2 * POWERNV cpufreq driver for the IBM POWER processors
4 * (C) Copyright IBM 2014
6 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
20 #define pr_fmt(fmt) "powernv-cpufreq: " fmt
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
39 #include <linux/timer.h>
41 #define POWERNV_MAX_PSTATES 256
42 #define PMSR_PSAFE_ENABLE (1UL << 30)
43 #define PMSR_SPR_EM_DISABLE (1UL << 31)
44 #define PMSR_MAX(x) ((x >> 32) & 0xFF)
46 #define MAX_RAMP_DOWN_TIME 5120
48 * On an idle system we want the global pstate to ramp-down from max value to
49 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
50 * then ramp-down rapidly later on.
52 * This gives a percentage rampdown for time elapsed in milliseconds.
53 * ramp_down_percentage = ((ms * ms) >> 18)
54 * ~= 3.8 * (sec * sec)
56 * At 0 ms ramp_down_percent = 0
57 * At 5120 ms ramp_down_percent = 100
59 #define ramp_down_percent(time) ((time * time) >> 18)
61 /* Interval after which the timer is queued to bring down global pstate */
62 #define GPSTATE_TIMER_INTERVAL 2000
65 * struct global_pstate_info - Per policy data structure to maintain history of
67 * @highest_lpstate_idx: The local pstate index from which we are
69 * @elapsed_time: Time in ms spent in ramping down from
71 * @last_sampled_time: Time from boot in ms when global pstates were
73 * @last_lpstate_idx, Last set value of local pstate and global
74 * last_gpstate_idx pstate in terms of cpufreq table index
75 * @timer: Is used for ramping down if cpu goes idle for
76 * a long time with global pstate held high
77 * @gpstate_lock: A spinlock to maintain synchronization between
78 * routines called by the timer handler and
79 * governer's target_index calls
81 struct global_pstate_info
{
82 int highest_lpstate_idx
;
83 unsigned int elapsed_time
;
84 unsigned int last_sampled_time
;
87 spinlock_t gpstate_lock
;
88 struct timer_list timer
;
91 static struct cpufreq_frequency_table powernv_freqs
[POWERNV_MAX_PSTATES
+1];
92 static bool rebooting
, throttled
, occ_reset
;
94 static const char * const throttle_reason
[] = {
97 "Processor Over Temperature",
98 "Power Supply Failure",
103 enum throttle_reason_type
{
107 POWER_SUPPLY_FAILURE
,
119 struct work_struct throttle
;
121 int throttle_sub_turbo
;
122 int reason
[OCC_MAX_REASON
];
126 static DEFINE_PER_CPU(struct chip
*, chip_info
);
130 * The set of pstates consists of contiguous integers.
131 * powernv_pstate_info stores the index of the frequency table for
132 * max, min and nominal frequencies. It also stores number of
133 * available frequencies.
135 * powernv_pstate_info.nominal indicates the index to the highest
136 * non-turbo frequency.
138 static struct powernv_pstate_info
{
141 unsigned int nominal
;
142 unsigned int nr_pstates
;
143 } powernv_pstate_info
;
145 /* Use following macros for conversions between pstate_id and index */
146 static inline int idx_to_pstate(unsigned int i
)
148 if (unlikely(i
>= powernv_pstate_info
.nr_pstates
)) {
149 pr_warn_once("index %u is out of bound\n", i
);
150 return powernv_freqs
[powernv_pstate_info
.nominal
].driver_data
;
153 return powernv_freqs
[i
].driver_data
;
156 static inline unsigned int pstate_to_idx(int pstate
)
158 int min
= powernv_freqs
[powernv_pstate_info
.min
].driver_data
;
159 int max
= powernv_freqs
[powernv_pstate_info
.max
].driver_data
;
162 if (unlikely((pstate
< max
) || (pstate
> min
))) {
163 pr_warn_once("pstate %d is out of bound\n", pstate
);
164 return powernv_pstate_info
.nominal
;
167 if (unlikely((pstate
> max
) || (pstate
< min
))) {
168 pr_warn_once("pstate %d is out of bound\n", pstate
);
169 return powernv_pstate_info
.nominal
;
173 * abs() is deliberately used so that is works with
174 * both monotonically increasing and decreasing
177 return abs(pstate
- idx_to_pstate(powernv_pstate_info
.max
));
180 static inline void reset_gpstates(struct cpufreq_policy
*policy
)
182 struct global_pstate_info
*gpstates
= policy
->driver_data
;
184 gpstates
->highest_lpstate_idx
= 0;
185 gpstates
->elapsed_time
= 0;
186 gpstates
->last_sampled_time
= 0;
187 gpstates
->last_lpstate_idx
= 0;
188 gpstates
->last_gpstate_idx
= 0;
192 * Initialize the freq table based on data obtained
193 * from the firmware passed via device-tree
195 static int init_powernv_pstates(void)
197 struct device_node
*power_mgt
;
198 int i
, nr_pstates
= 0;
199 const __be32
*pstate_ids
, *pstate_freqs
;
200 u32 len_ids
, len_freqs
;
201 u32 pstate_min
, pstate_max
, pstate_nominal
;
203 power_mgt
= of_find_node_by_path("/ibm,opal/power-mgt");
205 pr_warn("power-mgt node not found\n");
209 if (of_property_read_u32(power_mgt
, "ibm,pstate-min", &pstate_min
)) {
210 pr_warn("ibm,pstate-min node not found\n");
214 if (of_property_read_u32(power_mgt
, "ibm,pstate-max", &pstate_max
)) {
215 pr_warn("ibm,pstate-max node not found\n");
219 if (of_property_read_u32(power_mgt
, "ibm,pstate-nominal",
221 pr_warn("ibm,pstate-nominal not found\n");
224 pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min
,
225 pstate_nominal
, pstate_max
);
227 pstate_ids
= of_get_property(power_mgt
, "ibm,pstate-ids", &len_ids
);
229 pr_warn("ibm,pstate-ids not found\n");
233 pstate_freqs
= of_get_property(power_mgt
, "ibm,pstate-frequencies-mhz",
236 pr_warn("ibm,pstate-frequencies-mhz not found\n");
240 if (len_ids
!= len_freqs
) {
241 pr_warn("Entries in ibm,pstate-ids and "
242 "ibm,pstate-frequencies-mhz does not match\n");
245 nr_pstates
= min(len_ids
, len_freqs
) / sizeof(u32
);
247 pr_warn("No PStates found\n");
251 powernv_pstate_info
.nr_pstates
= nr_pstates
;
252 pr_debug("NR PStates %d\n", nr_pstates
);
253 for (i
= 0; i
< nr_pstates
; i
++) {
254 u32 id
= be32_to_cpu(pstate_ids
[i
]);
255 u32 freq
= be32_to_cpu(pstate_freqs
[i
]);
257 pr_debug("PState id %d freq %d MHz\n", id
, freq
);
258 powernv_freqs
[i
].frequency
= freq
* 1000; /* kHz */
259 powernv_freqs
[i
].driver_data
= id
;
261 if (id
== pstate_max
)
262 powernv_pstate_info
.max
= i
;
263 else if (id
== pstate_nominal
)
264 powernv_pstate_info
.nominal
= i
;
265 else if (id
== pstate_min
)
266 powernv_pstate_info
.min
= i
;
269 /* End of list marker entry */
270 powernv_freqs
[i
].frequency
= CPUFREQ_TABLE_END
;
274 /* Returns the CPU frequency corresponding to the pstate_id. */
275 static unsigned int pstate_id_to_freq(int pstate_id
)
279 i
= pstate_to_idx(pstate_id
);
280 if (i
>= powernv_pstate_info
.nr_pstates
|| i
< 0) {
281 pr_warn("PState id %d outside of PState table, "
282 "reporting nominal id %d instead\n",
283 pstate_id
, idx_to_pstate(powernv_pstate_info
.nominal
));
284 i
= powernv_pstate_info
.nominal
;
287 return powernv_freqs
[i
].frequency
;
291 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
294 static ssize_t
cpuinfo_nominal_freq_show(struct cpufreq_policy
*policy
,
297 return sprintf(buf
, "%u\n",
298 powernv_freqs
[powernv_pstate_info
.nominal
].frequency
);
301 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq
=
302 __ATTR_RO(cpuinfo_nominal_freq
);
304 static struct freq_attr
*powernv_cpu_freq_attr
[] = {
305 &cpufreq_freq_attr_scaling_available_freqs
,
306 &cpufreq_freq_attr_cpuinfo_nominal_freq
,
310 #define throttle_attr(name, member) \
311 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \
313 struct chip *chip = per_cpu(chip_info, policy->cpu); \
315 return sprintf(buf, "%u\n", chip->member); \
318 static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \
320 throttle_attr(unthrottle, reason[NO_THROTTLE]);
321 throttle_attr(powercap
, reason
[POWERCAP
]);
322 throttle_attr(overtemp
, reason
[CPU_OVERTEMP
]);
323 throttle_attr(supply_fault
, reason
[POWER_SUPPLY_FAILURE
]);
324 throttle_attr(overcurrent
, reason
[OVERCURRENT
]);
325 throttle_attr(occ_reset
, reason
[OCC_RESET_THROTTLE
]);
326 throttle_attr(turbo_stat
, throttle_turbo
);
327 throttle_attr(sub_turbo_stat
, throttle_sub_turbo
);
329 static struct attribute
*throttle_attrs
[] = {
330 &throttle_attr_unthrottle
.attr
,
331 &throttle_attr_powercap
.attr
,
332 &throttle_attr_overtemp
.attr
,
333 &throttle_attr_supply_fault
.attr
,
334 &throttle_attr_overcurrent
.attr
,
335 &throttle_attr_occ_reset
.attr
,
336 &throttle_attr_turbo_stat
.attr
,
337 &throttle_attr_sub_turbo_stat
.attr
,
341 static const struct attribute_group throttle_attr_grp
= {
342 .name
= "throttle_stats",
343 .attrs
= throttle_attrs
,
346 /* Helper routines */
348 /* Access helpers to power mgt SPR */
350 static inline unsigned long get_pmspr(unsigned long sprn
)
354 return mfspr(SPRN_PMCR
);
357 return mfspr(SPRN_PMICR
);
360 return mfspr(SPRN_PMSR
);
365 static inline void set_pmspr(unsigned long sprn
, unsigned long val
)
369 mtspr(SPRN_PMCR
, val
);
373 mtspr(SPRN_PMICR
, val
);
380 * Use objects of this type to query/update
381 * pstates on a remote CPU via smp_call_function.
383 struct powernv_smp_call_data
{
390 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
392 * Called via smp_call_function.
394 * Note: The caller of the smp_call_function should pass an argument of
395 * the type 'struct powernv_smp_call_data *' along with this function.
397 * The current frequency on this CPU will be returned via
398 * ((struct powernv_smp_call_data *)arg)->freq;
400 static void powernv_read_cpu_freq(void *arg
)
402 unsigned long pmspr_val
;
404 struct powernv_smp_call_data
*freq_data
= arg
;
406 pmspr_val
= get_pmspr(SPRN_PMSR
);
409 * The local pstate id corresponds bits 48..55 in the PMSR.
410 * Note: Watch out for the sign!
412 local_pstate_id
= (pmspr_val
>> 48) & 0xFF;
413 freq_data
->pstate_id
= local_pstate_id
;
414 freq_data
->freq
= pstate_id_to_freq(freq_data
->pstate_id
);
416 pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
417 raw_smp_processor_id(), pmspr_val
, freq_data
->pstate_id
,
422 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
423 * firmware for CPU 'cpu'. This value is reported through the sysfs
424 * file cpuinfo_cur_freq.
426 static unsigned int powernv_cpufreq_get(unsigned int cpu
)
428 struct powernv_smp_call_data freq_data
;
430 smp_call_function_any(cpu_sibling_mask(cpu
), powernv_read_cpu_freq
,
433 return freq_data
.freq
;
437 * set_pstate: Sets the pstate on this CPU.
439 * This is called via an smp_call_function.
441 * The caller must ensure that freq_data is of the type
442 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
443 * on this CPU should be present in freq_data->pstate_id.
445 static void set_pstate(void *data
)
448 struct powernv_smp_call_data
*freq_data
= data
;
449 unsigned long pstate_ul
= freq_data
->pstate_id
;
450 unsigned long gpstate_ul
= freq_data
->gpstate_id
;
452 val
= get_pmspr(SPRN_PMCR
);
453 val
= val
& 0x0000FFFFFFFFFFFFULL
;
455 pstate_ul
= pstate_ul
& 0xFF;
456 gpstate_ul
= gpstate_ul
& 0xFF;
458 /* Set both global(bits 56..63) and local(bits 48..55) PStates */
459 val
= val
| (gpstate_ul
<< 56) | (pstate_ul
<< 48);
461 pr_debug("Setting cpu %d pmcr to %016lX\n",
462 raw_smp_processor_id(), val
);
463 set_pmspr(SPRN_PMCR
, val
);
467 * get_nominal_index: Returns the index corresponding to the nominal
468 * pstate in the cpufreq table
470 static inline unsigned int get_nominal_index(void)
472 return powernv_pstate_info
.nominal
;
475 static void powernv_cpufreq_throttle_check(void *data
)
478 unsigned int cpu
= smp_processor_id();
481 unsigned int pmsr_pmax_idx
;
483 pmsr
= get_pmspr(SPRN_PMSR
);
484 chip
= this_cpu_read(chip_info
);
486 /* Check for Pmax Capping */
487 pmsr_pmax
= (s8
)PMSR_MAX(pmsr
);
488 pmsr_pmax_idx
= pstate_to_idx(pmsr_pmax
);
489 if (pmsr_pmax_idx
!= powernv_pstate_info
.max
) {
492 chip
->throttled
= true;
493 if (pmsr_pmax_idx
> powernv_pstate_info
.nominal
) {
494 pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
495 cpu
, chip
->id
, pmsr_pmax
,
496 idx_to_pstate(powernv_pstate_info
.nominal
));
497 chip
->throttle_sub_turbo
++;
499 chip
->throttle_turbo
++;
501 trace_powernv_throttle(chip
->id
,
502 throttle_reason
[chip
->throttle_reason
],
504 } else if (chip
->throttled
) {
505 chip
->throttled
= false;
506 trace_powernv_throttle(chip
->id
,
507 throttle_reason
[chip
->throttle_reason
],
511 /* Check if Psafe_mode_active is set in PMSR. */
513 if (pmsr
& PMSR_PSAFE_ENABLE
) {
515 pr_info("Pstate set to safe frequency\n");
518 /* Check if SPR_EM_DISABLE is set in PMSR */
519 if (pmsr
& PMSR_SPR_EM_DISABLE
) {
521 pr_info("Frequency Control disabled from OS\n");
525 pr_info("PMSR = %16lx\n", pmsr
);
526 pr_warn("CPU Frequency could be throttled\n");
531 * calc_global_pstate - Calculate global pstate
532 * @elapsed_time: Elapsed time in milliseconds
533 * @local_pstate_idx: New local pstate
534 * @highest_lpstate_idx: pstate from which its ramping down
536 * Finds the appropriate global pstate based on the pstate from which its
537 * ramping down and the time elapsed in ramping down. It follows a quadratic
538 * equation which ensures that it reaches ramping down to pmin in 5sec.
540 static inline int calc_global_pstate(unsigned int elapsed_time
,
541 int highest_lpstate_idx
,
542 int local_pstate_idx
)
547 * Using ramp_down_percent we get the percentage of rampdown
548 * that we are expecting to be dropping. Difference between
549 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
550 * number of how many pstates we will drop eventually by the end of
551 * 5 seconds, then just scale it get the number pstates to be dropped.
553 index_diff
= ((int)ramp_down_percent(elapsed_time
) *
554 (powernv_pstate_info
.min
- highest_lpstate_idx
)) / 100;
556 /* Ensure that global pstate is >= to local pstate */
557 if (highest_lpstate_idx
+ index_diff
>= local_pstate_idx
)
558 return local_pstate_idx
;
560 return highest_lpstate_idx
+ index_diff
;
563 static inline void queue_gpstate_timer(struct global_pstate_info
*gpstates
)
565 unsigned int timer_interval
;
568 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
569 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
570 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
571 * seconds of ramp down time.
573 if ((gpstates
->elapsed_time
+ GPSTATE_TIMER_INTERVAL
)
574 > MAX_RAMP_DOWN_TIME
)
575 timer_interval
= MAX_RAMP_DOWN_TIME
- gpstates
->elapsed_time
;
577 timer_interval
= GPSTATE_TIMER_INTERVAL
;
579 mod_timer(&gpstates
->timer
, jiffies
+ msecs_to_jiffies(timer_interval
));
583 * gpstate_timer_handler
585 * @data: pointer to cpufreq_policy on which timer was queued
587 * This handler brings down the global pstate closer to the local pstate
588 * according quadratic equation. Queues a new timer if it is still not equal
591 void gpstate_timer_handler(unsigned long data
)
593 struct cpufreq_policy
*policy
= (struct cpufreq_policy
*)data
;
594 struct global_pstate_info
*gpstates
= policy
->driver_data
;
596 unsigned int time_diff
= jiffies_to_msecs(jiffies
)
597 - gpstates
->last_sampled_time
;
598 struct powernv_smp_call_data freq_data
;
600 if (!spin_trylock(&gpstates
->gpstate_lock
))
603 gpstates
->last_sampled_time
+= time_diff
;
604 gpstates
->elapsed_time
+= time_diff
;
605 freq_data
.pstate_id
= idx_to_pstate(gpstates
->last_lpstate_idx
);
607 if ((gpstates
->last_gpstate_idx
== gpstates
->last_lpstate_idx
) ||
608 (gpstates
->elapsed_time
> MAX_RAMP_DOWN_TIME
)) {
609 gpstate_idx
= pstate_to_idx(freq_data
.pstate_id
);
610 reset_gpstates(policy
);
611 gpstates
->highest_lpstate_idx
= gpstate_idx
;
613 gpstate_idx
= calc_global_pstate(gpstates
->elapsed_time
,
614 gpstates
->highest_lpstate_idx
,
615 gpstates
->last_lpstate_idx
);
619 * If local pstate is equal to global pstate, rampdown is over
620 * So timer is not required to be queued.
622 if (gpstate_idx
!= gpstates
->last_lpstate_idx
)
623 queue_gpstate_timer(gpstates
);
625 freq_data
.gpstate_id
= idx_to_pstate(gpstate_idx
);
626 gpstates
->last_gpstate_idx
= pstate_to_idx(freq_data
.gpstate_id
);
627 gpstates
->last_lpstate_idx
= pstate_to_idx(freq_data
.pstate_id
);
629 spin_unlock(&gpstates
->gpstate_lock
);
631 /* Timer may get migrated to a different cpu on cpu hot unplug */
632 smp_call_function_any(policy
->cpus
, set_pstate
, &freq_data
, 1);
636 * powernv_cpufreq_target_index: Sets the frequency corresponding to
637 * the cpufreq table entry indexed by new_index on the cpus in the
640 static int powernv_cpufreq_target_index(struct cpufreq_policy
*policy
,
641 unsigned int new_index
)
643 struct powernv_smp_call_data freq_data
;
644 unsigned int cur_msec
, gpstate_idx
;
645 struct global_pstate_info
*gpstates
= policy
->driver_data
;
647 if (unlikely(rebooting
) && new_index
!= get_nominal_index())
651 powernv_cpufreq_throttle_check(NULL
);
653 cur_msec
= jiffies_to_msecs(get_jiffies_64());
655 spin_lock(&gpstates
->gpstate_lock
);
656 freq_data
.pstate_id
= idx_to_pstate(new_index
);
658 if (!gpstates
->last_sampled_time
) {
659 gpstate_idx
= new_index
;
660 gpstates
->highest_lpstate_idx
= new_index
;
664 if (gpstates
->last_gpstate_idx
< new_index
) {
665 gpstates
->elapsed_time
+= cur_msec
-
666 gpstates
->last_sampled_time
;
669 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
670 * we should be resetting all global pstate related data. Set it
671 * equal to local pstate to start fresh.
673 if (gpstates
->elapsed_time
> MAX_RAMP_DOWN_TIME
) {
674 reset_gpstates(policy
);
675 gpstates
->highest_lpstate_idx
= new_index
;
676 gpstate_idx
= new_index
;
678 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
679 gpstate_idx
= calc_global_pstate(gpstates
->elapsed_time
,
680 gpstates
->highest_lpstate_idx
,
684 reset_gpstates(policy
);
685 gpstates
->highest_lpstate_idx
= new_index
;
686 gpstate_idx
= new_index
;
690 * If local pstate is equal to global pstate, rampdown is over
691 * So timer is not required to be queued.
693 if (gpstate_idx
!= new_index
)
694 queue_gpstate_timer(gpstates
);
696 del_timer_sync(&gpstates
->timer
);
699 freq_data
.gpstate_id
= idx_to_pstate(gpstate_idx
);
700 gpstates
->last_sampled_time
= cur_msec
;
701 gpstates
->last_gpstate_idx
= gpstate_idx
;
702 gpstates
->last_lpstate_idx
= new_index
;
704 spin_unlock(&gpstates
->gpstate_lock
);
707 * Use smp_call_function to send IPI and execute the
708 * mtspr on target CPU. We could do that without IPI
709 * if current CPU is within policy->cpus (core)
711 smp_call_function_any(policy
->cpus
, set_pstate
, &freq_data
, 1);
715 static int powernv_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
718 struct kernfs_node
*kn
;
719 struct global_pstate_info
*gpstates
;
721 base
= cpu_first_thread_sibling(policy
->cpu
);
723 for (i
= 0; i
< threads_per_core
; i
++)
724 cpumask_set_cpu(base
+ i
, policy
->cpus
);
726 kn
= kernfs_find_and_get(policy
->kobj
.sd
, throttle_attr_grp
.name
);
730 ret
= sysfs_create_group(&policy
->kobj
, &throttle_attr_grp
);
732 pr_info("Failed to create throttle stats directory for cpu %d\n",
740 gpstates
= kzalloc(sizeof(*gpstates
), GFP_KERNEL
);
744 policy
->driver_data
= gpstates
;
746 /* initialize timer */
747 init_timer_pinned_deferrable(&gpstates
->timer
);
748 gpstates
->timer
.data
= (unsigned long)policy
;
749 gpstates
->timer
.function
= gpstate_timer_handler
;
750 gpstates
->timer
.expires
= jiffies
+
751 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL
);
752 spin_lock_init(&gpstates
->gpstate_lock
);
753 ret
= cpufreq_table_validate_and_show(policy
, powernv_freqs
);
756 kfree(policy
->driver_data
);
761 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy
*policy
)
763 /* timer is deleted in cpufreq_cpu_stop() */
764 kfree(policy
->driver_data
);
769 static int powernv_cpufreq_reboot_notifier(struct notifier_block
*nb
,
770 unsigned long action
, void *unused
)
773 struct cpufreq_policy cpu_policy
;
776 for_each_online_cpu(cpu
) {
777 cpufreq_get_policy(&cpu_policy
, cpu
);
778 powernv_cpufreq_target_index(&cpu_policy
, get_nominal_index());
784 static struct notifier_block powernv_cpufreq_reboot_nb
= {
785 .notifier_call
= powernv_cpufreq_reboot_notifier
,
788 void powernv_cpufreq_work_fn(struct work_struct
*work
)
790 struct chip
*chip
= container_of(work
, struct chip
, throttle
);
795 cpumask_and(&mask
, &chip
->mask
, cpu_online_mask
);
796 smp_call_function_any(&mask
,
797 powernv_cpufreq_throttle_check
, NULL
, 0);
802 chip
->restore
= false;
803 for_each_cpu(cpu
, &mask
) {
805 struct cpufreq_policy policy
;
807 cpufreq_get_policy(&policy
, cpu
);
808 index
= cpufreq_table_find_index_c(&policy
, policy
.cur
);
809 powernv_cpufreq_target_index(&policy
, index
);
810 cpumask_andnot(&mask
, &mask
, policy
.cpus
);
816 static int powernv_cpufreq_occ_msg(struct notifier_block
*nb
,
817 unsigned long msg_type
, void *_msg
)
819 struct opal_msg
*msg
= _msg
;
820 struct opal_occ_msg omsg
;
823 if (msg_type
!= OPAL_MSG_OCC
)
826 omsg
.type
= be64_to_cpu(msg
->params
[0]);
831 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
833 * powernv_cpufreq_throttle_check() is called in
834 * target() callback which can detect the throttle state
835 * for governors like ondemand.
836 * But static governors will not call target() often thus
837 * report throttling here.
841 pr_warn("CPU frequency is throttled for duration\n");
846 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
849 omsg
.chip
= be64_to_cpu(msg
->params
[1]);
850 omsg
.throttle_status
= be64_to_cpu(msg
->params
[2]);
855 pr_info("OCC Active, CPU frequency is no longer throttled\n");
857 for (i
= 0; i
< nr_chips
; i
++) {
858 chips
[i
].restore
= true;
859 schedule_work(&chips
[i
].throttle
);
865 for (i
= 0; i
< nr_chips
; i
++)
866 if (chips
[i
].id
== omsg
.chip
)
869 if (omsg
.throttle_status
>= 0 &&
870 omsg
.throttle_status
<= OCC_MAX_THROTTLE_STATUS
) {
871 chips
[i
].throttle_reason
= omsg
.throttle_status
;
872 chips
[i
].reason
[omsg
.throttle_status
]++;
875 if (!omsg
.throttle_status
)
876 chips
[i
].restore
= true;
878 schedule_work(&chips
[i
].throttle
);
883 static struct notifier_block powernv_cpufreq_opal_nb
= {
884 .notifier_call
= powernv_cpufreq_occ_msg
,
889 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy
*policy
)
891 struct powernv_smp_call_data freq_data
;
892 struct global_pstate_info
*gpstates
= policy
->driver_data
;
894 freq_data
.pstate_id
= idx_to_pstate(powernv_pstate_info
.min
);
895 freq_data
.gpstate_id
= idx_to_pstate(powernv_pstate_info
.min
);
896 smp_call_function_single(policy
->cpu
, set_pstate
, &freq_data
, 1);
897 del_timer_sync(&gpstates
->timer
);
900 static struct cpufreq_driver powernv_cpufreq_driver
= {
901 .name
= "powernv-cpufreq",
902 .flags
= CPUFREQ_CONST_LOOPS
,
903 .init
= powernv_cpufreq_cpu_init
,
904 .exit
= powernv_cpufreq_cpu_exit
,
905 .verify
= cpufreq_generic_frequency_table_verify
,
906 .target_index
= powernv_cpufreq_target_index
,
907 .get
= powernv_cpufreq_get
,
908 .stop_cpu
= powernv_cpufreq_stop_cpu
,
909 .attr
= powernv_cpu_freq_attr
,
912 static int init_chip_info(void)
914 unsigned int chip
[256];
916 unsigned int prev_chip_id
= UINT_MAX
;
918 for_each_possible_cpu(cpu
) {
919 unsigned int id
= cpu_to_chip_id(cpu
);
921 if (prev_chip_id
!= id
) {
923 chip
[nr_chips
++] = id
;
927 chips
= kcalloc(nr_chips
, sizeof(struct chip
), GFP_KERNEL
);
931 for (i
= 0; i
< nr_chips
; i
++) {
932 chips
[i
].id
= chip
[i
];
933 cpumask_copy(&chips
[i
].mask
, cpumask_of_node(chip
[i
]));
934 INIT_WORK(&chips
[i
].throttle
, powernv_cpufreq_work_fn
);
935 for_each_cpu(cpu
, &chips
[i
].mask
)
936 per_cpu(chip_info
, cpu
) = &chips
[i
];
942 static inline void clean_chip_info(void)
947 static inline void unregister_all_notifiers(void)
949 opal_message_notifier_unregister(OPAL_MSG_OCC
,
950 &powernv_cpufreq_opal_nb
);
951 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb
);
954 static int __init
powernv_cpufreq_init(void)
958 /* Don't probe on pseries (guest) platforms */
959 if (!firmware_has_feature(FW_FEATURE_OPAL
))
962 /* Discover pstates from device tree and init */
963 rc
= init_powernv_pstates();
967 /* Populate chip info */
968 rc
= init_chip_info();
972 register_reboot_notifier(&powernv_cpufreq_reboot_nb
);
973 opal_message_notifier_register(OPAL_MSG_OCC
, &powernv_cpufreq_opal_nb
);
975 rc
= cpufreq_register_driver(&powernv_cpufreq_driver
);
979 pr_info("Failed to register the cpufreq driver (%d)\n", rc
);
980 unregister_all_notifiers();
983 pr_info("Platform driver disabled. System does not support PState control\n");
986 module_init(powernv_cpufreq_init
);
988 static void __exit
powernv_cpufreq_exit(void)
990 cpufreq_unregister_driver(&powernv_cpufreq_driver
);
991 unregister_all_notifiers();
994 module_exit(powernv_cpufreq_exit
);
996 MODULE_LICENSE("GPL");
997 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");