sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / mmc / host / dw_mmc.c
blobb44306b886cb6d7a383abae4d985cd18ea1d48e3
1 /*
2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/mmc/dw_mmc.h>
36 #include <linux/bitops.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/of.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mmc/slot-gpio.h>
42 #include "dw_mmc.h"
44 /* Common flag combinations */
45 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
46 SDMMC_INT_HTO | SDMMC_INT_SBE | \
47 SDMMC_INT_EBE | SDMMC_INT_HLE)
48 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
49 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
50 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
51 DW_MCI_CMD_ERROR_FLAGS)
52 #define DW_MCI_SEND_STATUS 1
53 #define DW_MCI_RECV_STATUS 2
54 #define DW_MCI_DMA_THRESHOLD 16
56 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
57 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
59 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
60 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
61 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
62 SDMMC_IDMAC_INT_TI)
64 #define DESC_RING_BUF_SZ PAGE_SIZE
66 struct idmac_desc_64addr {
67 u32 des0; /* Control Descriptor */
69 u32 des1; /* Reserved */
71 u32 des2; /*Buffer sizes */
72 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
73 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
74 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
76 u32 des3; /* Reserved */
78 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
79 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
81 u32 des6; /* Lower 32-bits of Next Descriptor Address */
82 u32 des7; /* Upper 32-bits of Next Descriptor Address */
85 struct idmac_desc {
86 __le32 des0; /* Control Descriptor */
87 #define IDMAC_DES0_DIC BIT(1)
88 #define IDMAC_DES0_LD BIT(2)
89 #define IDMAC_DES0_FD BIT(3)
90 #define IDMAC_DES0_CH BIT(4)
91 #define IDMAC_DES0_ER BIT(5)
92 #define IDMAC_DES0_CES BIT(30)
93 #define IDMAC_DES0_OWN BIT(31)
95 __le32 des1; /* Buffer sizes */
96 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
97 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
99 __le32 des2; /* buffer 1 physical address */
101 __le32 des3; /* buffer 2 physical address */
104 /* Each descriptor can transfer up to 4KB of data in chained mode */
105 #define DW_MCI_DESC_DATA_LENGTH 0x1000
107 static bool dw_mci_reset(struct dw_mci *host);
108 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
109 static int dw_mci_card_busy(struct mmc_host *mmc);
110 static int dw_mci_get_cd(struct mmc_host *mmc);
112 #if defined(CONFIG_DEBUG_FS)
113 static int dw_mci_req_show(struct seq_file *s, void *v)
115 struct dw_mci_slot *slot = s->private;
116 struct mmc_request *mrq;
117 struct mmc_command *cmd;
118 struct mmc_command *stop;
119 struct mmc_data *data;
121 /* Make sure we get a consistent snapshot */
122 spin_lock_bh(&slot->host->lock);
123 mrq = slot->mrq;
125 if (mrq) {
126 cmd = mrq->cmd;
127 data = mrq->data;
128 stop = mrq->stop;
130 if (cmd)
131 seq_printf(s,
132 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
133 cmd->opcode, cmd->arg, cmd->flags,
134 cmd->resp[0], cmd->resp[1], cmd->resp[2],
135 cmd->resp[2], cmd->error);
136 if (data)
137 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
138 data->bytes_xfered, data->blocks,
139 data->blksz, data->flags, data->error);
140 if (stop)
141 seq_printf(s,
142 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
143 stop->opcode, stop->arg, stop->flags,
144 stop->resp[0], stop->resp[1], stop->resp[2],
145 stop->resp[2], stop->error);
148 spin_unlock_bh(&slot->host->lock);
150 return 0;
153 static int dw_mci_req_open(struct inode *inode, struct file *file)
155 return single_open(file, dw_mci_req_show, inode->i_private);
158 static const struct file_operations dw_mci_req_fops = {
159 .owner = THIS_MODULE,
160 .open = dw_mci_req_open,
161 .read = seq_read,
162 .llseek = seq_lseek,
163 .release = single_release,
166 static int dw_mci_regs_show(struct seq_file *s, void *v)
168 struct dw_mci *host = s->private;
170 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
171 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
172 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
173 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
174 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
175 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
177 return 0;
180 static int dw_mci_regs_open(struct inode *inode, struct file *file)
182 return single_open(file, dw_mci_regs_show, inode->i_private);
185 static const struct file_operations dw_mci_regs_fops = {
186 .owner = THIS_MODULE,
187 .open = dw_mci_regs_open,
188 .read = seq_read,
189 .llseek = seq_lseek,
190 .release = single_release,
193 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
195 struct mmc_host *mmc = slot->mmc;
196 struct dw_mci *host = slot->host;
197 struct dentry *root;
198 struct dentry *node;
200 root = mmc->debugfs_root;
201 if (!root)
202 return;
204 node = debugfs_create_file("regs", S_IRUSR, root, host,
205 &dw_mci_regs_fops);
206 if (!node)
207 goto err;
209 node = debugfs_create_file("req", S_IRUSR, root, slot,
210 &dw_mci_req_fops);
211 if (!node)
212 goto err;
214 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
215 if (!node)
216 goto err;
218 node = debugfs_create_x32("pending_events", S_IRUSR, root,
219 (u32 *)&host->pending_events);
220 if (!node)
221 goto err;
223 node = debugfs_create_x32("completed_events", S_IRUSR, root,
224 (u32 *)&host->completed_events);
225 if (!node)
226 goto err;
228 return;
230 err:
231 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
233 #endif /* defined(CONFIG_DEBUG_FS) */
235 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
237 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
239 struct dw_mci_slot *slot = mmc_priv(mmc);
240 struct dw_mci *host = slot->host;
241 u32 cmdr;
243 cmd->error = -EINPROGRESS;
244 cmdr = cmd->opcode;
246 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
247 cmd->opcode == MMC_GO_IDLE_STATE ||
248 cmd->opcode == MMC_GO_INACTIVE_STATE ||
249 (cmd->opcode == SD_IO_RW_DIRECT &&
250 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
251 cmdr |= SDMMC_CMD_STOP;
252 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
253 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
255 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
256 u32 clk_en_a;
258 /* Special bit makes CMD11 not die */
259 cmdr |= SDMMC_CMD_VOLT_SWITCH;
261 /* Change state to continue to handle CMD11 weirdness */
262 WARN_ON(slot->host->state != STATE_SENDING_CMD);
263 slot->host->state = STATE_SENDING_CMD11;
266 * We need to disable low power mode (automatic clock stop)
267 * while doing voltage switch so we don't confuse the card,
268 * since stopping the clock is a specific part of the UHS
269 * voltage change dance.
271 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
272 * unconditionally turned back on in dw_mci_setup_bus() if it's
273 * ever called with a non-zero clock. That shouldn't happen
274 * until the voltage change is all done.
276 clk_en_a = mci_readl(host, CLKENA);
277 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
278 mci_writel(host, CLKENA, clk_en_a);
279 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
280 SDMMC_CMD_PRV_DAT_WAIT, 0);
283 if (cmd->flags & MMC_RSP_PRESENT) {
284 /* We expect a response, so set this bit */
285 cmdr |= SDMMC_CMD_RESP_EXP;
286 if (cmd->flags & MMC_RSP_136)
287 cmdr |= SDMMC_CMD_RESP_LONG;
290 if (cmd->flags & MMC_RSP_CRC)
291 cmdr |= SDMMC_CMD_RESP_CRC;
293 if (cmd->data) {
294 cmdr |= SDMMC_CMD_DAT_EXP;
295 if (cmd->data->flags & MMC_DATA_WRITE)
296 cmdr |= SDMMC_CMD_DAT_WR;
299 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
300 cmdr |= SDMMC_CMD_USE_HOLD_REG;
302 return cmdr;
305 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
307 struct mmc_command *stop;
308 u32 cmdr;
310 if (!cmd->data)
311 return 0;
313 stop = &host->stop_abort;
314 cmdr = cmd->opcode;
315 memset(stop, 0, sizeof(struct mmc_command));
317 if (cmdr == MMC_READ_SINGLE_BLOCK ||
318 cmdr == MMC_READ_MULTIPLE_BLOCK ||
319 cmdr == MMC_WRITE_BLOCK ||
320 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
321 cmdr == MMC_SEND_TUNING_BLOCK ||
322 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
323 stop->opcode = MMC_STOP_TRANSMISSION;
324 stop->arg = 0;
325 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
326 } else if (cmdr == SD_IO_RW_EXTENDED) {
327 stop->opcode = SD_IO_RW_DIRECT;
328 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
329 ((cmd->arg >> 28) & 0x7);
330 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
331 } else {
332 return 0;
335 cmdr = stop->opcode | SDMMC_CMD_STOP |
336 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
338 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->cur_slot->flags))
339 cmdr |= SDMMC_CMD_USE_HOLD_REG;
341 return cmdr;
344 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
346 unsigned long timeout = jiffies + msecs_to_jiffies(500);
349 * Databook says that before issuing a new data transfer command
350 * we need to check to see if the card is busy. Data transfer commands
351 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
353 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
354 * expected.
356 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
357 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
358 while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) {
359 if (time_after(jiffies, timeout)) {
360 /* Command will fail; we'll pass error then */
361 dev_err(host->dev, "Busy; trying anyway\n");
362 break;
364 udelay(10);
369 static void dw_mci_start_command(struct dw_mci *host,
370 struct mmc_command *cmd, u32 cmd_flags)
372 host->cmd = cmd;
373 dev_vdbg(host->dev,
374 "start command: ARGR=0x%08x CMDR=0x%08x\n",
375 cmd->arg, cmd_flags);
377 mci_writel(host, CMDARG, cmd->arg);
378 wmb(); /* drain writebuffer */
379 dw_mci_wait_while_busy(host, cmd_flags);
381 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
384 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
386 struct mmc_command *stop = &host->stop_abort;
388 dw_mci_start_command(host, stop, host->stop_cmdr);
391 /* DMA interface functions */
392 static void dw_mci_stop_dma(struct dw_mci *host)
394 if (host->using_dma) {
395 host->dma_ops->stop(host);
396 host->dma_ops->cleanup(host);
399 /* Data transfer was stopped by the interrupt handler */
400 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
403 static int dw_mci_get_dma_dir(struct mmc_data *data)
405 if (data->flags & MMC_DATA_WRITE)
406 return DMA_TO_DEVICE;
407 else
408 return DMA_FROM_DEVICE;
411 static void dw_mci_dma_cleanup(struct dw_mci *host)
413 struct mmc_data *data = host->data;
415 if (data && data->host_cookie == COOKIE_MAPPED) {
416 dma_unmap_sg(host->dev,
417 data->sg,
418 data->sg_len,
419 dw_mci_get_dma_dir(data));
420 data->host_cookie = COOKIE_UNMAPPED;
424 static void dw_mci_idmac_reset(struct dw_mci *host)
426 u32 bmod = mci_readl(host, BMOD);
427 /* Software reset of DMA */
428 bmod |= SDMMC_IDMAC_SWRESET;
429 mci_writel(host, BMOD, bmod);
432 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
434 u32 temp;
436 /* Disable and reset the IDMAC interface */
437 temp = mci_readl(host, CTRL);
438 temp &= ~SDMMC_CTRL_USE_IDMAC;
439 temp |= SDMMC_CTRL_DMA_RESET;
440 mci_writel(host, CTRL, temp);
442 /* Stop the IDMAC running */
443 temp = mci_readl(host, BMOD);
444 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
445 temp |= SDMMC_IDMAC_SWRESET;
446 mci_writel(host, BMOD, temp);
449 static void dw_mci_dmac_complete_dma(void *arg)
451 struct dw_mci *host = arg;
452 struct mmc_data *data = host->data;
454 dev_vdbg(host->dev, "DMA complete\n");
456 if ((host->use_dma == TRANS_MODE_EDMAC) &&
457 data && (data->flags & MMC_DATA_READ))
458 /* Invalidate cache after read */
459 dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
460 data->sg,
461 data->sg_len,
462 DMA_FROM_DEVICE);
464 host->dma_ops->cleanup(host);
467 * If the card was removed, data will be NULL. No point in trying to
468 * send the stop command or waiting for NBUSY in this case.
470 if (data) {
471 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
472 tasklet_schedule(&host->tasklet);
476 static int dw_mci_idmac_init(struct dw_mci *host)
478 int i;
480 if (host->dma_64bit_address == 1) {
481 struct idmac_desc_64addr *p;
482 /* Number of descriptors in the ring buffer */
483 host->ring_size =
484 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
486 /* Forward link the descriptor list */
487 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
488 i++, p++) {
489 p->des6 = (host->sg_dma +
490 (sizeof(struct idmac_desc_64addr) *
491 (i + 1))) & 0xffffffff;
493 p->des7 = (u64)(host->sg_dma +
494 (sizeof(struct idmac_desc_64addr) *
495 (i + 1))) >> 32;
496 /* Initialize reserved and buffer size fields to "0" */
497 p->des1 = 0;
498 p->des2 = 0;
499 p->des3 = 0;
502 /* Set the last descriptor as the end-of-ring descriptor */
503 p->des6 = host->sg_dma & 0xffffffff;
504 p->des7 = (u64)host->sg_dma >> 32;
505 p->des0 = IDMAC_DES0_ER;
507 } else {
508 struct idmac_desc *p;
509 /* Number of descriptors in the ring buffer */
510 host->ring_size =
511 DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
513 /* Forward link the descriptor list */
514 for (i = 0, p = host->sg_cpu;
515 i < host->ring_size - 1;
516 i++, p++) {
517 p->des3 = cpu_to_le32(host->sg_dma +
518 (sizeof(struct idmac_desc) * (i + 1)));
519 p->des1 = 0;
522 /* Set the last descriptor as the end-of-ring descriptor */
523 p->des3 = cpu_to_le32(host->sg_dma);
524 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
527 dw_mci_idmac_reset(host);
529 if (host->dma_64bit_address == 1) {
530 /* Mask out interrupts - get Tx & Rx complete only */
531 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
532 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
533 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
535 /* Set the descriptor base address */
536 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
537 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
539 } else {
540 /* Mask out interrupts - get Tx & Rx complete only */
541 mci_writel(host, IDSTS, IDMAC_INT_CLR);
542 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
543 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
545 /* Set the descriptor base address */
546 mci_writel(host, DBADDR, host->sg_dma);
549 return 0;
552 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
553 struct mmc_data *data,
554 unsigned int sg_len)
556 unsigned int desc_len;
557 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
558 unsigned long timeout;
559 int i;
561 desc_first = desc_last = desc = host->sg_cpu;
563 for (i = 0; i < sg_len; i++) {
564 unsigned int length = sg_dma_len(&data->sg[i]);
566 u64 mem_addr = sg_dma_address(&data->sg[i]);
568 for ( ; length ; desc++) {
569 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
570 length : DW_MCI_DESC_DATA_LENGTH;
572 length -= desc_len;
575 * Wait for the former clear OWN bit operation
576 * of IDMAC to make sure that this descriptor
577 * isn't still owned by IDMAC as IDMAC's write
578 * ops and CPU's read ops are asynchronous.
580 timeout = jiffies + msecs_to_jiffies(100);
581 while (readl(&desc->des0) & IDMAC_DES0_OWN) {
582 if (time_after(jiffies, timeout))
583 goto err_own_bit;
584 udelay(10);
588 * Set the OWN bit and disable interrupts
589 * for this descriptor
591 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
592 IDMAC_DES0_CH;
594 /* Buffer length */
595 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
597 /* Physical address to DMA to/from */
598 desc->des4 = mem_addr & 0xffffffff;
599 desc->des5 = mem_addr >> 32;
601 /* Update physical address for the next desc */
602 mem_addr += desc_len;
604 /* Save pointer to the last descriptor */
605 desc_last = desc;
609 /* Set first descriptor */
610 desc_first->des0 |= IDMAC_DES0_FD;
612 /* Set last descriptor */
613 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
614 desc_last->des0 |= IDMAC_DES0_LD;
616 return 0;
617 err_own_bit:
618 /* restore the descriptor chain as it's polluted */
619 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
620 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
621 dw_mci_idmac_init(host);
622 return -EINVAL;
626 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
627 struct mmc_data *data,
628 unsigned int sg_len)
630 unsigned int desc_len;
631 struct idmac_desc *desc_first, *desc_last, *desc;
632 unsigned long timeout;
633 int i;
635 desc_first = desc_last = desc = host->sg_cpu;
637 for (i = 0; i < sg_len; i++) {
638 unsigned int length = sg_dma_len(&data->sg[i]);
640 u32 mem_addr = sg_dma_address(&data->sg[i]);
642 for ( ; length ; desc++) {
643 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
644 length : DW_MCI_DESC_DATA_LENGTH;
646 length -= desc_len;
649 * Wait for the former clear OWN bit operation
650 * of IDMAC to make sure that this descriptor
651 * isn't still owned by IDMAC as IDMAC's write
652 * ops and CPU's read ops are asynchronous.
654 timeout = jiffies + msecs_to_jiffies(100);
655 while (readl(&desc->des0) &
656 cpu_to_le32(IDMAC_DES0_OWN)) {
657 if (time_after(jiffies, timeout))
658 goto err_own_bit;
659 udelay(10);
663 * Set the OWN bit and disable interrupts
664 * for this descriptor
666 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
667 IDMAC_DES0_DIC |
668 IDMAC_DES0_CH);
670 /* Buffer length */
671 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
673 /* Physical address to DMA to/from */
674 desc->des2 = cpu_to_le32(mem_addr);
676 /* Update physical address for the next desc */
677 mem_addr += desc_len;
679 /* Save pointer to the last descriptor */
680 desc_last = desc;
684 /* Set first descriptor */
685 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
687 /* Set last descriptor */
688 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
689 IDMAC_DES0_DIC));
690 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
692 return 0;
693 err_own_bit:
694 /* restore the descriptor chain as it's polluted */
695 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
696 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
697 dw_mci_idmac_init(host);
698 return -EINVAL;
701 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
703 u32 temp;
704 int ret;
706 if (host->dma_64bit_address == 1)
707 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
708 else
709 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
711 if (ret)
712 goto out;
714 /* drain writebuffer */
715 wmb();
717 /* Make sure to reset DMA in case we did PIO before this */
718 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
719 dw_mci_idmac_reset(host);
721 /* Select IDMAC interface */
722 temp = mci_readl(host, CTRL);
723 temp |= SDMMC_CTRL_USE_IDMAC;
724 mci_writel(host, CTRL, temp);
726 /* drain writebuffer */
727 wmb();
729 /* Enable the IDMAC */
730 temp = mci_readl(host, BMOD);
731 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
732 mci_writel(host, BMOD, temp);
734 /* Start it running */
735 mci_writel(host, PLDMND, 1);
737 out:
738 return ret;
741 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
742 .init = dw_mci_idmac_init,
743 .start = dw_mci_idmac_start_dma,
744 .stop = dw_mci_idmac_stop_dma,
745 .complete = dw_mci_dmac_complete_dma,
746 .cleanup = dw_mci_dma_cleanup,
749 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
751 dmaengine_terminate_async(host->dms->ch);
754 static int dw_mci_edmac_start_dma(struct dw_mci *host,
755 unsigned int sg_len)
757 struct dma_slave_config cfg;
758 struct dma_async_tx_descriptor *desc = NULL;
759 struct scatterlist *sgl = host->data->sg;
760 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
761 u32 sg_elems = host->data->sg_len;
762 u32 fifoth_val;
763 u32 fifo_offset = host->fifo_reg - host->regs;
764 int ret = 0;
766 /* Set external dma config: burst size, burst width */
767 cfg.dst_addr = host->phy_regs + fifo_offset;
768 cfg.src_addr = cfg.dst_addr;
769 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
770 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
772 /* Match burst msize with external dma config */
773 fifoth_val = mci_readl(host, FIFOTH);
774 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
775 cfg.src_maxburst = cfg.dst_maxburst;
777 if (host->data->flags & MMC_DATA_WRITE)
778 cfg.direction = DMA_MEM_TO_DEV;
779 else
780 cfg.direction = DMA_DEV_TO_MEM;
782 ret = dmaengine_slave_config(host->dms->ch, &cfg);
783 if (ret) {
784 dev_err(host->dev, "Failed to config edmac.\n");
785 return -EBUSY;
788 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
789 sg_len, cfg.direction,
790 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
791 if (!desc) {
792 dev_err(host->dev, "Can't prepare slave sg.\n");
793 return -EBUSY;
796 /* Set dw_mci_dmac_complete_dma as callback */
797 desc->callback = dw_mci_dmac_complete_dma;
798 desc->callback_param = (void *)host;
799 dmaengine_submit(desc);
801 /* Flush cache before write */
802 if (host->data->flags & MMC_DATA_WRITE)
803 dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
804 sg_elems, DMA_TO_DEVICE);
806 dma_async_issue_pending(host->dms->ch);
808 return 0;
811 static int dw_mci_edmac_init(struct dw_mci *host)
813 /* Request external dma channel */
814 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
815 if (!host->dms)
816 return -ENOMEM;
818 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
819 if (!host->dms->ch) {
820 dev_err(host->dev, "Failed to get external DMA channel.\n");
821 kfree(host->dms);
822 host->dms = NULL;
823 return -ENXIO;
826 return 0;
829 static void dw_mci_edmac_exit(struct dw_mci *host)
831 if (host->dms) {
832 if (host->dms->ch) {
833 dma_release_channel(host->dms->ch);
834 host->dms->ch = NULL;
836 kfree(host->dms);
837 host->dms = NULL;
841 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
842 .init = dw_mci_edmac_init,
843 .exit = dw_mci_edmac_exit,
844 .start = dw_mci_edmac_start_dma,
845 .stop = dw_mci_edmac_stop_dma,
846 .complete = dw_mci_dmac_complete_dma,
847 .cleanup = dw_mci_dma_cleanup,
850 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
851 struct mmc_data *data,
852 int cookie)
854 struct scatterlist *sg;
855 unsigned int i, sg_len;
857 if (data->host_cookie == COOKIE_PRE_MAPPED)
858 return data->sg_len;
861 * We don't do DMA on "complex" transfers, i.e. with
862 * non-word-aligned buffers or lengths. Also, we don't bother
863 * with all the DMA setup overhead for short transfers.
865 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
866 return -EINVAL;
868 if (data->blksz & 3)
869 return -EINVAL;
871 for_each_sg(data->sg, sg, data->sg_len, i) {
872 if (sg->offset & 3 || sg->length & 3)
873 return -EINVAL;
876 sg_len = dma_map_sg(host->dev,
877 data->sg,
878 data->sg_len,
879 dw_mci_get_dma_dir(data));
880 if (sg_len == 0)
881 return -EINVAL;
883 data->host_cookie = cookie;
885 return sg_len;
888 static void dw_mci_pre_req(struct mmc_host *mmc,
889 struct mmc_request *mrq)
891 struct dw_mci_slot *slot = mmc_priv(mmc);
892 struct mmc_data *data = mrq->data;
894 if (!slot->host->use_dma || !data)
895 return;
897 /* This data might be unmapped at this time */
898 data->host_cookie = COOKIE_UNMAPPED;
900 if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
901 COOKIE_PRE_MAPPED) < 0)
902 data->host_cookie = COOKIE_UNMAPPED;
905 static void dw_mci_post_req(struct mmc_host *mmc,
906 struct mmc_request *mrq,
907 int err)
909 struct dw_mci_slot *slot = mmc_priv(mmc);
910 struct mmc_data *data = mrq->data;
912 if (!slot->host->use_dma || !data)
913 return;
915 if (data->host_cookie != COOKIE_UNMAPPED)
916 dma_unmap_sg(slot->host->dev,
917 data->sg,
918 data->sg_len,
919 dw_mci_get_dma_dir(data));
920 data->host_cookie = COOKIE_UNMAPPED;
923 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
925 unsigned int blksz = data->blksz;
926 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
927 u32 fifo_width = 1 << host->data_shift;
928 u32 blksz_depth = blksz / fifo_width, fifoth_val;
929 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
930 int idx = ARRAY_SIZE(mszs) - 1;
932 /* pio should ship this scenario */
933 if (!host->use_dma)
934 return;
936 tx_wmark = (host->fifo_depth) / 2;
937 tx_wmark_invers = host->fifo_depth - tx_wmark;
940 * MSIZE is '1',
941 * if blksz is not a multiple of the FIFO width
943 if (blksz % fifo_width)
944 goto done;
946 do {
947 if (!((blksz_depth % mszs[idx]) ||
948 (tx_wmark_invers % mszs[idx]))) {
949 msize = idx;
950 rx_wmark = mszs[idx] - 1;
951 break;
953 } while (--idx > 0);
955 * If idx is '0', it won't be tried
956 * Thus, initial values are uesed
958 done:
959 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
960 mci_writel(host, FIFOTH, fifoth_val);
963 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
965 unsigned int blksz = data->blksz;
966 u32 blksz_depth, fifo_depth;
967 u16 thld_size;
968 u8 enable;
971 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
972 * in the FIFO region, so we really shouldn't access it).
974 if (host->verid < DW_MMC_240A ||
975 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
976 return;
979 * Card write Threshold is introduced since 2.80a
980 * It's used when HS400 mode is enabled.
982 if (data->flags & MMC_DATA_WRITE &&
983 !(host->timing != MMC_TIMING_MMC_HS400))
984 return;
986 if (data->flags & MMC_DATA_WRITE)
987 enable = SDMMC_CARD_WR_THR_EN;
988 else
989 enable = SDMMC_CARD_RD_THR_EN;
991 if (host->timing != MMC_TIMING_MMC_HS200 &&
992 host->timing != MMC_TIMING_UHS_SDR104)
993 goto disable;
995 blksz_depth = blksz / (1 << host->data_shift);
996 fifo_depth = host->fifo_depth;
998 if (blksz_depth > fifo_depth)
999 goto disable;
1002 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1003 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1004 * Currently just choose blksz.
1006 thld_size = blksz;
1007 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1008 return;
1010 disable:
1011 mci_writel(host, CDTHRCTL, 0);
1014 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1016 unsigned long irqflags;
1017 int sg_len;
1018 u32 temp;
1020 host->using_dma = 0;
1022 /* If we don't have a channel, we can't do DMA */
1023 if (!host->use_dma)
1024 return -ENODEV;
1026 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1027 if (sg_len < 0) {
1028 host->dma_ops->stop(host);
1029 return sg_len;
1032 host->using_dma = 1;
1034 if (host->use_dma == TRANS_MODE_IDMAC)
1035 dev_vdbg(host->dev,
1036 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1037 (unsigned long)host->sg_cpu,
1038 (unsigned long)host->sg_dma,
1039 sg_len);
1042 * Decide the MSIZE and RX/TX Watermark.
1043 * If current block size is same with previous size,
1044 * no need to update fifoth.
1046 if (host->prev_blksz != data->blksz)
1047 dw_mci_adjust_fifoth(host, data);
1049 /* Enable the DMA interface */
1050 temp = mci_readl(host, CTRL);
1051 temp |= SDMMC_CTRL_DMA_ENABLE;
1052 mci_writel(host, CTRL, temp);
1054 /* Disable RX/TX IRQs, let DMA handle it */
1055 spin_lock_irqsave(&host->irq_lock, irqflags);
1056 temp = mci_readl(host, INTMASK);
1057 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1058 mci_writel(host, INTMASK, temp);
1059 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1061 if (host->dma_ops->start(host, sg_len)) {
1062 host->dma_ops->stop(host);
1063 /* We can't do DMA, try PIO for this one */
1064 dev_dbg(host->dev,
1065 "%s: fall back to PIO mode for current transfer\n",
1066 __func__);
1067 return -ENODEV;
1070 return 0;
1073 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1075 unsigned long irqflags;
1076 int flags = SG_MITER_ATOMIC;
1077 u32 temp;
1079 data->error = -EINPROGRESS;
1081 WARN_ON(host->data);
1082 host->sg = NULL;
1083 host->data = data;
1085 if (data->flags & MMC_DATA_READ)
1086 host->dir_status = DW_MCI_RECV_STATUS;
1087 else
1088 host->dir_status = DW_MCI_SEND_STATUS;
1090 dw_mci_ctrl_thld(host, data);
1092 if (dw_mci_submit_data_dma(host, data)) {
1093 if (host->data->flags & MMC_DATA_READ)
1094 flags |= SG_MITER_TO_SG;
1095 else
1096 flags |= SG_MITER_FROM_SG;
1098 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1099 host->sg = data->sg;
1100 host->part_buf_start = 0;
1101 host->part_buf_count = 0;
1103 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1105 spin_lock_irqsave(&host->irq_lock, irqflags);
1106 temp = mci_readl(host, INTMASK);
1107 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1108 mci_writel(host, INTMASK, temp);
1109 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1111 temp = mci_readl(host, CTRL);
1112 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1113 mci_writel(host, CTRL, temp);
1116 * Use the initial fifoth_val for PIO mode.
1117 * If next issued data may be transfered by DMA mode,
1118 * prev_blksz should be invalidated.
1120 mci_writel(host, FIFOTH, host->fifoth_val);
1121 host->prev_blksz = 0;
1122 } else {
1124 * Keep the current block size.
1125 * It will be used to decide whether to update
1126 * fifoth register next time.
1128 host->prev_blksz = data->blksz;
1132 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
1134 struct dw_mci *host = slot->host;
1135 unsigned long timeout = jiffies + msecs_to_jiffies(500);
1136 unsigned int cmd_status = 0;
1138 mci_writel(host, CMDARG, arg);
1139 wmb(); /* drain writebuffer */
1140 dw_mci_wait_while_busy(host, cmd);
1141 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
1143 while (time_before(jiffies, timeout)) {
1144 cmd_status = mci_readl(host, CMD);
1145 if (!(cmd_status & SDMMC_CMD_START))
1146 return;
1148 dev_err(&slot->mmc->class_dev,
1149 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
1150 cmd, arg, cmd_status);
1153 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1155 struct dw_mci *host = slot->host;
1156 unsigned int clock = slot->clock;
1157 u32 div;
1158 u32 clk_en_a;
1159 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1161 /* We must continue to set bit 28 in CMD until the change is complete */
1162 if (host->state == STATE_WAITING_CMD11_DONE)
1163 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1165 if (!clock) {
1166 mci_writel(host, CLKENA, 0);
1167 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1168 } else if (clock != host->current_speed || force_clkinit) {
1169 div = host->bus_hz / clock;
1170 if (host->bus_hz % clock && host->bus_hz > clock)
1172 * move the + 1 after the divide to prevent
1173 * over-clocking the card.
1175 div += 1;
1177 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1179 if ((clock != slot->__clk_old &&
1180 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1181 force_clkinit) {
1182 dev_info(&slot->mmc->class_dev,
1183 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1184 slot->id, host->bus_hz, clock,
1185 div ? ((host->bus_hz / div) >> 1) :
1186 host->bus_hz, div);
1189 * If card is polling, display the message only
1190 * one time at boot time.
1192 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1193 slot->mmc->f_min == clock)
1194 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1197 /* disable clock */
1198 mci_writel(host, CLKENA, 0);
1199 mci_writel(host, CLKSRC, 0);
1201 /* inform CIU */
1202 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1204 /* set clock to desired speed */
1205 mci_writel(host, CLKDIV, div);
1207 /* inform CIU */
1208 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1210 /* enable clock; only low power if no SDIO */
1211 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1212 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1213 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1214 mci_writel(host, CLKENA, clk_en_a);
1216 /* inform CIU */
1217 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1219 /* keep the last clock value that was requested from core */
1220 slot->__clk_old = clock;
1223 host->current_speed = clock;
1225 /* Set the current slot bus width */
1226 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1229 static void __dw_mci_start_request(struct dw_mci *host,
1230 struct dw_mci_slot *slot,
1231 struct mmc_command *cmd)
1233 struct mmc_request *mrq;
1234 struct mmc_data *data;
1235 u32 cmdflags;
1237 mrq = slot->mrq;
1239 host->cur_slot = slot;
1240 host->mrq = mrq;
1242 host->pending_events = 0;
1243 host->completed_events = 0;
1244 host->cmd_status = 0;
1245 host->data_status = 0;
1246 host->dir_status = 0;
1248 data = cmd->data;
1249 if (data) {
1250 mci_writel(host, TMOUT, 0xFFFFFFFF);
1251 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1252 mci_writel(host, BLKSIZ, data->blksz);
1255 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1257 /* this is the first command, send the initialization clock */
1258 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1259 cmdflags |= SDMMC_CMD_INIT;
1261 if (data) {
1262 dw_mci_submit_data(host, data);
1263 wmb(); /* drain writebuffer */
1266 dw_mci_start_command(host, cmd, cmdflags);
1268 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1269 unsigned long irqflags;
1272 * Databook says to fail after 2ms w/ no response, but evidence
1273 * shows that sometimes the cmd11 interrupt takes over 130ms.
1274 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1275 * is just about to roll over.
1277 * We do this whole thing under spinlock and only if the
1278 * command hasn't already completed (indicating the the irq
1279 * already ran so we don't want the timeout).
1281 spin_lock_irqsave(&host->irq_lock, irqflags);
1282 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1283 mod_timer(&host->cmd11_timer,
1284 jiffies + msecs_to_jiffies(500) + 1);
1285 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1288 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1291 static void dw_mci_start_request(struct dw_mci *host,
1292 struct dw_mci_slot *slot)
1294 struct mmc_request *mrq = slot->mrq;
1295 struct mmc_command *cmd;
1297 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1298 __dw_mci_start_request(host, slot, cmd);
1301 /* must be called with host->lock held */
1302 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1303 struct mmc_request *mrq)
1305 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1306 host->state);
1308 slot->mrq = mrq;
1310 if (host->state == STATE_WAITING_CMD11_DONE) {
1311 dev_warn(&slot->mmc->class_dev,
1312 "Voltage change didn't complete\n");
1314 * this case isn't expected to happen, so we can
1315 * either crash here or just try to continue on
1316 * in the closest possible state
1318 host->state = STATE_IDLE;
1321 if (host->state == STATE_IDLE) {
1322 host->state = STATE_SENDING_CMD;
1323 dw_mci_start_request(host, slot);
1324 } else {
1325 list_add_tail(&slot->queue_node, &host->queue);
1329 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1331 struct dw_mci_slot *slot = mmc_priv(mmc);
1332 struct dw_mci *host = slot->host;
1334 WARN_ON(slot->mrq);
1337 * The check for card presence and queueing of the request must be
1338 * atomic, otherwise the card could be removed in between and the
1339 * request wouldn't fail until another card was inserted.
1342 if (!dw_mci_get_cd(mmc)) {
1343 mrq->cmd->error = -ENOMEDIUM;
1344 mmc_request_done(mmc, mrq);
1345 return;
1348 spin_lock_bh(&host->lock);
1350 dw_mci_queue_request(host, slot, mrq);
1352 spin_unlock_bh(&host->lock);
1355 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1357 struct dw_mci_slot *slot = mmc_priv(mmc);
1358 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1359 u32 regs;
1360 int ret;
1362 switch (ios->bus_width) {
1363 case MMC_BUS_WIDTH_4:
1364 slot->ctype = SDMMC_CTYPE_4BIT;
1365 break;
1366 case MMC_BUS_WIDTH_8:
1367 slot->ctype = SDMMC_CTYPE_8BIT;
1368 break;
1369 default:
1370 /* set default 1 bit mode */
1371 slot->ctype = SDMMC_CTYPE_1BIT;
1374 regs = mci_readl(slot->host, UHS_REG);
1376 /* DDR mode set */
1377 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1378 ios->timing == MMC_TIMING_UHS_DDR50 ||
1379 ios->timing == MMC_TIMING_MMC_HS400)
1380 regs |= ((0x1 << slot->id) << 16);
1381 else
1382 regs &= ~((0x1 << slot->id) << 16);
1384 mci_writel(slot->host, UHS_REG, regs);
1385 slot->host->timing = ios->timing;
1388 * Use mirror of ios->clock to prevent race with mmc
1389 * core ios update when finding the minimum.
1391 slot->clock = ios->clock;
1393 if (drv_data && drv_data->set_ios)
1394 drv_data->set_ios(slot->host, ios);
1396 switch (ios->power_mode) {
1397 case MMC_POWER_UP:
1398 if (!IS_ERR(mmc->supply.vmmc)) {
1399 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1400 ios->vdd);
1401 if (ret) {
1402 dev_err(slot->host->dev,
1403 "failed to enable vmmc regulator\n");
1404 /*return, if failed turn on vmmc*/
1405 return;
1408 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1409 regs = mci_readl(slot->host, PWREN);
1410 regs |= (1 << slot->id);
1411 mci_writel(slot->host, PWREN, regs);
1412 break;
1413 case MMC_POWER_ON:
1414 if (!slot->host->vqmmc_enabled) {
1415 if (!IS_ERR(mmc->supply.vqmmc)) {
1416 ret = regulator_enable(mmc->supply.vqmmc);
1417 if (ret < 0)
1418 dev_err(slot->host->dev,
1419 "failed to enable vqmmc\n");
1420 else
1421 slot->host->vqmmc_enabled = true;
1423 } else {
1424 /* Keep track so we don't reset again */
1425 slot->host->vqmmc_enabled = true;
1428 /* Reset our state machine after powering on */
1429 dw_mci_ctrl_reset(slot->host,
1430 SDMMC_CTRL_ALL_RESET_FLAGS);
1433 /* Adjust clock / bus width after power is up */
1434 dw_mci_setup_bus(slot, false);
1436 break;
1437 case MMC_POWER_OFF:
1438 /* Turn clock off before power goes down */
1439 dw_mci_setup_bus(slot, false);
1441 if (!IS_ERR(mmc->supply.vmmc))
1442 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1444 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1445 regulator_disable(mmc->supply.vqmmc);
1446 slot->host->vqmmc_enabled = false;
1448 regs = mci_readl(slot->host, PWREN);
1449 regs &= ~(1 << slot->id);
1450 mci_writel(slot->host, PWREN, regs);
1451 break;
1452 default:
1453 break;
1456 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1457 slot->host->state = STATE_IDLE;
1460 static int dw_mci_card_busy(struct mmc_host *mmc)
1462 struct dw_mci_slot *slot = mmc_priv(mmc);
1463 u32 status;
1466 * Check the busy bit which is low when DAT[3:0]
1467 * (the data lines) are 0000
1469 status = mci_readl(slot->host, STATUS);
1471 return !!(status & SDMMC_STATUS_BUSY);
1474 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1476 struct dw_mci_slot *slot = mmc_priv(mmc);
1477 struct dw_mci *host = slot->host;
1478 const struct dw_mci_drv_data *drv_data = host->drv_data;
1479 u32 uhs;
1480 u32 v18 = SDMMC_UHS_18V << slot->id;
1481 int ret;
1483 if (drv_data && drv_data->switch_voltage)
1484 return drv_data->switch_voltage(mmc, ios);
1487 * Program the voltage. Note that some instances of dw_mmc may use
1488 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1489 * does no harm but you need to set the regulator directly. Try both.
1491 uhs = mci_readl(host, UHS_REG);
1492 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1493 uhs &= ~v18;
1494 else
1495 uhs |= v18;
1497 if (!IS_ERR(mmc->supply.vqmmc)) {
1498 ret = mmc_regulator_set_vqmmc(mmc, ios);
1500 if (ret) {
1501 dev_dbg(&mmc->class_dev,
1502 "Regulator set error %d - %s V\n",
1503 ret, uhs & v18 ? "1.8" : "3.3");
1504 return ret;
1507 mci_writel(host, UHS_REG, uhs);
1509 return 0;
1512 static int dw_mci_get_ro(struct mmc_host *mmc)
1514 int read_only;
1515 struct dw_mci_slot *slot = mmc_priv(mmc);
1516 int gpio_ro = mmc_gpio_get_ro(mmc);
1518 /* Use platform get_ro function, else try on board write protect */
1519 if (gpio_ro >= 0)
1520 read_only = gpio_ro;
1521 else
1522 read_only =
1523 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1525 dev_dbg(&mmc->class_dev, "card is %s\n",
1526 read_only ? "read-only" : "read-write");
1528 return read_only;
1531 static int dw_mci_get_cd(struct mmc_host *mmc)
1533 int present;
1534 struct dw_mci_slot *slot = mmc_priv(mmc);
1535 struct dw_mci *host = slot->host;
1536 int gpio_cd = mmc_gpio_get_cd(mmc);
1538 /* Use platform get_cd function, else try onboard card detect */
1539 if (((mmc->caps & MMC_CAP_NEEDS_POLL)
1540 || !mmc_card_is_removable(mmc))) {
1541 present = 1;
1543 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
1544 if (mmc->caps & MMC_CAP_NEEDS_POLL) {
1545 dev_info(&mmc->class_dev,
1546 "card is polling.\n");
1547 } else {
1548 dev_info(&mmc->class_dev,
1549 "card is non-removable.\n");
1551 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1554 return present;
1555 } else if (gpio_cd >= 0)
1556 present = gpio_cd;
1557 else
1558 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1559 == 0 ? 1 : 0;
1561 spin_lock_bh(&host->lock);
1562 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1563 dev_dbg(&mmc->class_dev, "card is present\n");
1564 else if (!present &&
1565 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1566 dev_dbg(&mmc->class_dev, "card is not present\n");
1567 spin_unlock_bh(&host->lock);
1569 return present;
1572 static void dw_mci_hw_reset(struct mmc_host *mmc)
1574 struct dw_mci_slot *slot = mmc_priv(mmc);
1575 struct dw_mci *host = slot->host;
1576 int reset;
1578 if (host->use_dma == TRANS_MODE_IDMAC)
1579 dw_mci_idmac_reset(host);
1581 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1582 SDMMC_CTRL_FIFO_RESET))
1583 return;
1586 * According to eMMC spec, card reset procedure:
1587 * tRstW >= 1us: RST_n pulse width
1588 * tRSCA >= 200us: RST_n to Command time
1589 * tRSTH >= 1us: RST_n high period
1591 reset = mci_readl(host, RST_N);
1592 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1593 mci_writel(host, RST_N, reset);
1594 usleep_range(1, 2);
1595 reset |= SDMMC_RST_HWACTIVE << slot->id;
1596 mci_writel(host, RST_N, reset);
1597 usleep_range(200, 300);
1600 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1602 struct dw_mci_slot *slot = mmc_priv(mmc);
1603 struct dw_mci *host = slot->host;
1606 * Low power mode will stop the card clock when idle. According to the
1607 * description of the CLKENA register we should disable low power mode
1608 * for SDIO cards if we need SDIO interrupts to work.
1610 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1611 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1612 u32 clk_en_a_old;
1613 u32 clk_en_a;
1615 clk_en_a_old = mci_readl(host, CLKENA);
1617 if (card->type == MMC_TYPE_SDIO ||
1618 card->type == MMC_TYPE_SD_COMBO) {
1619 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1620 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1621 } else {
1622 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1623 clk_en_a = clk_en_a_old | clken_low_pwr;
1626 if (clk_en_a != clk_en_a_old) {
1627 mci_writel(host, CLKENA, clk_en_a);
1628 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1629 SDMMC_CMD_PRV_DAT_WAIT, 0);
1634 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1636 struct dw_mci_slot *slot = mmc_priv(mmc);
1637 struct dw_mci *host = slot->host;
1638 unsigned long irqflags;
1639 u32 int_mask;
1641 spin_lock_irqsave(&host->irq_lock, irqflags);
1643 /* Enable/disable Slot Specific SDIO interrupt */
1644 int_mask = mci_readl(host, INTMASK);
1645 if (enb)
1646 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1647 else
1648 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1649 mci_writel(host, INTMASK, int_mask);
1651 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1654 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1656 struct dw_mci_slot *slot = mmc_priv(mmc);
1657 struct dw_mci *host = slot->host;
1658 const struct dw_mci_drv_data *drv_data = host->drv_data;
1659 int err = -EINVAL;
1661 if (drv_data && drv_data->execute_tuning)
1662 err = drv_data->execute_tuning(slot, opcode);
1663 return err;
1666 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1667 struct mmc_ios *ios)
1669 struct dw_mci_slot *slot = mmc_priv(mmc);
1670 struct dw_mci *host = slot->host;
1671 const struct dw_mci_drv_data *drv_data = host->drv_data;
1673 if (drv_data && drv_data->prepare_hs400_tuning)
1674 return drv_data->prepare_hs400_tuning(host, ios);
1676 return 0;
1679 static const struct mmc_host_ops dw_mci_ops = {
1680 .request = dw_mci_request,
1681 .pre_req = dw_mci_pre_req,
1682 .post_req = dw_mci_post_req,
1683 .set_ios = dw_mci_set_ios,
1684 .get_ro = dw_mci_get_ro,
1685 .get_cd = dw_mci_get_cd,
1686 .hw_reset = dw_mci_hw_reset,
1687 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1688 .execute_tuning = dw_mci_execute_tuning,
1689 .card_busy = dw_mci_card_busy,
1690 .start_signal_voltage_switch = dw_mci_switch_voltage,
1691 .init_card = dw_mci_init_card,
1692 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1695 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1696 __releases(&host->lock)
1697 __acquires(&host->lock)
1699 struct dw_mci_slot *slot;
1700 struct mmc_host *prev_mmc = host->cur_slot->mmc;
1702 WARN_ON(host->cmd || host->data);
1704 host->cur_slot->mrq = NULL;
1705 host->mrq = NULL;
1706 if (!list_empty(&host->queue)) {
1707 slot = list_entry(host->queue.next,
1708 struct dw_mci_slot, queue_node);
1709 list_del(&slot->queue_node);
1710 dev_vdbg(host->dev, "list not empty: %s is next\n",
1711 mmc_hostname(slot->mmc));
1712 host->state = STATE_SENDING_CMD;
1713 dw_mci_start_request(host, slot);
1714 } else {
1715 dev_vdbg(host->dev, "list empty\n");
1717 if (host->state == STATE_SENDING_CMD11)
1718 host->state = STATE_WAITING_CMD11_DONE;
1719 else
1720 host->state = STATE_IDLE;
1723 spin_unlock(&host->lock);
1724 mmc_request_done(prev_mmc, mrq);
1725 spin_lock(&host->lock);
1728 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1730 u32 status = host->cmd_status;
1732 host->cmd_status = 0;
1734 /* Read the response from the card (up to 16 bytes) */
1735 if (cmd->flags & MMC_RSP_PRESENT) {
1736 if (cmd->flags & MMC_RSP_136) {
1737 cmd->resp[3] = mci_readl(host, RESP0);
1738 cmd->resp[2] = mci_readl(host, RESP1);
1739 cmd->resp[1] = mci_readl(host, RESP2);
1740 cmd->resp[0] = mci_readl(host, RESP3);
1741 } else {
1742 cmd->resp[0] = mci_readl(host, RESP0);
1743 cmd->resp[1] = 0;
1744 cmd->resp[2] = 0;
1745 cmd->resp[3] = 0;
1749 if (status & SDMMC_INT_RTO)
1750 cmd->error = -ETIMEDOUT;
1751 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1752 cmd->error = -EILSEQ;
1753 else if (status & SDMMC_INT_RESP_ERR)
1754 cmd->error = -EIO;
1755 else
1756 cmd->error = 0;
1758 return cmd->error;
1761 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1763 u32 status = host->data_status;
1765 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1766 if (status & SDMMC_INT_DRTO) {
1767 data->error = -ETIMEDOUT;
1768 } else if (status & SDMMC_INT_DCRC) {
1769 data->error = -EILSEQ;
1770 } else if (status & SDMMC_INT_EBE) {
1771 if (host->dir_status ==
1772 DW_MCI_SEND_STATUS) {
1774 * No data CRC status was returned.
1775 * The number of bytes transferred
1776 * will be exaggerated in PIO mode.
1778 data->bytes_xfered = 0;
1779 data->error = -ETIMEDOUT;
1780 } else if (host->dir_status ==
1781 DW_MCI_RECV_STATUS) {
1782 data->error = -EILSEQ;
1784 } else {
1785 /* SDMMC_INT_SBE is included */
1786 data->error = -EILSEQ;
1789 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1792 * After an error, there may be data lingering
1793 * in the FIFO
1795 dw_mci_reset(host);
1796 } else {
1797 data->bytes_xfered = data->blocks * data->blksz;
1798 data->error = 0;
1801 return data->error;
1804 static void dw_mci_set_drto(struct dw_mci *host)
1806 unsigned int drto_clks;
1807 unsigned int drto_ms;
1809 drto_clks = mci_readl(host, TMOUT) >> 8;
1810 drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1812 /* add a bit spare time */
1813 drto_ms += 10;
1815 mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1818 static void dw_mci_tasklet_func(unsigned long priv)
1820 struct dw_mci *host = (struct dw_mci *)priv;
1821 struct mmc_data *data;
1822 struct mmc_command *cmd;
1823 struct mmc_request *mrq;
1824 enum dw_mci_state state;
1825 enum dw_mci_state prev_state;
1826 unsigned int err;
1828 spin_lock(&host->lock);
1830 state = host->state;
1831 data = host->data;
1832 mrq = host->mrq;
1834 do {
1835 prev_state = state;
1837 switch (state) {
1838 case STATE_IDLE:
1839 case STATE_WAITING_CMD11_DONE:
1840 break;
1842 case STATE_SENDING_CMD11:
1843 case STATE_SENDING_CMD:
1844 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1845 &host->pending_events))
1846 break;
1848 cmd = host->cmd;
1849 host->cmd = NULL;
1850 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1851 err = dw_mci_command_complete(host, cmd);
1852 if (cmd == mrq->sbc && !err) {
1853 prev_state = state = STATE_SENDING_CMD;
1854 __dw_mci_start_request(host, host->cur_slot,
1855 mrq->cmd);
1856 goto unlock;
1859 if (cmd->data && err) {
1861 * During UHS tuning sequence, sending the stop
1862 * command after the response CRC error would
1863 * throw the system into a confused state
1864 * causing all future tuning phases to report
1865 * failure.
1867 * In such case controller will move into a data
1868 * transfer state after a response error or
1869 * response CRC error. Let's let that finish
1870 * before trying to send a stop, so we'll go to
1871 * STATE_SENDING_DATA.
1873 * Although letting the data transfer take place
1874 * will waste a bit of time (we already know
1875 * the command was bad), it can't cause any
1876 * errors since it's possible it would have
1877 * taken place anyway if this tasklet got
1878 * delayed. Allowing the transfer to take place
1879 * avoids races and keeps things simple.
1881 if ((err != -ETIMEDOUT) &&
1882 (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1883 state = STATE_SENDING_DATA;
1884 continue;
1887 dw_mci_stop_dma(host);
1888 send_stop_abort(host, data);
1889 state = STATE_SENDING_STOP;
1890 break;
1893 if (!cmd->data || err) {
1894 dw_mci_request_end(host, mrq);
1895 goto unlock;
1898 prev_state = state = STATE_SENDING_DATA;
1899 /* fall through */
1901 case STATE_SENDING_DATA:
1903 * We could get a data error and never a transfer
1904 * complete so we'd better check for it here.
1906 * Note that we don't really care if we also got a
1907 * transfer complete; stopping the DMA and sending an
1908 * abort won't hurt.
1910 if (test_and_clear_bit(EVENT_DATA_ERROR,
1911 &host->pending_events)) {
1912 dw_mci_stop_dma(host);
1913 if (!(host->data_status & (SDMMC_INT_DRTO |
1914 SDMMC_INT_EBE)))
1915 send_stop_abort(host, data);
1916 state = STATE_DATA_ERROR;
1917 break;
1920 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1921 &host->pending_events)) {
1923 * If all data-related interrupts don't come
1924 * within the given time in reading data state.
1926 if (host->dir_status == DW_MCI_RECV_STATUS)
1927 dw_mci_set_drto(host);
1928 break;
1931 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
1934 * Handle an EVENT_DATA_ERROR that might have shown up
1935 * before the transfer completed. This might not have
1936 * been caught by the check above because the interrupt
1937 * could have gone off between the previous check and
1938 * the check for transfer complete.
1940 * Technically this ought not be needed assuming we
1941 * get a DATA_COMPLETE eventually (we'll notice the
1942 * error and end the request), but it shouldn't hurt.
1944 * This has the advantage of sending the stop command.
1946 if (test_and_clear_bit(EVENT_DATA_ERROR,
1947 &host->pending_events)) {
1948 dw_mci_stop_dma(host);
1949 if (!(host->data_status & (SDMMC_INT_DRTO |
1950 SDMMC_INT_EBE)))
1951 send_stop_abort(host, data);
1952 state = STATE_DATA_ERROR;
1953 break;
1955 prev_state = state = STATE_DATA_BUSY;
1957 /* fall through */
1959 case STATE_DATA_BUSY:
1960 if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
1961 &host->pending_events)) {
1963 * If data error interrupt comes but data over
1964 * interrupt doesn't come within the given time.
1965 * in reading data state.
1967 if (host->dir_status == DW_MCI_RECV_STATUS)
1968 dw_mci_set_drto(host);
1969 break;
1972 host->data = NULL;
1973 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
1974 err = dw_mci_data_complete(host, data);
1976 if (!err) {
1977 if (!data->stop || mrq->sbc) {
1978 if (mrq->sbc && data->stop)
1979 data->stop->error = 0;
1980 dw_mci_request_end(host, mrq);
1981 goto unlock;
1984 /* stop command for open-ended transfer*/
1985 if (data->stop)
1986 send_stop_abort(host, data);
1987 } else {
1989 * If we don't have a command complete now we'll
1990 * never get one since we just reset everything;
1991 * better end the request.
1993 * If we do have a command complete we'll fall
1994 * through to the SENDING_STOP command and
1995 * everything will be peachy keen.
1997 if (!test_bit(EVENT_CMD_COMPLETE,
1998 &host->pending_events)) {
1999 host->cmd = NULL;
2000 dw_mci_request_end(host, mrq);
2001 goto unlock;
2006 * If err has non-zero,
2007 * stop-abort command has been already issued.
2009 prev_state = state = STATE_SENDING_STOP;
2011 /* fall through */
2013 case STATE_SENDING_STOP:
2014 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
2015 &host->pending_events))
2016 break;
2018 /* CMD error in data command */
2019 if (mrq->cmd->error && mrq->data)
2020 dw_mci_reset(host);
2022 host->cmd = NULL;
2023 host->data = NULL;
2025 if (!mrq->sbc && mrq->stop)
2026 dw_mci_command_complete(host, mrq->stop);
2027 else
2028 host->cmd_status = 0;
2030 dw_mci_request_end(host, mrq);
2031 goto unlock;
2033 case STATE_DATA_ERROR:
2034 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2035 &host->pending_events))
2036 break;
2038 state = STATE_DATA_BUSY;
2039 break;
2041 } while (state != prev_state);
2043 host->state = state;
2044 unlock:
2045 spin_unlock(&host->lock);
2049 /* push final bytes to part_buf, only use during push */
2050 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2052 memcpy((void *)&host->part_buf, buf, cnt);
2053 host->part_buf_count = cnt;
2056 /* append bytes to part_buf, only use during push */
2057 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2059 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2060 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2061 host->part_buf_count += cnt;
2062 return cnt;
2065 /* pull first bytes from part_buf, only use during pull */
2066 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2068 cnt = min_t(int, cnt, host->part_buf_count);
2069 if (cnt) {
2070 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2071 cnt);
2072 host->part_buf_count -= cnt;
2073 host->part_buf_start += cnt;
2075 return cnt;
2078 /* pull final bytes from the part_buf, assuming it's just been filled */
2079 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2081 memcpy(buf, &host->part_buf, cnt);
2082 host->part_buf_start = cnt;
2083 host->part_buf_count = (1 << host->data_shift) - cnt;
2086 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2088 struct mmc_data *data = host->data;
2089 int init_cnt = cnt;
2091 /* try and push anything in the part_buf */
2092 if (unlikely(host->part_buf_count)) {
2093 int len = dw_mci_push_part_bytes(host, buf, cnt);
2095 buf += len;
2096 cnt -= len;
2097 if (host->part_buf_count == 2) {
2098 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2099 host->part_buf_count = 0;
2102 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2103 if (unlikely((unsigned long)buf & 0x1)) {
2104 while (cnt >= 2) {
2105 u16 aligned_buf[64];
2106 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2107 int items = len >> 1;
2108 int i;
2109 /* memcpy from input buffer into aligned buffer */
2110 memcpy(aligned_buf, buf, len);
2111 buf += len;
2112 cnt -= len;
2113 /* push data from aligned buffer into fifo */
2114 for (i = 0; i < items; ++i)
2115 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2117 } else
2118 #endif
2120 u16 *pdata = buf;
2122 for (; cnt >= 2; cnt -= 2)
2123 mci_fifo_writew(host->fifo_reg, *pdata++);
2124 buf = pdata;
2126 /* put anything remaining in the part_buf */
2127 if (cnt) {
2128 dw_mci_set_part_bytes(host, buf, cnt);
2129 /* Push data if we have reached the expected data length */
2130 if ((data->bytes_xfered + init_cnt) ==
2131 (data->blksz * data->blocks))
2132 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2136 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2138 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2139 if (unlikely((unsigned long)buf & 0x1)) {
2140 while (cnt >= 2) {
2141 /* pull data from fifo into aligned buffer */
2142 u16 aligned_buf[64];
2143 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2144 int items = len >> 1;
2145 int i;
2147 for (i = 0; i < items; ++i)
2148 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2149 /* memcpy from aligned buffer into output buffer */
2150 memcpy(buf, aligned_buf, len);
2151 buf += len;
2152 cnt -= len;
2154 } else
2155 #endif
2157 u16 *pdata = buf;
2159 for (; cnt >= 2; cnt -= 2)
2160 *pdata++ = mci_fifo_readw(host->fifo_reg);
2161 buf = pdata;
2163 if (cnt) {
2164 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2165 dw_mci_pull_final_bytes(host, buf, cnt);
2169 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2171 struct mmc_data *data = host->data;
2172 int init_cnt = cnt;
2174 /* try and push anything in the part_buf */
2175 if (unlikely(host->part_buf_count)) {
2176 int len = dw_mci_push_part_bytes(host, buf, cnt);
2178 buf += len;
2179 cnt -= len;
2180 if (host->part_buf_count == 4) {
2181 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2182 host->part_buf_count = 0;
2185 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2186 if (unlikely((unsigned long)buf & 0x3)) {
2187 while (cnt >= 4) {
2188 u32 aligned_buf[32];
2189 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2190 int items = len >> 2;
2191 int i;
2192 /* memcpy from input buffer into aligned buffer */
2193 memcpy(aligned_buf, buf, len);
2194 buf += len;
2195 cnt -= len;
2196 /* push data from aligned buffer into fifo */
2197 for (i = 0; i < items; ++i)
2198 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2200 } else
2201 #endif
2203 u32 *pdata = buf;
2205 for (; cnt >= 4; cnt -= 4)
2206 mci_fifo_writel(host->fifo_reg, *pdata++);
2207 buf = pdata;
2209 /* put anything remaining in the part_buf */
2210 if (cnt) {
2211 dw_mci_set_part_bytes(host, buf, cnt);
2212 /* Push data if we have reached the expected data length */
2213 if ((data->bytes_xfered + init_cnt) ==
2214 (data->blksz * data->blocks))
2215 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2219 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2221 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2222 if (unlikely((unsigned long)buf & 0x3)) {
2223 while (cnt >= 4) {
2224 /* pull data from fifo into aligned buffer */
2225 u32 aligned_buf[32];
2226 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2227 int items = len >> 2;
2228 int i;
2230 for (i = 0; i < items; ++i)
2231 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2232 /* memcpy from aligned buffer into output buffer */
2233 memcpy(buf, aligned_buf, len);
2234 buf += len;
2235 cnt -= len;
2237 } else
2238 #endif
2240 u32 *pdata = buf;
2242 for (; cnt >= 4; cnt -= 4)
2243 *pdata++ = mci_fifo_readl(host->fifo_reg);
2244 buf = pdata;
2246 if (cnt) {
2247 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2248 dw_mci_pull_final_bytes(host, buf, cnt);
2252 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2254 struct mmc_data *data = host->data;
2255 int init_cnt = cnt;
2257 /* try and push anything in the part_buf */
2258 if (unlikely(host->part_buf_count)) {
2259 int len = dw_mci_push_part_bytes(host, buf, cnt);
2261 buf += len;
2262 cnt -= len;
2264 if (host->part_buf_count == 8) {
2265 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2266 host->part_buf_count = 0;
2269 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2270 if (unlikely((unsigned long)buf & 0x7)) {
2271 while (cnt >= 8) {
2272 u64 aligned_buf[16];
2273 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2274 int items = len >> 3;
2275 int i;
2276 /* memcpy from input buffer into aligned buffer */
2277 memcpy(aligned_buf, buf, len);
2278 buf += len;
2279 cnt -= len;
2280 /* push data from aligned buffer into fifo */
2281 for (i = 0; i < items; ++i)
2282 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2284 } else
2285 #endif
2287 u64 *pdata = buf;
2289 for (; cnt >= 8; cnt -= 8)
2290 mci_fifo_writeq(host->fifo_reg, *pdata++);
2291 buf = pdata;
2293 /* put anything remaining in the part_buf */
2294 if (cnt) {
2295 dw_mci_set_part_bytes(host, buf, cnt);
2296 /* Push data if we have reached the expected data length */
2297 if ((data->bytes_xfered + init_cnt) ==
2298 (data->blksz * data->blocks))
2299 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2303 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2305 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2306 if (unlikely((unsigned long)buf & 0x7)) {
2307 while (cnt >= 8) {
2308 /* pull data from fifo into aligned buffer */
2309 u64 aligned_buf[16];
2310 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2311 int items = len >> 3;
2312 int i;
2314 for (i = 0; i < items; ++i)
2315 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2317 /* memcpy from aligned buffer into output buffer */
2318 memcpy(buf, aligned_buf, len);
2319 buf += len;
2320 cnt -= len;
2322 } else
2323 #endif
2325 u64 *pdata = buf;
2327 for (; cnt >= 8; cnt -= 8)
2328 *pdata++ = mci_fifo_readq(host->fifo_reg);
2329 buf = pdata;
2331 if (cnt) {
2332 host->part_buf = mci_fifo_readq(host->fifo_reg);
2333 dw_mci_pull_final_bytes(host, buf, cnt);
2337 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2339 int len;
2341 /* get remaining partial bytes */
2342 len = dw_mci_pull_part_bytes(host, buf, cnt);
2343 if (unlikely(len == cnt))
2344 return;
2345 buf += len;
2346 cnt -= len;
2348 /* get the rest of the data */
2349 host->pull_data(host, buf, cnt);
2352 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2354 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2355 void *buf;
2356 unsigned int offset;
2357 struct mmc_data *data = host->data;
2358 int shift = host->data_shift;
2359 u32 status;
2360 unsigned int len;
2361 unsigned int remain, fcnt;
2363 do {
2364 if (!sg_miter_next(sg_miter))
2365 goto done;
2367 host->sg = sg_miter->piter.sg;
2368 buf = sg_miter->addr;
2369 remain = sg_miter->length;
2370 offset = 0;
2372 do {
2373 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2374 << shift) + host->part_buf_count;
2375 len = min(remain, fcnt);
2376 if (!len)
2377 break;
2378 dw_mci_pull_data(host, (void *)(buf + offset), len);
2379 data->bytes_xfered += len;
2380 offset += len;
2381 remain -= len;
2382 } while (remain);
2384 sg_miter->consumed = offset;
2385 status = mci_readl(host, MINTSTS);
2386 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2387 /* if the RXDR is ready read again */
2388 } while ((status & SDMMC_INT_RXDR) ||
2389 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2391 if (!remain) {
2392 if (!sg_miter_next(sg_miter))
2393 goto done;
2394 sg_miter->consumed = 0;
2396 sg_miter_stop(sg_miter);
2397 return;
2399 done:
2400 sg_miter_stop(sg_miter);
2401 host->sg = NULL;
2402 smp_wmb(); /* drain writebuffer */
2403 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2406 static void dw_mci_write_data_pio(struct dw_mci *host)
2408 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2409 void *buf;
2410 unsigned int offset;
2411 struct mmc_data *data = host->data;
2412 int shift = host->data_shift;
2413 u32 status;
2414 unsigned int len;
2415 unsigned int fifo_depth = host->fifo_depth;
2416 unsigned int remain, fcnt;
2418 do {
2419 if (!sg_miter_next(sg_miter))
2420 goto done;
2422 host->sg = sg_miter->piter.sg;
2423 buf = sg_miter->addr;
2424 remain = sg_miter->length;
2425 offset = 0;
2427 do {
2428 fcnt = ((fifo_depth -
2429 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2430 << shift) - host->part_buf_count;
2431 len = min(remain, fcnt);
2432 if (!len)
2433 break;
2434 host->push_data(host, (void *)(buf + offset), len);
2435 data->bytes_xfered += len;
2436 offset += len;
2437 remain -= len;
2438 } while (remain);
2440 sg_miter->consumed = offset;
2441 status = mci_readl(host, MINTSTS);
2442 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2443 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2445 if (!remain) {
2446 if (!sg_miter_next(sg_miter))
2447 goto done;
2448 sg_miter->consumed = 0;
2450 sg_miter_stop(sg_miter);
2451 return;
2453 done:
2454 sg_miter_stop(sg_miter);
2455 host->sg = NULL;
2456 smp_wmb(); /* drain writebuffer */
2457 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2460 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2462 if (!host->cmd_status)
2463 host->cmd_status = status;
2465 smp_wmb(); /* drain writebuffer */
2467 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2468 tasklet_schedule(&host->tasklet);
2471 static void dw_mci_handle_cd(struct dw_mci *host)
2473 int i;
2475 for (i = 0; i < host->num_slots; i++) {
2476 struct dw_mci_slot *slot = host->slot[i];
2478 if (!slot)
2479 continue;
2481 if (slot->mmc->ops->card_event)
2482 slot->mmc->ops->card_event(slot->mmc);
2483 mmc_detect_change(slot->mmc,
2484 msecs_to_jiffies(host->pdata->detect_delay_ms));
2488 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2490 struct dw_mci *host = dev_id;
2491 u32 pending;
2492 int i;
2494 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2496 if (pending) {
2497 /* Check volt switch first, since it can look like an error */
2498 if ((host->state == STATE_SENDING_CMD11) &&
2499 (pending & SDMMC_INT_VOLT_SWITCH)) {
2500 unsigned long irqflags;
2502 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2503 pending &= ~SDMMC_INT_VOLT_SWITCH;
2506 * Hold the lock; we know cmd11_timer can't be kicked
2507 * off after the lock is released, so safe to delete.
2509 spin_lock_irqsave(&host->irq_lock, irqflags);
2510 dw_mci_cmd_interrupt(host, pending);
2511 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2513 del_timer(&host->cmd11_timer);
2516 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2517 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2518 host->cmd_status = pending;
2519 smp_wmb(); /* drain writebuffer */
2520 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2523 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2524 /* if there is an error report DATA_ERROR */
2525 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2526 host->data_status = pending;
2527 smp_wmb(); /* drain writebuffer */
2528 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2529 tasklet_schedule(&host->tasklet);
2532 if (pending & SDMMC_INT_DATA_OVER) {
2533 del_timer(&host->dto_timer);
2535 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2536 if (!host->data_status)
2537 host->data_status = pending;
2538 smp_wmb(); /* drain writebuffer */
2539 if (host->dir_status == DW_MCI_RECV_STATUS) {
2540 if (host->sg != NULL)
2541 dw_mci_read_data_pio(host, true);
2543 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2544 tasklet_schedule(&host->tasklet);
2547 if (pending & SDMMC_INT_RXDR) {
2548 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2549 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2550 dw_mci_read_data_pio(host, false);
2553 if (pending & SDMMC_INT_TXDR) {
2554 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2555 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2556 dw_mci_write_data_pio(host);
2559 if (pending & SDMMC_INT_CMD_DONE) {
2560 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2561 dw_mci_cmd_interrupt(host, pending);
2564 if (pending & SDMMC_INT_CD) {
2565 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2566 dw_mci_handle_cd(host);
2569 /* Handle SDIO Interrupts */
2570 for (i = 0; i < host->num_slots; i++) {
2571 struct dw_mci_slot *slot = host->slot[i];
2573 if (!slot)
2574 continue;
2576 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2577 mci_writel(host, RINTSTS,
2578 SDMMC_INT_SDIO(slot->sdio_id));
2579 mmc_signal_sdio_irq(slot->mmc);
2585 if (host->use_dma != TRANS_MODE_IDMAC)
2586 return IRQ_HANDLED;
2588 /* Handle IDMA interrupts */
2589 if (host->dma_64bit_address == 1) {
2590 pending = mci_readl(host, IDSTS64);
2591 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2592 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2593 SDMMC_IDMAC_INT_RI);
2594 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2595 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2596 host->dma_ops->complete((void *)host);
2598 } else {
2599 pending = mci_readl(host, IDSTS);
2600 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2601 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2602 SDMMC_IDMAC_INT_RI);
2603 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2604 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2605 host->dma_ops->complete((void *)host);
2609 return IRQ_HANDLED;
2612 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2614 struct mmc_host *mmc;
2615 struct dw_mci_slot *slot;
2616 const struct dw_mci_drv_data *drv_data = host->drv_data;
2617 int ctrl_id, ret;
2618 u32 freq[2];
2620 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2621 if (!mmc)
2622 return -ENOMEM;
2624 slot = mmc_priv(mmc);
2625 slot->id = id;
2626 slot->sdio_id = host->sdio_id0 + id;
2627 slot->mmc = mmc;
2628 slot->host = host;
2629 host->slot[id] = slot;
2631 mmc->ops = &dw_mci_ops;
2632 if (of_property_read_u32_array(host->dev->of_node,
2633 "clock-freq-min-max", freq, 2)) {
2634 mmc->f_min = DW_MCI_FREQ_MIN;
2635 mmc->f_max = DW_MCI_FREQ_MAX;
2636 } else {
2637 dev_info(host->dev,
2638 "'clock-freq-min-max' property was deprecated.\n");
2639 mmc->f_min = freq[0];
2640 mmc->f_max = freq[1];
2643 /*if there are external regulators, get them*/
2644 ret = mmc_regulator_get_supply(mmc);
2645 if (ret == -EPROBE_DEFER)
2646 goto err_host_allocated;
2648 if (!mmc->ocr_avail)
2649 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2651 if (host->pdata->caps)
2652 mmc->caps = host->pdata->caps;
2655 * Support MMC_CAP_ERASE by default.
2656 * It needs to use trim/discard/erase commands.
2658 mmc->caps |= MMC_CAP_ERASE;
2660 if (host->pdata->pm_caps)
2661 mmc->pm_caps = host->pdata->pm_caps;
2663 if (host->dev->of_node) {
2664 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2665 if (ctrl_id < 0)
2666 ctrl_id = 0;
2667 } else {
2668 ctrl_id = to_platform_device(host->dev)->id;
2670 if (drv_data && drv_data->caps)
2671 mmc->caps |= drv_data->caps[ctrl_id];
2673 if (host->pdata->caps2)
2674 mmc->caps2 = host->pdata->caps2;
2676 ret = mmc_of_parse(mmc);
2677 if (ret)
2678 goto err_host_allocated;
2680 /* Useful defaults if platform data is unset. */
2681 if (host->use_dma == TRANS_MODE_IDMAC) {
2682 mmc->max_segs = host->ring_size;
2683 mmc->max_blk_size = 65535;
2684 mmc->max_seg_size = 0x1000;
2685 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2686 mmc->max_blk_count = mmc->max_req_size / 512;
2687 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2688 mmc->max_segs = 64;
2689 mmc->max_blk_size = 65535;
2690 mmc->max_blk_count = 65535;
2691 mmc->max_req_size =
2692 mmc->max_blk_size * mmc->max_blk_count;
2693 mmc->max_seg_size = mmc->max_req_size;
2694 } else {
2695 /* TRANS_MODE_PIO */
2696 mmc->max_segs = 64;
2697 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2698 mmc->max_blk_count = 512;
2699 mmc->max_req_size = mmc->max_blk_size *
2700 mmc->max_blk_count;
2701 mmc->max_seg_size = mmc->max_req_size;
2704 dw_mci_get_cd(mmc);
2706 ret = mmc_add_host(mmc);
2707 if (ret)
2708 goto err_host_allocated;
2710 #if defined(CONFIG_DEBUG_FS)
2711 dw_mci_init_debugfs(slot);
2712 #endif
2714 return 0;
2716 err_host_allocated:
2717 mmc_free_host(mmc);
2718 return ret;
2721 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2723 /* Debugfs stuff is cleaned up by mmc core */
2724 mmc_remove_host(slot->mmc);
2725 slot->host->slot[id] = NULL;
2726 mmc_free_host(slot->mmc);
2729 static void dw_mci_init_dma(struct dw_mci *host)
2731 int addr_config;
2732 struct device *dev = host->dev;
2733 struct device_node *np = dev->of_node;
2736 * Check tansfer mode from HCON[17:16]
2737 * Clear the ambiguous description of dw_mmc databook:
2738 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2739 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2740 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2741 * 2b'11: Non DW DMA Interface -> pio only
2742 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2743 * simpler request/acknowledge handshake mechanism and both of them
2744 * are regarded as external dma master for dw_mmc.
2746 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2747 if (host->use_dma == DMA_INTERFACE_IDMA) {
2748 host->use_dma = TRANS_MODE_IDMAC;
2749 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2750 host->use_dma == DMA_INTERFACE_GDMA) {
2751 host->use_dma = TRANS_MODE_EDMAC;
2752 } else {
2753 goto no_dma;
2756 /* Determine which DMA interface to use */
2757 if (host->use_dma == TRANS_MODE_IDMAC) {
2759 * Check ADDR_CONFIG bit in HCON to find
2760 * IDMAC address bus width
2762 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2764 if (addr_config == 1) {
2765 /* host supports IDMAC in 64-bit address mode */
2766 host->dma_64bit_address = 1;
2767 dev_info(host->dev,
2768 "IDMAC supports 64-bit address mode.\n");
2769 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2770 dma_set_coherent_mask(host->dev,
2771 DMA_BIT_MASK(64));
2772 } else {
2773 /* host supports IDMAC in 32-bit address mode */
2774 host->dma_64bit_address = 0;
2775 dev_info(host->dev,
2776 "IDMAC supports 32-bit address mode.\n");
2779 /* Alloc memory for sg translation */
2780 host->sg_cpu = dmam_alloc_coherent(host->dev,
2781 DESC_RING_BUF_SZ,
2782 &host->sg_dma, GFP_KERNEL);
2783 if (!host->sg_cpu) {
2784 dev_err(host->dev,
2785 "%s: could not alloc DMA memory\n",
2786 __func__);
2787 goto no_dma;
2790 host->dma_ops = &dw_mci_idmac_ops;
2791 dev_info(host->dev, "Using internal DMA controller.\n");
2792 } else {
2793 /* TRANS_MODE_EDMAC: check dma bindings again */
2794 if ((of_property_count_strings(np, "dma-names") < 0) ||
2795 (!of_find_property(np, "dmas", NULL))) {
2796 goto no_dma;
2798 host->dma_ops = &dw_mci_edmac_ops;
2799 dev_info(host->dev, "Using external DMA controller.\n");
2802 if (host->dma_ops->init && host->dma_ops->start &&
2803 host->dma_ops->stop && host->dma_ops->cleanup) {
2804 if (host->dma_ops->init(host)) {
2805 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2806 __func__);
2807 goto no_dma;
2809 } else {
2810 dev_err(host->dev, "DMA initialization not found.\n");
2811 goto no_dma;
2814 return;
2816 no_dma:
2817 dev_info(host->dev, "Using PIO mode.\n");
2818 host->use_dma = TRANS_MODE_PIO;
2821 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
2823 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2824 u32 ctrl;
2826 ctrl = mci_readl(host, CTRL);
2827 ctrl |= reset;
2828 mci_writel(host, CTRL, ctrl);
2830 /* wait till resets clear */
2831 do {
2832 ctrl = mci_readl(host, CTRL);
2833 if (!(ctrl & reset))
2834 return true;
2835 } while (time_before(jiffies, timeout));
2837 dev_err(host->dev,
2838 "Timeout resetting block (ctrl reset %#x)\n",
2839 ctrl & reset);
2841 return false;
2844 static bool dw_mci_reset(struct dw_mci *host)
2846 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
2847 bool ret = false;
2850 * Reseting generates a block interrupt, hence setting
2851 * the scatter-gather pointer to NULL.
2853 if (host->sg) {
2854 sg_miter_stop(&host->sg_miter);
2855 host->sg = NULL;
2858 if (host->use_dma)
2859 flags |= SDMMC_CTRL_DMA_RESET;
2861 if (dw_mci_ctrl_reset(host, flags)) {
2863 * In all cases we clear the RAWINTS register to clear any
2864 * interrupts.
2866 mci_writel(host, RINTSTS, 0xFFFFFFFF);
2868 /* if using dma we wait for dma_req to clear */
2869 if (host->use_dma) {
2870 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2871 u32 status;
2873 do {
2874 status = mci_readl(host, STATUS);
2875 if (!(status & SDMMC_STATUS_DMA_REQ))
2876 break;
2877 cpu_relax();
2878 } while (time_before(jiffies, timeout));
2880 if (status & SDMMC_STATUS_DMA_REQ) {
2881 dev_err(host->dev,
2882 "%s: Timeout waiting for dma_req to clear during reset\n",
2883 __func__);
2884 goto ciu_out;
2887 /* when using DMA next we reset the fifo again */
2888 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
2889 goto ciu_out;
2891 } else {
2892 /* if the controller reset bit did clear, then set clock regs */
2893 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
2894 dev_err(host->dev,
2895 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2896 __func__);
2897 goto ciu_out;
2901 if (host->use_dma == TRANS_MODE_IDMAC)
2902 /* It is also recommended that we reset and reprogram idmac */
2903 dw_mci_idmac_reset(host);
2905 ret = true;
2907 ciu_out:
2908 /* After a CTRL reset we need to have CIU set clock registers */
2909 mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
2911 return ret;
2914 static void dw_mci_cmd11_timer(unsigned long arg)
2916 struct dw_mci *host = (struct dw_mci *)arg;
2918 if (host->state != STATE_SENDING_CMD11) {
2919 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2920 return;
2923 host->cmd_status = SDMMC_INT_RTO;
2924 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2925 tasklet_schedule(&host->tasklet);
2928 static void dw_mci_dto_timer(unsigned long arg)
2930 struct dw_mci *host = (struct dw_mci *)arg;
2932 switch (host->state) {
2933 case STATE_SENDING_DATA:
2934 case STATE_DATA_BUSY:
2936 * If DTO interrupt does NOT come in sending data state,
2937 * we should notify the driver to terminate current transfer
2938 * and report a data timeout to the core.
2940 host->data_status = SDMMC_INT_DRTO;
2941 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2942 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2943 tasklet_schedule(&host->tasklet);
2944 break;
2945 default:
2946 break;
2950 #ifdef CONFIG_OF
2951 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2953 struct dw_mci_board *pdata;
2954 struct device *dev = host->dev;
2955 struct device_node *np = dev->of_node;
2956 const struct dw_mci_drv_data *drv_data = host->drv_data;
2957 int ret;
2958 u32 clock_frequency;
2960 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2961 if (!pdata)
2962 return ERR_PTR(-ENOMEM);
2964 /* find reset controller when exist */
2965 pdata->rstc = devm_reset_control_get_optional(dev, "reset");
2966 if (IS_ERR(pdata->rstc)) {
2967 if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
2968 return ERR_PTR(-EPROBE_DEFER);
2971 /* find out number of slots supported */
2972 of_property_read_u32(np, "num-slots", &pdata->num_slots);
2974 if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2975 dev_info(dev,
2976 "fifo-depth property not found, using value of FIFOTH register as default\n");
2978 of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2980 if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2981 pdata->bus_hz = clock_frequency;
2983 if (drv_data && drv_data->parse_dt) {
2984 ret = drv_data->parse_dt(host);
2985 if (ret)
2986 return ERR_PTR(ret);
2989 return pdata;
2992 #else /* CONFIG_OF */
2993 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2995 return ERR_PTR(-EINVAL);
2997 #endif /* CONFIG_OF */
2999 static void dw_mci_enable_cd(struct dw_mci *host)
3001 unsigned long irqflags;
3002 u32 temp;
3003 int i;
3004 struct dw_mci_slot *slot;
3007 * No need for CD if all slots have a non-error GPIO
3008 * as well as broken card detection is found.
3010 for (i = 0; i < host->num_slots; i++) {
3011 slot = host->slot[i];
3012 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3013 return;
3015 if (mmc_gpio_get_cd(slot->mmc) < 0)
3016 break;
3018 if (i == host->num_slots)
3019 return;
3021 spin_lock_irqsave(&host->irq_lock, irqflags);
3022 temp = mci_readl(host, INTMASK);
3023 temp |= SDMMC_INT_CD;
3024 mci_writel(host, INTMASK, temp);
3025 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3028 int dw_mci_probe(struct dw_mci *host)
3030 const struct dw_mci_drv_data *drv_data = host->drv_data;
3031 int width, i, ret = 0;
3032 u32 fifo_size;
3033 int init_slots = 0;
3035 if (!host->pdata) {
3036 host->pdata = dw_mci_parse_dt(host);
3037 if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3038 return -EPROBE_DEFER;
3039 } else if (IS_ERR(host->pdata)) {
3040 dev_err(host->dev, "platform data not available\n");
3041 return -EINVAL;
3045 host->biu_clk = devm_clk_get(host->dev, "biu");
3046 if (IS_ERR(host->biu_clk)) {
3047 dev_dbg(host->dev, "biu clock not available\n");
3048 } else {
3049 ret = clk_prepare_enable(host->biu_clk);
3050 if (ret) {
3051 dev_err(host->dev, "failed to enable biu clock\n");
3052 return ret;
3056 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3057 if (IS_ERR(host->ciu_clk)) {
3058 dev_dbg(host->dev, "ciu clock not available\n");
3059 host->bus_hz = host->pdata->bus_hz;
3060 } else {
3061 ret = clk_prepare_enable(host->ciu_clk);
3062 if (ret) {
3063 dev_err(host->dev, "failed to enable ciu clock\n");
3064 goto err_clk_biu;
3067 if (host->pdata->bus_hz) {
3068 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3069 if (ret)
3070 dev_warn(host->dev,
3071 "Unable to set bus rate to %uHz\n",
3072 host->pdata->bus_hz);
3074 host->bus_hz = clk_get_rate(host->ciu_clk);
3077 if (!host->bus_hz) {
3078 dev_err(host->dev,
3079 "Platform data must supply bus speed\n");
3080 ret = -ENODEV;
3081 goto err_clk_ciu;
3084 if (drv_data && drv_data->init) {
3085 ret = drv_data->init(host);
3086 if (ret) {
3087 dev_err(host->dev,
3088 "implementation specific init failed\n");
3089 goto err_clk_ciu;
3093 if (!IS_ERR(host->pdata->rstc)) {
3094 reset_control_assert(host->pdata->rstc);
3095 usleep_range(10, 50);
3096 reset_control_deassert(host->pdata->rstc);
3099 setup_timer(&host->cmd11_timer,
3100 dw_mci_cmd11_timer, (unsigned long)host);
3102 setup_timer(&host->dto_timer,
3103 dw_mci_dto_timer, (unsigned long)host);
3105 spin_lock_init(&host->lock);
3106 spin_lock_init(&host->irq_lock);
3107 INIT_LIST_HEAD(&host->queue);
3110 * Get the host data width - this assumes that HCON has been set with
3111 * the correct values.
3113 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3114 if (!i) {
3115 host->push_data = dw_mci_push_data16;
3116 host->pull_data = dw_mci_pull_data16;
3117 width = 16;
3118 host->data_shift = 1;
3119 } else if (i == 2) {
3120 host->push_data = dw_mci_push_data64;
3121 host->pull_data = dw_mci_pull_data64;
3122 width = 64;
3123 host->data_shift = 3;
3124 } else {
3125 /* Check for a reserved value, and warn if it is */
3126 WARN((i != 1),
3127 "HCON reports a reserved host data width!\n"
3128 "Defaulting to 32-bit access.\n");
3129 host->push_data = dw_mci_push_data32;
3130 host->pull_data = dw_mci_pull_data32;
3131 width = 32;
3132 host->data_shift = 2;
3135 /* Reset all blocks */
3136 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3137 ret = -ENODEV;
3138 goto err_clk_ciu;
3141 host->dma_ops = host->pdata->dma_ops;
3142 dw_mci_init_dma(host);
3144 /* Clear the interrupts for the host controller */
3145 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3146 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3148 /* Put in max timeout */
3149 mci_writel(host, TMOUT, 0xFFFFFFFF);
3152 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3153 * Tx Mark = fifo_size / 2 DMA Size = 8
3155 if (!host->pdata->fifo_depth) {
3157 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3158 * have been overwritten by the bootloader, just like we're
3159 * about to do, so if you know the value for your hardware, you
3160 * should put it in the platform data.
3162 fifo_size = mci_readl(host, FIFOTH);
3163 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3164 } else {
3165 fifo_size = host->pdata->fifo_depth;
3167 host->fifo_depth = fifo_size;
3168 host->fifoth_val =
3169 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3170 mci_writel(host, FIFOTH, host->fifoth_val);
3172 /* disable clock to CIU */
3173 mci_writel(host, CLKENA, 0);
3174 mci_writel(host, CLKSRC, 0);
3177 * In 2.40a spec, Data offset is changed.
3178 * Need to check the version-id and set data-offset for DATA register.
3180 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3181 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3183 if (host->verid < DW_MMC_240A)
3184 host->fifo_reg = host->regs + DATA_OFFSET;
3185 else
3186 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3188 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3189 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3190 host->irq_flags, "dw-mci", host);
3191 if (ret)
3192 goto err_dmaunmap;
3194 if (host->pdata->num_slots)
3195 host->num_slots = host->pdata->num_slots;
3196 else
3197 host->num_slots = 1;
3199 if (host->num_slots < 1 ||
3200 host->num_slots > SDMMC_GET_SLOT_NUM(mci_readl(host, HCON))) {
3201 dev_err(host->dev,
3202 "Platform data must supply correct num_slots.\n");
3203 ret = -ENODEV;
3204 goto err_clk_ciu;
3208 * Enable interrupts for command done, data over, data empty,
3209 * receive ready and error such as transmit, receive timeout, crc error
3211 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3212 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3213 DW_MCI_ERROR_FLAGS);
3214 /* Enable mci interrupt */
3215 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3217 dev_info(host->dev,
3218 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3219 host->irq, width, fifo_size);
3221 /* We need at least one slot to succeed */
3222 for (i = 0; i < host->num_slots; i++) {
3223 ret = dw_mci_init_slot(host, i);
3224 if (ret)
3225 dev_dbg(host->dev, "slot %d init failed\n", i);
3226 else
3227 init_slots++;
3230 if (init_slots) {
3231 dev_info(host->dev, "%d slots initialized\n", init_slots);
3232 } else {
3233 dev_dbg(host->dev,
3234 "attempted to initialize %d slots, but failed on all\n",
3235 host->num_slots);
3236 goto err_dmaunmap;
3239 /* Now that slots are all setup, we can enable card detect */
3240 dw_mci_enable_cd(host);
3242 return 0;
3244 err_dmaunmap:
3245 if (host->use_dma && host->dma_ops->exit)
3246 host->dma_ops->exit(host);
3248 if (!IS_ERR(host->pdata->rstc))
3249 reset_control_assert(host->pdata->rstc);
3251 err_clk_ciu:
3252 clk_disable_unprepare(host->ciu_clk);
3254 err_clk_biu:
3255 clk_disable_unprepare(host->biu_clk);
3257 return ret;
3259 EXPORT_SYMBOL(dw_mci_probe);
3261 void dw_mci_remove(struct dw_mci *host)
3263 int i;
3265 for (i = 0; i < host->num_slots; i++) {
3266 dev_dbg(host->dev, "remove slot %d\n", i);
3267 if (host->slot[i])
3268 dw_mci_cleanup_slot(host->slot[i], i);
3271 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3272 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3274 /* disable clock to CIU */
3275 mci_writel(host, CLKENA, 0);
3276 mci_writel(host, CLKSRC, 0);
3278 if (host->use_dma && host->dma_ops->exit)
3279 host->dma_ops->exit(host);
3281 if (!IS_ERR(host->pdata->rstc))
3282 reset_control_assert(host->pdata->rstc);
3284 clk_disable_unprepare(host->ciu_clk);
3285 clk_disable_unprepare(host->biu_clk);
3287 EXPORT_SYMBOL(dw_mci_remove);
3291 #ifdef CONFIG_PM
3292 int dw_mci_runtime_suspend(struct device *dev)
3294 struct dw_mci *host = dev_get_drvdata(dev);
3296 if (host->use_dma && host->dma_ops->exit)
3297 host->dma_ops->exit(host);
3299 clk_disable_unprepare(host->ciu_clk);
3301 if (host->cur_slot &&
3302 (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3303 !mmc_card_is_removable(host->cur_slot->mmc)))
3304 clk_disable_unprepare(host->biu_clk);
3306 return 0;
3308 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3310 int dw_mci_runtime_resume(struct device *dev)
3312 int i, ret = 0;
3313 struct dw_mci *host = dev_get_drvdata(dev);
3315 if (host->cur_slot &&
3316 (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3317 !mmc_card_is_removable(host->cur_slot->mmc))) {
3318 ret = clk_prepare_enable(host->biu_clk);
3319 if (ret)
3320 return ret;
3323 ret = clk_prepare_enable(host->ciu_clk);
3324 if (ret)
3325 goto err;
3327 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3328 clk_disable_unprepare(host->ciu_clk);
3329 ret = -ENODEV;
3330 goto err;
3333 if (host->use_dma && host->dma_ops->init)
3334 host->dma_ops->init(host);
3337 * Restore the initial value at FIFOTH register
3338 * And Invalidate the prev_blksz with zero
3340 mci_writel(host, FIFOTH, host->fifoth_val);
3341 host->prev_blksz = 0;
3343 /* Put in max timeout */
3344 mci_writel(host, TMOUT, 0xFFFFFFFF);
3346 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3347 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3348 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3349 DW_MCI_ERROR_FLAGS);
3350 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3352 for (i = 0; i < host->num_slots; i++) {
3353 struct dw_mci_slot *slot = host->slot[i];
3355 if (!slot)
3356 continue;
3357 if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER) {
3358 dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3359 dw_mci_setup_bus(slot, true);
3363 /* Now that slots are all setup, we can enable card detect */
3364 dw_mci_enable_cd(host);
3366 return 0;
3368 err:
3369 if (host->cur_slot &&
3370 (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3371 !mmc_card_is_removable(host->cur_slot->mmc)))
3372 clk_disable_unprepare(host->biu_clk);
3374 return ret;
3376 EXPORT_SYMBOL(dw_mci_runtime_resume);
3377 #endif /* CONFIG_PM */
3379 static int __init dw_mci_init(void)
3381 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3382 return 0;
3385 static void __exit dw_mci_exit(void)
3389 module_init(dw_mci_init);
3390 module_exit(dw_mci_exit);
3392 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3393 MODULE_AUTHOR("NXP Semiconductor VietNam");
3394 MODULE_AUTHOR("Imagination Technologies Ltd");
3395 MODULE_LICENSE("GPL v2");