4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
15 #include <linux/mmzone.h>
16 #include <linux/export.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <asm/sparsemem.h>
27 #include <asm/system.h>
29 #include <asm/firmware.h>
31 #include <asm/hvcall.h>
33 static int numa_enabled
= 1;
35 static char *cmdline __initdata
;
37 static int numa_debug
;
38 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
40 int numa_cpu_lookup_table
[NR_CPUS
];
41 cpumask_var_t node_to_cpumask_map
[MAX_NUMNODES
];
42 struct pglist_data
*node_data
[MAX_NUMNODES
];
44 EXPORT_SYMBOL(numa_cpu_lookup_table
);
45 EXPORT_SYMBOL(node_to_cpumask_map
);
46 EXPORT_SYMBOL(node_data
);
48 static int min_common_depth
;
49 static int n_mem_addr_cells
, n_mem_size_cells
;
50 static int form1_affinity
;
52 #define MAX_DISTANCE_REF_POINTS 4
53 static int distance_ref_points_depth
;
54 static const unsigned int *distance_ref_points
;
55 static int distance_lookup_table
[MAX_NUMNODES
][MAX_DISTANCE_REF_POINTS
];
58 * Allocate node_to_cpumask_map based on number of available nodes
59 * Requires node_possible_map to be valid.
61 * Note: node_to_cpumask() is not valid until after this is done.
63 static void __init
setup_node_to_cpumask_map(void)
65 unsigned int node
, num
= 0;
67 /* setup nr_node_ids if not done yet */
68 if (nr_node_ids
== MAX_NUMNODES
) {
69 for_each_node_mask(node
, node_possible_map
)
71 nr_node_ids
= num
+ 1;
74 /* allocate the map */
75 for (node
= 0; node
< nr_node_ids
; node
++)
76 alloc_bootmem_cpumask_var(&node_to_cpumask_map
[node
]);
78 /* cpumask_of_node() will now work */
79 dbg("Node to cpumask map for %d nodes\n", nr_node_ids
);
82 static int __cpuinit
fake_numa_create_new_node(unsigned long end_pfn
,
85 unsigned long long mem
;
87 static unsigned int fake_nid
;
88 static unsigned long long curr_boundary
;
91 * Modify node id, iff we started creating NUMA nodes
92 * We want to continue from where we left of the last time
97 * In case there are no more arguments to parse, the
98 * node_id should be the same as the last fake node id
99 * (we've handled this above).
104 mem
= memparse(p
, &p
);
108 if (mem
< curr_boundary
)
113 if ((end_pfn
<< PAGE_SHIFT
) > mem
) {
115 * Skip commas and spaces
117 while (*p
== ',' || *p
== ' ' || *p
== '\t')
123 dbg("created new fake_node with id %d\n", fake_nid
);
130 * get_active_region_work_fn - A helper function for get_node_active_region
131 * Returns datax set to the start_pfn and end_pfn if they contain
132 * the initial value of datax->start_pfn between them
133 * @start_pfn: start page(inclusive) of region to check
134 * @end_pfn: end page(exclusive) of region to check
135 * @datax: comes in with ->start_pfn set to value to search for and
136 * goes out with active range if it contains it
137 * Returns 1 if search value is in range else 0
139 static int __init
get_active_region_work_fn(unsigned long start_pfn
,
140 unsigned long end_pfn
, void *datax
)
142 struct node_active_region
*data
;
143 data
= (struct node_active_region
*)datax
;
145 if (start_pfn
<= data
->start_pfn
&& end_pfn
> data
->start_pfn
) {
146 data
->start_pfn
= start_pfn
;
147 data
->end_pfn
= end_pfn
;
155 * get_node_active_region - Return active region containing start_pfn
156 * Active range returned is empty if none found.
157 * @start_pfn: The page to return the region for.
158 * @node_ar: Returned set to the active region containing start_pfn
160 static void __init
get_node_active_region(unsigned long start_pfn
,
161 struct node_active_region
*node_ar
)
163 int nid
= early_pfn_to_nid(start_pfn
);
166 node_ar
->start_pfn
= start_pfn
;
167 node_ar
->end_pfn
= start_pfn
;
168 work_with_active_regions(nid
, get_active_region_work_fn
, node_ar
);
171 static void map_cpu_to_node(int cpu
, int node
)
173 numa_cpu_lookup_table
[cpu
] = node
;
175 dbg("adding cpu %d to node %d\n", cpu
, node
);
177 if (!(cpumask_test_cpu(cpu
, node_to_cpumask_map
[node
])))
178 cpumask_set_cpu(cpu
, node_to_cpumask_map
[node
]);
181 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
182 static void unmap_cpu_from_node(unsigned long cpu
)
184 int node
= numa_cpu_lookup_table
[cpu
];
186 dbg("removing cpu %lu from node %d\n", cpu
, node
);
188 if (cpumask_test_cpu(cpu
, node_to_cpumask_map
[node
])) {
189 cpumask_clear_cpu(cpu
, node_to_cpumask_map
[node
]);
191 printk(KERN_ERR
"WARNING: cpu %lu not found in node %d\n",
195 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
197 /* must hold reference to node during call */
198 static const int *of_get_associativity(struct device_node
*dev
)
200 return of_get_property(dev
, "ibm,associativity", NULL
);
204 * Returns the property linux,drconf-usable-memory if
205 * it exists (the property exists only in kexec/kdump kernels,
206 * added by kexec-tools)
208 static const u32
*of_get_usable_memory(struct device_node
*memory
)
212 prop
= of_get_property(memory
, "linux,drconf-usable-memory", &len
);
213 if (!prop
|| len
< sizeof(unsigned int))
218 int __node_distance(int a
, int b
)
221 int distance
= LOCAL_DISTANCE
;
226 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
227 if (distance_lookup_table
[a
][i
] == distance_lookup_table
[b
][i
])
230 /* Double the distance for each NUMA level */
237 static void initialize_distance_lookup_table(int nid
,
238 const unsigned int *associativity
)
245 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
246 distance_lookup_table
[nid
][i
] =
247 associativity
[distance_ref_points
[i
]];
251 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
254 static int associativity_to_nid(const unsigned int *associativity
)
258 if (min_common_depth
== -1)
261 if (associativity
[0] >= min_common_depth
)
262 nid
= associativity
[min_common_depth
];
264 /* POWER4 LPAR uses 0xffff as invalid node */
265 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
268 if (nid
> 0 && associativity
[0] >= distance_ref_points_depth
)
269 initialize_distance_lookup_table(nid
, associativity
);
275 /* Returns the nid associated with the given device tree node,
276 * or -1 if not found.
278 static int of_node_to_nid_single(struct device_node
*device
)
281 const unsigned int *tmp
;
283 tmp
= of_get_associativity(device
);
285 nid
= associativity_to_nid(tmp
);
289 /* Walk the device tree upwards, looking for an associativity id */
290 int of_node_to_nid(struct device_node
*device
)
292 struct device_node
*tmp
;
297 nid
= of_node_to_nid_single(device
);
302 device
= of_get_parent(tmp
);
309 EXPORT_SYMBOL_GPL(of_node_to_nid
);
311 static int __init
find_min_common_depth(void)
314 struct device_node
*chosen
;
315 struct device_node
*root
;
318 if (firmware_has_feature(FW_FEATURE_OPAL
))
319 root
= of_find_node_by_path("/ibm,opal");
321 root
= of_find_node_by_path("/rtas");
323 root
= of_find_node_by_path("/");
326 * This property is a set of 32-bit integers, each representing
327 * an index into the ibm,associativity nodes.
329 * With form 0 affinity the first integer is for an SMP configuration
330 * (should be all 0's) and the second is for a normal NUMA
331 * configuration. We have only one level of NUMA.
333 * With form 1 affinity the first integer is the most significant
334 * NUMA boundary and the following are progressively less significant
335 * boundaries. There can be more than one level of NUMA.
337 distance_ref_points
= of_get_property(root
,
338 "ibm,associativity-reference-points",
339 &distance_ref_points_depth
);
341 if (!distance_ref_points
) {
342 dbg("NUMA: ibm,associativity-reference-points not found.\n");
346 distance_ref_points_depth
/= sizeof(int);
348 #define VEC5_AFFINITY_BYTE 5
349 #define VEC5_AFFINITY 0x80
351 if (firmware_has_feature(FW_FEATURE_OPAL
))
354 chosen
= of_find_node_by_path("/chosen");
356 vec5
= of_get_property(chosen
,
357 "ibm,architecture-vec-5", NULL
);
358 if (vec5
&& (vec5
[VEC5_AFFINITY_BYTE
] &
360 dbg("Using form 1 affinity\n");
366 if (form1_affinity
) {
367 depth
= distance_ref_points
[0];
369 if (distance_ref_points_depth
< 2) {
370 printk(KERN_WARNING
"NUMA: "
371 "short ibm,associativity-reference-points\n");
375 depth
= distance_ref_points
[1];
379 * Warn and cap if the hardware supports more than
380 * MAX_DISTANCE_REF_POINTS domains.
382 if (distance_ref_points_depth
> MAX_DISTANCE_REF_POINTS
) {
383 printk(KERN_WARNING
"NUMA: distance array capped at "
384 "%d entries\n", MAX_DISTANCE_REF_POINTS
);
385 distance_ref_points_depth
= MAX_DISTANCE_REF_POINTS
;
396 static void __init
get_n_mem_cells(int *n_addr_cells
, int *n_size_cells
)
398 struct device_node
*memory
= NULL
;
400 memory
= of_find_node_by_type(memory
, "memory");
402 panic("numa.c: No memory nodes found!");
404 *n_addr_cells
= of_n_addr_cells(memory
);
405 *n_size_cells
= of_n_size_cells(memory
);
409 static unsigned long __devinit
read_n_cells(int n
, const unsigned int **buf
)
411 unsigned long result
= 0;
414 result
= (result
<< 32) | **buf
;
420 struct of_drconf_cell
{
428 #define DRCONF_MEM_ASSIGNED 0x00000008
429 #define DRCONF_MEM_AI_INVALID 0x00000040
430 #define DRCONF_MEM_RESERVED 0x00000080
433 * Read the next memblock list entry from the ibm,dynamic-memory property
434 * and return the information in the provided of_drconf_cell structure.
436 static void read_drconf_cell(struct of_drconf_cell
*drmem
, const u32
**cellp
)
440 drmem
->base_addr
= read_n_cells(n_mem_addr_cells
, cellp
);
443 drmem
->drc_index
= cp
[0];
444 drmem
->reserved
= cp
[1];
445 drmem
->aa_index
= cp
[2];
446 drmem
->flags
= cp
[3];
452 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
454 * The layout of the ibm,dynamic-memory property is a number N of memblock
455 * list entries followed by N memblock list entries. Each memblock list entry
456 * contains information as laid out in the of_drconf_cell struct above.
458 static int of_get_drconf_memory(struct device_node
*memory
, const u32
**dm
)
463 prop
= of_get_property(memory
, "ibm,dynamic-memory", &len
);
464 if (!prop
|| len
< sizeof(unsigned int))
469 /* Now that we know the number of entries, revalidate the size
470 * of the property read in to ensure we have everything
472 if (len
< (entries
* (n_mem_addr_cells
+ 4) + 1) * sizeof(unsigned int))
480 * Retrieve and validate the ibm,lmb-size property for drconf memory
481 * from the device tree.
483 static u64
of_get_lmb_size(struct device_node
*memory
)
488 prop
= of_get_property(memory
, "ibm,lmb-size", &len
);
489 if (!prop
|| len
< sizeof(unsigned int))
492 return read_n_cells(n_mem_size_cells
, &prop
);
495 struct assoc_arrays
{
502 * Retrieve and validate the list of associativity arrays for drconf
503 * memory from the ibm,associativity-lookup-arrays property of the
506 * The layout of the ibm,associativity-lookup-arrays property is a number N
507 * indicating the number of associativity arrays, followed by a number M
508 * indicating the size of each associativity array, followed by a list
509 * of N associativity arrays.
511 static int of_get_assoc_arrays(struct device_node
*memory
,
512 struct assoc_arrays
*aa
)
517 prop
= of_get_property(memory
, "ibm,associativity-lookup-arrays", &len
);
518 if (!prop
|| len
< 2 * sizeof(unsigned int))
521 aa
->n_arrays
= *prop
++;
522 aa
->array_sz
= *prop
++;
524 /* Now that we know the number of arrrays and size of each array,
525 * revalidate the size of the property read in.
527 if (len
< (aa
->n_arrays
* aa
->array_sz
+ 2) * sizeof(unsigned int))
535 * This is like of_node_to_nid_single() for memory represented in the
536 * ibm,dynamic-reconfiguration-memory node.
538 static int of_drconf_to_nid_single(struct of_drconf_cell
*drmem
,
539 struct assoc_arrays
*aa
)
542 int nid
= default_nid
;
545 if (min_common_depth
> 0 && min_common_depth
<= aa
->array_sz
&&
546 !(drmem
->flags
& DRCONF_MEM_AI_INVALID
) &&
547 drmem
->aa_index
< aa
->n_arrays
) {
548 index
= drmem
->aa_index
* aa
->array_sz
+ min_common_depth
- 1;
549 nid
= aa
->arrays
[index
];
551 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
559 * Figure out to which domain a cpu belongs and stick it there.
560 * Return the id of the domain used.
562 static int __cpuinit
numa_setup_cpu(unsigned long lcpu
)
565 struct device_node
*cpu
= of_get_cpu_node(lcpu
, NULL
);
572 nid
= of_node_to_nid_single(cpu
);
574 if (nid
< 0 || !node_online(nid
))
575 nid
= first_online_node
;
577 map_cpu_to_node(lcpu
, nid
);
584 static int __cpuinit
cpu_numa_callback(struct notifier_block
*nfb
,
585 unsigned long action
,
588 unsigned long lcpu
= (unsigned long)hcpu
;
589 int ret
= NOTIFY_DONE
;
593 case CPU_UP_PREPARE_FROZEN
:
594 numa_setup_cpu(lcpu
);
597 #ifdef CONFIG_HOTPLUG_CPU
599 case CPU_DEAD_FROZEN
:
600 case CPU_UP_CANCELED
:
601 case CPU_UP_CANCELED_FROZEN
:
602 unmap_cpu_from_node(lcpu
);
611 * Check and possibly modify a memory region to enforce the memory limit.
613 * Returns the size the region should have to enforce the memory limit.
614 * This will either be the original value of size, a truncated value,
615 * or zero. If the returned value of size is 0 the region should be
616 * discarded as it lies wholly above the memory limit.
618 static unsigned long __init
numa_enforce_memory_limit(unsigned long start
,
622 * We use memblock_end_of_DRAM() in here instead of memory_limit because
623 * we've already adjusted it for the limit and it takes care of
624 * having memory holes below the limit. Also, in the case of
625 * iommu_is_off, memory_limit is not set but is implicitly enforced.
628 if (start
+ size
<= memblock_end_of_DRAM())
631 if (start
>= memblock_end_of_DRAM())
634 return memblock_end_of_DRAM() - start
;
638 * Reads the counter for a given entry in
639 * linux,drconf-usable-memory property
641 static inline int __init
read_usm_ranges(const u32
**usm
)
644 * For each lmb in ibm,dynamic-memory a corresponding
645 * entry in linux,drconf-usable-memory property contains
646 * a counter followed by that many (base, size) duple.
647 * read the counter from linux,drconf-usable-memory
649 return read_n_cells(n_mem_size_cells
, usm
);
653 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
654 * node. This assumes n_mem_{addr,size}_cells have been set.
656 static void __init
parse_drconf_memory(struct device_node
*memory
)
659 unsigned int n
, rc
, ranges
, is_kexec_kdump
= 0;
660 unsigned long lmb_size
, base
, size
, sz
;
662 struct assoc_arrays aa
;
664 n
= of_get_drconf_memory(memory
, &dm
);
668 lmb_size
= of_get_lmb_size(memory
);
672 rc
= of_get_assoc_arrays(memory
, &aa
);
676 /* check if this is a kexec/kdump kernel */
677 usm
= of_get_usable_memory(memory
);
681 for (; n
!= 0; --n
) {
682 struct of_drconf_cell drmem
;
684 read_drconf_cell(&drmem
, &dm
);
686 /* skip this block if the reserved bit is set in flags (0x80)
687 or if the block is not assigned to this partition (0x8) */
688 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
689 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
692 base
= drmem
.base_addr
;
696 if (is_kexec_kdump
) {
697 ranges
= read_usm_ranges(&usm
);
698 if (!ranges
) /* there are no (base, size) duple */
702 if (is_kexec_kdump
) {
703 base
= read_n_cells(n_mem_addr_cells
, &usm
);
704 size
= read_n_cells(n_mem_size_cells
, &usm
);
706 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
707 fake_numa_create_new_node(
708 ((base
+ size
) >> PAGE_SHIFT
),
710 node_set_online(nid
);
711 sz
= numa_enforce_memory_limit(base
, size
);
713 add_active_range(nid
, base
>> PAGE_SHIFT
,
715 + (sz
>> PAGE_SHIFT
));
720 static int __init
parse_numa_properties(void)
722 struct device_node
*memory
;
726 if (numa_enabled
== 0) {
727 printk(KERN_WARNING
"NUMA disabled by user\n");
731 min_common_depth
= find_min_common_depth();
733 if (min_common_depth
< 0)
734 return min_common_depth
;
736 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth
);
739 * Even though we connect cpus to numa domains later in SMP
740 * init, we need to know the node ids now. This is because
741 * each node to be onlined must have NODE_DATA etc backing it.
743 for_each_present_cpu(i
) {
744 struct device_node
*cpu
;
747 cpu
= of_get_cpu_node(i
, NULL
);
749 nid
= of_node_to_nid_single(cpu
);
753 * Don't fall back to default_nid yet -- we will plug
754 * cpus into nodes once the memory scan has discovered
759 node_set_online(nid
);
762 get_n_mem_cells(&n_mem_addr_cells
, &n_mem_size_cells
);
764 for_each_node_by_type(memory
, "memory") {
769 const unsigned int *memcell_buf
;
772 memcell_buf
= of_get_property(memory
,
773 "linux,usable-memory", &len
);
774 if (!memcell_buf
|| len
<= 0)
775 memcell_buf
= of_get_property(memory
, "reg", &len
);
776 if (!memcell_buf
|| len
<= 0)
780 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
782 /* these are order-sensitive, and modify the buffer pointer */
783 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
784 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
787 * Assumption: either all memory nodes or none will
788 * have associativity properties. If none, then
789 * everything goes to default_nid.
791 nid
= of_node_to_nid_single(memory
);
795 fake_numa_create_new_node(((start
+ size
) >> PAGE_SHIFT
), &nid
);
796 node_set_online(nid
);
798 if (!(size
= numa_enforce_memory_limit(start
, size
))) {
805 add_active_range(nid
, start
>> PAGE_SHIFT
,
806 (start
>> PAGE_SHIFT
) + (size
>> PAGE_SHIFT
));
813 * Now do the same thing for each MEMBLOCK listed in the
814 * ibm,dynamic-memory property in the
815 * ibm,dynamic-reconfiguration-memory node.
817 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
819 parse_drconf_memory(memory
);
824 static void __init
setup_nonnuma(void)
826 unsigned long top_of_ram
= memblock_end_of_DRAM();
827 unsigned long total_ram
= memblock_phys_mem_size();
828 unsigned long start_pfn
, end_pfn
;
829 unsigned int nid
= 0;
830 struct memblock_region
*reg
;
832 printk(KERN_DEBUG
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
833 top_of_ram
, total_ram
);
834 printk(KERN_DEBUG
"Memory hole size: %ldMB\n",
835 (top_of_ram
- total_ram
) >> 20);
837 for_each_memblock(memory
, reg
) {
838 start_pfn
= memblock_region_memory_base_pfn(reg
);
839 end_pfn
= memblock_region_memory_end_pfn(reg
);
841 fake_numa_create_new_node(end_pfn
, &nid
);
842 add_active_range(nid
, start_pfn
, end_pfn
);
843 node_set_online(nid
);
847 void __init
dump_numa_cpu_topology(void)
850 unsigned int cpu
, count
;
852 if (min_common_depth
== -1 || !numa_enabled
)
855 for_each_online_node(node
) {
856 printk(KERN_DEBUG
"Node %d CPUs:", node
);
860 * If we used a CPU iterator here we would miss printing
861 * the holes in the cpumap.
863 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++) {
864 if (cpumask_test_cpu(cpu
,
865 node_to_cpumask_map
[node
])) {
871 printk("-%u", cpu
- 1);
877 printk("-%u", nr_cpu_ids
- 1);
882 static void __init
dump_numa_memory_topology(void)
887 if (min_common_depth
== -1 || !numa_enabled
)
890 for_each_online_node(node
) {
893 printk(KERN_DEBUG
"Node %d Memory:", node
);
897 for (i
= 0; i
< memblock_end_of_DRAM();
898 i
+= (1 << SECTION_SIZE_BITS
)) {
899 if (early_pfn_to_nid(i
>> PAGE_SHIFT
) == node
) {
917 * Allocate some memory, satisfying the memblock or bootmem allocator where
918 * required. nid is the preferred node and end is the physical address of
919 * the highest address in the node.
921 * Returns the virtual address of the memory.
923 static void __init
*careful_zallocation(int nid
, unsigned long size
,
925 unsigned long end_pfn
)
929 unsigned long ret_paddr
;
931 ret_paddr
= __memblock_alloc_base(size
, align
, end_pfn
<< PAGE_SHIFT
);
933 /* retry over all memory */
935 ret_paddr
= __memblock_alloc_base(size
, align
, memblock_end_of_DRAM());
938 panic("numa.c: cannot allocate %lu bytes for node %d",
941 ret
= __va(ret_paddr
);
944 * We initialize the nodes in numeric order: 0, 1, 2...
945 * and hand over control from the MEMBLOCK allocator to the
946 * bootmem allocator. If this function is called for
947 * node 5, then we know that all nodes <5 are using the
948 * bootmem allocator instead of the MEMBLOCK allocator.
950 * So, check the nid from which this allocation came
951 * and double check to see if we need to use bootmem
952 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
953 * since it would be useless.
955 new_nid
= early_pfn_to_nid(ret_paddr
>> PAGE_SHIFT
);
957 ret
= __alloc_bootmem_node(NODE_DATA(new_nid
),
960 dbg("alloc_bootmem %p %lx\n", ret
, size
);
963 memset(ret
, 0, size
);
967 static struct notifier_block __cpuinitdata ppc64_numa_nb
= {
968 .notifier_call
= cpu_numa_callback
,
969 .priority
= 1 /* Must run before sched domains notifier. */
972 static void mark_reserved_regions_for_nid(int nid
)
974 struct pglist_data
*node
= NODE_DATA(nid
);
975 struct memblock_region
*reg
;
977 for_each_memblock(reserved
, reg
) {
978 unsigned long physbase
= reg
->base
;
979 unsigned long size
= reg
->size
;
980 unsigned long start_pfn
= physbase
>> PAGE_SHIFT
;
981 unsigned long end_pfn
= PFN_UP(physbase
+ size
);
982 struct node_active_region node_ar
;
983 unsigned long node_end_pfn
= node
->node_start_pfn
+
984 node
->node_spanned_pages
;
987 * Check to make sure that this memblock.reserved area is
988 * within the bounds of the node that we care about.
989 * Checking the nid of the start and end points is not
990 * sufficient because the reserved area could span the
993 if (end_pfn
<= node
->node_start_pfn
||
994 start_pfn
>= node_end_pfn
)
997 get_node_active_region(start_pfn
, &node_ar
);
998 while (start_pfn
< end_pfn
&&
999 node_ar
.start_pfn
< node_ar
.end_pfn
) {
1000 unsigned long reserve_size
= size
;
1002 * if reserved region extends past active region
1003 * then trim size to active region
1005 if (end_pfn
> node_ar
.end_pfn
)
1006 reserve_size
= (node_ar
.end_pfn
<< PAGE_SHIFT
)
1009 * Only worry about *this* node, others may not
1010 * yet have valid NODE_DATA().
1012 if (node_ar
.nid
== nid
) {
1013 dbg("reserve_bootmem %lx %lx nid=%d\n",
1014 physbase
, reserve_size
, node_ar
.nid
);
1015 reserve_bootmem_node(NODE_DATA(node_ar
.nid
),
1016 physbase
, reserve_size
,
1020 * if reserved region is contained in the active region
1023 if (end_pfn
<= node_ar
.end_pfn
)
1027 * reserved region extends past the active region
1028 * get next active region that contains this
1031 start_pfn
= node_ar
.end_pfn
;
1032 physbase
= start_pfn
<< PAGE_SHIFT
;
1033 size
= size
- reserve_size
;
1034 get_node_active_region(start_pfn
, &node_ar
);
1040 void __init
do_init_bootmem(void)
1045 max_low_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1046 max_pfn
= max_low_pfn
;
1048 if (parse_numa_properties())
1051 dump_numa_memory_topology();
1053 for_each_online_node(nid
) {
1054 unsigned long start_pfn
, end_pfn
;
1055 void *bootmem_vaddr
;
1056 unsigned long bootmap_pages
;
1058 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
1061 * Allocate the node structure node local if possible
1063 * Be careful moving this around, as it relies on all
1064 * previous nodes' bootmem to be initialized and have
1065 * all reserved areas marked.
1067 NODE_DATA(nid
) = careful_zallocation(nid
,
1068 sizeof(struct pglist_data
),
1069 SMP_CACHE_BYTES
, end_pfn
);
1071 dbg("node %d\n", nid
);
1072 dbg("NODE_DATA() = %p\n", NODE_DATA(nid
));
1074 NODE_DATA(nid
)->bdata
= &bootmem_node_data
[nid
];
1075 NODE_DATA(nid
)->node_start_pfn
= start_pfn
;
1076 NODE_DATA(nid
)->node_spanned_pages
= end_pfn
- start_pfn
;
1078 if (NODE_DATA(nid
)->node_spanned_pages
== 0)
1081 dbg("start_paddr = %lx\n", start_pfn
<< PAGE_SHIFT
);
1082 dbg("end_paddr = %lx\n", end_pfn
<< PAGE_SHIFT
);
1084 bootmap_pages
= bootmem_bootmap_pages(end_pfn
- start_pfn
);
1085 bootmem_vaddr
= careful_zallocation(nid
,
1086 bootmap_pages
<< PAGE_SHIFT
,
1087 PAGE_SIZE
, end_pfn
);
1089 dbg("bootmap_vaddr = %p\n", bootmem_vaddr
);
1091 init_bootmem_node(NODE_DATA(nid
),
1092 __pa(bootmem_vaddr
) >> PAGE_SHIFT
,
1093 start_pfn
, end_pfn
);
1095 free_bootmem_with_active_regions(nid
, end_pfn
);
1097 * Be very careful about moving this around. Future
1098 * calls to careful_zallocation() depend on this getting
1101 mark_reserved_regions_for_nid(nid
);
1102 sparse_memory_present_with_active_regions(nid
);
1105 init_bootmem_done
= 1;
1108 * Now bootmem is initialised we can create the node to cpumask
1109 * lookup tables and setup the cpu callback to populate them.
1111 setup_node_to_cpumask_map();
1113 register_cpu_notifier(&ppc64_numa_nb
);
1114 cpu_numa_callback(&ppc64_numa_nb
, CPU_UP_PREPARE
,
1115 (void *)(unsigned long)boot_cpuid
);
1118 void __init
paging_init(void)
1120 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
1121 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
1122 max_zone_pfns
[ZONE_DMA
] = memblock_end_of_DRAM() >> PAGE_SHIFT
;
1123 free_area_init_nodes(max_zone_pfns
);
1126 static int __init
early_numa(char *p
)
1131 if (strstr(p
, "off"))
1134 if (strstr(p
, "debug"))
1137 p
= strstr(p
, "fake=");
1139 cmdline
= p
+ strlen("fake=");
1143 early_param("numa", early_numa
);
1145 #ifdef CONFIG_MEMORY_HOTPLUG
1147 * Find the node associated with a hot added memory section for
1148 * memory represented in the device tree by the property
1149 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1151 static int hot_add_drconf_scn_to_nid(struct device_node
*memory
,
1152 unsigned long scn_addr
)
1155 unsigned int drconf_cell_cnt
, rc
;
1156 unsigned long lmb_size
;
1157 struct assoc_arrays aa
;
1160 drconf_cell_cnt
= of_get_drconf_memory(memory
, &dm
);
1161 if (!drconf_cell_cnt
)
1164 lmb_size
= of_get_lmb_size(memory
);
1168 rc
= of_get_assoc_arrays(memory
, &aa
);
1172 for (; drconf_cell_cnt
!= 0; --drconf_cell_cnt
) {
1173 struct of_drconf_cell drmem
;
1175 read_drconf_cell(&drmem
, &dm
);
1177 /* skip this block if it is reserved or not assigned to
1179 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
1180 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
1183 if ((scn_addr
< drmem
.base_addr
)
1184 || (scn_addr
>= (drmem
.base_addr
+ lmb_size
)))
1187 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
1195 * Find the node associated with a hot added memory section for memory
1196 * represented in the device tree as a node (i.e. memory@XXXX) for
1199 int hot_add_node_scn_to_nid(unsigned long scn_addr
)
1201 struct device_node
*memory
;
1204 for_each_node_by_type(memory
, "memory") {
1205 unsigned long start
, size
;
1207 const unsigned int *memcell_buf
;
1210 memcell_buf
= of_get_property(memory
, "reg", &len
);
1211 if (!memcell_buf
|| len
<= 0)
1214 /* ranges in cell */
1215 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
1218 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
1219 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
1221 if ((scn_addr
< start
) || (scn_addr
>= (start
+ size
)))
1224 nid
= of_node_to_nid_single(memory
);
1232 of_node_put(memory
);
1238 * Find the node associated with a hot added memory section. Section
1239 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1240 * sections are fully contained within a single MEMBLOCK.
1242 int hot_add_scn_to_nid(unsigned long scn_addr
)
1244 struct device_node
*memory
= NULL
;
1247 if (!numa_enabled
|| (min_common_depth
< 0))
1248 return first_online_node
;
1250 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1252 nid
= hot_add_drconf_scn_to_nid(memory
, scn_addr
);
1253 of_node_put(memory
);
1255 nid
= hot_add_node_scn_to_nid(scn_addr
);
1258 if (nid
< 0 || !node_online(nid
))
1259 nid
= first_online_node
;
1261 if (NODE_DATA(nid
)->node_spanned_pages
)
1264 for_each_online_node(nid
) {
1265 if (NODE_DATA(nid
)->node_spanned_pages
) {
1275 static u64
hot_add_drconf_memory_max(void)
1277 struct device_node
*memory
= NULL
;
1278 unsigned int drconf_cell_cnt
= 0;
1282 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1284 drconf_cell_cnt
= of_get_drconf_memory(memory
, &dm
);
1285 lmb_size
= of_get_lmb_size(memory
);
1286 of_node_put(memory
);
1288 return lmb_size
* drconf_cell_cnt
;
1292 * memory_hotplug_max - return max address of memory that may be added
1294 * This is currently only used on systems that support drconfig memory
1297 u64
memory_hotplug_max(void)
1299 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1301 #endif /* CONFIG_MEMORY_HOTPLUG */
1303 /* Virtual Processor Home Node (VPHN) support */
1304 #ifdef CONFIG_PPC_SPLPAR
1305 static u8 vphn_cpu_change_counts
[NR_CPUS
][MAX_DISTANCE_REF_POINTS
];
1306 static cpumask_t cpu_associativity_changes_mask
;
1307 static int vphn_enabled
;
1308 static void set_topology_timer(void);
1311 * Store the current values of the associativity change counters in the
1314 static void setup_cpu_associativity_change_counters(void)
1318 /* The VPHN feature supports a maximum of 8 reference points */
1319 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS
> 8);
1321 for_each_possible_cpu(cpu
) {
1323 u8
*counts
= vphn_cpu_change_counts
[cpu
];
1324 volatile u8
*hypervisor_counts
= lppaca
[cpu
].vphn_assoc_counts
;
1326 for (i
= 0; i
< distance_ref_points_depth
; i
++)
1327 counts
[i
] = hypervisor_counts
[i
];
1332 * The hypervisor maintains a set of 8 associativity change counters in
1333 * the VPA of each cpu that correspond to the associativity levels in the
1334 * ibm,associativity-reference-points property. When an associativity
1335 * level changes, the corresponding counter is incremented.
1337 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1338 * node associativity levels have changed.
1340 * Returns the number of cpus with unhandled associativity changes.
1342 static int update_cpu_associativity_changes_mask(void)
1344 int cpu
, nr_cpus
= 0;
1345 cpumask_t
*changes
= &cpu_associativity_changes_mask
;
1347 cpumask_clear(changes
);
1349 for_each_possible_cpu(cpu
) {
1351 u8
*counts
= vphn_cpu_change_counts
[cpu
];
1352 volatile u8
*hypervisor_counts
= lppaca
[cpu
].vphn_assoc_counts
;
1354 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
1355 if (hypervisor_counts
[i
] != counts
[i
]) {
1356 counts
[i
] = hypervisor_counts
[i
];
1361 cpumask_set_cpu(cpu
, changes
);
1370 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1371 * the complete property we have to add the length in the first cell.
1373 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1376 * Convert the associativity domain numbers returned from the hypervisor
1377 * to the sequence they would appear in the ibm,associativity property.
1379 static int vphn_unpack_associativity(const long *packed
, unsigned int *unpacked
)
1381 int i
, nr_assoc_doms
= 0;
1382 const u16
*field
= (const u16
*) packed
;
1384 #define VPHN_FIELD_UNUSED (0xffff)
1385 #define VPHN_FIELD_MSB (0x8000)
1386 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1388 for (i
= 1; i
< VPHN_ASSOC_BUFSIZE
; i
++) {
1389 if (*field
== VPHN_FIELD_UNUSED
) {
1390 /* All significant fields processed, and remaining
1391 * fields contain the reserved value of all 1's.
1394 unpacked
[i
] = *((u32
*)field
);
1396 } else if (*field
& VPHN_FIELD_MSB
) {
1397 /* Data is in the lower 15 bits of this field */
1398 unpacked
[i
] = *field
& VPHN_FIELD_MASK
;
1402 /* Data is in the lower 15 bits of this field
1403 * concatenated with the next 16 bit field
1405 unpacked
[i
] = *((u32
*)field
);
1411 /* The first cell contains the length of the property */
1412 unpacked
[0] = nr_assoc_doms
;
1414 return nr_assoc_doms
;
1418 * Retrieve the new associativity information for a virtual processor's
1421 static long hcall_vphn(unsigned long cpu
, unsigned int *associativity
)
1424 long retbuf
[PLPAR_HCALL9_BUFSIZE
] = {0};
1426 int hwcpu
= get_hard_smp_processor_id(cpu
);
1428 rc
= plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY
, retbuf
, flags
, hwcpu
);
1429 vphn_unpack_associativity(retbuf
, associativity
);
1434 static long vphn_get_associativity(unsigned long cpu
,
1435 unsigned int *associativity
)
1439 rc
= hcall_vphn(cpu
, associativity
);
1444 "VPHN is not supported. Disabling polling...\n");
1445 stop_topology_update();
1449 "hcall_vphn() experienced a hardware fault "
1450 "preventing VPHN. Disabling polling...\n");
1451 stop_topology_update();
1458 * Update the node maps and sysfs entries for each cpu whose home node
1461 int arch_update_cpu_topology(void)
1463 int cpu
, nid
, old_nid
;
1464 unsigned int associativity
[VPHN_ASSOC_BUFSIZE
] = {0};
1465 struct sys_device
*sysdev
;
1467 for_each_cpu(cpu
,&cpu_associativity_changes_mask
) {
1468 vphn_get_associativity(cpu
, associativity
);
1469 nid
= associativity_to_nid(associativity
);
1471 if (nid
< 0 || !node_online(nid
))
1472 nid
= first_online_node
;
1474 old_nid
= numa_cpu_lookup_table
[cpu
];
1476 /* Disable hotplug while we update the cpu
1480 unregister_cpu_under_node(cpu
, old_nid
);
1481 unmap_cpu_from_node(cpu
);
1482 map_cpu_to_node(cpu
, nid
);
1483 register_cpu_under_node(cpu
, nid
);
1486 sysdev
= get_cpu_sysdev(cpu
);
1488 kobject_uevent(&sysdev
->kobj
, KOBJ_CHANGE
);
1494 static void topology_work_fn(struct work_struct
*work
)
1496 rebuild_sched_domains();
1498 static DECLARE_WORK(topology_work
, topology_work_fn
);
1500 void topology_schedule_update(void)
1502 schedule_work(&topology_work
);
1505 static void topology_timer_fn(unsigned long ignored
)
1509 if (update_cpu_associativity_changes_mask() > 0)
1510 topology_schedule_update();
1511 set_topology_timer();
1513 static struct timer_list topology_timer
=
1514 TIMER_INITIALIZER(topology_timer_fn
, 0, 0);
1516 static void set_topology_timer(void)
1518 topology_timer
.data
= 0;
1519 topology_timer
.expires
= jiffies
+ 60 * HZ
;
1520 add_timer(&topology_timer
);
1524 * Start polling for VPHN associativity changes.
1526 int start_topology_update(void)
1530 /* Disabled until races with load balancing are fixed */
1531 if (0 && firmware_has_feature(FW_FEATURE_VPHN
) &&
1532 get_lppaca()->shared_proc
) {
1534 setup_cpu_associativity_change_counters();
1535 init_timer_deferrable(&topology_timer
);
1536 set_topology_timer();
1542 __initcall(start_topology_update
);
1545 * Disable polling for VPHN associativity changes.
1547 int stop_topology_update(void)
1550 return del_timer_sync(&topology_timer
);
1552 #endif /* CONFIG_PPC_SPLPAR */