4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 #include <linux/acpi.h>
74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
78 #define PFX "ipmi_si: "
80 /* Measure times between events in the driver. */
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC 10000
85 #define SI_USEC_PER_JIFFY (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
98 /* FIXME - add watchdog stuff. */
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG 2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
107 SI_KCS
, SI_SMIC
, SI_BT
110 static const char * const si_to_str
[] = { "kcs", "smic", "bt" };
112 #define DEVICE_NAME "ipmi_si"
114 static struct platform_driver ipmi_driver
;
117 * Indexes into stats[] in smi_info below.
119 enum si_stat_indexes
{
121 * Number of times the driver requested a timer while an operation
124 SI_STAT_short_timeouts
= 0,
127 * Number of times the driver requested a timer while nothing was in
130 SI_STAT_long_timeouts
,
132 /* Number of times the interface was idle while being polled. */
135 /* Number of interrupts the driver handled. */
138 /* Number of time the driver got an ATTN from the hardware. */
141 /* Number of times the driver requested flags from the hardware. */
142 SI_STAT_flag_fetches
,
144 /* Number of times the hardware didn't follow the state machine. */
147 /* Number of completed messages. */
148 SI_STAT_complete_transactions
,
150 /* Number of IPMI events received from the hardware. */
153 /* Number of watchdog pretimeouts. */
154 SI_STAT_watchdog_pretimeouts
,
156 /* Number of asynchronous messages received. */
157 SI_STAT_incoming_messages
,
160 /* This *must* remain last, add new values above this. */
167 struct si_sm_data
*si_sm
;
168 const struct si_sm_handlers
*handlers
;
169 enum si_type si_type
;
171 struct ipmi_smi_msg
*waiting_msg
;
172 struct ipmi_smi_msg
*curr_msg
;
173 enum si_intf_state si_state
;
176 * Used to handle the various types of I/O that can occur with
180 int (*io_setup
)(struct smi_info
*info
);
181 void (*io_cleanup
)(struct smi_info
*info
);
182 int (*irq_setup
)(struct smi_info
*info
);
183 void (*irq_cleanup
)(struct smi_info
*info
);
184 unsigned int io_size
;
185 enum ipmi_addr_src addr_source
; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186 void (*addr_source_cleanup
)(struct smi_info
*info
);
187 void *addr_source_data
;
190 * Per-OEM handler, called from handle_flags(). Returns 1
191 * when handle_flags() needs to be re-run or 0 indicating it
192 * set si_state itself.
194 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
197 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198 * is set to hold the flags until we are done handling everything
201 #define RECEIVE_MSG_AVAIL 0x01
202 #define EVENT_MSG_BUFFER_FULL 0x02
203 #define WDT_PRE_TIMEOUT_INT 0x08
204 #define OEM0_DATA_AVAIL 0x20
205 #define OEM1_DATA_AVAIL 0x40
206 #define OEM2_DATA_AVAIL 0x80
207 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
210 unsigned char msg_flags
;
212 /* Does the BMC have an event buffer? */
213 bool has_event_buffer
;
216 * If set to true, this will request events the next time the
217 * state machine is idle.
222 * If true, run the state machine to completion on every send
223 * call. Generally used after a panic to make sure stuff goes
226 bool run_to_completion
;
228 /* The I/O port of an SI interface. */
232 * The space between start addresses of the two ports. For
233 * instance, if the first port is 0xca2 and the spacing is 4, then
234 * the second port is 0xca6.
236 unsigned int spacing
;
238 /* zero if no irq; */
241 /* The timer for this si. */
242 struct timer_list si_timer
;
244 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
247 /* The time (in jiffies) the last timeout occurred at. */
248 unsigned long last_timeout_jiffies
;
250 /* Are we waiting for the events, pretimeouts, received msgs? */
254 * The driver will disable interrupts when it gets into a
255 * situation where it cannot handle messages due to lack of
256 * memory. Once that situation clears up, it will re-enable
259 bool interrupt_disabled
;
262 * Does the BMC support events?
264 bool supports_event_msg_buff
;
267 * Can we disable interrupts the global enables receive irq
268 * bit? There are currently two forms of brokenness, some
269 * systems cannot disable the bit (which is technically within
270 * the spec but a bad idea) and some systems have the bit
271 * forced to zero even though interrupts work (which is
272 * clearly outside the spec). The next bool tells which form
273 * of brokenness is present.
275 bool cannot_disable_irq
;
278 * Some systems are broken and cannot set the irq enable
279 * bit, even if they support interrupts.
281 bool irq_enable_broken
;
284 * Did we get an attention that we did not handle?
288 /* From the get device id response... */
289 struct ipmi_device_id device_id
;
291 /* Driver model stuff. */
293 struct platform_device
*pdev
;
296 * True if we allocated the device, false if it came from
297 * someplace else (like PCI).
301 /* Slave address, could be reported from DMI. */
302 unsigned char slave_addr
;
304 /* Counters and things for the proc filesystem. */
305 atomic_t stats
[SI_NUM_STATS
];
307 struct task_struct
*thread
;
309 struct list_head link
;
310 union ipmi_smi_info_union addr_info
;
313 #define smi_inc_stat(smi, stat) \
314 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
315 #define smi_get_stat(smi, stat) \
316 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
318 #define SI_MAX_PARMS 4
320 static int force_kipmid
[SI_MAX_PARMS
];
321 static int num_force_kipmid
;
323 static bool pci_registered
;
326 static bool parisc_registered
;
329 static unsigned int kipmid_max_busy_us
[SI_MAX_PARMS
];
330 static int num_max_busy_us
;
332 static bool unload_when_empty
= true;
334 static int add_smi(struct smi_info
*smi
);
335 static int try_smi_init(struct smi_info
*smi
);
336 static void cleanup_one_si(struct smi_info
*to_clean
);
337 static void cleanup_ipmi_si(void);
340 void debug_timestamp(char *msg
)
344 getnstimeofday64(&t
);
345 pr_debug("**%s: %lld.%9.9ld\n", msg
, (long long) t
.tv_sec
, t
.tv_nsec
);
348 #define debug_timestamp(x)
351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
352 static int register_xaction_notifier(struct notifier_block
*nb
)
354 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
357 static void deliver_recv_msg(struct smi_info
*smi_info
,
358 struct ipmi_smi_msg
*msg
)
360 /* Deliver the message to the upper layer. */
362 ipmi_smi_msg_received(smi_info
->intf
, msg
);
364 ipmi_free_smi_msg(msg
);
367 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
369 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
371 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
372 cCode
= IPMI_ERR_UNSPECIFIED
;
373 /* else use it as is */
375 /* Make it a response */
376 msg
->rsp
[0] = msg
->data
[0] | 4;
377 msg
->rsp
[1] = msg
->data
[1];
381 smi_info
->curr_msg
= NULL
;
382 deliver_recv_msg(smi_info
, msg
);
385 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
389 if (!smi_info
->waiting_msg
) {
390 smi_info
->curr_msg
= NULL
;
395 smi_info
->curr_msg
= smi_info
->waiting_msg
;
396 smi_info
->waiting_msg
= NULL
;
397 debug_timestamp("Start2");
398 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
400 if (err
& NOTIFY_STOP_MASK
) {
401 rv
= SI_SM_CALL_WITHOUT_DELAY
;
404 err
= smi_info
->handlers
->start_transaction(
406 smi_info
->curr_msg
->data
,
407 smi_info
->curr_msg
->data_size
);
409 return_hosed_msg(smi_info
, err
);
411 rv
= SI_SM_CALL_WITHOUT_DELAY
;
417 static void smi_mod_timer(struct smi_info
*smi_info
, unsigned long new_val
)
419 smi_info
->last_timeout_jiffies
= jiffies
;
420 mod_timer(&smi_info
->si_timer
, new_val
);
421 smi_info
->timer_running
= true;
425 * Start a new message and (re)start the timer and thread.
427 static void start_new_msg(struct smi_info
*smi_info
, unsigned char *msg
,
430 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
432 if (smi_info
->thread
)
433 wake_up_process(smi_info
->thread
);
435 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, size
);
438 static void start_check_enables(struct smi_info
*smi_info
, bool start_timer
)
440 unsigned char msg
[2];
442 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
443 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
446 start_new_msg(smi_info
, msg
, 2);
448 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
449 smi_info
->si_state
= SI_CHECKING_ENABLES
;
452 static void start_clear_flags(struct smi_info
*smi_info
, bool start_timer
)
454 unsigned char msg
[3];
456 /* Make sure the watchdog pre-timeout flag is not set at startup. */
457 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
458 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
459 msg
[2] = WDT_PRE_TIMEOUT_INT
;
462 start_new_msg(smi_info
, msg
, 3);
464 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
465 smi_info
->si_state
= SI_CLEARING_FLAGS
;
468 static void start_getting_msg_queue(struct smi_info
*smi_info
)
470 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
471 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
472 smi_info
->curr_msg
->data_size
= 2;
474 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
475 smi_info
->curr_msg
->data_size
);
476 smi_info
->si_state
= SI_GETTING_MESSAGES
;
479 static void start_getting_events(struct smi_info
*smi_info
)
481 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
482 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
483 smi_info
->curr_msg
->data_size
= 2;
485 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
486 smi_info
->curr_msg
->data_size
);
487 smi_info
->si_state
= SI_GETTING_EVENTS
;
491 * When we have a situtaion where we run out of memory and cannot
492 * allocate messages, we just leave them in the BMC and run the system
493 * polled until we can allocate some memory. Once we have some
494 * memory, we will re-enable the interrupt.
496 * Note that we cannot just use disable_irq(), since the interrupt may
499 static inline bool disable_si_irq(struct smi_info
*smi_info
, bool start_timer
)
501 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
502 smi_info
->interrupt_disabled
= true;
503 start_check_enables(smi_info
, start_timer
);
509 static inline bool enable_si_irq(struct smi_info
*smi_info
)
511 if ((smi_info
->irq
) && (smi_info
->interrupt_disabled
)) {
512 smi_info
->interrupt_disabled
= false;
513 start_check_enables(smi_info
, true);
520 * Allocate a message. If unable to allocate, start the interrupt
521 * disable process and return NULL. If able to allocate but
522 * interrupts are disabled, free the message and return NULL after
523 * starting the interrupt enable process.
525 static struct ipmi_smi_msg
*alloc_msg_handle_irq(struct smi_info
*smi_info
)
527 struct ipmi_smi_msg
*msg
;
529 msg
= ipmi_alloc_smi_msg();
531 if (!disable_si_irq(smi_info
, true))
532 smi_info
->si_state
= SI_NORMAL
;
533 } else if (enable_si_irq(smi_info
)) {
534 ipmi_free_smi_msg(msg
);
540 static void handle_flags(struct smi_info
*smi_info
)
543 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
544 /* Watchdog pre-timeout */
545 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
547 start_clear_flags(smi_info
, true);
548 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
550 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
551 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
552 /* Messages available. */
553 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
554 if (!smi_info
->curr_msg
)
557 start_getting_msg_queue(smi_info
);
558 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
559 /* Events available. */
560 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
561 if (!smi_info
->curr_msg
)
564 start_getting_events(smi_info
);
565 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
566 smi_info
->oem_data_avail_handler
) {
567 if (smi_info
->oem_data_avail_handler(smi_info
))
570 smi_info
->si_state
= SI_NORMAL
;
574 * Global enables we care about.
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577 IPMI_BMC_EVT_MSG_INTR)
579 static u8
current_global_enables(struct smi_info
*smi_info
, u8 base
,
584 if (smi_info
->supports_event_msg_buff
)
585 enables
|= IPMI_BMC_EVT_MSG_BUFF
;
587 if (((smi_info
->irq
&& !smi_info
->interrupt_disabled
) ||
588 smi_info
->cannot_disable_irq
) &&
589 !smi_info
->irq_enable_broken
)
590 enables
|= IPMI_BMC_RCV_MSG_INTR
;
592 if (smi_info
->supports_event_msg_buff
&&
593 smi_info
->irq
&& !smi_info
->interrupt_disabled
&&
594 !smi_info
->irq_enable_broken
)
595 enables
|= IPMI_BMC_EVT_MSG_INTR
;
597 *irq_on
= enables
& (IPMI_BMC_EVT_MSG_INTR
| IPMI_BMC_RCV_MSG_INTR
);
602 static void check_bt_irq(struct smi_info
*smi_info
, bool irq_on
)
604 u8 irqstate
= smi_info
->io
.inputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
);
606 irqstate
&= IPMI_BT_INTMASK_ENABLE_IRQ_BIT
;
608 if ((bool)irqstate
== irq_on
)
612 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
613 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
615 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
, 0);
618 static void handle_transaction_done(struct smi_info
*smi_info
)
620 struct ipmi_smi_msg
*msg
;
622 debug_timestamp("Done");
623 switch (smi_info
->si_state
) {
625 if (!smi_info
->curr_msg
)
628 smi_info
->curr_msg
->rsp_size
629 = smi_info
->handlers
->get_result(
631 smi_info
->curr_msg
->rsp
,
632 IPMI_MAX_MSG_LENGTH
);
635 * Do this here becase deliver_recv_msg() releases the
636 * lock, and a new message can be put in during the
637 * time the lock is released.
639 msg
= smi_info
->curr_msg
;
640 smi_info
->curr_msg
= NULL
;
641 deliver_recv_msg(smi_info
, msg
);
644 case SI_GETTING_FLAGS
:
646 unsigned char msg
[4];
649 /* We got the flags from the SMI, now handle them. */
650 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
652 /* Error fetching flags, just give up for now. */
653 smi_info
->si_state
= SI_NORMAL
;
654 } else if (len
< 4) {
656 * Hmm, no flags. That's technically illegal, but
657 * don't use uninitialized data.
659 smi_info
->si_state
= SI_NORMAL
;
661 smi_info
->msg_flags
= msg
[3];
662 handle_flags(smi_info
);
667 case SI_CLEARING_FLAGS
:
669 unsigned char msg
[3];
671 /* We cleared the flags. */
672 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
674 /* Error clearing flags */
675 dev_warn(smi_info
->dev
,
676 "Error clearing flags: %2.2x\n", msg
[2]);
678 smi_info
->si_state
= SI_NORMAL
;
682 case SI_GETTING_EVENTS
:
684 smi_info
->curr_msg
->rsp_size
685 = smi_info
->handlers
->get_result(
687 smi_info
->curr_msg
->rsp
,
688 IPMI_MAX_MSG_LENGTH
);
691 * Do this here becase deliver_recv_msg() releases the
692 * lock, and a new message can be put in during the
693 * time the lock is released.
695 msg
= smi_info
->curr_msg
;
696 smi_info
->curr_msg
= NULL
;
697 if (msg
->rsp
[2] != 0) {
698 /* Error getting event, probably done. */
701 /* Take off the event flag. */
702 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
703 handle_flags(smi_info
);
705 smi_inc_stat(smi_info
, events
);
708 * Do this before we deliver the message
709 * because delivering the message releases the
710 * lock and something else can mess with the
713 handle_flags(smi_info
);
715 deliver_recv_msg(smi_info
, msg
);
720 case SI_GETTING_MESSAGES
:
722 smi_info
->curr_msg
->rsp_size
723 = smi_info
->handlers
->get_result(
725 smi_info
->curr_msg
->rsp
,
726 IPMI_MAX_MSG_LENGTH
);
729 * Do this here becase deliver_recv_msg() releases the
730 * lock, and a new message can be put in during the
731 * time the lock is released.
733 msg
= smi_info
->curr_msg
;
734 smi_info
->curr_msg
= NULL
;
735 if (msg
->rsp
[2] != 0) {
736 /* Error getting event, probably done. */
739 /* Take off the msg flag. */
740 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
741 handle_flags(smi_info
);
743 smi_inc_stat(smi_info
, incoming_messages
);
746 * Do this before we deliver the message
747 * because delivering the message releases the
748 * lock and something else can mess with the
751 handle_flags(smi_info
);
753 deliver_recv_msg(smi_info
, msg
);
758 case SI_CHECKING_ENABLES
:
760 unsigned char msg
[4];
764 /* We got the flags from the SMI, now handle them. */
765 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
767 dev_warn(smi_info
->dev
,
768 "Couldn't get irq info: %x.\n", msg
[2]);
769 dev_warn(smi_info
->dev
,
770 "Maybe ok, but ipmi might run very slowly.\n");
771 smi_info
->si_state
= SI_NORMAL
;
774 enables
= current_global_enables(smi_info
, 0, &irq_on
);
775 if (smi_info
->si_type
== SI_BT
)
776 /* BT has its own interrupt enable bit. */
777 check_bt_irq(smi_info
, irq_on
);
778 if (enables
!= (msg
[3] & GLOBAL_ENABLES_MASK
)) {
779 /* Enables are not correct, fix them. */
780 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
781 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
782 msg
[2] = enables
| (msg
[3] & ~GLOBAL_ENABLES_MASK
);
783 smi_info
->handlers
->start_transaction(
784 smi_info
->si_sm
, msg
, 3);
785 smi_info
->si_state
= SI_SETTING_ENABLES
;
786 } else if (smi_info
->supports_event_msg_buff
) {
787 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
788 if (!smi_info
->curr_msg
) {
789 smi_info
->si_state
= SI_NORMAL
;
792 start_getting_events(smi_info
);
794 smi_info
->si_state
= SI_NORMAL
;
799 case SI_SETTING_ENABLES
:
801 unsigned char msg
[4];
803 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
805 dev_warn(smi_info
->dev
,
806 "Could not set the global enables: 0x%x.\n",
809 if (smi_info
->supports_event_msg_buff
) {
810 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
811 if (!smi_info
->curr_msg
) {
812 smi_info
->si_state
= SI_NORMAL
;
815 start_getting_events(smi_info
);
817 smi_info
->si_state
= SI_NORMAL
;
825 * Called on timeouts and events. Timeouts should pass the elapsed
826 * time, interrupts should pass in zero. Must be called with
827 * si_lock held and interrupts disabled.
829 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
832 enum si_sm_result si_sm_result
;
836 * There used to be a loop here that waited a little while
837 * (around 25us) before giving up. That turned out to be
838 * pointless, the minimum delays I was seeing were in the 300us
839 * range, which is far too long to wait in an interrupt. So
840 * we just run until the state machine tells us something
841 * happened or it needs a delay.
843 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
845 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
846 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
848 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
849 smi_inc_stat(smi_info
, complete_transactions
);
851 handle_transaction_done(smi_info
);
853 } else if (si_sm_result
== SI_SM_HOSED
) {
854 smi_inc_stat(smi_info
, hosed_count
);
857 * Do the before return_hosed_msg, because that
860 smi_info
->si_state
= SI_NORMAL
;
861 if (smi_info
->curr_msg
!= NULL
) {
863 * If we were handling a user message, format
864 * a response to send to the upper layer to
865 * tell it about the error.
867 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
873 * We prefer handling attn over new messages. But don't do
874 * this if there is not yet an upper layer to handle anything.
876 if (likely(smi_info
->intf
) &&
877 (si_sm_result
== SI_SM_ATTN
|| smi_info
->got_attn
)) {
878 unsigned char msg
[2];
880 if (smi_info
->si_state
!= SI_NORMAL
) {
882 * We got an ATTN, but we are doing something else.
883 * Handle the ATTN later.
885 smi_info
->got_attn
= true;
887 smi_info
->got_attn
= false;
888 smi_inc_stat(smi_info
, attentions
);
891 * Got a attn, send down a get message flags to see
892 * what's causing it. It would be better to handle
893 * this in the upper layer, but due to the way
894 * interrupts work with the SMI, that's not really
897 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
898 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
900 start_new_msg(smi_info
, msg
, 2);
901 smi_info
->si_state
= SI_GETTING_FLAGS
;
906 /* If we are currently idle, try to start the next message. */
907 if (si_sm_result
== SI_SM_IDLE
) {
908 smi_inc_stat(smi_info
, idles
);
910 si_sm_result
= start_next_msg(smi_info
);
911 if (si_sm_result
!= SI_SM_IDLE
)
915 if ((si_sm_result
== SI_SM_IDLE
)
916 && (atomic_read(&smi_info
->req_events
))) {
918 * We are idle and the upper layer requested that I fetch
921 atomic_set(&smi_info
->req_events
, 0);
924 * Take this opportunity to check the interrupt and
925 * message enable state for the BMC. The BMC can be
926 * asynchronously reset, and may thus get interrupts
927 * disable and messages disabled.
929 if (smi_info
->supports_event_msg_buff
|| smi_info
->irq
) {
930 start_check_enables(smi_info
, true);
932 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
933 if (!smi_info
->curr_msg
)
936 start_getting_events(smi_info
);
941 if (si_sm_result
== SI_SM_IDLE
&& smi_info
->timer_running
) {
942 /* Ok it if fails, the timer will just go off. */
943 if (del_timer(&smi_info
->si_timer
))
944 smi_info
->timer_running
= false;
951 static void check_start_timer_thread(struct smi_info
*smi_info
)
953 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
) {
954 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
956 if (smi_info
->thread
)
957 wake_up_process(smi_info
->thread
);
959 start_next_msg(smi_info
);
960 smi_event_handler(smi_info
, 0);
964 static void flush_messages(void *send_info
)
966 struct smi_info
*smi_info
= send_info
;
967 enum si_sm_result result
;
970 * Currently, this function is called only in run-to-completion
971 * mode. This means we are single-threaded, no need for locks.
973 result
= smi_event_handler(smi_info
, 0);
974 while (result
!= SI_SM_IDLE
) {
975 udelay(SI_SHORT_TIMEOUT_USEC
);
976 result
= smi_event_handler(smi_info
, SI_SHORT_TIMEOUT_USEC
);
980 static void sender(void *send_info
,
981 struct ipmi_smi_msg
*msg
)
983 struct smi_info
*smi_info
= send_info
;
986 debug_timestamp("Enqueue");
988 if (smi_info
->run_to_completion
) {
990 * If we are running to completion, start it. Upper
991 * layer will call flush_messages to clear it out.
993 smi_info
->waiting_msg
= msg
;
997 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
999 * The following two lines don't need to be under the lock for
1000 * the lock's sake, but they do need SMP memory barriers to
1001 * avoid getting things out of order. We are already claiming
1002 * the lock, anyway, so just do it under the lock to avoid the
1005 BUG_ON(smi_info
->waiting_msg
);
1006 smi_info
->waiting_msg
= msg
;
1007 check_start_timer_thread(smi_info
);
1008 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1011 static void set_run_to_completion(void *send_info
, bool i_run_to_completion
)
1013 struct smi_info
*smi_info
= send_info
;
1015 smi_info
->run_to_completion
= i_run_to_completion
;
1016 if (i_run_to_completion
)
1017 flush_messages(smi_info
);
1021 * Use -1 in the nsec value of the busy waiting timespec to tell that
1022 * we are spinning in kipmid looking for something and not delaying
1025 static inline void ipmi_si_set_not_busy(struct timespec64
*ts
)
1029 static inline int ipmi_si_is_busy(struct timespec64
*ts
)
1031 return ts
->tv_nsec
!= -1;
1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result
,
1035 const struct smi_info
*smi_info
,
1036 struct timespec64
*busy_until
)
1038 unsigned int max_busy_us
= 0;
1040 if (smi_info
->intf_num
< num_max_busy_us
)
1041 max_busy_us
= kipmid_max_busy_us
[smi_info
->intf_num
];
1042 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
1043 ipmi_si_set_not_busy(busy_until
);
1044 else if (!ipmi_si_is_busy(busy_until
)) {
1045 getnstimeofday64(busy_until
);
1046 timespec64_add_ns(busy_until
, max_busy_us
*NSEC_PER_USEC
);
1048 struct timespec64 now
;
1050 getnstimeofday64(&now
);
1051 if (unlikely(timespec64_compare(&now
, busy_until
) > 0)) {
1052 ipmi_si_set_not_busy(busy_until
);
1061 * A busy-waiting loop for speeding up IPMI operation.
1063 * Lousy hardware makes this hard. This is only enabled for systems
1064 * that are not BT and do not have interrupts. It starts spinning
1065 * when an operation is complete or until max_busy tells it to stop
1066 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1067 * Documentation/IPMI.txt for details.
1069 static int ipmi_thread(void *data
)
1071 struct smi_info
*smi_info
= data
;
1072 unsigned long flags
;
1073 enum si_sm_result smi_result
;
1074 struct timespec64 busy_until
;
1076 ipmi_si_set_not_busy(&busy_until
);
1077 set_user_nice(current
, MAX_NICE
);
1078 while (!kthread_should_stop()) {
1081 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1082 smi_result
= smi_event_handler(smi_info
, 0);
1085 * If the driver is doing something, there is a possible
1086 * race with the timer. If the timer handler see idle,
1087 * and the thread here sees something else, the timer
1088 * handler won't restart the timer even though it is
1089 * required. So start it here if necessary.
1091 if (smi_result
!= SI_SM_IDLE
&& !smi_info
->timer_running
)
1092 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1094 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1095 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
1097 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
)
1099 else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
)
1101 else if (smi_result
== SI_SM_IDLE
) {
1102 if (atomic_read(&smi_info
->need_watch
)) {
1103 schedule_timeout_interruptible(100);
1105 /* Wait to be woken up when we are needed. */
1106 __set_current_state(TASK_INTERRUPTIBLE
);
1110 schedule_timeout_interruptible(1);
1116 static void poll(void *send_info
)
1118 struct smi_info
*smi_info
= send_info
;
1119 unsigned long flags
= 0;
1120 bool run_to_completion
= smi_info
->run_to_completion
;
1123 * Make sure there is some delay in the poll loop so we can
1124 * drive time forward and timeout things.
1127 if (!run_to_completion
)
1128 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1129 smi_event_handler(smi_info
, 10);
1130 if (!run_to_completion
)
1131 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1134 static void request_events(void *send_info
)
1136 struct smi_info
*smi_info
= send_info
;
1138 if (!smi_info
->has_event_buffer
)
1141 atomic_set(&smi_info
->req_events
, 1);
1144 static void set_need_watch(void *send_info
, bool enable
)
1146 struct smi_info
*smi_info
= send_info
;
1147 unsigned long flags
;
1149 atomic_set(&smi_info
->need_watch
, enable
);
1150 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1151 check_start_timer_thread(smi_info
);
1152 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1155 static int initialized
;
1157 static void smi_timeout(unsigned long data
)
1159 struct smi_info
*smi_info
= (struct smi_info
*) data
;
1160 enum si_sm_result smi_result
;
1161 unsigned long flags
;
1162 unsigned long jiffies_now
;
1166 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1167 debug_timestamp("Timer");
1169 jiffies_now
= jiffies
;
1170 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1171 * SI_USEC_PER_JIFFY
);
1172 smi_result
= smi_event_handler(smi_info
, time_diff
);
1174 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
1175 /* Running with interrupts, only do long timeouts. */
1176 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1177 smi_inc_stat(smi_info
, long_timeouts
);
1182 * If the state machine asks for a short delay, then shorten
1183 * the timer timeout.
1185 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1186 smi_inc_stat(smi_info
, short_timeouts
);
1187 timeout
= jiffies
+ 1;
1189 smi_inc_stat(smi_info
, long_timeouts
);
1190 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1194 if (smi_result
!= SI_SM_IDLE
)
1195 smi_mod_timer(smi_info
, timeout
);
1197 smi_info
->timer_running
= false;
1198 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1201 static irqreturn_t
si_irq_handler(int irq
, void *data
)
1203 struct smi_info
*smi_info
= data
;
1204 unsigned long flags
;
1206 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1208 smi_inc_stat(smi_info
, interrupts
);
1210 debug_timestamp("Interrupt");
1212 smi_event_handler(smi_info
, 0);
1213 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1217 static irqreturn_t
si_bt_irq_handler(int irq
, void *data
)
1219 struct smi_info
*smi_info
= data
;
1220 /* We need to clear the IRQ flag for the BT interface. */
1221 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1222 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1224 return si_irq_handler(irq
, data
);
1227 static int smi_start_processing(void *send_info
,
1230 struct smi_info
*new_smi
= send_info
;
1233 new_smi
->intf
= intf
;
1235 /* Set up the timer that drives the interface. */
1236 setup_timer(&new_smi
->si_timer
, smi_timeout
, (long)new_smi
);
1237 smi_mod_timer(new_smi
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1239 /* Try to claim any interrupts. */
1240 if (new_smi
->irq_setup
)
1241 new_smi
->irq_setup(new_smi
);
1244 * Check if the user forcefully enabled the daemon.
1246 if (new_smi
->intf_num
< num_force_kipmid
)
1247 enable
= force_kipmid
[new_smi
->intf_num
];
1249 * The BT interface is efficient enough to not need a thread,
1250 * and there is no need for a thread if we have interrupts.
1252 else if ((new_smi
->si_type
!= SI_BT
) && (!new_smi
->irq
))
1256 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1257 "kipmi%d", new_smi
->intf_num
);
1258 if (IS_ERR(new_smi
->thread
)) {
1259 dev_notice(new_smi
->dev
, "Could not start"
1260 " kernel thread due to error %ld, only using"
1261 " timers to drive the interface\n",
1262 PTR_ERR(new_smi
->thread
));
1263 new_smi
->thread
= NULL
;
1270 static int get_smi_info(void *send_info
, struct ipmi_smi_info
*data
)
1272 struct smi_info
*smi
= send_info
;
1274 data
->addr_src
= smi
->addr_source
;
1275 data
->dev
= smi
->dev
;
1276 data
->addr_info
= smi
->addr_info
;
1277 get_device(smi
->dev
);
1282 static void set_maintenance_mode(void *send_info
, bool enable
)
1284 struct smi_info
*smi_info
= send_info
;
1287 atomic_set(&smi_info
->req_events
, 0);
1290 static const struct ipmi_smi_handlers handlers
= {
1291 .owner
= THIS_MODULE
,
1292 .start_processing
= smi_start_processing
,
1293 .get_smi_info
= get_smi_info
,
1295 .request_events
= request_events
,
1296 .set_need_watch
= set_need_watch
,
1297 .set_maintenance_mode
= set_maintenance_mode
,
1298 .set_run_to_completion
= set_run_to_completion
,
1299 .flush_messages
= flush_messages
,
1304 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1308 static LIST_HEAD(smi_infos
);
1309 static DEFINE_MUTEX(smi_infos_lock
);
1310 static int smi_num
; /* Used to sequence the SMIs */
1312 #define DEFAULT_REGSPACING 1
1313 #define DEFAULT_REGSIZE 1
1316 static bool si_tryacpi
= true;
1319 static bool si_trydmi
= true;
1321 static bool si_tryplatform
= true;
1323 static bool si_trypci
= true;
1325 static char *si_type
[SI_MAX_PARMS
];
1326 #define MAX_SI_TYPE_STR 30
1327 static char si_type_str
[MAX_SI_TYPE_STR
];
1328 static unsigned long addrs
[SI_MAX_PARMS
];
1329 static unsigned int num_addrs
;
1330 static unsigned int ports
[SI_MAX_PARMS
];
1331 static unsigned int num_ports
;
1332 static int irqs
[SI_MAX_PARMS
];
1333 static unsigned int num_irqs
;
1334 static int regspacings
[SI_MAX_PARMS
];
1335 static unsigned int num_regspacings
;
1336 static int regsizes
[SI_MAX_PARMS
];
1337 static unsigned int num_regsizes
;
1338 static int regshifts
[SI_MAX_PARMS
];
1339 static unsigned int num_regshifts
;
1340 static int slave_addrs
[SI_MAX_PARMS
]; /* Leaving 0 chooses the default value */
1341 static unsigned int num_slave_addrs
;
1343 #define IPMI_IO_ADDR_SPACE 0
1344 #define IPMI_MEM_ADDR_SPACE 1
1345 static const char * const addr_space_to_str
[] = { "i/o", "mem" };
1347 static int hotmod_handler(const char *val
, struct kernel_param
*kp
);
1349 module_param_call(hotmod
, hotmod_handler
, NULL
, NULL
, 0200);
1350 MODULE_PARM_DESC(hotmod
, "Add and remove interfaces. See"
1351 " Documentation/IPMI.txt in the kernel sources for the"
1355 module_param_named(tryacpi
, si_tryacpi
, bool, 0);
1356 MODULE_PARM_DESC(tryacpi
, "Setting this to zero will disable the"
1357 " default scan of the interfaces identified via ACPI");
1360 module_param_named(trydmi
, si_trydmi
, bool, 0);
1361 MODULE_PARM_DESC(trydmi
, "Setting this to zero will disable the"
1362 " default scan of the interfaces identified via DMI");
1364 module_param_named(tryplatform
, si_tryplatform
, bool, 0);
1365 MODULE_PARM_DESC(tryplatform
, "Setting this to zero will disable the"
1366 " default scan of the interfaces identified via platform"
1367 " interfaces like openfirmware");
1369 module_param_named(trypci
, si_trypci
, bool, 0);
1370 MODULE_PARM_DESC(trypci
, "Setting this to zero will disable the"
1371 " default scan of the interfaces identified via pci");
1373 module_param_string(type
, si_type_str
, MAX_SI_TYPE_STR
, 0);
1374 MODULE_PARM_DESC(type
, "Defines the type of each interface, each"
1375 " interface separated by commas. The types are 'kcs',"
1376 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1377 " the first interface to kcs and the second to bt");
1378 module_param_array(addrs
, ulong
, &num_addrs
, 0);
1379 MODULE_PARM_DESC(addrs
, "Sets the memory address of each interface, the"
1380 " addresses separated by commas. Only use if an interface"
1381 " is in memory. Otherwise, set it to zero or leave"
1383 module_param_array(ports
, uint
, &num_ports
, 0);
1384 MODULE_PARM_DESC(ports
, "Sets the port address of each interface, the"
1385 " addresses separated by commas. Only use if an interface"
1386 " is a port. Otherwise, set it to zero or leave"
1388 module_param_array(irqs
, int, &num_irqs
, 0);
1389 MODULE_PARM_DESC(irqs
, "Sets the interrupt of each interface, the"
1390 " addresses separated by commas. Only use if an interface"
1391 " has an interrupt. Otherwise, set it to zero or leave"
1393 module_param_array(regspacings
, int, &num_regspacings
, 0);
1394 MODULE_PARM_DESC(regspacings
, "The number of bytes between the start address"
1395 " and each successive register used by the interface. For"
1396 " instance, if the start address is 0xca2 and the spacing"
1397 " is 2, then the second address is at 0xca4. Defaults"
1399 module_param_array(regsizes
, int, &num_regsizes
, 0);
1400 MODULE_PARM_DESC(regsizes
, "The size of the specific IPMI register in bytes."
1401 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1402 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1403 " the 8-bit IPMI register has to be read from a larger"
1405 module_param_array(regshifts
, int, &num_regshifts
, 0);
1406 MODULE_PARM_DESC(regshifts
, "The amount to shift the data read from the."
1407 " IPMI register, in bits. For instance, if the data"
1408 " is read from a 32-bit word and the IPMI data is in"
1409 " bit 8-15, then the shift would be 8");
1410 module_param_array(slave_addrs
, int, &num_slave_addrs
, 0);
1411 MODULE_PARM_DESC(slave_addrs
, "Set the default IPMB slave address for"
1412 " the controller. Normally this is 0x20, but can be"
1413 " overridden by this parm. This is an array indexed"
1414 " by interface number.");
1415 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1416 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1417 " disabled(0). Normally the IPMI driver auto-detects"
1418 " this, but the value may be overridden by this parm.");
1419 module_param(unload_when_empty
, bool, 0);
1420 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1421 " specified or found, default is 1. Setting to 0"
1422 " is useful for hot add of devices using hotmod.");
1423 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1424 MODULE_PARM_DESC(kipmid_max_busy_us
,
1425 "Max time (in microseconds) to busy-wait for IPMI data before"
1426 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1427 " if kipmid is using up a lot of CPU time.");
1430 static void std_irq_cleanup(struct smi_info
*info
)
1432 if (info
->si_type
== SI_BT
)
1433 /* Disable the interrupt in the BT interface. */
1434 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
, 0);
1435 free_irq(info
->irq
, info
);
1438 static int std_irq_setup(struct smi_info
*info
)
1445 if (info
->si_type
== SI_BT
) {
1446 rv
= request_irq(info
->irq
,
1452 /* Enable the interrupt in the BT interface. */
1453 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
,
1454 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1456 rv
= request_irq(info
->irq
,
1462 dev_warn(info
->dev
, "%s unable to claim interrupt %d,"
1463 " running polled\n",
1464 DEVICE_NAME
, info
->irq
);
1467 info
->irq_cleanup
= std_irq_cleanup
;
1468 dev_info(info
->dev
, "Using irq %d\n", info
->irq
);
1474 static unsigned char port_inb(const struct si_sm_io
*io
, unsigned int offset
)
1476 unsigned int addr
= io
->addr_data
;
1478 return inb(addr
+ (offset
* io
->regspacing
));
1481 static void port_outb(const struct si_sm_io
*io
, unsigned int offset
,
1484 unsigned int addr
= io
->addr_data
;
1486 outb(b
, addr
+ (offset
* io
->regspacing
));
1489 static unsigned char port_inw(const struct si_sm_io
*io
, unsigned int offset
)
1491 unsigned int addr
= io
->addr_data
;
1493 return (inw(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1496 static void port_outw(const struct si_sm_io
*io
, unsigned int offset
,
1499 unsigned int addr
= io
->addr_data
;
1501 outw(b
<< io
->regshift
, addr
+ (offset
* io
->regspacing
));
1504 static unsigned char port_inl(const struct si_sm_io
*io
, unsigned int offset
)
1506 unsigned int addr
= io
->addr_data
;
1508 return (inl(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1511 static void port_outl(const struct si_sm_io
*io
, unsigned int offset
,
1514 unsigned int addr
= io
->addr_data
;
1516 outl(b
<< io
->regshift
, addr
+(offset
* io
->regspacing
));
1519 static void port_cleanup(struct smi_info
*info
)
1521 unsigned int addr
= info
->io
.addr_data
;
1525 for (idx
= 0; idx
< info
->io_size
; idx
++)
1526 release_region(addr
+ idx
* info
->io
.regspacing
,
1531 static int port_setup(struct smi_info
*info
)
1533 unsigned int addr
= info
->io
.addr_data
;
1539 info
->io_cleanup
= port_cleanup
;
1542 * Figure out the actual inb/inw/inl/etc routine to use based
1543 * upon the register size.
1545 switch (info
->io
.regsize
) {
1547 info
->io
.inputb
= port_inb
;
1548 info
->io
.outputb
= port_outb
;
1551 info
->io
.inputb
= port_inw
;
1552 info
->io
.outputb
= port_outw
;
1555 info
->io
.inputb
= port_inl
;
1556 info
->io
.outputb
= port_outl
;
1559 dev_warn(info
->dev
, "Invalid register size: %d\n",
1565 * Some BIOSes reserve disjoint I/O regions in their ACPI
1566 * tables. This causes problems when trying to register the
1567 * entire I/O region. Therefore we must register each I/O
1570 for (idx
= 0; idx
< info
->io_size
; idx
++) {
1571 if (request_region(addr
+ idx
* info
->io
.regspacing
,
1572 info
->io
.regsize
, DEVICE_NAME
) == NULL
) {
1573 /* Undo allocations */
1575 release_region(addr
+ idx
* info
->io
.regspacing
,
1583 static unsigned char intf_mem_inb(const struct si_sm_io
*io
,
1584 unsigned int offset
)
1586 return readb((io
->addr
)+(offset
* io
->regspacing
));
1589 static void intf_mem_outb(const struct si_sm_io
*io
, unsigned int offset
,
1592 writeb(b
, (io
->addr
)+(offset
* io
->regspacing
));
1595 static unsigned char intf_mem_inw(const struct si_sm_io
*io
,
1596 unsigned int offset
)
1598 return (readw((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1602 static void intf_mem_outw(const struct si_sm_io
*io
, unsigned int offset
,
1605 writeb(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1608 static unsigned char intf_mem_inl(const struct si_sm_io
*io
,
1609 unsigned int offset
)
1611 return (readl((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1615 static void intf_mem_outl(const struct si_sm_io
*io
, unsigned int offset
,
1618 writel(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1622 static unsigned char mem_inq(const struct si_sm_io
*io
, unsigned int offset
)
1624 return (readq((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1628 static void mem_outq(const struct si_sm_io
*io
, unsigned int offset
,
1631 writeq(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1635 static void mem_region_cleanup(struct smi_info
*info
, int num
)
1637 unsigned long addr
= info
->io
.addr_data
;
1640 for (idx
= 0; idx
< num
; idx
++)
1641 release_mem_region(addr
+ idx
* info
->io
.regspacing
,
1645 static void mem_cleanup(struct smi_info
*info
)
1647 if (info
->io
.addr
) {
1648 iounmap(info
->io
.addr
);
1649 mem_region_cleanup(info
, info
->io_size
);
1653 static int mem_setup(struct smi_info
*info
)
1655 unsigned long addr
= info
->io
.addr_data
;
1661 info
->io_cleanup
= mem_cleanup
;
1664 * Figure out the actual readb/readw/readl/etc routine to use based
1665 * upon the register size.
1667 switch (info
->io
.regsize
) {
1669 info
->io
.inputb
= intf_mem_inb
;
1670 info
->io
.outputb
= intf_mem_outb
;
1673 info
->io
.inputb
= intf_mem_inw
;
1674 info
->io
.outputb
= intf_mem_outw
;
1677 info
->io
.inputb
= intf_mem_inl
;
1678 info
->io
.outputb
= intf_mem_outl
;
1682 info
->io
.inputb
= mem_inq
;
1683 info
->io
.outputb
= mem_outq
;
1687 dev_warn(info
->dev
, "Invalid register size: %d\n",
1693 * Some BIOSes reserve disjoint memory regions in their ACPI
1694 * tables. This causes problems when trying to request the
1695 * entire region. Therefore we must request each register
1698 for (idx
= 0; idx
< info
->io_size
; idx
++) {
1699 if (request_mem_region(addr
+ idx
* info
->io
.regspacing
,
1700 info
->io
.regsize
, DEVICE_NAME
) == NULL
) {
1701 /* Undo allocations */
1702 mem_region_cleanup(info
, idx
);
1708 * Calculate the total amount of memory to claim. This is an
1709 * unusual looking calculation, but it avoids claiming any
1710 * more memory than it has to. It will claim everything
1711 * between the first address to the end of the last full
1714 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1715 - (info
->io
.regspacing
- info
->io
.regsize
));
1716 info
->io
.addr
= ioremap(addr
, mapsize
);
1717 if (info
->io
.addr
== NULL
) {
1718 mem_region_cleanup(info
, info
->io_size
);
1725 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1726 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1734 enum hotmod_op
{ HM_ADD
, HM_REMOVE
};
1735 struct hotmod_vals
{
1740 static const struct hotmod_vals hotmod_ops
[] = {
1742 { "remove", HM_REMOVE
},
1746 static const struct hotmod_vals hotmod_si
[] = {
1748 { "smic", SI_SMIC
},
1753 static const struct hotmod_vals hotmod_as
[] = {
1754 { "mem", IPMI_MEM_ADDR_SPACE
},
1755 { "i/o", IPMI_IO_ADDR_SPACE
},
1759 static int parse_str(const struct hotmod_vals
*v
, int *val
, char *name
,
1765 s
= strchr(*curr
, ',');
1767 pr_warn(PFX
"No hotmod %s given.\n", name
);
1772 for (i
= 0; v
[i
].name
; i
++) {
1773 if (strcmp(*curr
, v
[i
].name
) == 0) {
1780 pr_warn(PFX
"Invalid hotmod %s '%s'\n", name
, *curr
);
1784 static int check_hotmod_int_op(const char *curr
, const char *option
,
1785 const char *name
, int *val
)
1789 if (strcmp(curr
, name
) == 0) {
1791 pr_warn(PFX
"No option given for '%s'\n", curr
);
1794 *val
= simple_strtoul(option
, &n
, 0);
1795 if ((*n
!= '\0') || (*option
== '\0')) {
1796 pr_warn(PFX
"Bad option given for '%s'\n", curr
);
1804 static struct smi_info
*smi_info_alloc(void)
1806 struct smi_info
*info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
1809 spin_lock_init(&info
->si_lock
);
1813 static int hotmod_handler(const char *val
, struct kernel_param
*kp
)
1815 char *str
= kstrdup(val
, GFP_KERNEL
);
1817 char *next
, *curr
, *s
, *n
, *o
;
1819 enum si_type si_type
;
1829 struct smi_info
*info
;
1834 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1837 while ((ival
>= 0) && isspace(str
[ival
])) {
1842 for (curr
= str
; curr
; curr
= next
) {
1847 ipmb
= 0; /* Choose the default if not specified */
1849 next
= strchr(curr
, ':');
1855 rv
= parse_str(hotmod_ops
, &ival
, "operation", &curr
);
1860 rv
= parse_str(hotmod_si
, &ival
, "interface type", &curr
);
1865 rv
= parse_str(hotmod_as
, &addr_space
, "address space", &curr
);
1869 s
= strchr(curr
, ',');
1874 addr
= simple_strtoul(curr
, &n
, 0);
1875 if ((*n
!= '\0') || (*curr
== '\0')) {
1876 pr_warn(PFX
"Invalid hotmod address '%s'\n", curr
);
1882 s
= strchr(curr
, ',');
1887 o
= strchr(curr
, '=');
1892 rv
= check_hotmod_int_op(curr
, o
, "rsp", ®spacing
);
1897 rv
= check_hotmod_int_op(curr
, o
, "rsi", ®size
);
1902 rv
= check_hotmod_int_op(curr
, o
, "rsh", ®shift
);
1907 rv
= check_hotmod_int_op(curr
, o
, "irq", &irq
);
1912 rv
= check_hotmod_int_op(curr
, o
, "ipmb", &ipmb
);
1919 pr_warn(PFX
"Invalid hotmod option '%s'\n", curr
);
1924 info
= smi_info_alloc();
1930 info
->addr_source
= SI_HOTMOD
;
1931 info
->si_type
= si_type
;
1932 info
->io
.addr_data
= addr
;
1933 info
->io
.addr_type
= addr_space
;
1934 if (addr_space
== IPMI_MEM_ADDR_SPACE
)
1935 info
->io_setup
= mem_setup
;
1937 info
->io_setup
= port_setup
;
1939 info
->io
.addr
= NULL
;
1940 info
->io
.regspacing
= regspacing
;
1941 if (!info
->io
.regspacing
)
1942 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1943 info
->io
.regsize
= regsize
;
1944 if (!info
->io
.regsize
)
1945 info
->io
.regsize
= DEFAULT_REGSPACING
;
1946 info
->io
.regshift
= regshift
;
1949 info
->irq_setup
= std_irq_setup
;
1950 info
->slave_addr
= ipmb
;
1957 rv
= try_smi_init(info
);
1959 cleanup_one_si(info
);
1964 struct smi_info
*e
, *tmp_e
;
1966 mutex_lock(&smi_infos_lock
);
1967 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
1968 if (e
->io
.addr_type
!= addr_space
)
1970 if (e
->si_type
!= si_type
)
1972 if (e
->io
.addr_data
== addr
)
1975 mutex_unlock(&smi_infos_lock
);
1984 static int hardcode_find_bmc(void)
1988 struct smi_info
*info
;
1990 for (i
= 0; i
< SI_MAX_PARMS
; i
++) {
1991 if (!ports
[i
] && !addrs
[i
])
1994 info
= smi_info_alloc();
1998 info
->addr_source
= SI_HARDCODED
;
1999 pr_info(PFX
"probing via hardcoded address\n");
2001 if (!si_type
[i
] || strcmp(si_type
[i
], "kcs") == 0) {
2002 info
->si_type
= SI_KCS
;
2003 } else if (strcmp(si_type
[i
], "smic") == 0) {
2004 info
->si_type
= SI_SMIC
;
2005 } else if (strcmp(si_type
[i
], "bt") == 0) {
2006 info
->si_type
= SI_BT
;
2008 pr_warn(PFX
"Interface type specified for interface %d, was invalid: %s\n",
2016 info
->io_setup
= port_setup
;
2017 info
->io
.addr_data
= ports
[i
];
2018 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2019 } else if (addrs
[i
]) {
2021 info
->io_setup
= mem_setup
;
2022 info
->io
.addr_data
= addrs
[i
];
2023 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2025 pr_warn(PFX
"Interface type specified for interface %d, but port and address were not set or set to zero.\n",
2031 info
->io
.addr
= NULL
;
2032 info
->io
.regspacing
= regspacings
[i
];
2033 if (!info
->io
.regspacing
)
2034 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2035 info
->io
.regsize
= regsizes
[i
];
2036 if (!info
->io
.regsize
)
2037 info
->io
.regsize
= DEFAULT_REGSPACING
;
2038 info
->io
.regshift
= regshifts
[i
];
2039 info
->irq
= irqs
[i
];
2041 info
->irq_setup
= std_irq_setup
;
2042 info
->slave_addr
= slave_addrs
[i
];
2044 if (!add_smi(info
)) {
2045 if (try_smi_init(info
))
2046 cleanup_one_si(info
);
2058 * Once we get an ACPI failure, we don't try any more, because we go
2059 * through the tables sequentially. Once we don't find a table, there
2062 static int acpi_failure
;
2064 /* For GPE-type interrupts. */
2065 static u32
ipmi_acpi_gpe(acpi_handle gpe_device
,
2066 u32 gpe_number
, void *context
)
2068 struct smi_info
*smi_info
= context
;
2069 unsigned long flags
;
2071 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
2073 smi_inc_stat(smi_info
, interrupts
);
2075 debug_timestamp("ACPI_GPE");
2077 smi_event_handler(smi_info
, 0);
2078 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
2080 return ACPI_INTERRUPT_HANDLED
;
2083 static void acpi_gpe_irq_cleanup(struct smi_info
*info
)
2088 acpi_remove_gpe_handler(NULL
, info
->irq
, &ipmi_acpi_gpe
);
2091 static int acpi_gpe_irq_setup(struct smi_info
*info
)
2098 status
= acpi_install_gpe_handler(NULL
,
2100 ACPI_GPE_LEVEL_TRIGGERED
,
2103 if (status
!= AE_OK
) {
2104 dev_warn(info
->dev
, "%s unable to claim ACPI GPE %d,"
2105 " running polled\n", DEVICE_NAME
, info
->irq
);
2109 info
->irq_cleanup
= acpi_gpe_irq_cleanup
;
2110 dev_info(info
->dev
, "Using ACPI GPE %d\n", info
->irq
);
2117 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2128 s8 CreatorRevision
[4];
2131 s16 SpecificationRevision
;
2134 * Bit 0 - SCI interrupt supported
2135 * Bit 1 - I/O APIC/SAPIC
2140 * If bit 0 of InterruptType is set, then this is the SCI
2141 * interrupt in the GPEx_STS register.
2148 * If bit 1 of InterruptType is set, then this is the I/O
2149 * APIC/SAPIC interrupt.
2151 u32 GlobalSystemInterrupt
;
2153 /* The actual register address. */
2154 struct acpi_generic_address addr
;
2158 s8 spmi_id
[1]; /* A '\0' terminated array starts here. */
2161 static int try_init_spmi(struct SPMITable
*spmi
)
2163 struct smi_info
*info
;
2166 if (spmi
->IPMIlegacy
!= 1) {
2167 pr_info(PFX
"Bad SPMI legacy %d\n", spmi
->IPMIlegacy
);
2171 info
= smi_info_alloc();
2173 pr_err(PFX
"Could not allocate SI data (3)\n");
2177 info
->addr_source
= SI_SPMI
;
2178 pr_info(PFX
"probing via SPMI\n");
2180 /* Figure out the interface type. */
2181 switch (spmi
->InterfaceType
) {
2183 info
->si_type
= SI_KCS
;
2186 info
->si_type
= SI_SMIC
;
2189 info
->si_type
= SI_BT
;
2191 case 4: /* SSIF, just ignore */
2195 pr_info(PFX
"Unknown ACPI/SPMI SI type %d\n",
2196 spmi
->InterfaceType
);
2201 if (spmi
->InterruptType
& 1) {
2202 /* We've got a GPE interrupt. */
2203 info
->irq
= spmi
->GPE
;
2204 info
->irq_setup
= acpi_gpe_irq_setup
;
2205 } else if (spmi
->InterruptType
& 2) {
2206 /* We've got an APIC/SAPIC interrupt. */
2207 info
->irq
= spmi
->GlobalSystemInterrupt
;
2208 info
->irq_setup
= std_irq_setup
;
2210 /* Use the default interrupt setting. */
2212 info
->irq_setup
= NULL
;
2215 if (spmi
->addr
.bit_width
) {
2216 /* A (hopefully) properly formed register bit width. */
2217 info
->io
.regspacing
= spmi
->addr
.bit_width
/ 8;
2219 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2221 info
->io
.regsize
= info
->io
.regspacing
;
2222 info
->io
.regshift
= spmi
->addr
.bit_offset
;
2224 if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
2225 info
->io_setup
= mem_setup
;
2226 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2227 } else if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_IO
) {
2228 info
->io_setup
= port_setup
;
2229 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2232 pr_warn(PFX
"Unknown ACPI I/O Address type\n");
2235 info
->io
.addr_data
= spmi
->addr
.address
;
2237 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2238 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2239 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2249 static void spmi_find_bmc(void)
2252 struct SPMITable
*spmi
;
2261 for (i
= 0; ; i
++) {
2262 status
= acpi_get_table(ACPI_SIG_SPMI
, i
+1,
2263 (struct acpi_table_header
**)&spmi
);
2264 if (status
!= AE_OK
)
2267 try_init_spmi(spmi
);
2273 struct dmi_ipmi_data
{
2276 unsigned long base_addr
;
2282 static int decode_dmi(const struct dmi_header
*dm
,
2283 struct dmi_ipmi_data
*dmi
)
2285 const u8
*data
= (const u8
*)dm
;
2286 unsigned long base_addr
;
2288 u8 len
= dm
->length
;
2290 dmi
->type
= data
[4];
2292 memcpy(&base_addr
, data
+8, sizeof(unsigned long));
2294 if (base_addr
& 1) {
2296 base_addr
&= 0xFFFE;
2297 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2300 dmi
->addr_space
= IPMI_MEM_ADDR_SPACE
;
2302 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2304 dmi
->base_addr
= base_addr
| ((data
[0x10] & 0x10) >> 4);
2306 dmi
->irq
= data
[0x11];
2308 /* The top two bits of byte 0x10 hold the register spacing. */
2309 reg_spacing
= (data
[0x10] & 0xC0) >> 6;
2310 switch (reg_spacing
) {
2311 case 0x00: /* Byte boundaries */
2314 case 0x01: /* 32-bit boundaries */
2317 case 0x02: /* 16-byte boundaries */
2321 /* Some other interface, just ignore it. */
2327 * Note that technically, the lower bit of the base
2328 * address should be 1 if the address is I/O and 0 if
2329 * the address is in memory. So many systems get that
2330 * wrong (and all that I have seen are I/O) so we just
2331 * ignore that bit and assume I/O. Systems that use
2332 * memory should use the newer spec, anyway.
2334 dmi
->base_addr
= base_addr
& 0xfffe;
2335 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2339 dmi
->slave_addr
= data
[6];
2344 static void try_init_dmi(struct dmi_ipmi_data
*ipmi_data
)
2346 struct smi_info
*info
;
2348 info
= smi_info_alloc();
2350 pr_err(PFX
"Could not allocate SI data\n");
2354 info
->addr_source
= SI_SMBIOS
;
2355 pr_info(PFX
"probing via SMBIOS\n");
2357 switch (ipmi_data
->type
) {
2358 case 0x01: /* KCS */
2359 info
->si_type
= SI_KCS
;
2361 case 0x02: /* SMIC */
2362 info
->si_type
= SI_SMIC
;
2365 info
->si_type
= SI_BT
;
2372 switch (ipmi_data
->addr_space
) {
2373 case IPMI_MEM_ADDR_SPACE
:
2374 info
->io_setup
= mem_setup
;
2375 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2378 case IPMI_IO_ADDR_SPACE
:
2379 info
->io_setup
= port_setup
;
2380 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2385 pr_warn(PFX
"Unknown SMBIOS I/O Address type: %d\n",
2386 ipmi_data
->addr_space
);
2389 info
->io
.addr_data
= ipmi_data
->base_addr
;
2391 info
->io
.regspacing
= ipmi_data
->offset
;
2392 if (!info
->io
.regspacing
)
2393 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2394 info
->io
.regsize
= DEFAULT_REGSPACING
;
2395 info
->io
.regshift
= 0;
2397 info
->slave_addr
= ipmi_data
->slave_addr
;
2399 info
->irq
= ipmi_data
->irq
;
2401 info
->irq_setup
= std_irq_setup
;
2403 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2404 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2405 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2412 static void dmi_find_bmc(void)
2414 const struct dmi_device
*dev
= NULL
;
2415 struct dmi_ipmi_data data
;
2418 while ((dev
= dmi_find_device(DMI_DEV_TYPE_IPMI
, NULL
, dev
))) {
2419 memset(&data
, 0, sizeof(data
));
2420 rv
= decode_dmi((const struct dmi_header
*) dev
->device_data
,
2423 try_init_dmi(&data
);
2426 #endif /* CONFIG_DMI */
2430 #define PCI_ERMC_CLASSCODE 0x0C0700
2431 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2432 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2433 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2434 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2435 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2437 #define PCI_HP_VENDOR_ID 0x103C
2438 #define PCI_MMC_DEVICE_ID 0x121A
2439 #define PCI_MMC_ADDR_CW 0x10
2441 static void ipmi_pci_cleanup(struct smi_info
*info
)
2443 struct pci_dev
*pdev
= info
->addr_source_data
;
2445 pci_disable_device(pdev
);
2448 static int ipmi_pci_probe_regspacing(struct smi_info
*info
)
2450 if (info
->si_type
== SI_KCS
) {
2451 unsigned char status
;
2454 info
->io
.regsize
= DEFAULT_REGSIZE
;
2455 info
->io
.regshift
= 0;
2457 info
->handlers
= &kcs_smi_handlers
;
2459 /* detect 1, 4, 16byte spacing */
2460 for (regspacing
= DEFAULT_REGSPACING
; regspacing
<= 16;) {
2461 info
->io
.regspacing
= regspacing
;
2462 if (info
->io_setup(info
)) {
2464 "Could not setup I/O space\n");
2465 return DEFAULT_REGSPACING
;
2467 /* write invalid cmd */
2468 info
->io
.outputb(&info
->io
, 1, 0x10);
2469 /* read status back */
2470 status
= info
->io
.inputb(&info
->io
, 1);
2471 info
->io_cleanup(info
);
2477 return DEFAULT_REGSPACING
;
2480 static int ipmi_pci_probe(struct pci_dev
*pdev
,
2481 const struct pci_device_id
*ent
)
2484 int class_type
= pdev
->class & PCI_ERMC_CLASSCODE_TYPE_MASK
;
2485 struct smi_info
*info
;
2487 info
= smi_info_alloc();
2491 info
->addr_source
= SI_PCI
;
2492 dev_info(&pdev
->dev
, "probing via PCI");
2494 switch (class_type
) {
2495 case PCI_ERMC_CLASSCODE_TYPE_SMIC
:
2496 info
->si_type
= SI_SMIC
;
2499 case PCI_ERMC_CLASSCODE_TYPE_KCS
:
2500 info
->si_type
= SI_KCS
;
2503 case PCI_ERMC_CLASSCODE_TYPE_BT
:
2504 info
->si_type
= SI_BT
;
2509 dev_info(&pdev
->dev
, "Unknown IPMI type: %d\n", class_type
);
2513 rv
= pci_enable_device(pdev
);
2515 dev_err(&pdev
->dev
, "couldn't enable PCI device\n");
2520 info
->addr_source_cleanup
= ipmi_pci_cleanup
;
2521 info
->addr_source_data
= pdev
;
2523 if (pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) {
2524 info
->io_setup
= port_setup
;
2525 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2527 info
->io_setup
= mem_setup
;
2528 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2530 info
->io
.addr_data
= pci_resource_start(pdev
, 0);
2532 info
->io
.regspacing
= ipmi_pci_probe_regspacing(info
);
2533 info
->io
.regsize
= DEFAULT_REGSIZE
;
2534 info
->io
.regshift
= 0;
2536 info
->irq
= pdev
->irq
;
2538 info
->irq_setup
= std_irq_setup
;
2540 info
->dev
= &pdev
->dev
;
2541 pci_set_drvdata(pdev
, info
);
2543 dev_info(&pdev
->dev
, "%pR regsize %d spacing %d irq %d\n",
2544 &pdev
->resource
[0], info
->io
.regsize
, info
->io
.regspacing
,
2550 pci_disable_device(pdev
);
2556 static void ipmi_pci_remove(struct pci_dev
*pdev
)
2558 struct smi_info
*info
= pci_get_drvdata(pdev
);
2559 cleanup_one_si(info
);
2562 static const struct pci_device_id ipmi_pci_devices
[] = {
2563 { PCI_DEVICE(PCI_HP_VENDOR_ID
, PCI_MMC_DEVICE_ID
) },
2564 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE
, PCI_ERMC_CLASSCODE_MASK
) },
2567 MODULE_DEVICE_TABLE(pci
, ipmi_pci_devices
);
2569 static struct pci_driver ipmi_pci_driver
= {
2570 .name
= DEVICE_NAME
,
2571 .id_table
= ipmi_pci_devices
,
2572 .probe
= ipmi_pci_probe
,
2573 .remove
= ipmi_pci_remove
,
2575 #endif /* CONFIG_PCI */
2578 static const struct of_device_id of_ipmi_match
[] = {
2579 { .type
= "ipmi", .compatible
= "ipmi-kcs",
2580 .data
= (void *)(unsigned long) SI_KCS
},
2581 { .type
= "ipmi", .compatible
= "ipmi-smic",
2582 .data
= (void *)(unsigned long) SI_SMIC
},
2583 { .type
= "ipmi", .compatible
= "ipmi-bt",
2584 .data
= (void *)(unsigned long) SI_BT
},
2587 MODULE_DEVICE_TABLE(of
, of_ipmi_match
);
2589 static int of_ipmi_probe(struct platform_device
*dev
)
2591 const struct of_device_id
*match
;
2592 struct smi_info
*info
;
2593 struct resource resource
;
2594 const __be32
*regsize
, *regspacing
, *regshift
;
2595 struct device_node
*np
= dev
->dev
.of_node
;
2599 dev_info(&dev
->dev
, "probing via device tree\n");
2601 match
= of_match_device(of_ipmi_match
, &dev
->dev
);
2605 if (!of_device_is_available(np
))
2608 ret
= of_address_to_resource(np
, 0, &resource
);
2610 dev_warn(&dev
->dev
, PFX
"invalid address from OF\n");
2614 regsize
= of_get_property(np
, "reg-size", &proplen
);
2615 if (regsize
&& proplen
!= 4) {
2616 dev_warn(&dev
->dev
, PFX
"invalid regsize from OF\n");
2620 regspacing
= of_get_property(np
, "reg-spacing", &proplen
);
2621 if (regspacing
&& proplen
!= 4) {
2622 dev_warn(&dev
->dev
, PFX
"invalid regspacing from OF\n");
2626 regshift
= of_get_property(np
, "reg-shift", &proplen
);
2627 if (regshift
&& proplen
!= 4) {
2628 dev_warn(&dev
->dev
, PFX
"invalid regshift from OF\n");
2632 info
= smi_info_alloc();
2636 "could not allocate memory for OF probe\n");
2640 info
->si_type
= (enum si_type
) match
->data
;
2641 info
->addr_source
= SI_DEVICETREE
;
2642 info
->irq_setup
= std_irq_setup
;
2644 if (resource
.flags
& IORESOURCE_IO
) {
2645 info
->io_setup
= port_setup
;
2646 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2648 info
->io_setup
= mem_setup
;
2649 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2652 info
->io
.addr_data
= resource
.start
;
2654 info
->io
.regsize
= regsize
? be32_to_cpup(regsize
) : DEFAULT_REGSIZE
;
2655 info
->io
.regspacing
= regspacing
? be32_to_cpup(regspacing
) : DEFAULT_REGSPACING
;
2656 info
->io
.regshift
= regshift
? be32_to_cpup(regshift
) : 0;
2658 info
->irq
= irq_of_parse_and_map(dev
->dev
.of_node
, 0);
2659 info
->dev
= &dev
->dev
;
2661 dev_dbg(&dev
->dev
, "addr 0x%lx regsize %d spacing %d irq %d\n",
2662 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2665 dev_set_drvdata(&dev
->dev
, info
);
2667 ret
= add_smi(info
);
2675 #define of_ipmi_match NULL
2676 static int of_ipmi_probe(struct platform_device
*dev
)
2683 static int acpi_ipmi_probe(struct platform_device
*dev
)
2685 struct smi_info
*info
;
2686 struct resource
*res
, *res_second
;
2689 unsigned long long tmp
;
2695 handle
= ACPI_HANDLE(&dev
->dev
);
2699 info
= smi_info_alloc();
2703 info
->addr_source
= SI_ACPI
;
2704 dev_info(&dev
->dev
, PFX
"probing via ACPI\n");
2706 info
->addr_info
.acpi_info
.acpi_handle
= handle
;
2708 /* _IFT tells us the interface type: KCS, BT, etc */
2709 status
= acpi_evaluate_integer(handle
, "_IFT", NULL
, &tmp
);
2710 if (ACPI_FAILURE(status
)) {
2711 dev_err(&dev
->dev
, "Could not find ACPI IPMI interface type\n");
2717 info
->si_type
= SI_KCS
;
2720 info
->si_type
= SI_SMIC
;
2723 info
->si_type
= SI_BT
;
2725 case 4: /* SSIF, just ignore */
2729 dev_info(&dev
->dev
, "unknown IPMI type %lld\n", tmp
);
2733 res
= platform_get_resource(dev
, IORESOURCE_IO
, 0);
2735 info
->io_setup
= port_setup
;
2736 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2738 res
= platform_get_resource(dev
, IORESOURCE_MEM
, 0);
2740 info
->io_setup
= mem_setup
;
2741 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2745 dev_err(&dev
->dev
, "no I/O or memory address\n");
2748 info
->io
.addr_data
= res
->start
;
2750 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2751 res_second
= platform_get_resource(dev
,
2752 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ?
2753 IORESOURCE_IO
: IORESOURCE_MEM
,
2756 if (res_second
->start
> info
->io
.addr_data
)
2757 info
->io
.regspacing
=
2758 res_second
->start
- info
->io
.addr_data
;
2760 info
->io
.regsize
= DEFAULT_REGSPACING
;
2761 info
->io
.regshift
= 0;
2763 /* If _GPE exists, use it; otherwise use standard interrupts */
2764 status
= acpi_evaluate_integer(handle
, "_GPE", NULL
, &tmp
);
2765 if (ACPI_SUCCESS(status
)) {
2767 info
->irq_setup
= acpi_gpe_irq_setup
;
2769 int irq
= platform_get_irq(dev
, 0);
2773 info
->irq_setup
= std_irq_setup
;
2777 info
->dev
= &dev
->dev
;
2778 platform_set_drvdata(dev
, info
);
2780 dev_info(info
->dev
, "%pR regsize %d spacing %d irq %d\n",
2781 res
, info
->io
.regsize
, info
->io
.regspacing
,
2795 static const struct acpi_device_id acpi_ipmi_match
[] = {
2799 MODULE_DEVICE_TABLE(acpi
, acpi_ipmi_match
);
2801 static int acpi_ipmi_probe(struct platform_device
*dev
)
2807 static int ipmi_probe(struct platform_device
*dev
)
2809 if (of_ipmi_probe(dev
) == 0)
2812 return acpi_ipmi_probe(dev
);
2815 static int ipmi_remove(struct platform_device
*dev
)
2817 struct smi_info
*info
= dev_get_drvdata(&dev
->dev
);
2819 cleanup_one_si(info
);
2823 static struct platform_driver ipmi_driver
= {
2825 .name
= DEVICE_NAME
,
2826 .of_match_table
= of_ipmi_match
,
2827 .acpi_match_table
= ACPI_PTR(acpi_ipmi_match
),
2829 .probe
= ipmi_probe
,
2830 .remove
= ipmi_remove
,
2833 #ifdef CONFIG_PARISC
2834 static int ipmi_parisc_probe(struct parisc_device
*dev
)
2836 struct smi_info
*info
;
2839 info
= smi_info_alloc();
2843 "could not allocate memory for PARISC probe\n");
2847 info
->si_type
= SI_KCS
;
2848 info
->addr_source
= SI_DEVICETREE
;
2849 info
->io_setup
= mem_setup
;
2850 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2851 info
->io
.addr_data
= dev
->hpa
.start
;
2852 info
->io
.regsize
= 1;
2853 info
->io
.regspacing
= 1;
2854 info
->io
.regshift
= 0;
2855 info
->irq
= 0; /* no interrupt */
2856 info
->irq_setup
= NULL
;
2857 info
->dev
= &dev
->dev
;
2859 dev_dbg(&dev
->dev
, "addr 0x%lx\n", info
->io
.addr_data
);
2861 dev_set_drvdata(&dev
->dev
, info
);
2872 static int ipmi_parisc_remove(struct parisc_device
*dev
)
2874 cleanup_one_si(dev_get_drvdata(&dev
->dev
));
2878 static const struct parisc_device_id ipmi_parisc_tbl
[] = {
2879 { HPHW_MC
, HVERSION_REV_ANY_ID
, 0x004, 0xC0 },
2883 static struct parisc_driver ipmi_parisc_driver
= {
2885 .id_table
= ipmi_parisc_tbl
,
2886 .probe
= ipmi_parisc_probe
,
2887 .remove
= ipmi_parisc_remove
,
2889 #endif /* CONFIG_PARISC */
2891 static int wait_for_msg_done(struct smi_info
*smi_info
)
2893 enum si_sm_result smi_result
;
2895 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
2897 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
2898 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
2899 schedule_timeout_uninterruptible(1);
2900 smi_result
= smi_info
->handlers
->event(
2901 smi_info
->si_sm
, jiffies_to_usecs(1));
2902 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
2903 smi_result
= smi_info
->handlers
->event(
2904 smi_info
->si_sm
, 0);
2908 if (smi_result
== SI_SM_HOSED
)
2910 * We couldn't get the state machine to run, so whatever's at
2911 * the port is probably not an IPMI SMI interface.
2918 static int try_get_dev_id(struct smi_info
*smi_info
)
2920 unsigned char msg
[2];
2921 unsigned char *resp
;
2922 unsigned long resp_len
;
2925 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2930 * Do a Get Device ID command, since it comes back with some
2933 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2934 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
2935 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2937 rv
= wait_for_msg_done(smi_info
);
2941 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2942 resp
, IPMI_MAX_MSG_LENGTH
);
2944 /* Check and record info from the get device id, in case we need it. */
2945 rv
= ipmi_demangle_device_id(resp
, resp_len
, &smi_info
->device_id
);
2952 static int get_global_enables(struct smi_info
*smi_info
, u8
*enables
)
2954 unsigned char msg
[3];
2955 unsigned char *resp
;
2956 unsigned long resp_len
;
2959 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2963 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2964 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
2965 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2967 rv
= wait_for_msg_done(smi_info
);
2969 dev_warn(smi_info
->dev
,
2970 "Error getting response from get global enables command: %d\n",
2975 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2976 resp
, IPMI_MAX_MSG_LENGTH
);
2979 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2980 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
2982 dev_warn(smi_info
->dev
,
2983 "Invalid return from get global enables command: %ld %x %x %x\n",
2984 resp_len
, resp
[0], resp
[1], resp
[2]);
2997 * Returns 1 if it gets an error from the command.
2999 static int set_global_enables(struct smi_info
*smi_info
, u8 enables
)
3001 unsigned char msg
[3];
3002 unsigned char *resp
;
3003 unsigned long resp_len
;
3006 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
3010 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
3011 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
3013 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
3015 rv
= wait_for_msg_done(smi_info
);
3017 dev_warn(smi_info
->dev
,
3018 "Error getting response from set global enables command: %d\n",
3023 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
3024 resp
, IPMI_MAX_MSG_LENGTH
);
3027 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
3028 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
3029 dev_warn(smi_info
->dev
,
3030 "Invalid return from set global enables command: %ld %x %x\n",
3031 resp_len
, resp
[0], resp
[1]);
3045 * Some BMCs do not support clearing the receive irq bit in the global
3046 * enables (even if they don't support interrupts on the BMC). Check
3047 * for this and handle it properly.
3049 static void check_clr_rcv_irq(struct smi_info
*smi_info
)
3054 rv
= get_global_enables(smi_info
, &enables
);
3056 if ((enables
& IPMI_BMC_RCV_MSG_INTR
) == 0)
3057 /* Already clear, should work ok. */
3060 enables
&= ~IPMI_BMC_RCV_MSG_INTR
;
3061 rv
= set_global_enables(smi_info
, enables
);
3065 dev_err(smi_info
->dev
,
3066 "Cannot check clearing the rcv irq: %d\n", rv
);
3072 * An error when setting the event buffer bit means
3073 * clearing the bit is not supported.
3075 dev_warn(smi_info
->dev
,
3076 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3077 smi_info
->cannot_disable_irq
= true;
3082 * Some BMCs do not support setting the interrupt bits in the global
3083 * enables even if they support interrupts. Clearly bad, but we can
3086 static void check_set_rcv_irq(struct smi_info
*smi_info
)
3094 rv
= get_global_enables(smi_info
, &enables
);
3096 enables
|= IPMI_BMC_RCV_MSG_INTR
;
3097 rv
= set_global_enables(smi_info
, enables
);
3101 dev_err(smi_info
->dev
,
3102 "Cannot check setting the rcv irq: %d\n", rv
);
3108 * An error when setting the event buffer bit means
3109 * setting the bit is not supported.
3111 dev_warn(smi_info
->dev
,
3112 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3113 smi_info
->cannot_disable_irq
= true;
3114 smi_info
->irq_enable_broken
= true;
3118 static int try_enable_event_buffer(struct smi_info
*smi_info
)
3120 unsigned char msg
[3];
3121 unsigned char *resp
;
3122 unsigned long resp_len
;
3125 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
3129 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
3130 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
3131 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
3133 rv
= wait_for_msg_done(smi_info
);
3135 pr_warn(PFX
"Error getting response from get global enables command, the event buffer is not enabled.\n");
3139 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
3140 resp
, IPMI_MAX_MSG_LENGTH
);
3143 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
3144 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
3146 pr_warn(PFX
"Invalid return from get global enables command, cannot enable the event buffer.\n");
3151 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
) {
3152 /* buffer is already enabled, nothing to do. */
3153 smi_info
->supports_event_msg_buff
= true;
3157 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
3158 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
3159 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
3160 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
3162 rv
= wait_for_msg_done(smi_info
);
3164 pr_warn(PFX
"Error getting response from set global, enables command, the event buffer is not enabled.\n");
3168 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
3169 resp
, IPMI_MAX_MSG_LENGTH
);
3172 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
3173 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
3174 pr_warn(PFX
"Invalid return from get global, enables command, not enable the event buffer.\n");
3181 * An error when setting the event buffer bit means
3182 * that the event buffer is not supported.
3186 smi_info
->supports_event_msg_buff
= true;
3193 static int smi_type_proc_show(struct seq_file
*m
, void *v
)
3195 struct smi_info
*smi
= m
->private;
3197 seq_printf(m
, "%s\n", si_to_str
[smi
->si_type
]);
3202 static int smi_type_proc_open(struct inode
*inode
, struct file
*file
)
3204 return single_open(file
, smi_type_proc_show
, PDE_DATA(inode
));
3207 static const struct file_operations smi_type_proc_ops
= {
3208 .open
= smi_type_proc_open
,
3210 .llseek
= seq_lseek
,
3211 .release
= single_release
,
3214 static int smi_si_stats_proc_show(struct seq_file
*m
, void *v
)
3216 struct smi_info
*smi
= m
->private;
3218 seq_printf(m
, "interrupts_enabled: %d\n",
3219 smi
->irq
&& !smi
->interrupt_disabled
);
3220 seq_printf(m
, "short_timeouts: %u\n",
3221 smi_get_stat(smi
, short_timeouts
));
3222 seq_printf(m
, "long_timeouts: %u\n",
3223 smi_get_stat(smi
, long_timeouts
));
3224 seq_printf(m
, "idles: %u\n",
3225 smi_get_stat(smi
, idles
));
3226 seq_printf(m
, "interrupts: %u\n",
3227 smi_get_stat(smi
, interrupts
));
3228 seq_printf(m
, "attentions: %u\n",
3229 smi_get_stat(smi
, attentions
));
3230 seq_printf(m
, "flag_fetches: %u\n",
3231 smi_get_stat(smi
, flag_fetches
));
3232 seq_printf(m
, "hosed_count: %u\n",
3233 smi_get_stat(smi
, hosed_count
));
3234 seq_printf(m
, "complete_transactions: %u\n",
3235 smi_get_stat(smi
, complete_transactions
));
3236 seq_printf(m
, "events: %u\n",
3237 smi_get_stat(smi
, events
));
3238 seq_printf(m
, "watchdog_pretimeouts: %u\n",
3239 smi_get_stat(smi
, watchdog_pretimeouts
));
3240 seq_printf(m
, "incoming_messages: %u\n",
3241 smi_get_stat(smi
, incoming_messages
));
3245 static int smi_si_stats_proc_open(struct inode
*inode
, struct file
*file
)
3247 return single_open(file
, smi_si_stats_proc_show
, PDE_DATA(inode
));
3250 static const struct file_operations smi_si_stats_proc_ops
= {
3251 .open
= smi_si_stats_proc_open
,
3253 .llseek
= seq_lseek
,
3254 .release
= single_release
,
3257 static int smi_params_proc_show(struct seq_file
*m
, void *v
)
3259 struct smi_info
*smi
= m
->private;
3262 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3263 si_to_str
[smi
->si_type
],
3264 addr_space_to_str
[smi
->io
.addr_type
],
3275 static int smi_params_proc_open(struct inode
*inode
, struct file
*file
)
3277 return single_open(file
, smi_params_proc_show
, PDE_DATA(inode
));
3280 static const struct file_operations smi_params_proc_ops
= {
3281 .open
= smi_params_proc_open
,
3283 .llseek
= seq_lseek
,
3284 .release
= single_release
,
3288 * oem_data_avail_to_receive_msg_avail
3289 * @info - smi_info structure with msg_flags set
3291 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3292 * Returns 1 indicating need to re-run handle_flags().
3294 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
3296 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
3302 * setup_dell_poweredge_oem_data_handler
3303 * @info - smi_info.device_id must be populated
3305 * Systems that match, but have firmware version < 1.40 may assert
3306 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3307 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3308 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3309 * as RECEIVE_MSG_AVAIL instead.
3311 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3312 * assert the OEM[012] bits, and if it did, the driver would have to
3313 * change to handle that properly, we don't actually check for the
3315 * Device ID = 0x20 BMC on PowerEdge 8G servers
3316 * Device Revision = 0x80
3317 * Firmware Revision1 = 0x01 BMC version 1.40
3318 * Firmware Revision2 = 0x40 BCD encoded
3319 * IPMI Version = 0x51 IPMI 1.5
3320 * Manufacturer ID = A2 02 00 Dell IANA
3322 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3323 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3326 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3327 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3328 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3329 #define DELL_IANA_MFR_ID 0x0002a2
3330 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
3332 struct ipmi_device_id
*id
= &smi_info
->device_id
;
3333 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
3334 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
3335 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
3336 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
3337 smi_info
->oem_data_avail_handler
=
3338 oem_data_avail_to_receive_msg_avail
;
3339 } else if (ipmi_version_major(id
) < 1 ||
3340 (ipmi_version_major(id
) == 1 &&
3341 ipmi_version_minor(id
) < 5)) {
3342 smi_info
->oem_data_avail_handler
=
3343 oem_data_avail_to_receive_msg_avail
;
3348 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3349 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
3351 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
3353 /* Make it a response */
3354 msg
->rsp
[0] = msg
->data
[0] | 4;
3355 msg
->rsp
[1] = msg
->data
[1];
3356 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
3358 smi_info
->curr_msg
= NULL
;
3359 deliver_recv_msg(smi_info
, msg
);
3363 * dell_poweredge_bt_xaction_handler
3364 * @info - smi_info.device_id must be populated
3366 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3367 * not respond to a Get SDR command if the length of the data
3368 * requested is exactly 0x3A, which leads to command timeouts and no
3369 * data returned. This intercepts such commands, and causes userspace
3370 * callers to try again with a different-sized buffer, which succeeds.
3373 #define STORAGE_NETFN 0x0A
3374 #define STORAGE_CMD_GET_SDR 0x23
3375 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
3376 unsigned long unused
,
3379 struct smi_info
*smi_info
= in
;
3380 unsigned char *data
= smi_info
->curr_msg
->data
;
3381 unsigned int size
= smi_info
->curr_msg
->data_size
;
3383 (data
[0]>>2) == STORAGE_NETFN
&&
3384 data
[1] == STORAGE_CMD_GET_SDR
&&
3386 return_hosed_msg_badsize(smi_info
);
3392 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
3393 .notifier_call
= dell_poweredge_bt_xaction_handler
,
3397 * setup_dell_poweredge_bt_xaction_handler
3398 * @info - smi_info.device_id must be filled in already
3400 * Fills in smi_info.device_id.start_transaction_pre_hook
3401 * when we know what function to use there.
3404 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
3406 struct ipmi_device_id
*id
= &smi_info
->device_id
;
3407 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
3408 smi_info
->si_type
== SI_BT
)
3409 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
3413 * setup_oem_data_handler
3414 * @info - smi_info.device_id must be filled in already
3416 * Fills in smi_info.device_id.oem_data_available_handler
3417 * when we know what function to use there.
3420 static void setup_oem_data_handler(struct smi_info
*smi_info
)
3422 setup_dell_poweredge_oem_data_handler(smi_info
);
3425 static void setup_xaction_handlers(struct smi_info
*smi_info
)
3427 setup_dell_poweredge_bt_xaction_handler(smi_info
);
3430 static void check_for_broken_irqs(struct smi_info
*smi_info
)
3432 check_clr_rcv_irq(smi_info
);
3433 check_set_rcv_irq(smi_info
);
3436 static inline void wait_for_timer_and_thread(struct smi_info
*smi_info
)
3438 if (smi_info
->thread
!= NULL
)
3439 kthread_stop(smi_info
->thread
);
3440 if (smi_info
->timer_running
)
3441 del_timer_sync(&smi_info
->si_timer
);
3444 static int is_new_interface(struct smi_info
*info
)
3448 list_for_each_entry(e
, &smi_infos
, link
) {
3449 if (e
->io
.addr_type
!= info
->io
.addr_type
)
3451 if (e
->io
.addr_data
== info
->io
.addr_data
) {
3453 * This is a cheap hack, ACPI doesn't have a defined
3454 * slave address but SMBIOS does. Pick it up from
3455 * any source that has it available.
3457 if (info
->slave_addr
&& !e
->slave_addr
)
3458 e
->slave_addr
= info
->slave_addr
;
3466 static int add_smi(struct smi_info
*new_smi
)
3470 mutex_lock(&smi_infos_lock
);
3471 if (!is_new_interface(new_smi
)) {
3472 pr_info(PFX
"%s-specified %s state machine: duplicate\n",
3473 ipmi_addr_src_to_str(new_smi
->addr_source
),
3474 si_to_str
[new_smi
->si_type
]);
3479 pr_info(PFX
"Adding %s-specified %s state machine\n",
3480 ipmi_addr_src_to_str(new_smi
->addr_source
),
3481 si_to_str
[new_smi
->si_type
]);
3483 /* So we know not to free it unless we have allocated one. */
3484 new_smi
->intf
= NULL
;
3485 new_smi
->si_sm
= NULL
;
3486 new_smi
->handlers
= NULL
;
3488 list_add_tail(&new_smi
->link
, &smi_infos
);
3491 mutex_unlock(&smi_infos_lock
);
3495 static int try_smi_init(struct smi_info
*new_smi
)
3499 char *init_name
= NULL
;
3501 pr_info(PFX
"Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
3502 ipmi_addr_src_to_str(new_smi
->addr_source
),
3503 si_to_str
[new_smi
->si_type
],
3504 addr_space_to_str
[new_smi
->io
.addr_type
],
3505 new_smi
->io
.addr_data
,
3506 new_smi
->slave_addr
, new_smi
->irq
);
3508 switch (new_smi
->si_type
) {
3510 new_smi
->handlers
= &kcs_smi_handlers
;
3514 new_smi
->handlers
= &smic_smi_handlers
;
3518 new_smi
->handlers
= &bt_smi_handlers
;
3522 /* No support for anything else yet. */
3527 /* Do this early so it's available for logs. */
3528 if (!new_smi
->dev
) {
3529 init_name
= kasprintf(GFP_KERNEL
, "ipmi_si.%d", 0);
3532 * If we don't already have a device from something
3533 * else (like PCI), then register a new one.
3535 new_smi
->pdev
= platform_device_alloc("ipmi_si",
3537 if (!new_smi
->pdev
) {
3538 pr_err(PFX
"Unable to allocate platform device\n");
3541 new_smi
->dev
= &new_smi
->pdev
->dev
;
3542 new_smi
->dev
->driver
= &ipmi_driver
.driver
;
3543 /* Nulled by device_add() */
3544 new_smi
->dev
->init_name
= init_name
;
3547 /* Allocate the state machine's data and initialize it. */
3548 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
3549 if (!new_smi
->si_sm
) {
3550 pr_err(PFX
"Could not allocate state machine memory\n");
3554 new_smi
->io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
3557 /* Now that we know the I/O size, we can set up the I/O. */
3558 rv
= new_smi
->io_setup(new_smi
);
3560 dev_err(new_smi
->dev
, "Could not set up I/O space\n");
3564 /* Do low-level detection first. */
3565 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
3566 if (new_smi
->addr_source
)
3567 dev_err(new_smi
->dev
, "Interface detection failed\n");
3573 * Attempt a get device id command. If it fails, we probably
3574 * don't have a BMC here.
3576 rv
= try_get_dev_id(new_smi
);
3578 if (new_smi
->addr_source
)
3579 dev_err(new_smi
->dev
, "There appears to be no BMC at this location\n");
3583 setup_oem_data_handler(new_smi
);
3584 setup_xaction_handlers(new_smi
);
3585 check_for_broken_irqs(new_smi
);
3587 new_smi
->waiting_msg
= NULL
;
3588 new_smi
->curr_msg
= NULL
;
3589 atomic_set(&new_smi
->req_events
, 0);
3590 new_smi
->run_to_completion
= false;
3591 for (i
= 0; i
< SI_NUM_STATS
; i
++)
3592 atomic_set(&new_smi
->stats
[i
], 0);
3594 new_smi
->interrupt_disabled
= true;
3595 atomic_set(&new_smi
->need_watch
, 0);
3596 new_smi
->intf_num
= smi_num
;
3599 rv
= try_enable_event_buffer(new_smi
);
3601 new_smi
->has_event_buffer
= true;
3604 * Start clearing the flags before we enable interrupts or the
3605 * timer to avoid racing with the timer.
3607 start_clear_flags(new_smi
, false);
3610 * IRQ is defined to be set when non-zero. req_events will
3611 * cause a global flags check that will enable interrupts.
3614 new_smi
->interrupt_disabled
= false;
3615 atomic_set(&new_smi
->req_events
, 1);
3618 if (new_smi
->pdev
) {
3619 rv
= platform_device_add(new_smi
->pdev
);
3621 dev_err(new_smi
->dev
,
3622 "Unable to register system interface device: %d\n",
3626 new_smi
->dev_registered
= true;
3629 rv
= ipmi_register_smi(&handlers
,
3631 &new_smi
->device_id
,
3633 new_smi
->slave_addr
);
3635 dev_err(new_smi
->dev
, "Unable to register device: error %d\n",
3637 goto out_err_stop_timer
;
3640 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "type",
3644 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3645 goto out_err_stop_timer
;
3648 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "si_stats",
3649 &smi_si_stats_proc_ops
,
3652 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3653 goto out_err_stop_timer
;
3656 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "params",
3657 &smi_params_proc_ops
,
3660 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3661 goto out_err_stop_timer
;
3664 dev_info(new_smi
->dev
, "IPMI %s interface initialized\n",
3665 si_to_str
[new_smi
->si_type
]);
3667 WARN_ON(new_smi
->dev
->init_name
!= NULL
);
3673 wait_for_timer_and_thread(new_smi
);
3676 new_smi
->interrupt_disabled
= true;
3678 if (new_smi
->intf
) {
3679 ipmi_smi_t intf
= new_smi
->intf
;
3680 new_smi
->intf
= NULL
;
3681 ipmi_unregister_smi(intf
);
3684 if (new_smi
->irq_cleanup
) {
3685 new_smi
->irq_cleanup(new_smi
);
3686 new_smi
->irq_cleanup
= NULL
;
3690 * Wait until we know that we are out of any interrupt
3691 * handlers might have been running before we freed the
3694 synchronize_sched();
3696 if (new_smi
->si_sm
) {
3697 if (new_smi
->handlers
)
3698 new_smi
->handlers
->cleanup(new_smi
->si_sm
);
3699 kfree(new_smi
->si_sm
);
3700 new_smi
->si_sm
= NULL
;
3702 if (new_smi
->addr_source_cleanup
) {
3703 new_smi
->addr_source_cleanup(new_smi
);
3704 new_smi
->addr_source_cleanup
= NULL
;
3706 if (new_smi
->io_cleanup
) {
3707 new_smi
->io_cleanup(new_smi
);
3708 new_smi
->io_cleanup
= NULL
;
3711 if (new_smi
->dev_registered
) {
3712 platform_device_unregister(new_smi
->pdev
);
3713 new_smi
->dev_registered
= false;
3714 new_smi
->pdev
= NULL
;
3715 } else if (new_smi
->pdev
) {
3716 platform_device_put(new_smi
->pdev
);
3717 new_smi
->pdev
= NULL
;
3725 static int init_ipmi_si(void)
3731 enum ipmi_addr_src type
= SI_INVALID
;
3737 if (si_tryplatform
) {
3738 rv
= platform_driver_register(&ipmi_driver
);
3740 pr_err(PFX
"Unable to register driver: %d\n", rv
);
3745 /* Parse out the si_type string into its components. */
3748 for (i
= 0; (i
< SI_MAX_PARMS
) && (*str
!= '\0'); i
++) {
3750 str
= strchr(str
, ',');
3760 pr_info("IPMI System Interface driver.\n");
3762 /* If the user gave us a device, they presumably want us to use it */
3763 if (!hardcode_find_bmc())
3768 rv
= pci_register_driver(&ipmi_pci_driver
);
3770 pr_err(PFX
"Unable to register PCI driver: %d\n", rv
);
3772 pci_registered
= true;
3786 #ifdef CONFIG_PARISC
3787 register_parisc_driver(&ipmi_parisc_driver
);
3788 parisc_registered
= true;
3791 /* We prefer devices with interrupts, but in the case of a machine
3792 with multiple BMCs we assume that there will be several instances
3793 of a given type so if we succeed in registering a type then also
3794 try to register everything else of the same type */
3796 mutex_lock(&smi_infos_lock
);
3797 list_for_each_entry(e
, &smi_infos
, link
) {
3798 /* Try to register a device if it has an IRQ and we either
3799 haven't successfully registered a device yet or this
3800 device has the same type as one we successfully registered */
3801 if (e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3802 if (!try_smi_init(e
)) {
3803 type
= e
->addr_source
;
3808 /* type will only have been set if we successfully registered an si */
3810 mutex_unlock(&smi_infos_lock
);
3814 /* Fall back to the preferred device */
3816 list_for_each_entry(e
, &smi_infos
, link
) {
3817 if (!e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3818 if (!try_smi_init(e
)) {
3819 type
= e
->addr_source
;
3823 mutex_unlock(&smi_infos_lock
);
3828 mutex_lock(&smi_infos_lock
);
3829 if (unload_when_empty
&& list_empty(&smi_infos
)) {
3830 mutex_unlock(&smi_infos_lock
);
3832 pr_warn(PFX
"Unable to find any System Interface(s)\n");
3835 mutex_unlock(&smi_infos_lock
);
3839 module_init(init_ipmi_si
);
3841 static void cleanup_one_si(struct smi_info
*to_clean
)
3848 if (to_clean
->intf
) {
3849 ipmi_smi_t intf
= to_clean
->intf
;
3851 to_clean
->intf
= NULL
;
3852 rv
= ipmi_unregister_smi(intf
);
3854 pr_err(PFX
"Unable to unregister device: errno=%d\n",
3860 dev_set_drvdata(to_clean
->dev
, NULL
);
3862 list_del(&to_clean
->link
);
3865 * Make sure that interrupts, the timer and the thread are
3866 * stopped and will not run again.
3868 if (to_clean
->irq_cleanup
)
3869 to_clean
->irq_cleanup(to_clean
);
3870 wait_for_timer_and_thread(to_clean
);
3873 * Timeouts are stopped, now make sure the interrupts are off
3874 * in the BMC. Note that timers and CPU interrupts are off,
3875 * so no need for locks.
3877 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3879 schedule_timeout_uninterruptible(1);
3881 disable_si_irq(to_clean
, false);
3882 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3884 schedule_timeout_uninterruptible(1);
3887 if (to_clean
->handlers
)
3888 to_clean
->handlers
->cleanup(to_clean
->si_sm
);
3890 kfree(to_clean
->si_sm
);
3892 if (to_clean
->addr_source_cleanup
)
3893 to_clean
->addr_source_cleanup(to_clean
);
3894 if (to_clean
->io_cleanup
)
3895 to_clean
->io_cleanup(to_clean
);
3897 if (to_clean
->dev_registered
)
3898 platform_device_unregister(to_clean
->pdev
);
3903 static void cleanup_ipmi_si(void)
3905 struct smi_info
*e
, *tmp_e
;
3912 pci_unregister_driver(&ipmi_pci_driver
);
3914 #ifdef CONFIG_PARISC
3915 if (parisc_registered
)
3916 unregister_parisc_driver(&ipmi_parisc_driver
);
3919 platform_driver_unregister(&ipmi_driver
);
3921 mutex_lock(&smi_infos_lock
);
3922 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
3924 mutex_unlock(&smi_infos_lock
);
3926 module_exit(cleanup_ipmi_si
);
3928 MODULE_LICENSE("GPL");
3929 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3930 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3931 " system interfaces.");