2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
24 #include <linux/errno.h>
25 #include <linux/threads.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/signal.h>
28 #include <linux/sched.h>
29 #include <linux/ioport.h>
30 #include <linux/interrupt.h>
31 #include <linux/timex.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/irq.h>
35 #include <linux/random.h>
36 #include <linux/sysrq.h>
37 #include <linux/bitops.h>
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
42 #include <asm/pgtable.h>
44 #include <asm/cache.h>
46 #include <asm/ptrace.h>
47 #include <asm/machdep.h>
50 #include <asm/firmware.h>
54 static unsigned char ras_log_buf
[RTAS_ERROR_LOG_MAX
];
55 static DEFINE_SPINLOCK(ras_log_buf_lock
);
57 static char global_mce_data_buf
[RTAS_ERROR_LOG_MAX
];
58 static DEFINE_PER_CPU(__u64
, mce_data_buf
);
60 static int ras_get_sensor_state_token
;
61 static int ras_check_exception_token
;
63 #define EPOW_SENSOR_TOKEN 9
64 #define EPOW_SENSOR_INDEX 0
66 static irqreturn_t
ras_epow_interrupt(int irq
, void *dev_id
);
67 static irqreturn_t
ras_error_interrupt(int irq
, void *dev_id
);
71 * Initialize handlers for the set of interrupts caused by hardware errors
72 * and power system events.
74 static int __init
init_ras_IRQ(void)
76 struct device_node
*np
;
78 ras_get_sensor_state_token
= rtas_token("get-sensor-state");
79 ras_check_exception_token
= rtas_token("check-exception");
82 np
= of_find_node_by_path("/event-sources/internal-errors");
84 request_event_sources_irqs(np
, ras_error_interrupt
,
90 np
= of_find_node_by_path("/event-sources/epow-events");
92 request_event_sources_irqs(np
, ras_epow_interrupt
, "RAS_EPOW");
98 __initcall(init_ras_IRQ
);
101 * Handle power subsystem events (EPOW).
103 * Presently we just log the event has occurred. This should be fixed
104 * to examine the type of power failure and take appropriate action where
105 * the time horizon permits something useful to be done.
107 static irqreturn_t
ras_epow_interrupt(int irq
, void *dev_id
)
109 int status
= 0xdeadbeef;
113 status
= rtas_call(ras_get_sensor_state_token
, 2, 2, &state
,
114 EPOW_SENSOR_TOKEN
, EPOW_SENSOR_INDEX
);
117 critical
= 1; /* Time Critical */
121 spin_lock(&ras_log_buf_lock
);
123 status
= rtas_call(ras_check_exception_token
, 6, 1, NULL
,
124 RTAS_VECTOR_EXTERNAL_INTERRUPT
,
126 RTAS_EPOW_WARNING
| RTAS_POWERMGM_EVENTS
,
127 critical
, __pa(&ras_log_buf
),
128 rtas_get_error_log_max());
130 udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
131 *((unsigned long *)&ras_log_buf
), status
, state
);
132 printk(KERN_WARNING
"EPOW <0x%lx 0x%x 0x%x>\n",
133 *((unsigned long *)&ras_log_buf
), status
, state
);
135 /* format and print the extended information */
136 log_error(ras_log_buf
, ERR_TYPE_RTAS_LOG
, 0);
138 spin_unlock(&ras_log_buf_lock
);
143 * Handle hardware error interrupts.
145 * RTAS check-exception is called to collect data on the exception. If
146 * the error is deemed recoverable, we log a warning and return.
147 * For nonrecoverable errors, an error is logged and we stop all processing
148 * as quickly as possible in order to prevent propagation of the failure.
150 static irqreturn_t
ras_error_interrupt(int irq
, void *dev_id
)
152 struct rtas_error_log
*rtas_elog
;
153 int status
= 0xdeadbeef;
156 spin_lock(&ras_log_buf_lock
);
158 status
= rtas_call(ras_check_exception_token
, 6, 1, NULL
,
159 RTAS_VECTOR_EXTERNAL_INTERRUPT
,
161 RTAS_INTERNAL_ERROR
, 1 /*Time Critical */,
163 rtas_get_error_log_max());
165 rtas_elog
= (struct rtas_error_log
*)ras_log_buf
;
167 if ((status
== 0) && (rtas_elog
->severity
>= RTAS_SEVERITY_ERROR_SYNC
))
172 /* format and print the extended information */
173 log_error(ras_log_buf
, ERR_TYPE_RTAS_LOG
, fatal
);
176 udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
177 *((unsigned long *)&ras_log_buf
), status
);
178 printk(KERN_EMERG
"Error: Fatal hardware error <0x%lx 0x%x>\n",
179 *((unsigned long *)&ras_log_buf
), status
);
181 #ifndef DEBUG_RTAS_POWER_OFF
182 /* Don't actually power off when debugging so we can test
183 * without actually failing while injecting errors.
184 * Error data will not be logged to syslog.
189 udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
190 *((unsigned long *)&ras_log_buf
), status
);
192 "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
193 *((unsigned long *)&ras_log_buf
), status
);
196 spin_unlock(&ras_log_buf_lock
);
201 * Some versions of FWNMI place the buffer inside the 4kB page starting at
202 * 0x7000. Other versions place it inside the rtas buffer. We check both.
204 #define VALID_FWNMI_BUFFER(A) \
205 ((((A) >= 0x7000) && ((A) < 0x7ff0)) || \
206 (((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16))))
209 * Get the error information for errors coming through the
210 * FWNMI vectors. The pt_regs' r3 will be updated to reflect
211 * the actual r3 if possible, and a ptr to the error log entry
212 * will be returned if found.
214 * If the RTAS error is not of the extended type, then we put it in a per
215 * cpu 64bit buffer. If it is the extended type we use global_mce_data_buf.
217 * The global_mce_data_buf does not have any locks or protection around it,
218 * if a second machine check comes in, or a system reset is done
219 * before we have logged the error, then we will get corruption in the
220 * error log. This is preferable over holding off on calling
221 * ibm,nmi-interlock which would result in us checkstopping if a
222 * second machine check did come in.
224 static struct rtas_error_log
*fwnmi_get_errinfo(struct pt_regs
*regs
)
226 unsigned long *savep
;
227 struct rtas_error_log
*h
, *errhdr
= NULL
;
229 if (!VALID_FWNMI_BUFFER(regs
->gpr
[3])) {
230 printk(KERN_ERR
"FWNMI: corrupt r3 0x%016lx\n", regs
->gpr
[3]);
234 savep
= __va(regs
->gpr
[3]);
235 regs
->gpr
[3] = savep
[0]; /* restore original r3 */
237 /* If it isn't an extended log we can use the per cpu 64bit buffer */
238 h
= (struct rtas_error_log
*)&savep
[1];
240 memcpy(&__get_cpu_var(mce_data_buf
), h
, sizeof(__u64
));
241 errhdr
= (struct rtas_error_log
*)&__get_cpu_var(mce_data_buf
);
245 len
= max_t(int, 8+h
->extended_log_length
, RTAS_ERROR_LOG_MAX
);
246 memset(global_mce_data_buf
, 0, RTAS_ERROR_LOG_MAX
);
247 memcpy(global_mce_data_buf
, h
, len
);
248 errhdr
= (struct rtas_error_log
*)global_mce_data_buf
;
254 /* Call this when done with the data returned by FWNMI_get_errinfo.
255 * It will release the saved data area for other CPUs in the
256 * partition to receive FWNMI errors.
258 static void fwnmi_release_errinfo(void)
260 int ret
= rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL
);
262 printk(KERN_ERR
"FWNMI: nmi-interlock failed: %d\n", ret
);
265 int pSeries_system_reset_exception(struct pt_regs
*regs
)
268 struct rtas_error_log
*errhdr
= fwnmi_get_errinfo(regs
);
270 /* XXX Should look at FWNMI information */
272 fwnmi_release_errinfo();
274 return 0; /* need to perform reset */
278 * See if we can recover from a machine check exception.
279 * This is only called on power4 (or above) and only via
280 * the Firmware Non-Maskable Interrupts (fwnmi) handler
281 * which provides the error analysis for us.
283 * Return 1 if corrected (or delivered a signal).
284 * Return 0 if there is nothing we can do.
286 static int recover_mce(struct pt_regs
*regs
, struct rtas_error_log
*err
)
290 if (!(regs
->msr
& MSR_RI
)) {
291 /* If MSR_RI isn't set, we cannot recover */
294 } else if (err
->disposition
== RTAS_DISP_FULLY_RECOVERED
) {
295 /* Platform corrected itself */
298 } else if (err
->disposition
== RTAS_DISP_LIMITED_RECOVERY
) {
299 /* Platform corrected itself but could be degraded */
300 printk(KERN_ERR
"MCE: limited recovery, system may "
304 } else if (user_mode(regs
) && !is_global_init(current
) &&
305 err
->severity
== RTAS_SEVERITY_ERROR_SYNC
) {
308 * If we received a synchronous error when in userspace
309 * kill the task. Firmware may report details of the fail
310 * asynchronously, so we can't rely on the target and type
311 * fields being valid here.
313 printk(KERN_ERR
"MCE: uncorrectable error, killing task "
314 "%s:%d\n", current
->comm
, current
->pid
);
316 _exception(SIGBUS
, regs
, BUS_MCEERR_AR
, regs
->nip
);
320 log_error((char *)err
, ERR_TYPE_RTAS_LOG
, 0);
326 * Handle a machine check.
328 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
329 * should be present. If so the handler which called us tells us if the
330 * error was recovered (never true if RI=0).
332 * On hardware prior to Power 4 these exceptions were asynchronous which
333 * means we can't tell exactly where it occurred and so we can't recover.
335 int pSeries_machine_check_exception(struct pt_regs
*regs
)
337 struct rtas_error_log
*errp
;
340 errp
= fwnmi_get_errinfo(regs
);
341 fwnmi_release_errinfo();
342 if (errp
&& recover_mce(regs
, errp
))