2 * Compressed RAM block device
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/cpuhotplug.h>
37 static DEFINE_IDR(zram_index_idr
);
38 /* idr index must be protected */
39 static DEFINE_MUTEX(zram_index_mutex
);
41 static int zram_major
;
42 static const char *default_compressor
= "lzo";
44 /* Module params (documentation at end) */
45 static unsigned int num_devices
= 1;
47 static inline void deprecated_attr_warn(const char *name
)
49 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
53 "See zram documentation.");
56 #define ZRAM_ATTR_RO(name) \
57 static ssize_t name##_show(struct device *d, \
58 struct device_attribute *attr, char *b) \
60 struct zram *zram = dev_to_zram(d); \
62 deprecated_attr_warn(__stringify(name)); \
63 return scnprintf(b, PAGE_SIZE, "%llu\n", \
64 (u64)atomic64_read(&zram->stats.name)); \
66 static DEVICE_ATTR_RO(name);
68 static inline bool init_done(struct zram
*zram
)
70 return zram
->disksize
;
73 static inline struct zram
*dev_to_zram(struct device
*dev
)
75 return (struct zram
*)dev_to_disk(dev
)->private_data
;
78 /* flag operations require table entry bit_spin_lock() being held */
79 static int zram_test_flag(struct zram_meta
*meta
, u32 index
,
80 enum zram_pageflags flag
)
82 return meta
->table
[index
].value
& BIT(flag
);
85 static void zram_set_flag(struct zram_meta
*meta
, u32 index
,
86 enum zram_pageflags flag
)
88 meta
->table
[index
].value
|= BIT(flag
);
91 static void zram_clear_flag(struct zram_meta
*meta
, u32 index
,
92 enum zram_pageflags flag
)
94 meta
->table
[index
].value
&= ~BIT(flag
);
97 static size_t zram_get_obj_size(struct zram_meta
*meta
, u32 index
)
99 return meta
->table
[index
].value
& (BIT(ZRAM_FLAG_SHIFT
) - 1);
102 static void zram_set_obj_size(struct zram_meta
*meta
,
103 u32 index
, size_t size
)
105 unsigned long flags
= meta
->table
[index
].value
>> ZRAM_FLAG_SHIFT
;
107 meta
->table
[index
].value
= (flags
<< ZRAM_FLAG_SHIFT
) | size
;
110 static inline bool is_partial_io(struct bio_vec
*bvec
)
112 return bvec
->bv_len
!= PAGE_SIZE
;
116 * Check if request is within bounds and aligned on zram logical blocks.
118 static inline bool valid_io_request(struct zram
*zram
,
119 sector_t start
, unsigned int size
)
123 /* unaligned request */
124 if (unlikely(start
& (ZRAM_SECTOR_PER_LOGICAL_BLOCK
- 1)))
126 if (unlikely(size
& (ZRAM_LOGICAL_BLOCK_SIZE
- 1)))
129 end
= start
+ (size
>> SECTOR_SHIFT
);
130 bound
= zram
->disksize
>> SECTOR_SHIFT
;
131 /* out of range range */
132 if (unlikely(start
>= bound
|| end
> bound
|| start
> end
))
135 /* I/O request is valid */
139 static void update_position(u32
*index
, int *offset
, struct bio_vec
*bvec
)
141 if (*offset
+ bvec
->bv_len
>= PAGE_SIZE
)
143 *offset
= (*offset
+ bvec
->bv_len
) % PAGE_SIZE
;
146 static inline void update_used_max(struct zram
*zram
,
147 const unsigned long pages
)
149 unsigned long old_max
, cur_max
;
151 old_max
= atomic_long_read(&zram
->stats
.max_used_pages
);
156 old_max
= atomic_long_cmpxchg(
157 &zram
->stats
.max_used_pages
, cur_max
, pages
);
158 } while (old_max
!= cur_max
);
161 static bool page_zero_filled(void *ptr
)
166 page
= (unsigned long *)ptr
;
168 for (pos
= 0; pos
!= PAGE_SIZE
/ sizeof(*page
); pos
++) {
176 static void handle_zero_page(struct bio_vec
*bvec
)
178 struct page
*page
= bvec
->bv_page
;
181 user_mem
= kmap_atomic(page
);
182 if (is_partial_io(bvec
))
183 memset(user_mem
+ bvec
->bv_offset
, 0, bvec
->bv_len
);
185 clear_page(user_mem
);
186 kunmap_atomic(user_mem
);
188 flush_dcache_page(page
);
191 static ssize_t
initstate_show(struct device
*dev
,
192 struct device_attribute
*attr
, char *buf
)
195 struct zram
*zram
= dev_to_zram(dev
);
197 down_read(&zram
->init_lock
);
198 val
= init_done(zram
);
199 up_read(&zram
->init_lock
);
201 return scnprintf(buf
, PAGE_SIZE
, "%u\n", val
);
204 static ssize_t
disksize_show(struct device
*dev
,
205 struct device_attribute
*attr
, char *buf
)
207 struct zram
*zram
= dev_to_zram(dev
);
209 return scnprintf(buf
, PAGE_SIZE
, "%llu\n", zram
->disksize
);
212 static ssize_t
orig_data_size_show(struct device
*dev
,
213 struct device_attribute
*attr
, char *buf
)
215 struct zram
*zram
= dev_to_zram(dev
);
217 deprecated_attr_warn("orig_data_size");
218 return scnprintf(buf
, PAGE_SIZE
, "%llu\n",
219 (u64
)(atomic64_read(&zram
->stats
.pages_stored
)) << PAGE_SHIFT
);
222 static ssize_t
mem_used_total_show(struct device
*dev
,
223 struct device_attribute
*attr
, char *buf
)
226 struct zram
*zram
= dev_to_zram(dev
);
228 deprecated_attr_warn("mem_used_total");
229 down_read(&zram
->init_lock
);
230 if (init_done(zram
)) {
231 struct zram_meta
*meta
= zram
->meta
;
232 val
= zs_get_total_pages(meta
->mem_pool
);
234 up_read(&zram
->init_lock
);
236 return scnprintf(buf
, PAGE_SIZE
, "%llu\n", val
<< PAGE_SHIFT
);
239 static ssize_t
mem_limit_show(struct device
*dev
,
240 struct device_attribute
*attr
, char *buf
)
243 struct zram
*zram
= dev_to_zram(dev
);
245 deprecated_attr_warn("mem_limit");
246 down_read(&zram
->init_lock
);
247 val
= zram
->limit_pages
;
248 up_read(&zram
->init_lock
);
250 return scnprintf(buf
, PAGE_SIZE
, "%llu\n", val
<< PAGE_SHIFT
);
253 static ssize_t
mem_limit_store(struct device
*dev
,
254 struct device_attribute
*attr
, const char *buf
, size_t len
)
258 struct zram
*zram
= dev_to_zram(dev
);
260 limit
= memparse(buf
, &tmp
);
261 if (buf
== tmp
) /* no chars parsed, invalid input */
264 down_write(&zram
->init_lock
);
265 zram
->limit_pages
= PAGE_ALIGN(limit
) >> PAGE_SHIFT
;
266 up_write(&zram
->init_lock
);
271 static ssize_t
mem_used_max_show(struct device
*dev
,
272 struct device_attribute
*attr
, char *buf
)
275 struct zram
*zram
= dev_to_zram(dev
);
277 deprecated_attr_warn("mem_used_max");
278 down_read(&zram
->init_lock
);
280 val
= atomic_long_read(&zram
->stats
.max_used_pages
);
281 up_read(&zram
->init_lock
);
283 return scnprintf(buf
, PAGE_SIZE
, "%llu\n", val
<< PAGE_SHIFT
);
286 static ssize_t
mem_used_max_store(struct device
*dev
,
287 struct device_attribute
*attr
, const char *buf
, size_t len
)
291 struct zram
*zram
= dev_to_zram(dev
);
293 err
= kstrtoul(buf
, 10, &val
);
297 down_read(&zram
->init_lock
);
298 if (init_done(zram
)) {
299 struct zram_meta
*meta
= zram
->meta
;
300 atomic_long_set(&zram
->stats
.max_used_pages
,
301 zs_get_total_pages(meta
->mem_pool
));
303 up_read(&zram
->init_lock
);
309 * We switched to per-cpu streams and this attr is not needed anymore.
310 * However, we will keep it around for some time, because:
311 * a) we may revert per-cpu streams in the future
312 * b) it's visible to user space and we need to follow our 2 years
313 * retirement rule; but we already have a number of 'soon to be
314 * altered' attrs, so max_comp_streams need to wait for the next
317 static ssize_t
max_comp_streams_show(struct device
*dev
,
318 struct device_attribute
*attr
, char *buf
)
320 return scnprintf(buf
, PAGE_SIZE
, "%d\n", num_online_cpus());
323 static ssize_t
max_comp_streams_store(struct device
*dev
,
324 struct device_attribute
*attr
, const char *buf
, size_t len
)
329 static ssize_t
comp_algorithm_show(struct device
*dev
,
330 struct device_attribute
*attr
, char *buf
)
333 struct zram
*zram
= dev_to_zram(dev
);
335 down_read(&zram
->init_lock
);
336 sz
= zcomp_available_show(zram
->compressor
, buf
);
337 up_read(&zram
->init_lock
);
342 static ssize_t
comp_algorithm_store(struct device
*dev
,
343 struct device_attribute
*attr
, const char *buf
, size_t len
)
345 struct zram
*zram
= dev_to_zram(dev
);
346 char compressor
[CRYPTO_MAX_ALG_NAME
];
349 strlcpy(compressor
, buf
, sizeof(compressor
));
350 /* ignore trailing newline */
351 sz
= strlen(compressor
);
352 if (sz
> 0 && compressor
[sz
- 1] == '\n')
353 compressor
[sz
- 1] = 0x00;
355 if (!zcomp_available_algorithm(compressor
))
358 down_write(&zram
->init_lock
);
359 if (init_done(zram
)) {
360 up_write(&zram
->init_lock
);
361 pr_info("Can't change algorithm for initialized device\n");
365 strlcpy(zram
->compressor
, compressor
, sizeof(compressor
));
366 up_write(&zram
->init_lock
);
370 static ssize_t
compact_store(struct device
*dev
,
371 struct device_attribute
*attr
, const char *buf
, size_t len
)
373 struct zram
*zram
= dev_to_zram(dev
);
374 struct zram_meta
*meta
;
376 down_read(&zram
->init_lock
);
377 if (!init_done(zram
)) {
378 up_read(&zram
->init_lock
);
383 zs_compact(meta
->mem_pool
);
384 up_read(&zram
->init_lock
);
389 static ssize_t
io_stat_show(struct device
*dev
,
390 struct device_attribute
*attr
, char *buf
)
392 struct zram
*zram
= dev_to_zram(dev
);
395 down_read(&zram
->init_lock
);
396 ret
= scnprintf(buf
, PAGE_SIZE
,
397 "%8llu %8llu %8llu %8llu\n",
398 (u64
)atomic64_read(&zram
->stats
.failed_reads
),
399 (u64
)atomic64_read(&zram
->stats
.failed_writes
),
400 (u64
)atomic64_read(&zram
->stats
.invalid_io
),
401 (u64
)atomic64_read(&zram
->stats
.notify_free
));
402 up_read(&zram
->init_lock
);
407 static ssize_t
mm_stat_show(struct device
*dev
,
408 struct device_attribute
*attr
, char *buf
)
410 struct zram
*zram
= dev_to_zram(dev
);
411 struct zs_pool_stats pool_stats
;
412 u64 orig_size
, mem_used
= 0;
416 memset(&pool_stats
, 0x00, sizeof(struct zs_pool_stats
));
418 down_read(&zram
->init_lock
);
419 if (init_done(zram
)) {
420 mem_used
= zs_get_total_pages(zram
->meta
->mem_pool
);
421 zs_pool_stats(zram
->meta
->mem_pool
, &pool_stats
);
424 orig_size
= atomic64_read(&zram
->stats
.pages_stored
);
425 max_used
= atomic_long_read(&zram
->stats
.max_used_pages
);
427 ret
= scnprintf(buf
, PAGE_SIZE
,
428 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
429 orig_size
<< PAGE_SHIFT
,
430 (u64
)atomic64_read(&zram
->stats
.compr_data_size
),
431 mem_used
<< PAGE_SHIFT
,
432 zram
->limit_pages
<< PAGE_SHIFT
,
433 max_used
<< PAGE_SHIFT
,
434 (u64
)atomic64_read(&zram
->stats
.zero_pages
),
435 pool_stats
.pages_compacted
);
436 up_read(&zram
->init_lock
);
441 static ssize_t
debug_stat_show(struct device
*dev
,
442 struct device_attribute
*attr
, char *buf
)
445 struct zram
*zram
= dev_to_zram(dev
);
448 down_read(&zram
->init_lock
);
449 ret
= scnprintf(buf
, PAGE_SIZE
,
450 "version: %d\n%8llu\n",
452 (u64
)atomic64_read(&zram
->stats
.writestall
));
453 up_read(&zram
->init_lock
);
458 static DEVICE_ATTR_RO(io_stat
);
459 static DEVICE_ATTR_RO(mm_stat
);
460 static DEVICE_ATTR_RO(debug_stat
);
461 ZRAM_ATTR_RO(num_reads
);
462 ZRAM_ATTR_RO(num_writes
);
463 ZRAM_ATTR_RO(failed_reads
);
464 ZRAM_ATTR_RO(failed_writes
);
465 ZRAM_ATTR_RO(invalid_io
);
466 ZRAM_ATTR_RO(notify_free
);
467 ZRAM_ATTR_RO(zero_pages
);
468 ZRAM_ATTR_RO(compr_data_size
);
470 static inline bool zram_meta_get(struct zram
*zram
)
472 if (atomic_inc_not_zero(&zram
->refcount
))
477 static inline void zram_meta_put(struct zram
*zram
)
479 atomic_dec(&zram
->refcount
);
482 static void zram_meta_free(struct zram_meta
*meta
, u64 disksize
)
484 size_t num_pages
= disksize
>> PAGE_SHIFT
;
487 /* Free all pages that are still in this zram device */
488 for (index
= 0; index
< num_pages
; index
++) {
489 unsigned long handle
= meta
->table
[index
].handle
;
494 zs_free(meta
->mem_pool
, handle
);
497 zs_destroy_pool(meta
->mem_pool
);
502 static struct zram_meta
*zram_meta_alloc(char *pool_name
, u64 disksize
)
505 struct zram_meta
*meta
= kmalloc(sizeof(*meta
), GFP_KERNEL
);
510 num_pages
= disksize
>> PAGE_SHIFT
;
511 meta
->table
= vzalloc(num_pages
* sizeof(*meta
->table
));
513 pr_err("Error allocating zram address table\n");
517 meta
->mem_pool
= zs_create_pool(pool_name
);
518 if (!meta
->mem_pool
) {
519 pr_err("Error creating memory pool\n");
532 * To protect concurrent access to the same index entry,
533 * caller should hold this table index entry's bit_spinlock to
534 * indicate this index entry is accessing.
536 static void zram_free_page(struct zram
*zram
, size_t index
)
538 struct zram_meta
*meta
= zram
->meta
;
539 unsigned long handle
= meta
->table
[index
].handle
;
541 if (unlikely(!handle
)) {
543 * No memory is allocated for zero filled pages.
544 * Simply clear zero page flag.
546 if (zram_test_flag(meta
, index
, ZRAM_ZERO
)) {
547 zram_clear_flag(meta
, index
, ZRAM_ZERO
);
548 atomic64_dec(&zram
->stats
.zero_pages
);
553 zs_free(meta
->mem_pool
, handle
);
555 atomic64_sub(zram_get_obj_size(meta
, index
),
556 &zram
->stats
.compr_data_size
);
557 atomic64_dec(&zram
->stats
.pages_stored
);
559 meta
->table
[index
].handle
= 0;
560 zram_set_obj_size(meta
, index
, 0);
563 static int zram_decompress_page(struct zram
*zram
, char *mem
, u32 index
)
567 struct zram_meta
*meta
= zram
->meta
;
568 unsigned long handle
;
571 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
572 handle
= meta
->table
[index
].handle
;
573 size
= zram_get_obj_size(meta
, index
);
575 if (!handle
|| zram_test_flag(meta
, index
, ZRAM_ZERO
)) {
576 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
581 cmem
= zs_map_object(meta
->mem_pool
, handle
, ZS_MM_RO
);
582 if (size
== PAGE_SIZE
) {
583 copy_page(mem
, cmem
);
585 struct zcomp_strm
*zstrm
= zcomp_stream_get(zram
->comp
);
587 ret
= zcomp_decompress(zstrm
, cmem
, size
, mem
);
588 zcomp_stream_put(zram
->comp
);
590 zs_unmap_object(meta
->mem_pool
, handle
);
591 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
593 /* Should NEVER happen. Return bio error if it does. */
595 pr_err("Decompression failed! err=%d, page=%u\n", ret
, index
);
602 static int zram_bvec_read(struct zram
*zram
, struct bio_vec
*bvec
,
603 u32 index
, int offset
)
607 unsigned char *user_mem
, *uncmem
= NULL
;
608 struct zram_meta
*meta
= zram
->meta
;
609 page
= bvec
->bv_page
;
611 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
612 if (unlikely(!meta
->table
[index
].handle
) ||
613 zram_test_flag(meta
, index
, ZRAM_ZERO
)) {
614 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
615 handle_zero_page(bvec
);
618 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
620 if (is_partial_io(bvec
))
621 /* Use a temporary buffer to decompress the page */
622 uncmem
= kmalloc(PAGE_SIZE
, GFP_NOIO
);
624 user_mem
= kmap_atomic(page
);
625 if (!is_partial_io(bvec
))
629 pr_err("Unable to allocate temp memory\n");
634 ret
= zram_decompress_page(zram
, uncmem
, index
);
635 /* Should NEVER happen. Return bio error if it does. */
639 if (is_partial_io(bvec
))
640 memcpy(user_mem
+ bvec
->bv_offset
, uncmem
+ offset
,
643 flush_dcache_page(page
);
646 kunmap_atomic(user_mem
);
647 if (is_partial_io(bvec
))
652 static int zram_bvec_write(struct zram
*zram
, struct bio_vec
*bvec
, u32 index
,
657 unsigned long handle
= 0;
659 unsigned char *user_mem
, *cmem
, *src
, *uncmem
= NULL
;
660 struct zram_meta
*meta
= zram
->meta
;
661 struct zcomp_strm
*zstrm
= NULL
;
662 unsigned long alloced_pages
;
664 page
= bvec
->bv_page
;
665 if (is_partial_io(bvec
)) {
667 * This is a partial IO. We need to read the full page
668 * before to write the changes.
670 uncmem
= kmalloc(PAGE_SIZE
, GFP_NOIO
);
675 ret
= zram_decompress_page(zram
, uncmem
, index
);
681 user_mem
= kmap_atomic(page
);
682 if (is_partial_io(bvec
)) {
683 memcpy(uncmem
+ offset
, user_mem
+ bvec
->bv_offset
,
685 kunmap_atomic(user_mem
);
691 if (page_zero_filled(uncmem
)) {
693 kunmap_atomic(user_mem
);
694 /* Free memory associated with this sector now. */
695 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
696 zram_free_page(zram
, index
);
697 zram_set_flag(meta
, index
, ZRAM_ZERO
);
698 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
700 atomic64_inc(&zram
->stats
.zero_pages
);
705 zstrm
= zcomp_stream_get(zram
->comp
);
706 ret
= zcomp_compress(zstrm
, uncmem
, &clen
);
707 if (!is_partial_io(bvec
)) {
708 kunmap_atomic(user_mem
);
714 pr_err("Compression failed! err=%d\n", ret
);
719 if (unlikely(clen
> max_zpage_size
)) {
721 if (is_partial_io(bvec
))
726 * handle allocation has 2 paths:
727 * a) fast path is executed with preemption disabled (for
728 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
729 * since we can't sleep;
730 * b) slow path enables preemption and attempts to allocate
731 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
732 * put per-cpu compression stream and, thus, to re-do
733 * the compression once handle is allocated.
735 * if we have a 'non-null' handle here then we are coming
736 * from the slow path and handle has already been allocated.
739 handle
= zs_malloc(meta
->mem_pool
, clen
,
740 __GFP_KSWAPD_RECLAIM
|
745 zcomp_stream_put(zram
->comp
);
748 atomic64_inc(&zram
->stats
.writestall
);
750 handle
= zs_malloc(meta
->mem_pool
, clen
,
751 GFP_NOIO
| __GFP_HIGHMEM
|
756 pr_err("Error allocating memory for compressed page: %u, size=%u\n",
762 alloced_pages
= zs_get_total_pages(meta
->mem_pool
);
763 update_used_max(zram
, alloced_pages
);
765 if (zram
->limit_pages
&& alloced_pages
> zram
->limit_pages
) {
766 zs_free(meta
->mem_pool
, handle
);
771 cmem
= zs_map_object(meta
->mem_pool
, handle
, ZS_MM_WO
);
773 if ((clen
== PAGE_SIZE
) && !is_partial_io(bvec
)) {
774 src
= kmap_atomic(page
);
775 copy_page(cmem
, src
);
778 memcpy(cmem
, src
, clen
);
781 zcomp_stream_put(zram
->comp
);
783 zs_unmap_object(meta
->mem_pool
, handle
);
786 * Free memory associated with this sector
787 * before overwriting unused sectors.
789 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
790 zram_free_page(zram
, index
);
792 meta
->table
[index
].handle
= handle
;
793 zram_set_obj_size(meta
, index
, clen
);
794 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
797 atomic64_add(clen
, &zram
->stats
.compr_data_size
);
798 atomic64_inc(&zram
->stats
.pages_stored
);
801 zcomp_stream_put(zram
->comp
);
802 if (is_partial_io(bvec
))
808 * zram_bio_discard - handler on discard request
809 * @index: physical block index in PAGE_SIZE units
810 * @offset: byte offset within physical block
812 static void zram_bio_discard(struct zram
*zram
, u32 index
,
813 int offset
, struct bio
*bio
)
815 size_t n
= bio
->bi_iter
.bi_size
;
816 struct zram_meta
*meta
= zram
->meta
;
819 * zram manages data in physical block size units. Because logical block
820 * size isn't identical with physical block size on some arch, we
821 * could get a discard request pointing to a specific offset within a
822 * certain physical block. Although we can handle this request by
823 * reading that physiclal block and decompressing and partially zeroing
824 * and re-compressing and then re-storing it, this isn't reasonable
825 * because our intent with a discard request is to save memory. So
826 * skipping this logical block is appropriate here.
829 if (n
<= (PAGE_SIZE
- offset
))
832 n
-= (PAGE_SIZE
- offset
);
836 while (n
>= PAGE_SIZE
) {
837 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
838 zram_free_page(zram
, index
);
839 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
840 atomic64_inc(&zram
->stats
.notify_free
);
846 static int zram_bvec_rw(struct zram
*zram
, struct bio_vec
*bvec
, u32 index
,
847 int offset
, bool is_write
)
849 unsigned long start_time
= jiffies
;
850 int rw_acct
= is_write
? REQ_OP_WRITE
: REQ_OP_READ
;
853 generic_start_io_acct(rw_acct
, bvec
->bv_len
>> SECTOR_SHIFT
,
857 atomic64_inc(&zram
->stats
.num_reads
);
858 ret
= zram_bvec_read(zram
, bvec
, index
, offset
);
860 atomic64_inc(&zram
->stats
.num_writes
);
861 ret
= zram_bvec_write(zram
, bvec
, index
, offset
);
864 generic_end_io_acct(rw_acct
, &zram
->disk
->part0
, start_time
);
868 atomic64_inc(&zram
->stats
.failed_reads
);
870 atomic64_inc(&zram
->stats
.failed_writes
);
876 static void __zram_make_request(struct zram
*zram
, struct bio
*bio
)
881 struct bvec_iter iter
;
883 index
= bio
->bi_iter
.bi_sector
>> SECTORS_PER_PAGE_SHIFT
;
884 offset
= (bio
->bi_iter
.bi_sector
&
885 (SECTORS_PER_PAGE
- 1)) << SECTOR_SHIFT
;
887 if (unlikely(bio_op(bio
) == REQ_OP_DISCARD
)) {
888 zram_bio_discard(zram
, index
, offset
, bio
);
893 bio_for_each_segment(bvec
, bio
, iter
) {
894 int max_transfer_size
= PAGE_SIZE
- offset
;
896 if (bvec
.bv_len
> max_transfer_size
) {
898 * zram_bvec_rw() can only make operation on a single
899 * zram page. Split the bio vector.
903 bv
.bv_page
= bvec
.bv_page
;
904 bv
.bv_len
= max_transfer_size
;
905 bv
.bv_offset
= bvec
.bv_offset
;
907 if (zram_bvec_rw(zram
, &bv
, index
, offset
,
908 op_is_write(bio_op(bio
))) < 0)
911 bv
.bv_len
= bvec
.bv_len
- max_transfer_size
;
912 bv
.bv_offset
+= max_transfer_size
;
913 if (zram_bvec_rw(zram
, &bv
, index
+ 1, 0,
914 op_is_write(bio_op(bio
))) < 0)
917 if (zram_bvec_rw(zram
, &bvec
, index
, offset
,
918 op_is_write(bio_op(bio
))) < 0)
921 update_position(&index
, &offset
, &bvec
);
932 * Handler function for all zram I/O requests.
934 static blk_qc_t
zram_make_request(struct request_queue
*queue
, struct bio
*bio
)
936 struct zram
*zram
= queue
->queuedata
;
938 if (unlikely(!zram_meta_get(zram
)))
941 blk_queue_split(queue
, &bio
, queue
->bio_split
);
943 if (!valid_io_request(zram
, bio
->bi_iter
.bi_sector
,
944 bio
->bi_iter
.bi_size
)) {
945 atomic64_inc(&zram
->stats
.invalid_io
);
949 __zram_make_request(zram
, bio
);
951 return BLK_QC_T_NONE
;
956 return BLK_QC_T_NONE
;
959 static void zram_slot_free_notify(struct block_device
*bdev
,
963 struct zram_meta
*meta
;
965 zram
= bdev
->bd_disk
->private_data
;
968 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
969 zram_free_page(zram
, index
);
970 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
971 atomic64_inc(&zram
->stats
.notify_free
);
974 static int zram_rw_page(struct block_device
*bdev
, sector_t sector
,
975 struct page
*page
, bool is_write
)
977 int offset
, err
= -EIO
;
982 zram
= bdev
->bd_disk
->private_data
;
983 if (unlikely(!zram_meta_get(zram
)))
986 if (!valid_io_request(zram
, sector
, PAGE_SIZE
)) {
987 atomic64_inc(&zram
->stats
.invalid_io
);
992 index
= sector
>> SECTORS_PER_PAGE_SHIFT
;
993 offset
= sector
& (SECTORS_PER_PAGE
- 1) << SECTOR_SHIFT
;
996 bv
.bv_len
= PAGE_SIZE
;
999 err
= zram_bvec_rw(zram
, &bv
, index
, offset
, is_write
);
1001 zram_meta_put(zram
);
1004 * If I/O fails, just return error(ie, non-zero) without
1005 * calling page_endio.
1006 * It causes resubmit the I/O with bio request by upper functions
1007 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1008 * bio->bi_end_io does things to handle the error
1009 * (e.g., SetPageError, set_page_dirty and extra works).
1012 page_endio(page
, is_write
, 0);
1016 static void zram_reset_device(struct zram
*zram
)
1018 struct zram_meta
*meta
;
1022 down_write(&zram
->init_lock
);
1024 zram
->limit_pages
= 0;
1026 if (!init_done(zram
)) {
1027 up_write(&zram
->init_lock
);
1033 disksize
= zram
->disksize
;
1035 * Refcount will go down to 0 eventually and r/w handler
1036 * cannot handle further I/O so it will bail out by
1037 * check zram_meta_get.
1039 zram_meta_put(zram
);
1041 * We want to free zram_meta in process context to avoid
1042 * deadlock between reclaim path and any other locks.
1044 wait_event(zram
->io_done
, atomic_read(&zram
->refcount
) == 0);
1047 memset(&zram
->stats
, 0, sizeof(zram
->stats
));
1050 set_capacity(zram
->disk
, 0);
1051 part_stat_set_all(&zram
->disk
->part0
, 0);
1053 up_write(&zram
->init_lock
);
1054 /* I/O operation under all of CPU are done so let's free */
1055 zram_meta_free(meta
, disksize
);
1056 zcomp_destroy(comp
);
1059 static ssize_t
disksize_store(struct device
*dev
,
1060 struct device_attribute
*attr
, const char *buf
, size_t len
)
1064 struct zram_meta
*meta
;
1065 struct zram
*zram
= dev_to_zram(dev
);
1068 disksize
= memparse(buf
, NULL
);
1072 disksize
= PAGE_ALIGN(disksize
);
1073 meta
= zram_meta_alloc(zram
->disk
->disk_name
, disksize
);
1077 comp
= zcomp_create(zram
->compressor
);
1079 pr_err("Cannot initialise %s compressing backend\n",
1081 err
= PTR_ERR(comp
);
1085 down_write(&zram
->init_lock
);
1086 if (init_done(zram
)) {
1087 pr_info("Cannot change disksize for initialized device\n");
1089 goto out_destroy_comp
;
1092 init_waitqueue_head(&zram
->io_done
);
1093 atomic_set(&zram
->refcount
, 1);
1096 zram
->disksize
= disksize
;
1097 set_capacity(zram
->disk
, zram
->disksize
>> SECTOR_SHIFT
);
1098 up_write(&zram
->init_lock
);
1101 * Revalidate disk out of the init_lock to avoid lockdep splat.
1102 * It's okay because disk's capacity is protected by init_lock
1103 * so that revalidate_disk always sees up-to-date capacity.
1105 revalidate_disk(zram
->disk
);
1110 up_write(&zram
->init_lock
);
1111 zcomp_destroy(comp
);
1113 zram_meta_free(meta
, disksize
);
1117 static ssize_t
reset_store(struct device
*dev
,
1118 struct device_attribute
*attr
, const char *buf
, size_t len
)
1121 unsigned short do_reset
;
1123 struct block_device
*bdev
;
1125 ret
= kstrtou16(buf
, 10, &do_reset
);
1132 zram
= dev_to_zram(dev
);
1133 bdev
= bdget_disk(zram
->disk
, 0);
1137 mutex_lock(&bdev
->bd_mutex
);
1138 /* Do not reset an active device or claimed device */
1139 if (bdev
->bd_openers
|| zram
->claim
) {
1140 mutex_unlock(&bdev
->bd_mutex
);
1145 /* From now on, anyone can't open /dev/zram[0-9] */
1147 mutex_unlock(&bdev
->bd_mutex
);
1149 /* Make sure all the pending I/O are finished */
1151 zram_reset_device(zram
);
1152 revalidate_disk(zram
->disk
);
1155 mutex_lock(&bdev
->bd_mutex
);
1156 zram
->claim
= false;
1157 mutex_unlock(&bdev
->bd_mutex
);
1162 static int zram_open(struct block_device
*bdev
, fmode_t mode
)
1167 WARN_ON(!mutex_is_locked(&bdev
->bd_mutex
));
1169 zram
= bdev
->bd_disk
->private_data
;
1170 /* zram was claimed to reset so open request fails */
1177 static const struct block_device_operations zram_devops
= {
1179 .swap_slot_free_notify
= zram_slot_free_notify
,
1180 .rw_page
= zram_rw_page
,
1181 .owner
= THIS_MODULE
1184 static DEVICE_ATTR_WO(compact
);
1185 static DEVICE_ATTR_RW(disksize
);
1186 static DEVICE_ATTR_RO(initstate
);
1187 static DEVICE_ATTR_WO(reset
);
1188 static DEVICE_ATTR_RO(orig_data_size
);
1189 static DEVICE_ATTR_RO(mem_used_total
);
1190 static DEVICE_ATTR_RW(mem_limit
);
1191 static DEVICE_ATTR_RW(mem_used_max
);
1192 static DEVICE_ATTR_RW(max_comp_streams
);
1193 static DEVICE_ATTR_RW(comp_algorithm
);
1195 static struct attribute
*zram_disk_attrs
[] = {
1196 &dev_attr_disksize
.attr
,
1197 &dev_attr_initstate
.attr
,
1198 &dev_attr_reset
.attr
,
1199 &dev_attr_num_reads
.attr
,
1200 &dev_attr_num_writes
.attr
,
1201 &dev_attr_failed_reads
.attr
,
1202 &dev_attr_failed_writes
.attr
,
1203 &dev_attr_compact
.attr
,
1204 &dev_attr_invalid_io
.attr
,
1205 &dev_attr_notify_free
.attr
,
1206 &dev_attr_zero_pages
.attr
,
1207 &dev_attr_orig_data_size
.attr
,
1208 &dev_attr_compr_data_size
.attr
,
1209 &dev_attr_mem_used_total
.attr
,
1210 &dev_attr_mem_limit
.attr
,
1211 &dev_attr_mem_used_max
.attr
,
1212 &dev_attr_max_comp_streams
.attr
,
1213 &dev_attr_comp_algorithm
.attr
,
1214 &dev_attr_io_stat
.attr
,
1215 &dev_attr_mm_stat
.attr
,
1216 &dev_attr_debug_stat
.attr
,
1220 static struct attribute_group zram_disk_attr_group
= {
1221 .attrs
= zram_disk_attrs
,
1225 * Allocate and initialize new zram device. the function returns
1226 * '>= 0' device_id upon success, and negative value otherwise.
1228 static int zram_add(void)
1231 struct request_queue
*queue
;
1234 zram
= kzalloc(sizeof(struct zram
), GFP_KERNEL
);
1238 ret
= idr_alloc(&zram_index_idr
, zram
, 0, 0, GFP_KERNEL
);
1243 init_rwsem(&zram
->init_lock
);
1245 queue
= blk_alloc_queue(GFP_KERNEL
);
1247 pr_err("Error allocating disk queue for device %d\n",
1253 blk_queue_make_request(queue
, zram_make_request
);
1255 /* gendisk structure */
1256 zram
->disk
= alloc_disk(1);
1258 pr_err("Error allocating disk structure for device %d\n",
1261 goto out_free_queue
;
1264 zram
->disk
->major
= zram_major
;
1265 zram
->disk
->first_minor
= device_id
;
1266 zram
->disk
->fops
= &zram_devops
;
1267 zram
->disk
->queue
= queue
;
1268 zram
->disk
->queue
->queuedata
= zram
;
1269 zram
->disk
->private_data
= zram
;
1270 snprintf(zram
->disk
->disk_name
, 16, "zram%d", device_id
);
1272 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1273 set_capacity(zram
->disk
, 0);
1274 /* zram devices sort of resembles non-rotational disks */
1275 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, zram
->disk
->queue
);
1276 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM
, zram
->disk
->queue
);
1278 * To ensure that we always get PAGE_SIZE aligned
1279 * and n*PAGE_SIZED sized I/O requests.
1281 blk_queue_physical_block_size(zram
->disk
->queue
, PAGE_SIZE
);
1282 blk_queue_logical_block_size(zram
->disk
->queue
,
1283 ZRAM_LOGICAL_BLOCK_SIZE
);
1284 blk_queue_io_min(zram
->disk
->queue
, PAGE_SIZE
);
1285 blk_queue_io_opt(zram
->disk
->queue
, PAGE_SIZE
);
1286 zram
->disk
->queue
->limits
.discard_granularity
= PAGE_SIZE
;
1287 blk_queue_max_discard_sectors(zram
->disk
->queue
, UINT_MAX
);
1289 * zram_bio_discard() will clear all logical blocks if logical block
1290 * size is identical with physical block size(PAGE_SIZE). But if it is
1291 * different, we will skip discarding some parts of logical blocks in
1292 * the part of the request range which isn't aligned to physical block
1293 * size. So we can't ensure that all discarded logical blocks are
1296 if (ZRAM_LOGICAL_BLOCK_SIZE
== PAGE_SIZE
)
1297 zram
->disk
->queue
->limits
.discard_zeroes_data
= 1;
1299 zram
->disk
->queue
->limits
.discard_zeroes_data
= 0;
1300 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, zram
->disk
->queue
);
1302 add_disk(zram
->disk
);
1304 ret
= sysfs_create_group(&disk_to_dev(zram
->disk
)->kobj
,
1305 &zram_disk_attr_group
);
1307 pr_err("Error creating sysfs group for device %d\n",
1311 strlcpy(zram
->compressor
, default_compressor
, sizeof(zram
->compressor
));
1314 pr_info("Added device: %s\n", zram
->disk
->disk_name
);
1318 del_gendisk(zram
->disk
);
1319 put_disk(zram
->disk
);
1321 blk_cleanup_queue(queue
);
1323 idr_remove(&zram_index_idr
, device_id
);
1329 static int zram_remove(struct zram
*zram
)
1331 struct block_device
*bdev
;
1333 bdev
= bdget_disk(zram
->disk
, 0);
1337 mutex_lock(&bdev
->bd_mutex
);
1338 if (bdev
->bd_openers
|| zram
->claim
) {
1339 mutex_unlock(&bdev
->bd_mutex
);
1345 mutex_unlock(&bdev
->bd_mutex
);
1348 * Remove sysfs first, so no one will perform a disksize
1349 * store while we destroy the devices. This also helps during
1350 * hot_remove -- zram_reset_device() is the last holder of
1351 * ->init_lock, no later/concurrent disksize_store() or any
1352 * other sysfs handlers are possible.
1354 sysfs_remove_group(&disk_to_dev(zram
->disk
)->kobj
,
1355 &zram_disk_attr_group
);
1357 /* Make sure all the pending I/O are finished */
1359 zram_reset_device(zram
);
1362 pr_info("Removed device: %s\n", zram
->disk
->disk_name
);
1364 blk_cleanup_queue(zram
->disk
->queue
);
1365 del_gendisk(zram
->disk
);
1366 put_disk(zram
->disk
);
1371 /* zram-control sysfs attributes */
1372 static ssize_t
hot_add_show(struct class *class,
1373 struct class_attribute
*attr
,
1378 mutex_lock(&zram_index_mutex
);
1380 mutex_unlock(&zram_index_mutex
);
1384 return scnprintf(buf
, PAGE_SIZE
, "%d\n", ret
);
1387 static ssize_t
hot_remove_store(struct class *class,
1388 struct class_attribute
*attr
,
1395 /* dev_id is gendisk->first_minor, which is `int' */
1396 ret
= kstrtoint(buf
, 10, &dev_id
);
1402 mutex_lock(&zram_index_mutex
);
1404 zram
= idr_find(&zram_index_idr
, dev_id
);
1406 ret
= zram_remove(zram
);
1408 idr_remove(&zram_index_idr
, dev_id
);
1413 mutex_unlock(&zram_index_mutex
);
1414 return ret
? ret
: count
;
1418 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1419 * sense that reading from this file does alter the state of your system -- it
1420 * creates a new un-initialized zram device and returns back this device's
1421 * device_id (or an error code if it fails to create a new device).
1423 static struct class_attribute zram_control_class_attrs
[] = {
1424 __ATTR(hot_add
, 0400, hot_add_show
, NULL
),
1425 __ATTR_WO(hot_remove
),
1429 static struct class zram_control_class
= {
1430 .name
= "zram-control",
1431 .owner
= THIS_MODULE
,
1432 .class_attrs
= zram_control_class_attrs
,
1435 static int zram_remove_cb(int id
, void *ptr
, void *data
)
1441 static void destroy_devices(void)
1443 class_unregister(&zram_control_class
);
1444 idr_for_each(&zram_index_idr
, &zram_remove_cb
, NULL
);
1445 idr_destroy(&zram_index_idr
);
1446 unregister_blkdev(zram_major
, "zram");
1447 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE
);
1450 static int __init
zram_init(void)
1454 ret
= cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE
, "block/zram:prepare",
1455 zcomp_cpu_up_prepare
, zcomp_cpu_dead
);
1459 ret
= class_register(&zram_control_class
);
1461 pr_err("Unable to register zram-control class\n");
1462 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE
);
1466 zram_major
= register_blkdev(0, "zram");
1467 if (zram_major
<= 0) {
1468 pr_err("Unable to get major number\n");
1469 class_unregister(&zram_control_class
);
1470 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE
);
1474 while (num_devices
!= 0) {
1475 mutex_lock(&zram_index_mutex
);
1477 mutex_unlock(&zram_index_mutex
);
1490 static void __exit
zram_exit(void)
1495 module_init(zram_init
);
1496 module_exit(zram_exit
);
1498 module_param(num_devices
, uint
, 0);
1499 MODULE_PARM_DESC(num_devices
, "Number of pre-created zram devices");
1501 MODULE_LICENSE("Dual BSD/GPL");
1502 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1503 MODULE_DESCRIPTION("Compressed RAM Block Device");