);
3674 memset(node_order, 0, sizeof(node_order));
3675 j = 0;
3677 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3679 * We don't want to pressure a particular node.
3680 * So adding penalty to the first node in same
3681 * distance group to make it round-robin.
3683 if (node_distance(local_node, node) !=
3684 node_distance(local_node, prev_node))
3685 node_load[node] = load;
3687 prev_node = node;
3688 load--;
3689 if (order == ZONELIST_ORDER_NODE)
3690 build_zonelists_in_node_order(pgdat, node);
3691 else
3692 node_order[j++] = node; /* remember order */
3695 if (order == ZONELIST_ORDER_ZONE) {
3696 /* calculate node order -- i.e., DMA last! */
3697 build_zonelists_in_zone_order(pgdat, j);
3700 build_thisnode_zonelists(pgdat);
3703 /* Construct the zonelist performance cache - see further mmzone.h */
3704 static void build_zonelist_cache(pg_data_t *pgdat)
3706 struct zonelist *zonelist;
3707 struct zonelist_cache *zlc;
3708 struct zoneref *z;
3710 zonelist = &pgdat->node_zonelists[0];
3711 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3712 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3713 for (z = zonelist->_zonerefs; z->zone; z++)
3714 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3717 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3719 * Return node id of node used for "local" allocations.
3720 * I.e., first node id of first zone in arg node's generic zonelist.
3721 * Used for initializing percpu 'numa_mem', which is used primarily
3722 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3724 int local_memory_node(int node)
3726 struct zone *zone;
3728 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3729 gfp_zone(GFP_KERNEL),
3730 NULL,
3731 &zone);
3732 return zone->node;
3734 #endif
3736 #else /* CONFIG_NUMA */
3738 static void set_zonelist_order(void)
3740 current_zonelist_order = ZONELIST_ORDER_ZONE;
3743 static void build_zonelists(pg_data_t *pgdat)
3745 int node, local_node;
3746 enum zone_type j;
3747 struct zonelist *zonelist;
3749 local_node = pgdat->node_id;
3751 zonelist = &pgdat->node_zonelists[0];
3752 j = build_zonelists_node(pgdat, zonelist, 0);
3755 * Now we build the zonelist so that it contains the zones
3756 * of all the other nodes.
3757 * We don't want to pressure a particular node, so when
3758 * building the zones for node N, we make sure that the
3759 * zones coming right after the local ones are those from
3760 * node N+1 (modulo N)
3762 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3763 if (!node_online(node))
3764 continue;
3765 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3767 for (node = 0; node < local_node; node++) {
3768 if (!node_online(node))
3769 continue;
3770 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3773 zonelist->_zonerefs[j].zone = NULL;
3774 zonelist->_zonerefs[j].zone_idx = 0;
3777 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3778 static void build_zonelist_cache(pg_data_t *pgdat)
3780 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3783 #endif /* CONFIG_NUMA */
3786 * Boot pageset table. One per cpu which is going to be used for all
3787 * zones and all nodes. The parameters will be set in such a way
3788 * that an item put on a list will immediately be handed over to
3789 * the buddy list. This is safe since pageset manipulation is done
3790 * with interrupts disabled.
3792 * The boot_pagesets must be kept even after bootup is complete for
3793 * unused processors and/or zones. They do play a role for bootstrapping
3794 * hotplugged processors.
3796 * zoneinfo_show() and maybe other functions do
3797 * not check if the processor is online before following the pageset pointer.
3798 * Other parts of the kernel may not check if the zone is available.
3800 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3801 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3802 static void setup_zone_pageset(struct zone *zone);
3805 * Global mutex to protect against size modification of zonelists
3806 * as well as to serialize pageset setup for the new populated zone.
3808 DEFINE_MUTEX(zonelists_mutex);
3810 /* return values int ....just for stop_machine() */
3811 static int __build_all_zonelists(void *data)
3813 int nid;
3814 int cpu;
3815 pg_data_t *self = data;
3817 #ifdef CONFIG_NUMA
3818 memset(node_load, 0, sizeof(node_load));
3819 #endif
3821 if (self && !node_online(self->node_id)) {
3822 build_zonelists(self);
3823 build_zonelist_cache(self);
3826 for_each_online_node(nid) {
3827 pg_data_t *pgdat = NODE_DATA(nid);
3829 build_zonelists(pgdat);
3830 build_zonelist_cache(pgdat);
3834 * Initialize the boot_pagesets that are going to be used
3835 * for bootstrapping processors. The real pagesets for
3836 * each zone will be allocated later when the per cpu
3837 * allocator is available.
3839 * boot_pagesets are used also for bootstrapping offline
3840 * cpus if the system is already booted because the pagesets
3841 * are needed to initialize allocators on a specific cpu too.
3842 * F.e. the percpu allocator needs the page allocator which
3843 * needs the percpu allocator in order to allocate its pagesets
3844 * (a chicken-egg dilemma).
3846 for_each_possible_cpu(cpu) {
3847 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3849 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3851 * We now know the "local memory node" for each node--
3852 * i.e., the node of the first zone in the generic zonelist.
3853 * Set up numa_mem percpu variable for on-line cpus. During
3854 * boot, only the boot cpu should be on-line; we'll init the
3855 * secondary cpus' numa_mem as they come on-line. During
3856 * node/memory hotplug, we'll fixup all on-line cpus.
3858 if (cpu_online(cpu))
3859 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3860 #endif
3863 return 0;
3867 * Called with zonelists_mutex held always
3868 * unless system_state == SYSTEM_BOOTING.
3870 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3872 set_zonelist_order();
3874 if (system_state == SYSTEM_BOOTING) {
3875 __build_all_zonelists(NULL);
3876 mminit_verify_zonelist();
3877 cpuset_init_current_mems_allowed();
3878 } else {
3879 #ifdef CONFIG_MEMORY_HOTPLUG
3880 if (zone)
3881 setup_zone_pageset(zone);
3882 #endif
3883 /* we have to stop all cpus to guarantee there is no user
3884 of zonelist */
3885 stop_machine(__build_all_zonelists, pgdat, NULL);
3886 /* cpuset refresh routine should be here */
3888 vm_total_pages = nr_free_pagecache_pages();
3890 * Disable grouping by mobility if the number of pages in the
3891 * system is too low to allow the mechanism to work. It would be
3892 * more accurate, but expensive to check per-zone. This check is
3893 * made on memory-hotadd so a system can start with mobility
3894 * disabled and enable it later
3896 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3897 page_group_by_mobility_disabled = 1;
3898 else
3899 page_group_by_mobility_disabled = 0;
3901 printk("Built %i zonelists in %s order, mobility grouping %s. "
3902 "Total pages: %ld\n",
3903 nr_online_nodes,
3904 zonelist_order_name[current_zonelist_order],
3905 page_group_by_mobility_disabled ? "off" : "on",
3906 vm_total_pages);
3907 #ifdef CONFIG_NUMA
3908 printk("Policy zone: %s\n", zone_names[policy_zone]);
3909 #endif
3913 * Helper functions to size the waitqueue hash table.
3914 * Essentially these want to choose hash table sizes sufficiently
3915 * large so that collisions trying to wait on pages are rare.
3916 * But in fact, the number of active page waitqueues on typical
3917 * systems is ridiculously low, less than 200. So this is even
3918 * conservative, even though it seems large.
3920 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3921 * waitqueues, i.e. the size of the waitq table given the number of pages.
3923 #define PAGES_PER_WAITQUEUE 256
3925 #ifndef CONFIG_MEMORY_HOTPLUG
3926 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3928 unsigned long size = 1;
3930 pages /= PAGES_PER_WAITQUEUE;
3932 while (size < pages)
3933 size <<= 1;
3936 * Once we have dozens or even hundreds of threads sleeping
3937 * on IO we've got bigger problems than wait queue collision.
3938 * Limit the size of the wait table to a reasonable size.
3940 size = min(size, 4096UL);
3942 return max(size, 4UL);
3944 #else
3946 * A zone's size might be changed by hot-add, so it is not possible to determine
3947 * a suitable size for its wait_table. So we use the maximum size now.
3949 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3951 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3952 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3953 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3955 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3956 * or more by the traditional way. (See above). It equals:
3958 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3959 * ia64(16K page size) : = ( 8G + 4M)byte.
3960 * powerpc (64K page size) : = (32G +16M)byte.
3962 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3964 return 4096UL;
3966 #endif
3969 * This is an integer logarithm so that shifts can be used later
3970 * to extract the more random high bits from the multiplicative
3971 * hash function before the remainder is taken.
3973 static inline unsigned long wait_table_bits(unsigned long size)
3975 return ffz(~size);
3979 * Check if a pageblock contains reserved pages
3981 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3983 unsigned long pfn;
3985 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3986 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3987 return 1;
3989 return 0;
3993 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3994 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3995 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3996 * higher will lead to a bigger reserve which will get freed as contiguous
3997 * blocks as reclaim kicks in
3999 static void setup_zone_migrate_reserve(struct zone *zone)
4001 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4002 struct page *page;
4003 unsigned long block_migratetype;
4004 int reserve;
4005 int old_reserve;
4008 * Get the start pfn, end pfn and the number of blocks to reserve
4009 * We have to be careful to be aligned to pageblock_nr_pages to
4010 * make sure that we always check pfn_valid for the first page in
4011 * the block.
4013 start_pfn = zone->zone_start_pfn;
4014 end_pfn = zone_end_pfn(zone);
4015 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4016 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4017 pageblock_order;
4020 * Reserve blocks are generally in place to help high-order atomic
4021 * allocations that are short-lived. A min_free_kbytes value that
4022 * would result in more than 2 reserve blocks for atomic allocations
4023 * is assumed to be in place to help anti-fragmentation for the
4024 * future allocation of hugepages at runtime.
4026 reserve = min(2, reserve);
4027 old_reserve = zone->nr_migrate_reserve_block;
4029 /* When memory hot-add, we almost always need to do nothing */
4030 if (reserve == old_reserve)
4031 return;
4032 zone->nr_migrate_reserve_block = reserve;
4034 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4035 if (!pfn_valid(pfn))
4036 continue;
4037 page = pfn_to_page(pfn);
4039 /* Watch out for overlapping nodes */
4040 if (page_to_nid(page) != zone_to_nid(zone))
4041 continue;
4043 block_migratetype = get_pageblock_migratetype(page);
4045 /* Only test what is necessary when the reserves are not met */
4046 if (reserve > 0) {
4048 * Blocks with reserved pages will never free, skip
4049 * them.
4051 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4052 if (pageblock_is_reserved(pfn, block_end_pfn))
4053 continue;
4055 /* If this block is reserved, account for it */
4056 if (block_migratetype == MIGRATE_RESERVE) {
4057 reserve--;
4058 continue;
4061 /* Suitable for reserving if this block is movable */
4062 if (block_migratetype == MIGRATE_MOVABLE) {
4063 set_pageblock_migratetype(page,
4064 MIGRATE_RESERVE);
4065 move_freepages_block(zone, page,
4066 MIGRATE_RESERVE);
4067 reserve--;
4068 continue;
4070 } else if (!old_reserve) {
4072 * At boot time we don't need to scan the whole zone
4073 * for turning off MIGRATE_RESERVE.
4075 break;
4079 * If the reserve is met and this is a previous reserved block,
4080 * take it back
4082 if (block_migratetype == MIGRATE_RESERVE) {
4083 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4084 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4090 * Initially all pages are reserved - free ones are freed
4091 * up by free_all_bootmem() once the early boot process is
4092 * done. Non-atomic initialization, single-pass.
4094 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4095 unsigned long start_pfn, enum memmap_context context)
4097 struct page *page;
4098 unsigned long end_pfn = start_pfn + size;
4099 unsigned long pfn;
4100 struct zone *z;
4102 if (highest_memmap_pfn < end_pfn - 1)
4103 highest_memmap_pfn = end_pfn - 1;
4105 z = &NODE_DATA(nid)->node_zones[zone];
4106 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4108 * There can be holes in boot-time mem_map[]s
4109 * handed to this function. They do not
4110 * exist on hotplugged memory.
4112 if (context == MEMMAP_EARLY) {
4113 if (!early_pfn_valid(pfn))
4114 continue;
4115 if (!early_pfn_in_nid(pfn, nid))
4116 continue;
4118 page = pfn_to_page(pfn);
4119 set_page_links(page, zone, nid, pfn);
4120 mminit_verify_page_links(page, zone, nid, pfn);
4121 init_page_count(page);
4122 page_mapcount_reset(page);
4123 page_cpupid_reset_last(page);
4124 SetPageReserved(page);
4126 * Mark the block movable so that blocks are reserved for
4127 * movable at startup. This will force kernel allocations
4128 * to reserve their blocks rather than leaking throughout
4129 * the address space during boot when many long-lived
4130 * kernel allocations are made. Later some blocks near
4131 * the start are marked MIGRATE_RESERVE by
4132 * setup_zone_migrate_reserve()
4134 * bitmap is created for zone's valid pfn range. but memmap
4135 * can be created for invalid pages (for alignment)
4136 * check here not to call set_pageblock_migratetype() against
4137 * pfn out of zone.
4139 if ((z->zone_start_pfn <= pfn)
4140 && (pfn < zone_end_pfn(z))
4141 && !(pfn & (pageblock_nr_pages - 1)))
4142 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4144 INIT_LIST_HEAD(&page->lru);
4145 #ifdef WANT_PAGE_VIRTUAL
4146 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4147 if (!is_highmem_idx(zone))
4148 set_page_address(page, __va(pfn << PAGE_SHIFT));
4149 #endif
4153 static void __meminit zone_init_free_lists(struct zone *zone)
4155 unsigned int order, t;
4156 for_each_migratetype_order(order, t) {
4157 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4158 zone->free_area[order].nr_free = 0;
4162 #ifndef __HAVE_ARCH_MEMMAP_INIT
4163 #define memmap_init(size, nid, zone, start_pfn) \
4164 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4165 #endif
4167 static int zone_batchsize(struct zone *zone)
4169 #ifdef CONFIG_MMU
4170 int batch;
4173 * The per-cpu-pages pools are set to around 1000th of the
4174 * size of the zone. But no more than 1/2 of a meg.
4176 * OK, so we don't know how big the cache is. So guess.
4178 batch = zone->managed_pages / 1024;
4179 if (batch * PAGE_SIZE > 512 * 1024)
4180 batch = (512 * 1024) / PAGE_SIZE;
4181 batch /= 4; /* We effectively *= 4 below */
4182 if (batch < 1)
4183 batch = 1;
4186 * Clamp the batch to a 2^n - 1 value. Having a power
4187 * of 2 value was found to be more likely to have
4188 * suboptimal cache aliasing properties in some cases.
4190 * For example if 2 tasks are alternately allocating
4191 * batches of pages, one task can end up with a lot
4192 * of pages of one half of the possible page colors
4193 * and the other with pages of the other colors.
4195 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4197 return batch;
4199 #else
4200 /* The deferral and batching of frees should be suppressed under NOMMU
4201 * conditions.
4203 * The problem is that NOMMU needs to be able to allocate large chunks
4204 * of contiguous memory as there's no hardware page translation to
4205 * assemble apparent contiguous memory from discontiguous pages.
4207 * Queueing large contiguous runs of pages for batching, however,
4208 * causes the pages to actually be freed in smaller chunks. As there
4209 * can be a significant delay between the individual batches being
4210 * recycled, this leads to the once large chunks of space being
4211 * fragmented and becoming unavailable for high-order allocations.
4213 return 0;
4214 #endif
4218 * pcp->high and pcp->batch values are related and dependent on one another:
4219 * ->batch must never be higher then ->high.
4220 * The following function updates them in a safe manner without read side
4221 * locking.
4223 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4224 * those fields changing asynchronously (acording the the above rule).
4226 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4227 * outside of boot time (or some other assurance that no concurrent updaters
4228 * exist).
4230 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4231 unsigned long batch)
4233 /* start with a fail safe value for batch */
4234 pcp->batch = 1;
4235 smp_wmb();
4237 /* Update high, then batch, in order */
4238 pcp->high = high;
4239 smp_wmb();
4241 pcp->batch = batch;
4244 /* a companion to pageset_set_high() */
4245 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4247 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4250 static void pageset_init(struct per_cpu_pageset *p)
4252 struct per_cpu_pages *pcp;
4253 int migratetype;
4255 memset(p, 0, sizeof(*p));
4257 pcp = &p->pcp;
4258 pcp->count = 0;
4259 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4260 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4263 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4265 pageset_init(p);
4266 pageset_set_batch(p, batch);
4270 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4271 * to the value high for the pageset p.
4273 static void pageset_set_high(struct per_cpu_pageset *p,
4274 unsigned long high)
4276 unsigned long batch = max(1UL, high / 4);
4277 if ((high / 4) > (PAGE_SHIFT * 8))
4278 batch = PAGE_SHIFT * 8;
4280 pageset_update(&p->pcp, high, batch);
4283 static void pageset_set_high_and_batch(struct zone *zone,
4284 struct per_cpu_pageset *pcp)
4286 if (percpu_pagelist_fraction)
4287 pageset_set_high(pcp,
4288 (zone->managed_pages /
4289 percpu_pagelist_fraction));
4290 else
4291 pageset_set_batch(pcp, zone_batchsize(zone));
4294 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4296 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4298 pageset_init(pcp);
4299 pageset_set_high_and_batch(zone, pcp);
4302 static void __meminit setup_zone_pageset(struct zone *zone)
4304 int cpu;
4305 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4306 for_each_possible_cpu(cpu)
4307 zone_pageset_init(zone, cpu);
4311 * Allocate per cpu pagesets and initialize them.
4312 * Before this call only boot pagesets were available.
4314 void __init setup_per_cpu_pageset(void)
4316 struct zone *zone;
4318 for_each_populated_zone(zone)
4319 setup_zone_pageset(zone);
4322 static noinline __init_refok
4323 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4325 int i;
4326 size_t alloc_size;
4329 * The per-page waitqueue mechanism uses hashed waitqueues
4330 * per zone.
4332 zone->wait_table_hash_nr_entries =
4333 wait_table_hash_nr_entries(zone_size_pages);
4334 zone->wait_table_bits =
4335 wait_table_bits(zone->wait_table_hash_nr_entries);
4336 alloc_size = zone->wait_table_hash_nr_entries
4337 * sizeof(wait_queue_head_t);
4339 if (!slab_is_available()) {
4340 zone->wait_table = (wait_queue_head_t *)
4341 memblock_virt_alloc_node_nopanic(
4342 alloc_size, zone->zone_pgdat->node_id);
4343 } else {
4345 * This case means that a zone whose size was 0 gets new memory
4346 * via memory hot-add.
4347 * But it may be the case that a new node was hot-added. In
4348 * this case vmalloc() will not be able to use this new node's
4349 * memory - this wait_table must be initialized to use this new
4350 * node itself as well.
4351 * To use this new node's memory, further consideration will be
4352 * necessary.
4354 zone->wait_table = vmalloc(alloc_size);
4356 if (!zone->wait_table)
4357 return -ENOMEM;
4359 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4360 init_waitqueue_head(zone->wait_table + i);
4362 return 0;
4365 static __meminit void zone_pcp_init(struct zone *zone)
4368 * per cpu subsystem is not up at this point. The following code
4369 * relies on the ability of the linker to provide the
4370 * offset of a (static) per cpu variable into the per cpu area.
4372 zone->pageset = &boot_pageset;
4374 if (populated_zone(zone))
4375 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4376 zone->name, zone->present_pages,
4377 zone_batchsize(zone));
4380 int __meminit init_currently_empty_zone(struct zone *zone,
4381 unsigned long zone_start_pfn,
4382 unsigned long size,
4383 enum memmap_context context)
4385 struct pglist_data *pgdat = zone->zone_pgdat;
4386 int ret;
4387 ret = zone_wait_table_init(zone, size);
4388 if (ret)
4389 return ret;
4390 pgdat->nr_zones = zone_idx(zone) + 1;
4392 zone->zone_start_pfn = zone_start_pfn;
4394 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4395 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4396 pgdat->node_id,
4397 (unsigned long)zone_idx(zone),
4398 zone_start_pfn, (zone_start_pfn + size));
4400 zone_init_free_lists(zone);
4402 return 0;
4405 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4406 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4408 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4410 int __meminit __early_pfn_to_nid(unsigned long pfn)
4412 unsigned long start_pfn, end_pfn;
4413 int nid;
4415 * NOTE: The following SMP-unsafe globals are only used early in boot
4416 * when the kernel is running single-threaded.
4418 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4419 static int __meminitdata last_nid;
4421 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4422 return last_nid;
4424 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4425 if (nid != -1) {
4426 last_start_pfn = start_pfn;
4427 last_end_pfn = end_pfn;
4428 last_nid = nid;
4431 return nid;
4433 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4435 int __meminit early_pfn_to_nid(unsigned long pfn)
4437 int nid;
4439 nid = __early_pfn_to_nid(pfn);
4440 if (nid >= 0)
4441 return nid;
4442 /* just returns 0 */
4443 return 0;
4446 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4447 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4449 int nid;
4451 nid = __early_pfn_to_nid(pfn);
4452 if (nid >= 0 && nid != node)
4453 return false;
4454 return true;
4456 #endif
4459 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4460 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4461 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4463 * If an architecture guarantees that all ranges registered contain no holes
4464 * and may be freed, this this function may be used instead of calling
4465 * memblock_free_early_nid() manually.
4467 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4469 unsigned long start_pfn, end_pfn;
4470 int i, this_nid;
4472 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4473 start_pfn = min(start_pfn, max_low_pfn);
4474 end_pfn = min(end_pfn, max_low_pfn);
4476 if (start_pfn < end_pfn)
4477 memblock_free_early_nid(PFN_PHYS(start_pfn),
4478 (end_pfn - start_pfn) << PAGE_SHIFT,
4479 this_nid);
4484 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4485 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4487 * If an architecture guarantees that all ranges registered contain no holes and may
4488 * be freed, this function may be used instead of calling memory_present() manually.
4490 void __init sparse_memory_present_with_active_regions(int nid)
4492 unsigned long start_pfn, end_pfn;
4493 int i, this_nid;
4495 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4496 memory_present(this_nid, start_pfn, end_pfn);
4500 * get_pfn_range_for_nid - Return the start and end page frames for a node
4501 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4502 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4503 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4505 * It returns the start and end page frame of a node based on information
4506 * provided by memblock_set_node(). If called for a node
4507 * with no available memory, a warning is printed and the start and end
4508 * PFNs will be 0.
4510 void __meminit get_pfn_range_for_nid(unsigned int nid,
4511 unsigned long *start_pfn, unsigned long *end_pfn)
4513 unsigned long this_start_pfn, this_end_pfn;
4514 int i;
4516 *start_pfn = -1UL;
4517 *end_pfn = 0;
4519 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4520 *start_pfn = min(*start_pfn, this_start_pfn);
4521 *end_pfn = max(*end_pfn, this_end_pfn);
4524 if (*start_pfn == -1UL)
4525 *start_pfn = 0;
4529 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4530 * assumption is made that zones within a node are ordered in monotonic
4531 * increasing memory addresses so that the "highest" populated zone is used
4533 static void __init find_usable_zone_for_movable(void)
4535 int zone_index;
4536 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4537 if (zone_index == ZONE_MOVABLE)
4538 continue;
4540 if (arch_zone_highest_possible_pfn[zone_index] >
4541 arch_zone_lowest_possible_pfn[zone_index])
4542 break;
4545 VM_BUG_ON(zone_index == -1);
4546 movable_zone = zone_index;
4550 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4551 * because it is sized independent of architecture. Unlike the other zones,
4552 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4553 * in each node depending on the size of each node and how evenly kernelcore
4554 * is distributed. This helper function adjusts the zone ranges
4555 * provided by the architecture for a given node by using the end of the
4556 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4557 * zones within a node are in order of monotonic increases memory addresses
4559 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4560 unsigned long zone_type,
4561 unsigned long node_start_pfn,
4562 unsigned long node_end_pfn,
4563 unsigned long *zone_start_pfn,
4564 unsigned long *zone_end_pfn)
4566 /* Only adjust if ZONE_MOVABLE is on this node */
4567 if (zone_movable_pfn[nid]) {
4568 /* Size ZONE_MOVABLE */
4569 if (zone_type == ZONE_MOVABLE) {
4570 *zone_start_pfn = zone_movable_pfn[nid];
4571 *zone_end_pfn = min(node_end_pfn,
4572 arch_zone_highest_possible_pfn[movable_zone]);
4574 /* Adjust for ZONE_MOVABLE starting within this range */
4575 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4576 *zone_end_pfn > zone_movable_pfn[nid]) {
4577 *zone_end_pfn = zone_movable_pfn[nid];
4579 /* Check if this whole range is within ZONE_MOVABLE */
4580 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4581 *zone_start_pfn = *zone_end_pfn;
4586 * Return the number of pages a zone spans in a node, including holes
4587 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4589 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4590 unsigned long zone_type,
4591 unsigned long node_start_pfn,
4592 unsigned long node_end_pfn,
4593 unsigned long *ignored)
4595 unsigned long zone_start_pfn, zone_end_pfn;
4597 /* Get the start and end of the zone */
4598 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4599 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4600 adjust_zone_range_for_zone_movable(nid, zone_type,
4601 node_start_pfn, node_end_pfn,
4602 &zone_start_pfn, &zone_end_pfn);
4604 /* Check that this node has pages within the zone's required range */
4605 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4606 return 0;
4608 /* Move the zone boundaries inside the node if necessary */
4609 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4610 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4612 /* Return the spanned pages */
4613 return zone_end_pfn - zone_start_pfn;
4617 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4618 * then all holes in the requested range will be accounted for.
4620 unsigned long __meminit __absent_pages_in_range(int nid,
4621 unsigned long range_start_pfn,
4622 unsigned long range_end_pfn)
4624 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4625 unsigned long start_pfn, end_pfn;
4626 int i;
4628 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4629 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4630 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4631 nr_absent -= end_pfn - start_pfn;
4633 return nr_absent;
4637 * absent_pages_in_range - Return number of page frames in holes within a range
4638 * @start_pfn: The start PFN to start searching for holes
4639 * @end_pfn: The end PFN to stop searching for holes
4641 * It returns the number of pages frames in memory holes within a range.
4643 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4644 unsigned long end_pfn)
4646 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4649 /* Return the number of page frames in holes in a zone on a node */
4650 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4651 unsigned long zone_type,
4652 unsigned long node_start_pfn,
4653 unsigned long node_end_pfn,
4654 unsigned long *ignored)
4656 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4657 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4658 unsigned long zone_start_pfn, zone_end_pfn;
4660 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4661 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4663 adjust_zone_range_for_zone_movable(nid, zone_type,
4664 node_start_pfn, node_end_pfn,
4665 &zone_start_pfn, &zone_end_pfn);
4666 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4669 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4670 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4671 unsigned long zone_type,
4672 unsigned long node_start_pfn,
4673 unsigned long node_end_pfn,
4674 unsigned long *zones_size)
4676 return zones_size[zone_type];
4679 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4680 unsigned long zone_type,
4681 unsigned long node_start_pfn,
4682 unsigned long node_end_pfn,
4683 unsigned long *zholes_size)
4685 if (!zholes_size)
4686 return 0;
4688 return zholes_size[zone_type];
4691 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4693 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4694 unsigned long node_start_pfn,
4695 unsigned long node_end_pfn,
4696 unsigned long *zones_size,
4697 unsigned long *zholes_size)
4699 unsigned long realtotalpages, totalpages = 0;
4700 enum zone_type i;
4702 for (i = 0; i < MAX_NR_ZONES; i++)
4703 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4704 node_start_pfn,
4705 node_end_pfn,
4706 zones_size);
4707 pgdat->node_spanned_pages = totalpages;
4709 realtotalpages = totalpages;
4710 for (i = 0; i < MAX_NR_ZONES; i++)
4711 realtotalpages -=
4712 zone_absent_pages_in_node(pgdat->node_id, i,
4713 node_start_pfn, node_end_pfn,
4714 zholes_size);
4715 pgdat->node_present_pages = realtotalpages;
4716 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4717 realtotalpages);
4720 #ifndef CONFIG_SPARSEMEM
4722 * Calculate the size of the zone->blockflags rounded to an unsigned long
4723 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4724 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4725 * round what is now in bits to nearest long in bits, then return it in
4726 * bytes.
4728 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4730 unsigned long usemapsize;
4732 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4733 usemapsize = roundup(zonesize, pageblock_nr_pages);
4734 usemapsize = usemapsize >> pageblock_order;
4735 usemapsize *= NR_PAGEBLOCK_BITS;
4736 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4738 return usemapsize / 8;
4741 static void __init setup_usemap(struct pglist_data *pgdat,
4742 struct zone *zone,
4743 unsigned long zone_start_pfn,
4744 unsigned long zonesize)
4746 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4747 zone->pageblock_flags = NULL;
4748 if (usemapsize)
4749 zone->pageblock_flags =
4750 memblock_virt_alloc_node_nopanic(usemapsize,
4751 pgdat->node_id);
4753 #else
4754 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4755 unsigned long zone_start_pfn, unsigned long zonesize) {}
4756 #endif /* CONFIG_SPARSEMEM */
4758 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4760 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4761 void __paginginit set_pageblock_order(void)
4763 unsigned int order;
4765 /* Check that pageblock_nr_pages has not already been setup */
4766 if (pageblock_order)
4767 return;
4769 if (HPAGE_SHIFT > PAGE_SHIFT)
4770 order = HUGETLB_PAGE_ORDER;
4771 else
4772 order = MAX_ORDER - 1;
4775 * Assume the largest contiguous order of interest is a huge page.
4776 * This value may be variable depending on boot parameters on IA64 and
4777 * powerpc.
4779 pageblock_order = order;
4781 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4784 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4785 * is unused as pageblock_order is set at compile-time. See
4786 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4787 * the kernel config
4789 void __paginginit set_pageblock_order(void)
4793 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4795 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4796 unsigned long present_pages)
4798 unsigned long pages = spanned_pages;
4801 * Provide a more accurate estimation if there are holes within
4802 * the zone and SPARSEMEM is in use. If there are holes within the
4803 * zone, each populated memory region may cost us one or two extra
4804 * memmap pages due to alignment because memmap pages for each
4805 * populated regions may not naturally algined on page boundary.
4806 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4808 if (spanned_pages > present_pages + (present_pages >> 4) &&
4809 IS_ENABLED(CONFIG_SPARSEMEM))
4810 pages = present_pages;
4812 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4816 * Set up the zone data structures:
4817 * - mark all pages reserved
4818 * - mark all memory queues empty
4819 * - clear the memory bitmaps
4821 * NOTE: pgdat should get zeroed by caller.
4823 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4824 unsigned long node_start_pfn, unsigned long node_end_pfn,
4825 unsigned long *zones_size, unsigned long *zholes_size)
4827 enum zone_type j;
4828 int nid = pgdat->node_id;
4829 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4830 int ret;
4832 pgdat_resize_init(pgdat);
4833 #ifdef CONFIG_NUMA_BALANCING
4834 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4835 pgdat->numabalancing_migrate_nr_pages = 0;
4836 pgdat->numabalancing_migrate_next_window = jiffies;
4837 #endif
4838 init_waitqueue_head(&pgdat->kswapd_wait);
4839 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4840 pgdat_page_cgroup_init(pgdat);
4842 for (j = 0; j < MAX_NR_ZONES; j++) {
4843 struct zone *zone = pgdat->node_zones + j;
4844 unsigned long size, realsize, freesize, memmap_pages;
4846 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4847 node_end_pfn, zones_size);
4848 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4849 node_start_pfn,
4850 node_end_pfn,
4851 zholes_size);
4854 * Adjust freesize so that it accounts for how much memory
4855 * is used by this zone for memmap. This affects the watermark
4856 * and per-cpu initialisations
4858 memmap_pages = calc_memmap_size(size, realsize);
4859 if (freesize >= memmap_pages) {
4860 freesize -= memmap_pages;
4861 if (memmap_pages)
4862 printk(KERN_DEBUG
4863 " %s zone: %lu pages used for memmap\n",
4864 zone_names[j], memmap_pages);
4865 } else
4866 printk(KERN_WARNING
4867 " %s zone: %lu pages exceeds freesize %lu\n",
4868 zone_names[j], memmap_pages, freesize);
4870 /* Account for reserved pages */
4871 if (j == 0 && freesize > dma_reserve) {
4872 freesize -= dma_reserve;
4873 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4874 zone_names[0], dma_reserve);
4877 if (!is_highmem_idx(j))
4878 nr_kernel_pages += freesize;
4879 /* Charge for highmem memmap if there are enough kernel pages */
4880 else if (nr_kernel_pages > memmap_pages * 2)
4881 nr_kernel_pages -= memmap_pages;
4882 nr_all_pages += freesize;
4884 zone->spanned_pages = size;
4885 zone->present_pages = realsize;
4887 * Set an approximate value for lowmem here, it will be adjusted
4888 * when the bootmem allocator frees pages into the buddy system.
4889 * And all highmem pages will be managed by the buddy system.
4891 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4892 #ifdef CONFIG_NUMA
4893 zone->node = nid;
4894 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4895 / 100;
4896 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4897 #endif
4898 zone->name = zone_names[j];
4899 spin_lock_init(&zone->lock);
4900 spin_lock_init(&zone->lru_lock);
4901 zone_seqlock_init(zone);
4902 zone->zone_pgdat = pgdat;
4903 zone_pcp_init(zone);
4905 /* For bootup, initialized properly in watermark setup */
4906 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4908 lruvec_init(&zone->lruvec);
4909 if (!size)
4910 continue;
4912 set_pageblock_order();
4913 setup_usemap(pgdat, zone, zone_start_pfn, size);
4914 ret = init_currently_empty_zone(zone, zone_start_pfn,
4915 size, MEMMAP_EARLY);
4916 BUG_ON(ret);
4917 memmap_init(size, nid, j, zone_start_pfn);
4918 zone_start_pfn += size;
4922 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4924 /* Skip empty nodes */
4925 if (!pgdat->node_spanned_pages)
4926 return;
4928 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4929 /* ia64 gets its own node_mem_map, before this, without bootmem */
4930 if (!pgdat->node_mem_map) {
4931 unsigned long size, start, end;
4932 struct page *map;
4935 * The zone's endpoints aren't required to be MAX_ORDER
4936 * aligned but the node_mem_map endpoints must be in order
4937 * for the buddy allocator to function correctly.
4939 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4940 end = pgdat_end_pfn(pgdat);
4941 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4942 size = (end - start) * sizeof(struct page);
4943 map = alloc_remap(pgdat->node_id, size);
4944 if (!map)
4945 map = memblock_virt_alloc_node_nopanic(size,
4946 pgdat->node_id);
4947 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4949 #ifndef CONFIG_NEED_MULTIPLE_NODES
4951 * With no DISCONTIG, the global mem_map is just set as node 0's
4953 if (pgdat == NODE_DATA(0)) {
4954 mem_map = NODE_DATA(0)->node_mem_map;
4955 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4956 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4957 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4958 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4960 #endif
4961 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4964 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4965 unsigned long node_start_pfn, unsigned long *zholes_size)
4967 pg_data_t *pgdat = NODE_DATA(nid);
4968 unsigned long start_pfn = 0;
4969 unsigned long end_pfn = 0;
4971 /* pg_data_t should be reset to zero when it's allocated */
4972 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4974 pgdat->node_id = nid;
4975 pgdat->node_start_pfn = node_start_pfn;
4976 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4977 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4978 #endif
4979 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4980 zones_size, zholes_size);
4982 alloc_node_mem_map(pgdat);
4983 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4984 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4985 nid, (unsigned long)pgdat,
4986 (unsigned long)pgdat->node_mem_map);
4987 #endif
4989 free_area_init_core(pgdat, start_pfn, end_pfn,
4990 zones_size, zholes_size);
4993 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4995 #if MAX_NUMNODES > 1
4997 * Figure out the number of possible node ids.
4999 void __init setup_nr_node_ids(void)
5001 unsigned int node;
5002 unsigned int highest = 0;
5004 for_each_node_mask(node, node_possible_map)
5005 highest = node;
5006 nr_node_ids = highest + 1;
5008 #endif
5011 * node_map_pfn_alignment - determine the maximum internode alignment
5013 * This function should be called after node map is populated and sorted.
5014 * It calculates the maximum power of two alignment which can distinguish
5015 * all the nodes.
5017 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5018 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5019 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5020 * shifted, 1GiB is enough and this function will indicate so.
5022 * This is used to test whether pfn -> nid mapping of the chosen memory
5023 * model has fine enough granularity to avoid incorrect mapping for the
5024 * populated node map.
5026 * Returns the determined alignment in pfn's. 0 if there is no alignment
5027 * requirement (single node).
5029 unsigned long __init node_map_pfn_alignment(void)
5031 unsigned long accl_mask = 0, last_end = 0;
5032 unsigned long start, end, mask;
5033 int last_nid = -1;
5034 int i, nid;
5036 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5037 if (!start || last_nid < 0 || last_nid == nid) {
5038 last_nid = nid;
5039 last_end = end;
5040 continue;
5044 * Start with a mask granular enough to pin-point to the
5045 * start pfn and tick off bits one-by-one until it becomes
5046 * too coarse to separate the current node from the last.
5048 mask = ~((1 << __ffs(start)) - 1);
5049 while (mask && last_end <= (start & (mask << 1)))
5050 mask <<= 1;
5052 /* accumulate all internode masks */
5053 accl_mask |= mask;
5056 /* convert mask to number of pages */
5057 return ~accl_mask + 1;
5060 /* Find the lowest pfn for a node */
5061 static unsigned long __init find_min_pfn_for_node(int nid)
5063 unsigned long min_pfn = ULONG_MAX;
5064 unsigned long start_pfn;
5065 int i;
5067 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5068 min_pfn = min(min_pfn, start_pfn);
5070 if (min_pfn == ULONG_MAX) {
5071 printk(KERN_WARNING
5072 "Could not find start_pfn for node %d\n", nid);
5073 return 0;
5076 return min_pfn;
5080 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5082 * It returns the minimum PFN based on information provided via
5083 * memblock_set_node().
5085 unsigned long __init find_min_pfn_with_active_regions(void)
5087 return find_min_pfn_for_node(MAX_NUMNODES);
5091 * early_calculate_totalpages()
5092 * Sum pages in active regions for movable zone.
5093 * Populate N_MEMORY for calculating usable_nodes.
5095 static unsigned long __init early_calculate_totalpages(void)
5097 unsigned long totalpages = 0;
5098 unsigned long start_pfn, end_pfn;
5099 int i, nid;
5101 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5102 unsigned long pages = end_pfn - start_pfn;
5104 totalpages += pages;
5105 if (pages)
5106 node_set_state(nid, N_MEMORY);
5108 return totalpages;
5112 * Find the PFN the Movable zone begins in each node. Kernel memory
5113 * is spread evenly between nodes as long as the nodes have enough
5114 * memory. When they don't, some nodes will have more kernelcore than
5115 * others
5117 static void __init find_zone_movable_pfns_for_nodes(void)
5119 int i, nid;
5120 unsigned long usable_startpfn;
5121 unsigned long kernelcore_node, kernelcore_remaining;
5122 /* save the state before borrow the nodemask */
5123 nodemask_t saved_node_state = node_states[N_MEMORY];
5124 unsigned long totalpages = early_calculate_totalpages();
5125 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5126 struct memblock_region *r;
5128 /* Need to find movable_zone earlier when movable_node is specified. */
5129 find_usable_zone_for_movable();
5132 * If movable_node is specified, ignore kernelcore and movablecore
5133 * options.
5135 if (movable_node_is_enabled()) {
5136 for_each_memblock(memory, r) {
5137 if (!memblock_is_hotpluggable(r))
5138 continue;
5140 nid = r->nid;
5142 usable_startpfn = PFN_DOWN(r->base);
5143 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5144 min(usable_startpfn, zone_movable_pfn[nid]) :
5145 usable_startpfn;
5148 goto out2;
5152 * If movablecore=nn[KMG] was specified, calculate what size of
5153 * kernelcore that corresponds so that memory usable for
5154 * any allocation type is evenly spread. If both kernelcore
5155 * and movablecore are specified, then the value of kernelcore
5156 * will be used for required_kernelcore if it's greater than
5157 * what movablecore would have allowed.
5159 if (required_movablecore) {
5160 unsigned long corepages;
5163 * Round-up so that ZONE_MOVABLE is at least as large as what
5164 * was requested by the user
5166 required_movablecore =
5167 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5168 corepages = totalpages - required_movablecore;
5170 required_kernelcore = max(required_kernelcore, corepages);
5173 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5174 if (!required_kernelcore)
5175 goto out;
5177 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5178 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5180 restart:
5181 /* Spread kernelcore memory as evenly as possible throughout nodes */
5182 kernelcore_node = required_kernelcore / usable_nodes;
5183 for_each_node_state(nid, N_MEMORY) {
5184 unsigned long start_pfn, end_pfn;
5187 * Recalculate kernelcore_node if the division per node
5188 * now exceeds what is necessary to satisfy the requested
5189 * amount of memory for the kernel
5191 if (required_kernelcore < kernelcore_node)
5192 kernelcore_node = required_kernelcore / usable_nodes;
5195 * As the map is walked, we track how much memory is usable
5196 * by the kernel using kernelcore_remaining. When it is
5197 * 0, the rest of the node is usable by ZONE_MOVABLE
5199 kernelcore_remaining = kernelcore_node;
5201 /* Go through each range of PFNs within this node */
5202 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5203 unsigned long size_pages;
5205 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5206 if (start_pfn >= end_pfn)
5207 continue;
5209 /* Account for what is only usable for kernelcore */
5210 if (start_pfn < usable_startpfn) {
5211 unsigned long kernel_pages;
5212 kernel_pages = min(end_pfn, usable_startpfn)
5213 - start_pfn;
5215 kernelcore_remaining -= min(kernel_pages,
5216 kernelcore_remaining);
5217 required_kernelcore -= min(kernel_pages,
5218 required_kernelcore);
5220 /* Continue if range is now fully accounted */
5221 if (end_pfn <= usable_startpfn) {
5224 * Push zone_movable_pfn to the end so
5225 * that if we have to rebalance
5226 * kernelcore across nodes, we will
5227 * not double account here
5229 zone_movable_pfn[nid] = end_pfn;
5230 continue;
5232 start_pfn = usable_startpfn;
5236 * The usable PFN range for ZONE_MOVABLE is from
5237 * start_pfn->end_pfn. Calculate size_pages as the
5238 * number of pages used as kernelcore
5240 size_pages = end_pfn - start_pfn;
5241 if (size_pages > kernelcore_remaining)
5242 size_pages = kernelcore_remaining;
5243 zone_movable_pfn[nid] = start_pfn + size_pages;
5246 * Some kernelcore has been met, update counts and
5247 * break if the kernelcore for this node has been
5248 * satisfied
5250 required_kernelcore -= min(required_kernelcore,
5251 size_pages);
5252 kernelcore_remaining -= size_pages;
5253 if (!kernelcore_remaining)
5254 break;
5259 * If there is still required_kernelcore, we do another pass with one
5260 * less node in the count. This will push zone_movable_pfn[nid] further
5261 * along on the nodes that still have memory until kernelcore is
5262 * satisfied
5264 usable_nodes--;
5265 if (usable_nodes && required_kernelcore > usable_nodes)
5266 goto restart;
5268 out2:
5269 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5270 for (nid = 0; nid < MAX_NUMNODES; nid++)
5271 zone_movable_pfn[nid] =
5272 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5274 out:
5275 /* restore the node_state */
5276 node_states[N_MEMORY] = saved_node_state;
5279 /* Any regular or high memory on that node ? */
5280 static void check_for_memory(pg_data_t *pgdat, int nid)
5282 enum zone_type zone_type;
5284 if (N_MEMORY == N_NORMAL_MEMORY)
5285 return;
5287 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5288 struct zone *zone = &pgdat->node_zones[zone_type];
5289 if (populated_zone(zone)) {
5290 node_set_state(nid, N_HIGH_MEMORY);
5291 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5292 zone_type <= ZONE_NORMAL)
5293 node_set_state(nid, N_NORMAL_MEMORY);
5294 break;
5300 * free_area_init_nodes - Initialise all pg_data_t and zone data
5301 * @max_zone_pfn: an array of max PFNs for each zone
5303 * This will call free_area_init_node() for each active node in the system.
5304 * Using the page ranges provided by memblock_set_node(), the size of each
5305 * zone in each node and their holes is calculated. If the maximum PFN
5306 * between two adjacent zones match, it is assumed that the zone is empty.
5307 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5308 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5309 * starts where the previous one ended. For example, ZONE_DMA32 starts
5310 * at arch_max_dma_pfn.
5312 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5314 unsigned long start_pfn, end_pfn;
5315 int i, nid;
5317 /* Record where the zone boundaries are */
5318 memset(arch_zone_lowest_possible_pfn, 0,
5319 sizeof(arch_zone_lowest_possible_pfn));
5320 memset(arch_zone_highest_possible_pfn, 0,
5321 sizeof(arch_zone_highest_possible_pfn));
5322 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5323 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5324 for (i = 1; i < MAX_NR_ZONES; i++) {
5325 if (i == ZONE_MOVABLE)
5326 continue;
5327 arch_zone_lowest_possible_pfn[i] =
5328 arch_zone_highest_possible_pfn[i-1];
5329 arch_zone_highest_possible_pfn[i] =
5330 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5332 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5333 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5335 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5336 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5337 find_zone_movable_pfns_for_nodes();
5339 /* Print out the zone ranges */
5340 printk("Zone ranges:\n");
5341 for (i = 0; i < MAX_NR_ZONES; i++) {
5342 if (i == ZONE_MOVABLE)
5343 continue;
5344 printk(KERN_CONT " %-8s ", zone_names[i]);
5345 if (arch_zone_lowest_possible_pfn[i] ==
5346 arch_zone_highest_possible_pfn[i])
5347 printk(KERN_CONT "empty\n");
5348 else
5349 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5350 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5351 (arch_zone_highest_possible_pfn[i]
5352 << PAGE_SHIFT) - 1);
5355 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5356 printk("Movable zone start for each node\n");
5357 for (i = 0; i < MAX_NUMNODES; i++) {
5358 if (zone_movable_pfn[i])
5359 printk(" Node %d: %#010lx\n", i,
5360 zone_movable_pfn[i] << PAGE_SHIFT);
5363 /* Print out the early node map */
5364 printk("Early memory node ranges\n");
5365 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5366 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5367 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5369 /* Initialise every node */
5370 mminit_verify_pageflags_layout();
5371 setup_nr_node_ids();
5372 for_each_online_node(nid) {
5373 pg_data_t *pgdat = NODE_DATA(nid);
5374 free_area_init_node(nid, NULL,
5375 find_min_pfn_for_node(nid), NULL);
5377 /* Any memory on that node */
5378 if (pgdat->node_present_pages)
5379 node_set_state(nid, N_MEMORY);
5380 check_for_memory(pgdat, nid);
5384 static int __init cmdline_parse_core(char *p, unsigned long *core)
5386 unsigned long long coremem;
5387 if (!p)
5388 return -EINVAL;
5390 coremem = memparse(p, &p);
5391 *core = coremem >> PAGE_SHIFT;
5393 /* Paranoid check that UL is enough for the coremem value */
5394 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5396 return 0;
5400 * kernelcore=size sets the amount of memory for use for allocations that
5401 * cannot be reclaimed or migrated.
5403 static int __init cmdline_parse_kernelcore(char *p)
5405 return cmdline_parse_core(p, &required_kernelcore);
5409 * movablecore=size sets the amount of memory for use for allocations that
5410 * can be reclaimed or migrated.
5412 static int __init cmdline_parse_movablecore(char *p)
5414 return cmdline_parse_core(p, &required_movablecore);
5417 early_param("kernelcore", cmdline_parse_kernelcore);
5418 early_param("movablecore", cmdline_parse_movablecore);
5420 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5422 void adjust_managed_page_count(struct page *page, long count)
5424 spin_lock(&managed_page_count_lock);
5425 page_zone(page)->managed_pages += count;
5426 totalram_pages += count;
5427 #ifdef CONFIG_HIGHMEM
5428 if (PageHighMem(page))
5429 totalhigh_pages += count;
5430 #endif
5431 spin_unlock(&managed_page_count_lock);
5433 EXPORT_SYMBOL(adjust_managed_page_count);
5435 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5437 void *pos;
5438 unsigned long pages = 0;
5440 start = (void *)PAGE_ALIGN((unsigned long)start);
5441 end = (void *)((unsigned long)end & PAGE_MASK);
5442 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5443 if ((unsigned int)poison <= 0xFF)
5444 memset(pos, poison, PAGE_SIZE);
5445 free_reserved_page(virt_to_page(pos));
5448 if (pages && s)
5449 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5450 s, pages << (PAGE_SHIFT - 10), start, end);
5452 return pages;
5454 EXPORT_SYMBOL(free_reserved_area);
5456 #ifdef CONFIG_HIGHMEM
5457 void free_highmem_page(struct page *page)
5459 __free_reserved_page(page);
5460 totalram_pages++;
5461 page_zone(page)->managed_pages++;
5462 totalhigh_pages++;
5464 #endif
5467 void __init mem_init_print_info(const char *str)
5469 unsigned long physpages, codesize, datasize, rosize, bss_size;
5470 unsigned long init_code_size, init_data_size;
5472 physpages = get_num_physpages();
5473 codesize = _etext - _stext;
5474 datasize = _edata - _sdata;
5475 rosize = __end_rodata - __start_rodata;
5476 bss_size = __bss_stop - __bss_start;
5477 init_data_size = __init_end - __init_begin;
5478 init_code_size = _einittext - _sinittext;
5481 * Detect special cases and adjust section sizes accordingly:
5482 * 1) .init.* may be embedded into .data sections
5483 * 2) .init.text.* may be out of [__init_begin, __init_end],
5484 * please refer to arch/tile/kernel/vmlinux.lds.S.
5485 * 3) .rodata.* may be embedded into .text or .data sections.
5487 #define adj_init_size(start, end, size, pos, adj) \
5488 do { \
5489 if (start <= pos && pos < end && size > adj) \
5490 size -= adj; \
5491 } while (0)
5493 adj_init_size(__init_begin, __init_end, init_data_size,
5494 _sinittext, init_code_size);
5495 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5496 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5497 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5498 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5500 #undef adj_init_size
5502 printk("Memory: %luK/%luK available "
5503 "(%luK kernel code, %luK rwdata, %luK rodata, "
5504 "%luK init, %luK bss, %luK reserved"
5505 #ifdef CONFIG_HIGHMEM
5506 ", %luK highmem"
5507 #endif
5508 "%s%s)\n",
5509 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5510 codesize >> 10, datasize >> 10, rosize >> 10,
5511 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5512 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5513 #ifdef CONFIG_HIGHMEM
5514 totalhigh_pages << (PAGE_SHIFT-10),
5515 #endif
5516 str ? ", " : "", str ? str : "");
5520 * set_dma_reserve - set the specified number of pages reserved in the first zone
5521 * @new_dma_reserve: The number of pages to mark reserved
5523 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5524 * In the DMA zone, a significant percentage may be consumed by kernel image
5525 * and other unfreeable allocations which can skew the watermarks badly. This
5526 * function may optionally be used to account for unfreeable pages in the
5527 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5528 * smaller per-cpu batchsize.
5530 void __init set_dma_reserve(unsigned long new_dma_reserve)
5532 dma_reserve = new_dma_reserve;
5535 void __init free_area_init(unsigned long *zones_size)
5537 free_area_init_node(0, zones_size,
5538 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5541 static int page_alloc_cpu_notify(struct notifier_block *self,
5542 unsigned long action, void *hcpu)
5544 int cpu = (unsigned long)hcpu;
5546 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5547 lru_add_drain_cpu(cpu);
5548 drain_pages(cpu);
5551 * Spill the event counters of the dead processor
5552 * into the current processors event counters.
5553 * This artificially elevates the count of the current
5554 * processor.
5556 vm_events_fold_cpu(cpu);
5559 * Zero the differential counters of the dead processor
5560 * so that the vm statistics are consistent.
5562 * This is only okay since the processor is dead and cannot
5563 * race with what we are doing.
5565 cpu_vm_stats_fold(cpu);
5567 return NOTIFY_OK;
5570 void __init page_alloc_init(void)
5572 hotcpu_notifier(page_alloc_cpu_notify, 0);
5576 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5577 * or min_free_kbytes changes.
5579 static void calculate_totalreserve_pages(void)
5581 struct pglist_data *pgdat;
5582 unsigned long reserve_pages = 0;
5583 enum zone_type i, j;
5585 for_each_online_pgdat(pgdat) {
5586 for (i = 0; i < MAX_NR_ZONES; i++) {
5587 struct zone *zone = pgdat->node_zones + i;
5588 unsigned long max = 0;
5590 /* Find valid and maximum lowmem_reserve in the zone */
5591 for (j = i; j < MAX_NR_ZONES; j++) {
5592 if (zone->lowmem_reserve[j] > max)
5593 max = zone->lowmem_reserve[j];
5596 /* we treat the high watermark as reserved pages. */
5597 max += high_wmark_pages(zone);
5599 if (max > zone->managed_pages)
5600 max = zone->managed_pages;
5601 reserve_pages += max;
5603 * Lowmem reserves are not available to
5604 * GFP_HIGHUSER page cache allocations and
5605 * kswapd tries to balance zones to their high
5606 * watermark. As a result, neither should be
5607 * regarded as dirtyable memory, to prevent a
5608 * situation where reclaim has to clean pages
5609 * in order to balance the zones.
5611 zone->dirty_balance_reserve = max;
5614 dirty_balance_reserve = reserve_pages;
5615 totalreserve_pages = reserve_pages;
5619 * setup_per_zone_lowmem_reserve - called whenever
5620 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5621 * has a correct pages reserved value, so an adequate number of
5622 * pages are left in the zone after a successful __alloc_pages().
5624 static void setup_per_zone_lowmem_reserve(void)
5626 struct pglist_data *pgdat;
5627 enum zone_type j, idx;
5629 for_each_online_pgdat(pgdat) {
5630 for (j = 0; j < MAX_NR_ZONES; j++) {
5631 struct zone *zone = pgdat->node_zones + j;
5632 unsigned long managed_pages = zone->managed_pages;
5634 zone->lowmem_reserve[j] = 0;
5636 idx = j;
5637 while (idx) {
5638 struct zone *lower_zone;
5640 idx--;
5642 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5643 sysctl_lowmem_reserve_ratio[idx] = 1;
5645 lower_zone = pgdat->node_zones + idx;
5646 lower_zone->lowmem_reserve[j] = managed_pages /
5647 sysctl_lowmem_reserve_ratio[idx];
5648 managed_pages += lower_zone->managed_pages;
5653 /* update totalreserve_pages */
5654 calculate_totalreserve_pages();
5657 static void __setup_per_zone_wmarks(void)
5659 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5660 unsigned long lowmem_pages = 0;
5661 struct zone *zone;
5662 unsigned long flags;
5664 /* Calculate total number of !ZONE_HIGHMEM pages */
5665 for_each_zone(zone) {
5666 if (!is_highmem(zone))
5667 lowmem_pages += zone->managed_pages;
5670 for_each_zone(zone) {
5671 u64 tmp;
5673 spin_lock_irqsave(&zone->lock, flags);
5674 tmp = (u64)pages_min * zone->managed_pages;
5675 do_div(tmp, lowmem_pages);
5676 if (is_highmem(zone)) {
5678 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5679 * need highmem pages, so cap pages_min to a small
5680 * value here.
5682 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5683 * deltas controls asynch page reclaim, and so should
5684 * not be capped for highmem.
5686 unsigned long min_pages;
5688 min_pages = zone->managed_pages / 1024;
5689 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5690 zone->watermark[WMARK_MIN] = min_pages;
5691 } else {
5693 * If it's a lowmem zone, reserve a number of pages
5694 * proportionate to the zone's size.
5696 zone->watermark[WMARK_MIN] = tmp;
5699 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5700 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5702 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5703 high_wmark_pages(zone) - low_wmark_pages(zone) -
5704 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5706 setup_zone_migrate_reserve(zone);
5707 spin_unlock_irqrestore(&zone->lock, flags);
5710 /* update totalreserve_pages */
5711 calculate_totalreserve_pages();
5715 * setup_per_zone_wmarks - called when min_free_kbytes changes
5716 * or when memory is hot-{added|removed}
5718 * Ensures that the watermark[min,low,high] values for each zone are set
5719 * correctly with respect to min_free_kbytes.
5721 void setup_per_zone_wmarks(void)
5723 mutex_lock(&zonelists_mutex);
5724 __setup_per_zone_wmarks();
5725 mutex_unlock(&zonelists_mutex);
5729 * The inactive anon list should be small enough that the VM never has to
5730 * do too much work, but large enough that each inactive page has a chance
5731 * to be referenced again before it is swapped out.
5733 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5734 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5735 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5736 * the anonymous pages are kept on the inactive list.
5738 * total target max
5739 * memory ratio inactive anon
5740 * -------------------------------------
5741 * 10MB 1 5MB
5742 * 100MB 1 50MB
5743 * 1GB 3 250MB
5744 * 10GB 10 0.9GB
5745 * 100GB 31 3GB
5746 * 1TB 101 10GB
5747 * 10TB 320 32GB
5749 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5751 unsigned int gb, ratio;
5753 /* Zone size in gigabytes */
5754 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5755 if (gb)
5756 ratio = int_sqrt(10 * gb);
5757 else
5758 ratio = 1;
5760 zone->inactive_ratio = ratio;
5763 static void __meminit setup_per_zone_inactive_ratio(void)
5765 struct zone *zone;
5767 for_each_zone(zone)
5768 calculate_zone_inactive_ratio(zone);
5772 * Initialise min_free_kbytes.
5774 * For small machines we want it small (128k min). For large machines
5775 * we want it large (64MB max). But it is not linear, because network
5776 * bandwidth does not increase linearly with machine size. We use
5778 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5779 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5781 * which yields
5783 * 16MB: 512k
5784 * 32MB: 724k
5785 * 64MB: 1024k
5786 * 128MB: 1448k
5787 * 256MB: 2048k
5788 * 512MB: 2896k
5789 * 1024MB: 4096k
5790 * 2048MB: 5792k
5791 * 4096MB: 8192k
5792 * 8192MB: 11584k
5793 * 16384MB: 16384k
5795 int __meminit init_per_zone_wmark_min(void)
5797 unsigned long lowmem_kbytes;
5798 int new_min_free_kbytes;
5800 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5801 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5803 if (new_min_free_kbytes > user_min_free_kbytes) {
5804 min_free_kbytes = new_min_free_kbytes;
5805 if (min_free_kbytes < 128)
5806 min_free_kbytes = 128;
5807 if (min_free_kbytes > 65536)
5808 min_free_kbytes = 65536;
5809 } else {
5810 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5811 new_min_free_kbytes, user_min_free_kbytes);
5813 setup_per_zone_wmarks();
5814 refresh_zone_stat_thresholds();
5815 setup_per_zone_lowmem_reserve();
5816 setup_per_zone_inactive_ratio();
5817 return 0;
5819 module_init(init_per_zone_wmark_min)
5822 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5823 * that we can call two helper functions whenever min_free_kbytes
5824 * changes.
5826 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5827 void __user *buffer, size_t *length, loff_t *ppos)
5829 int rc;
5831 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5832 if (rc)
5833 return rc;
5835 if (write) {
5836 user_min_free_kbytes = min_free_kbytes;
5837 setup_per_zone_wmarks();
5839 return 0;
5842 #ifdef CONFIG_NUMA
5843 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5844 void __user *buffer, size_t *length, loff_t *ppos)
5846 struct zone *zone;
5847 int rc;
5849 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5850 if (rc)
5851 return rc;
5853 for_each_zone(zone)
5854 zone->min_unmapped_pages = (zone->managed_pages *
5855 sysctl_min_unmapped_ratio) / 100;
5856 return 0;
5859 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5860 void __user *buffer, size_t *length, loff_t *ppos)
5862 struct zone *zone;
5863 int rc;
5865 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5866 if (rc)
5867 return rc;
5869 for_each_zone(zone)
5870 zone->min_slab_pages = (zone->managed_pages *
5871 sysctl_min_slab_ratio) / 100;
5872 return 0;
5874 #endif
5877 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5878 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5879 * whenever sysctl_lowmem_reserve_ratio changes.
5881 * The reserve ratio obviously has absolutely no relation with the
5882 * minimum watermarks. The lowmem reserve ratio can only make sense
5883 * if in function of the boot time zone sizes.
5885 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5886 void __user *buffer, size_t *length, loff_t *ppos)
5888 proc_dointvec_minmax(table, write, buffer, length, ppos);
5889 setup_per_zone_lowmem_reserve();
5890 return 0;
5894 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5895 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5896 * pagelist can have before it gets flushed back to buddy allocator.
5898 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5899 void __user *buffer, size_t *length, loff_t *ppos)
5901 struct zone *zone;
5902 int old_percpu_pagelist_fraction;
5903 int ret;
5905 mutex_lock(&pcp_batch_high_lock);
5906 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5908 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5909 if (!write || ret < 0)
5910 goto out;
5912 /* Sanity checking to avoid pcp imbalance */
5913 if (percpu_pagelist_fraction &&
5914 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5915 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5916 ret = -EINVAL;
5917 goto out;
5920 /* No change? */
5921 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5922 goto out;
5924 for_each_populated_zone(zone) {
5925 unsigned int cpu;
5927 for_each_possible_cpu(cpu)
5928 pageset_set_high_and_batch(zone,
5929 per_cpu_ptr(zone->pageset, cpu));
5931 out:
5932 mutex_unlock(&pcp_batch_high_lock);
5933 return ret;
5936 int hashdist = HASHDIST_DEFAULT;
5938 #ifdef CONFIG_NUMA
5939 static int __init set_hashdist(char *str)
5941 if (!str)
5942 return 0;
5943 hashdist = simple_strtoul(str, &str, 0);
5944 return 1;
5946 __setup("hashdist=", set_hashdist);
5947 #endif
5950 * allocate a large system hash table from bootmem
5951 * - it is assumed that the hash table must contain an exact power-of-2
5952 * quantity of entries
5953 * - limit is the number of hash buckets, not the total allocation size
5955 void *__init alloc_large_system_hash(const char *tablename,
5956 unsigned long bucketsize,
5957 unsigned long numentries,
5958 int scale,
5959 int flags,
5960 unsigned int *_hash_shift,
5961 unsigned int *_hash_mask,
5962 unsigned long low_limit,
5963 unsigned long high_limit)
5965 unsigned long long max = high_limit;
5966 unsigned long log2qty, size;
5967 void *table = NULL;
5969 /* allow the kernel cmdline to have a say */
5970 if (!numentries) {
5971 /* round applicable memory size up to nearest megabyte */
5972 numentries = nr_kernel_pages;
5974 /* It isn't necessary when PAGE_SIZE >= 1MB */
5975 if (PAGE_SHIFT < 20)
5976 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5978 /* limit to 1 bucket per 2^scale bytes of low memory */
5979 if (scale > PAGE_SHIFT)
5980 numentries >>= (scale - PAGE_SHIFT);
5981 else
5982 numentries <<= (PAGE_SHIFT - scale);
5984 /* Make sure we've got at least a 0-order allocation.. */
5985 if (unlikely(flags & HASH_SMALL)) {
5986 /* Makes no sense without HASH_EARLY */
5987 WARN_ON(!(flags & HASH_EARLY));
5988 if (!(numentries >> *_hash_shift)) {
5989 numentries = 1UL << *_hash_shift;
5990 BUG_ON(!numentries);
5992 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5993 numentries = PAGE_SIZE / bucketsize;
5995 numentries = roundup_pow_of_two(numentries);
5997 /* limit allocation size to 1/16 total memory by default */
5998 if (max == 0) {
5999 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6000 do_div(max, bucketsize);
6002 max = min(max, 0x80000000ULL);
6004 if (numentries < low_limit)
6005 numentries = low_limit;
6006 if (numentries > max)
6007 numentries = max;
6009 log2qty = ilog2(numentries);
6011 do {
6012 size = bucketsize << log2qty;
6013 if (flags & HASH_EARLY)
6014 table = memblock_virt_alloc_nopanic(size, 0);
6015 else if (hashdist)
6016 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6017 else {
6019 * If bucketsize is not a power-of-two, we may free
6020 * some pages at the end of hash table which
6021 * alloc_pages_exact() automatically does
6023 if (get_order(size) < MAX_ORDER) {
6024 table = alloc_pages_exact(size, GFP_ATOMIC);
6025 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6028 } while (!table && size > PAGE_SIZE && --log2qty);
6030 if (!table)
6031 panic("Failed to allocate %s hash table\n", tablename);
6033 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6034 tablename,
6035 (1UL << log2qty),
6036 ilog2(size) - PAGE_SHIFT,
6037 size);
6039 if (_hash_shift)
6040 *_hash_shift = log2qty;
6041 if (_hash_mask)
6042 *_hash_mask = (1 << log2qty) - 1;
6044 return table;
6047 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6048 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6049 unsigned long pfn)
6051 #ifdef CONFIG_SPARSEMEM
6052 return __pfn_to_section(pfn)->pageblock_flags;
6053 #else
6054 return zone->pageblock_flags;
6055 #endif /* CONFIG_SPARSEMEM */
6058 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6060 #ifdef CONFIG_SPARSEMEM
6061 pfn &= (PAGES_PER_SECTION-1);
6062 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6063 #else
6064 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6065 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6066 #endif /* CONFIG_SPARSEMEM */
6070 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6071 * @page: The page within the block of interest
6072 * @pfn: The target page frame number
6073 * @end_bitidx: The last bit of interest to retrieve
6074 * @mask: mask of bits that the caller is interested in
6076 * Return: pageblock_bits flags
6078 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6079 unsigned long end_bitidx,
6080 unsigned long mask)
6082 struct zone *zone;
6083 unsigned long *bitmap;
6084 unsigned long bitidx, word_bitidx;
6085 unsigned long word;
6087 zone = page_zone(page);
6088 bitmap = get_pageblock_bitmap(zone, pfn);
6089 bitidx = pfn_to_bitidx(zone, pfn);
6090 word_bitidx = bitidx / BITS_PER_LONG;
6091 bitidx &= (BITS_PER_LONG-1);
6093 word = bitmap[word_bitidx];
6094 bitidx += end_bitidx;
6095 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6099 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6100 * @page: The page within the block of interest
6101 * @flags: The flags to set
6102 * @pfn: The target page frame number
6103 * @end_bitidx: The last bit of interest
6104 * @mask: mask of bits that the caller is interested in
6106 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6107 unsigned long pfn,
6108 unsigned long end_bitidx,
6109 unsigned long mask)
6111 struct zone *zone;
6112 unsigned long *bitmap;
6113 unsigned long bitidx, word_bitidx;
6114 unsigned long old_word, word;
6116 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6118 zone = page_zone(page);
6119 bitmap = get_pageblock_bitmap(zone, pfn);
6120 bitidx = pfn_to_bitidx(zone, pfn);
6121 word_bitidx = bitidx / BITS_PER_LONG;
6122 bitidx &= (BITS_PER_LONG-1);
6124 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6126 bitidx += end_bitidx;
6127 mask <<= (BITS_PER_LONG - bitidx - 1);
6128 flags <<= (BITS_PER_LONG - bitidx - 1);
6130 word = ACCESS_ONCE(bitmap[word_bitidx]);
6131 for (;;) {
6132 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6133 if (word == old_word)
6134 break;
6135 word = old_word;
6140 * This function checks whether pageblock includes unmovable pages or not.
6141 * If @count is not zero, it is okay to include less @count unmovable pages
6143 * PageLRU check without isolation or lru_lock could race so that
6144 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6145 * expect this function should be exact.
6147 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6148 bool skip_hwpoisoned_pages)
6150 unsigned long pfn, iter, found;
6151 int mt;
6154 * For avoiding noise data, lru_add_drain_all() should be called
6155 * If ZONE_MOVABLE, the zone never contains unmovable pages
6157 if (zone_idx(zone) == ZONE_MOVABLE)
6158 return false;
6159 mt = get_pageblock_migratetype(page);
6160 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6161 return false;
6163 pfn = page_to_pfn(page);
6164 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6165 unsigned long check = pfn + iter;
6167 if (!pfn_valid_within(check))
6168 continue;
6170 page = pfn_to_page(check);
6173 * Hugepages are not in LRU lists, but they're movable.
6174 * We need not scan over tail pages bacause we don't
6175 * handle each tail page individually in migration.
6177 if (PageHuge(page)) {
6178 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6179 continue;
6183 * We can't use page_count without pin a page
6184 * because another CPU can free compound page.
6185 * This check already skips compound tails of THP
6186 * because their page->_count is zero at all time.
6188 if (!atomic_read(&page->_count)) {
6189 if (PageBuddy(page))
6190 iter += (1 << page_order(page)) - 1;
6191 continue;
6195 * The HWPoisoned page may be not in buddy system, and
6196 * page_count() is not 0.
6198 if (skip_hwpoisoned_pages && PageHWPoison(page))
6199 continue;
6201 if (!PageLRU(page))
6202 found++;
6204 * If there are RECLAIMABLE pages, we need to check it.
6205 * But now, memory offline itself doesn't call shrink_slab()
6206 * and it still to be fixed.
6209 * If the page is not RAM, page_count()should be 0.
6210 * we don't need more check. This is an _used_ not-movable page.
6212 * The problematic thing here is PG_reserved pages. PG_reserved
6213 * is set to both of a memory hole page and a _used_ kernel
6214 * page at boot.
6216 if (found > count)
6217 return true;
6219 return false;
6222 bool is_pageblock_removable_nolock(struct page *page)
6224 struct zone *zone;
6225 unsigned long pfn;
6228 * We have to be careful here because we are iterating over memory
6229 * sections which are not zone aware so we might end up outside of
6230 * the zone but still within the section.
6231 * We have to take care about the node as well. If the node is offline
6232 * its NODE_DATA will be NULL - see page_zone.
6234 if (!node_online(page_to_nid(page)))
6235 return false;
6237 zone = page_zone(page);
6238 pfn = page_to_pfn(page);
6239 if (!zone_spans_pfn(zone, pfn))
6240 return false;
6242 return !has_unmovable_pages(zone, page, 0, true);
6245 #ifdef CONFIG_CMA
6247 static unsigned long pfn_max_align_down(unsigned long pfn)
6249 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6250 pageblock_nr_pages) - 1);
6253 static unsigned long pfn_max_align_up(unsigned long pfn)
6255 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6256 pageblock_nr_pages));
6259 /* [start, end) must belong to a single zone. */
6260 static int __alloc_contig_migrate_range(struct compact_control *cc,
6261 unsigned long start, unsigned long end)
6263 /* This function is based on compact_zone() from compaction.c. */
6264 unsigned long nr_reclaimed;
6265 unsigned long pfn = start;
6266 unsigned int tries = 0;
6267 int ret = 0;
6269 migrate_prep();
6271 while (pfn < end || !list_empty(&cc->migratepages)) {
6272 if (fatal_signal_pending(current)) {
6273 ret = -EINTR;
6274 break;
6277 if (list_empty(&cc->migratepages)) {
6278 cc->nr_migratepages = 0;
6279 pfn = isolate_migratepages_range(cc->zone, cc,
6280 pfn, end, true);
6281 if (!pfn) {
6282 ret = -EINTR;
6283 break;
6285 tries = 0;
6286 } else if (++tries == 5) {
6287 ret = ret < 0 ? ret : -EBUSY;
6288 break;
6291 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6292 &cc->migratepages);
6293 cc->nr_migratepages -= nr_reclaimed;
6295 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6296 NULL, 0, cc->mode, MR_CMA);
6298 if (ret < 0) {
6299 putback_movable_pages(&cc->migratepages);
6300 return ret;
6302 return 0;
6306 * alloc_contig_range() -- tries to allocate given range of pages
6307 * @start: start PFN to allocate
6308 * @end: one-past-the-last PFN to allocate
6309 * @migratetype: migratetype of the underlaying pageblocks (either
6310 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6311 * in range must have the same migratetype and it must
6312 * be either of the two.
6314 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6315 * aligned, however it's the caller's responsibility to guarantee that
6316 * we are the only thread that changes migrate type of pageblocks the
6317 * pages fall in.
6319 * The PFN range must belong to a single zone.
6321 * Returns zero on success or negative error code. On success all
6322 * pages which PFN is in [start, end) are allocated for the caller and
6323 * need to be freed with free_contig_range().
6325 int alloc_contig_range(unsigned long start, unsigned long end,
6326 unsigned migratetype)
6328 unsigned long outer_start, outer_end;
6329 int ret = 0, order;
6331 struct compact_control cc = {
6332 .nr_migratepages = 0,
6333 .order = -1,
6334 .zone = page_zone(pfn_to_page(start)),
6335 .mode = MIGRATE_SYNC,
6336 .ignore_skip_hint = true,
6338 INIT_LIST_HEAD(&cc.migratepages);
6341 * What we do here is we mark all pageblocks in range as
6342 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6343 * have different sizes, and due to the way page allocator
6344 * work, we align the range to biggest of the two pages so
6345 * that page allocator won't try to merge buddies from
6346 * different pageblocks and change MIGRATE_ISOLATE to some
6347 * other migration type.
6349 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6350 * migrate the pages from an unaligned range (ie. pages that
6351 * we are interested in). This will put all the pages in
6352 * range back to page allocator as MIGRATE_ISOLATE.
6354 * When this is done, we take the pages in range from page
6355 * allocator removing them from the buddy system. This way
6356 * page allocator will never consider using them.
6358 * This lets us mark the pageblocks back as
6359 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6360 * aligned range but not in the unaligned, original range are
6361 * put back to page allocator so that buddy can use them.
6364 ret = start_isolate_page_range(pfn_max_align_down(start),
6365 pfn_max_align_up(end), migratetype,
6366 false);
6367 if (ret)
6368 return ret;
6370 ret = __alloc_contig_migrate_range(&cc, start, end);
6371 if (ret)
6372 goto done;
6375 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6376 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6377 * more, all pages in [start, end) are free in page allocator.
6378 * What we are going to do is to allocate all pages from
6379 * [start, end) (that is remove them from page allocator).
6381 * The only problem is that pages at the beginning and at the
6382 * end of interesting range may be not aligned with pages that
6383 * page allocator holds, ie. they can be part of higher order
6384 * pages. Because of this, we reserve the bigger range and
6385 * once this is done free the pages we are not interested in.
6387 * We don't have to hold zone->lock here because the pages are
6388 * isolated thus they won't get removed from buddy.
6391 lru_add_drain_all();
6392 drain_all_pages();
6394 order = 0;
6395 outer_start = start;
6396 while (!PageBuddy(pfn_to_page(outer_start))) {
6397 if (++order >= MAX_ORDER) {
6398 ret = -EBUSY;
6399 goto done;
6401 outer_start &= ~0UL << order;
6404 /* Make sure the range is really isolated. */
6405 if (test_pages_isolated(outer_start, end, false)) {
6406 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6407 outer_start, end);
6408 ret = -EBUSY;
6409 goto done;
6413 /* Grab isolated pages from freelists. */
6414 outer_end = isolate_freepages_range(&cc, outer_start, end);
6415 if (!outer_end) {
6416 ret = -EBUSY;
6417 goto done;
6420 /* Free head and tail (if any) */
6421 if (start != outer_start)
6422 free_contig_range(outer_start, start - outer_start);
6423 if (end != outer_end)
6424 free_contig_range(end, outer_end - end);
6426 done:
6427 undo_isolate_page_range(pfn_max_align_down(start),
6428 pfn_max_align_up(end), migratetype);
6429 return ret;
6432 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6434 unsigned int count = 0;
6436 for (; nr_pages--; pfn++) {
6437 struct page *page = pfn_to_page(pfn);
6439 count += page_count(page) != 1;
6440 __free_page(page);
6442 WARN(count != 0, "%d pages are still in use!\n", count);
6444 #endif
6446 #ifdef CONFIG_MEMORY_HOTPLUG
6448 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6449 * page high values need to be recalulated.
6451 void __meminit zone_pcp_update(struct zone *zone)
6453 unsigned cpu;
6454 mutex_lock(&pcp_batch_high_lock);
6455 for_each_possible_cpu(cpu)
6456 pageset_set_high_and_batch(zone,
6457 per_cpu_ptr(zone->pageset, cpu));
6458 mutex_unlock(&pcp_batch_high_lock);
6460 #endif
6462 void zone_pcp_reset(struct zone *zone)
6464 unsigned long flags;
6465 int cpu;
6466 struct per_cpu_pageset *pset;
6468 /* avoid races with drain_pages() */
6469 local_irq_save(flags);
6470 if (zone->pageset != &boot_pageset) {
6471 for_each_online_cpu(cpu) {
6472 pset = per_cpu_ptr(zone->pageset, cpu);
6473 drain_zonestat(zone, pset);
6475 free_percpu(zone->pageset);
6476 zone->pageset = &boot_pageset;
6478 local_irq_restore(flags);
6481 #ifdef CONFIG_MEMORY_HOTREMOVE
6483 * All pages in the range must be isolated before calling this.
6485 void
6486 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6488 struct page *page;
6489 struct zone *zone;
6490 unsigned int order, i;
6491 unsigned long pfn;
6492 unsigned long flags;
6493 /* find the first valid pfn */
6494 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6495 if (pfn_valid(pfn))
6496 break;
6497 if (pfn == end_pfn)
6498 return;
6499 zone = page_zone(pfn_to_page(pfn));
6500 spin_lock_irqsave(&zone->lock, flags);
6501 pfn = start_pfn;
6502 while (pfn < end_pfn) {
6503 if (!pfn_valid(pfn)) {
6504 pfn++;
6505 continue;
6507 page = pfn_to_page(pfn);
6509 * The HWPoisoned page may be not in buddy system, and
6510 * page_count() is not 0.
6512 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6513 pfn++;
6514 SetPageReserved(page);
6515 continue;
6518 BUG_ON(page_count(page));
6519 BUG_ON(!PageBuddy(page));
6520 order = page_order(page);
6521 #ifdef CONFIG_DEBUG_VM
6522 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6523 pfn, 1 << order, end_pfn);
6524 #endif
6525 list_del(&page->lru);
6526 rmv_page_order(page);
6527 zone->free_area[order].nr_free--;
6528 for (i = 0; i < (1 << order); i++)
6529 SetPageReserved((page+i));
6530 pfn += (1 << order);
6532 spin_unlock_irqrestore(&zone->lock, flags);
6534 #endif
6536 #ifdef CONFIG_MEMORY_FAILURE
6537 bool is_free_buddy_page(struct page *page)
6539 struct zone *zone = page_zone(page);
6540 unsigned long pfn = page_to_pfn(page);
6541 unsigned long flags;
6542 unsigned int order;
6544 spin_lock_irqsave(&zone->lock, flags);
6545 for (order = 0; order < MAX_ORDER; order++) {
6546 struct page *page_head = page - (pfn & ((1 << order) - 1));
6548 if (PageBuddy(page_head) && page_order(page_head) >= order)
6549 break;
6551 spin_unlock_irqrestore(&zone->lock, flags);
6553 return order < MAX_ORDER;
6555 #endif
6557 static const struct trace_print_flags pageflag_names[] = {
6558 {1UL << PG_locked, "locked" },
6559 {1UL << PG_error, "error" },
6560 {1UL << PG_referenced, "referenced" },
6561 {1UL << PG_uptodate, "uptodate" },
6562 {1UL << PG_dirty, "dirty" },
6563 {1UL << PG_lru, "lru" },
6564 {1UL << PG_active, "active" },
6565 {1UL << PG_slab, "slab" },
6566 {1UL << PG_owner_priv_1, "owner_priv_1" },
6567 {1UL << PG_arch_1, "arch_1" },
6568 {1UL << PG_reserved, "reserved" },
6569 {1UL << PG_private, "private" },
6570 {1UL << PG_private_2, "private_2" },
6571 {1UL << PG_writeback, "writeback" },
6572 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6573 {1UL << PG_head, "head" },
6574 {1UL << PG_tail, "tail" },
6575 #else
6576 {1UL << PG_compound, "compound" },
6577 #endif
6578 {1UL << PG_swapcache, "swapcache" },
6579 {1UL << PG_mappedtodisk, "mappedtodisk" },
6580 {1UL << PG_reclaim, "reclaim" },
6581 {1UL << PG_swapbacked, "swapbacked" },
6582 {1UL << PG_unevictable, "unevictable" },
6583 #ifdef CONFIG_MMU
6584 {1UL << PG_mlocked, "mlocked" },
6585 #endif
6586 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6587 {1UL << PG_uncached, "uncached" },
6588 #endif
6589 #ifdef CONFIG_MEMORY_FAILURE
6590 {1UL << PG_hwpoison, "hwpoison" },
6591 #endif
6592 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6593 {1UL << PG_compound_lock, "compound_lock" },
6594 #endif
6597 static void dump_page_flags(unsigned long flags)
6599 const char *delim = "";
6600 unsigned long mask;
6601 int i;
6603 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6605 printk(KERN_ALERT "page flags: %#lx(", flags);
6607 /* remove zone id */
6608 flags &= (1UL << NR_PAGEFLAGS) - 1;
6610 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6612 mask = pageflag_names[i].mask;
6613 if ((flags & mask) != mask)
6614 continue;
6616 flags &= ~mask;
6617 printk("%s%s", delim, pageflag_names[i].name);
6618 delim = "|";
6621 /* check for left over flags */
6622 if (flags)
6623 printk("%s%#lx", delim, flags);
6625 printk(")\n");
6628 void dump_page_badflags(struct page *page, const char *reason,
6629 unsigned long badflags)
6631 printk(KERN_ALERT
6632 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6633 page, atomic_read(&page->_count), page_mapcount(page),
6634 page->mapping, page->index);
6635 dump_page_flags(page->flags);
6636 if (reason)
6637 pr_alert("page dumped because: %s\n", reason);
6638 if (page->flags & badflags) {
6639 pr_alert("bad because of flags:\n");
6640 dump_page_flags(page->flags & badflags);
6642 mem_cgroup_print_bad_page(page);
6645 void dump_page(struct page *page, const char *reason)
6647 dump_page_badflags(page, reason, 0);
6649 EXPORT_SYMBOL(dump_page);