1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock
);
80 #define MIN_PERCPU_PAGELIST_FRACTION (8)
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node
);
84 EXPORT_PER_CPU_SYMBOL(numa_node
);
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
96 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
98 int _node_numa_mem_
[MAX_NUMNODES
];
101 /* work_structs for global per-cpu drains */
104 struct work_struct work
;
106 DEFINE_MUTEX(pcpu_drain_mutex
);
107 DEFINE_PER_CPU(struct pcpu_drain
, pcpu_drain
);
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy
;
111 EXPORT_SYMBOL(latent_entropy
);
115 * Array of node states.
117 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
118 [N_POSSIBLE
] = NODE_MASK_ALL
,
119 [N_ONLINE
] = { { [0] = 1UL } },
121 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
125 [N_MEMORY
] = { { [0] = 1UL } },
126 [N_CPU
] = { { [0] = 1UL } },
129 EXPORT_SYMBOL(node_states
);
131 atomic_long_t _totalram_pages __read_mostly
;
132 EXPORT_SYMBOL(_totalram_pages
);
133 unsigned long totalreserve_pages __read_mostly
;
134 unsigned long totalcma_pages __read_mostly
;
136 int percpu_pagelist_fraction
;
137 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc
);
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc
);
143 EXPORT_SYMBOL(init_on_alloc
);
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free
);
148 DEFINE_STATIC_KEY_FALSE(init_on_free
);
150 EXPORT_SYMBOL(init_on_free
);
152 static int __init
early_init_on_alloc(char *buf
)
159 ret
= kstrtobool(buf
, &bool_result
);
160 if (bool_result
&& page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 static_branch_enable(&init_on_alloc
);
165 static_branch_disable(&init_on_alloc
);
168 early_param("init_on_alloc", early_init_on_alloc
);
170 static int __init
early_init_on_free(char *buf
)
177 ret
= kstrtobool(buf
, &bool_result
);
178 if (bool_result
&& page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 static_branch_enable(&init_on_free
);
183 static_branch_disable(&init_on_free
);
186 early_param("init_on_free", early_init_on_free
);
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
196 static inline int get_pcppage_migratetype(struct page
*page
)
201 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
203 page
->index
= migratetype
;
206 #ifdef CONFIG_PM_SLEEP
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
217 static gfp_t saved_gfp_mask
;
219 void pm_restore_gfp_mask(void)
221 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
222 if (saved_gfp_mask
) {
223 gfp_allowed_mask
= saved_gfp_mask
;
228 void pm_restrict_gfp_mask(void)
230 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
231 WARN_ON(saved_gfp_mask
);
232 saved_gfp_mask
= gfp_allowed_mask
;
233 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
236 bool pm_suspended_storage(void)
238 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
242 #endif /* CONFIG_PM_SLEEP */
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly
;
248 static void __free_pages_ok(struct page
*page
, unsigned int order
);
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
261 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
262 #ifdef CONFIG_ZONE_DMA
265 #ifdef CONFIG_ZONE_DMA32
269 #ifdef CONFIG_HIGHMEM
275 static char * const zone_names
[MAX_NR_ZONES
] = {
276 #ifdef CONFIG_ZONE_DMA
279 #ifdef CONFIG_ZONE_DMA32
283 #ifdef CONFIG_HIGHMEM
287 #ifdef CONFIG_ZONE_DEVICE
292 const char * const migratetype_names
[MIGRATE_TYPES
] = {
300 #ifdef CONFIG_MEMORY_ISOLATION
305 compound_page_dtor
* const compound_page_dtors
[] = {
308 #ifdef CONFIG_HUGETLB_PAGE
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
316 int min_free_kbytes
= 1024;
317 int user_min_free_kbytes
= -1;
318 #ifdef CONFIG_DISCONTIGMEM
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
328 int watermark_boost_factor __read_mostly
;
330 int watermark_boost_factor __read_mostly
= 15000;
332 int watermark_scale_factor
= 10;
334 static unsigned long nr_kernel_pages __initdata
;
335 static unsigned long nr_all_pages __initdata
;
336 static unsigned long dma_reserve __initdata
;
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
340 static unsigned long arch_zone_highest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
341 static unsigned long required_kernelcore __initdata
;
342 static unsigned long required_kernelcore_percent __initdata
;
343 static unsigned long required_movablecore __initdata
;
344 static unsigned long required_movablecore_percent __initdata
;
345 static unsigned long zone_movable_pfn
[MAX_NUMNODES
] __initdata
;
346 static bool mirrored_kernelcore __meminitdata
;
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350 EXPORT_SYMBOL(movable_zone
);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
354 unsigned int nr_node_ids __read_mostly
= MAX_NUMNODES
;
355 unsigned int nr_online_nodes __read_mostly
= 1;
356 EXPORT_SYMBOL(nr_node_ids
);
357 EXPORT_SYMBOL(nr_online_nodes
);
360 int page_group_by_mobility_disabled __read_mostly
;
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages
);
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
383 static inline void kasan_free_nondeferred_pages(struct page
*page
, int order
)
385 if (!static_branch_unlikely(&deferred_pages
))
386 kasan_free_pages(page
, order
);
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
392 int nid
= early_pfn_to_nid(pfn
);
394 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
404 static bool __meminit
405 defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
407 static unsigned long prev_end_pfn
, nr_initialised
;
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
413 if (prev_end_pfn
!= end_pfn
) {
414 prev_end_pfn
= end_pfn
;
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn
< pgdat_end_pfn(NODE_DATA(nid
)))
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
427 if ((nr_initialised
> PAGES_PER_SECTION
) &&
428 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
429 NODE_DATA(nid
)->first_deferred_pfn
= pfn
;
435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
437 static inline bool early_page_uninitialised(unsigned long pfn
)
442 static inline bool defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
452 #ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn
));
455 return page_zone(page
)->pageblock_flags
;
456 #endif /* CONFIG_SPARSEMEM */
459 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
461 #ifdef CONFIG_SPARSEMEM
462 pfn
&= (PAGES_PER_SECTION
-1);
463 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
465 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
466 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
467 #endif /* CONFIG_SPARSEMEM */
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
477 * Return: pageblock_bits flags
479 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
481 unsigned long end_bitidx
,
484 unsigned long *bitmap
;
485 unsigned long bitidx
, word_bitidx
;
488 bitmap
= get_pageblock_bitmap(page
, pfn
);
489 bitidx
= pfn_to_bitidx(page
, pfn
);
490 word_bitidx
= bitidx
/ BITS_PER_LONG
;
491 bitidx
&= (BITS_PER_LONG
-1);
493 word
= bitmap
[word_bitidx
];
494 bitidx
+= end_bitidx
;
495 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
498 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
499 unsigned long end_bitidx
,
502 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
505 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
507 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
518 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
520 unsigned long end_bitidx
,
523 unsigned long *bitmap
;
524 unsigned long bitidx
, word_bitidx
;
525 unsigned long old_word
, word
;
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
528 BUILD_BUG_ON(MIGRATE_TYPES
> (1 << PB_migratetype_bits
));
530 bitmap
= get_pageblock_bitmap(page
, pfn
);
531 bitidx
= pfn_to_bitidx(page
, pfn
);
532 word_bitidx
= bitidx
/ BITS_PER_LONG
;
533 bitidx
&= (BITS_PER_LONG
-1);
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
537 bitidx
+= end_bitidx
;
538 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
539 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
541 word
= READ_ONCE(bitmap
[word_bitidx
]);
543 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
544 if (word
== old_word
)
550 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
552 if (unlikely(page_group_by_mobility_disabled
&&
553 migratetype
< MIGRATE_PCPTYPES
))
554 migratetype
= MIGRATE_UNMOVABLE
;
556 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
557 PB_migrate
, PB_migrate_end
);
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
565 unsigned long pfn
= page_to_pfn(page
);
566 unsigned long sp
, start_pfn
;
569 seq
= zone_span_seqbegin(zone
);
570 start_pfn
= zone
->zone_start_pfn
;
571 sp
= zone
->spanned_pages
;
572 if (!zone_spans_pfn(zone
, pfn
))
574 } while (zone_span_seqretry(zone
, seq
));
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn
, zone_to_nid(zone
), zone
->name
,
579 start_pfn
, start_pfn
+ sp
);
584 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
586 if (!pfn_valid_within(page_to_pfn(page
)))
588 if (zone
!= page_zone(page
))
594 * Temporary debugging check for pages not lying within a given zone.
596 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
598 if (page_outside_zone_boundaries(zone
, page
))
600 if (!page_is_consistent(zone
, page
))
606 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
612 static void bad_page(struct page
*page
, const char *reason
,
613 unsigned long bad_flags
)
615 static unsigned long resume
;
616 static unsigned long nr_shown
;
617 static unsigned long nr_unshown
;
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
623 if (nr_shown
== 60) {
624 if (time_before(jiffies
, resume
)) {
630 "BUG: Bad page state: %lu messages suppressed\n",
637 resume
= jiffies
+ 60 * HZ
;
639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
640 current
->comm
, page_to_pfn(page
));
641 __dump_page(page
, reason
);
642 bad_flags
&= page
->flags
;
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags
, &bad_flags
);
646 dump_page_owner(page
);
651 /* Leave bad fields for debug, except PageBuddy could make trouble */
652 page_mapcount_reset(page
); /* remove PageBuddy */
653 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
657 * Higher-order pages are called "compound pages". They are structured thusly:
659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
671 void free_compound_page(struct page
*page
)
673 mem_cgroup_uncharge(page
);
674 __free_pages_ok(page
, compound_order(page
));
677 void prep_compound_page(struct page
*page
, unsigned int order
)
680 int nr_pages
= 1 << order
;
682 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
683 set_compound_order(page
, order
);
685 for (i
= 1; i
< nr_pages
; i
++) {
686 struct page
*p
= page
+ i
;
687 set_page_count(p
, 0);
688 p
->mapping
= TAIL_MAPPING
;
689 set_compound_head(p
, page
);
691 atomic_set(compound_mapcount_ptr(page
), -1);
694 #ifdef CONFIG_DEBUG_PAGEALLOC
695 unsigned int _debug_guardpage_minorder
;
697 bool _debug_pagealloc_enabled_early __read_mostly
698 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
699 EXPORT_SYMBOL(_debug_pagealloc_enabled_early
);
700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled
);
701 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
703 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled
);
705 static int __init
early_debug_pagealloc(char *buf
)
707 return kstrtobool(buf
, &_debug_pagealloc_enabled_early
);
709 early_param("debug_pagealloc", early_debug_pagealloc
);
711 void init_debug_pagealloc(void)
713 if (!debug_pagealloc_enabled())
716 static_branch_enable(&_debug_pagealloc_enabled
);
718 if (!debug_guardpage_minorder())
721 static_branch_enable(&_debug_guardpage_enabled
);
724 static int __init
debug_guardpage_minorder_setup(char *buf
)
728 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
729 pr_err("Bad debug_guardpage_minorder value\n");
732 _debug_guardpage_minorder
= res
;
733 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
736 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
738 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
739 unsigned int order
, int migratetype
)
741 if (!debug_guardpage_enabled())
744 if (order
>= debug_guardpage_minorder())
747 __SetPageGuard(page
);
748 INIT_LIST_HEAD(&page
->lru
);
749 set_page_private(page
, order
);
750 /* Guard pages are not available for any usage */
751 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
756 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
757 unsigned int order
, int migratetype
)
759 if (!debug_guardpage_enabled())
762 __ClearPageGuard(page
);
764 set_page_private(page
, 0);
765 if (!is_migrate_isolate(migratetype
))
766 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
769 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
770 unsigned int order
, int migratetype
) { return false; }
771 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
772 unsigned int order
, int migratetype
) {}
775 static inline void set_page_order(struct page
*page
, unsigned int order
)
777 set_page_private(page
, order
);
778 __SetPageBuddy(page
);
782 * This function checks whether a page is free && is the buddy
783 * we can coalesce a page and its buddy if
784 * (a) the buddy is not in a hole (check before calling!) &&
785 * (b) the buddy is in the buddy system &&
786 * (c) a page and its buddy have the same order &&
787 * (d) a page and its buddy are in the same zone.
789 * For recording whether a page is in the buddy system, we set PageBuddy.
790 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
792 * For recording page's order, we use page_private(page).
794 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
797 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
798 if (page_zone_id(page
) != page_zone_id(buddy
))
801 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
806 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
808 * zone check is done late to avoid uselessly
809 * calculating zone/node ids for pages that could
812 if (page_zone_id(page
) != page_zone_id(buddy
))
815 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
822 #ifdef CONFIG_COMPACTION
823 static inline struct capture_control
*task_capc(struct zone
*zone
)
825 struct capture_control
*capc
= current
->capture_control
;
828 !(current
->flags
& PF_KTHREAD
) &&
830 capc
->cc
->zone
== zone
&&
831 capc
->cc
->direct_compaction
? capc
: NULL
;
835 compaction_capture(struct capture_control
*capc
, struct page
*page
,
836 int order
, int migratetype
)
838 if (!capc
|| order
!= capc
->cc
->order
)
841 /* Do not accidentally pollute CMA or isolated regions*/
842 if (is_migrate_cma(migratetype
) ||
843 is_migrate_isolate(migratetype
))
847 * Do not let lower order allocations polluate a movable pageblock.
848 * This might let an unmovable request use a reclaimable pageblock
849 * and vice-versa but no more than normal fallback logic which can
850 * have trouble finding a high-order free page.
852 if (order
< pageblock_order
&& migratetype
== MIGRATE_MOVABLE
)
860 static inline struct capture_control
*task_capc(struct zone
*zone
)
866 compaction_capture(struct capture_control
*capc
, struct page
*page
,
867 int order
, int migratetype
)
871 #endif /* CONFIG_COMPACTION */
874 * Freeing function for a buddy system allocator.
876 * The concept of a buddy system is to maintain direct-mapped table
877 * (containing bit values) for memory blocks of various "orders".
878 * The bottom level table contains the map for the smallest allocatable
879 * units of memory (here, pages), and each level above it describes
880 * pairs of units from the levels below, hence, "buddies".
881 * At a high level, all that happens here is marking the table entry
882 * at the bottom level available, and propagating the changes upward
883 * as necessary, plus some accounting needed to play nicely with other
884 * parts of the VM system.
885 * At each level, we keep a list of pages, which are heads of continuous
886 * free pages of length of (1 << order) and marked with PageBuddy.
887 * Page's order is recorded in page_private(page) field.
888 * So when we are allocating or freeing one, we can derive the state of the
889 * other. That is, if we allocate a small block, and both were
890 * free, the remainder of the region must be split into blocks.
891 * If a block is freed, and its buddy is also free, then this
892 * triggers coalescing into a block of larger size.
897 static inline void __free_one_page(struct page
*page
,
899 struct zone
*zone
, unsigned int order
,
902 unsigned long combined_pfn
;
903 unsigned long uninitialized_var(buddy_pfn
);
905 unsigned int max_order
;
906 struct capture_control
*capc
= task_capc(zone
);
908 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
910 VM_BUG_ON(!zone_is_initialized(zone
));
911 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
913 VM_BUG_ON(migratetype
== -1);
914 if (likely(!is_migrate_isolate(migratetype
)))
915 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
917 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
918 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
921 while (order
< max_order
- 1) {
922 if (compaction_capture(capc
, page
, order
, migratetype
)) {
923 __mod_zone_freepage_state(zone
, -(1 << order
),
927 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
928 buddy
= page
+ (buddy_pfn
- pfn
);
930 if (!pfn_valid_within(buddy_pfn
))
932 if (!page_is_buddy(page
, buddy
, order
))
935 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
936 * merge with it and move up one order.
938 if (page_is_guard(buddy
))
939 clear_page_guard(zone
, buddy
, order
, migratetype
);
941 del_page_from_free_area(buddy
, &zone
->free_area
[order
]);
942 combined_pfn
= buddy_pfn
& pfn
;
943 page
= page
+ (combined_pfn
- pfn
);
947 if (max_order
< MAX_ORDER
) {
948 /* If we are here, it means order is >= pageblock_order.
949 * We want to prevent merge between freepages on isolate
950 * pageblock and normal pageblock. Without this, pageblock
951 * isolation could cause incorrect freepage or CMA accounting.
953 * We don't want to hit this code for the more frequent
956 if (unlikely(has_isolate_pageblock(zone
))) {
959 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
960 buddy
= page
+ (buddy_pfn
- pfn
);
961 buddy_mt
= get_pageblock_migratetype(buddy
);
963 if (migratetype
!= buddy_mt
964 && (is_migrate_isolate(migratetype
) ||
965 is_migrate_isolate(buddy_mt
)))
969 goto continue_merging
;
973 set_page_order(page
, order
);
976 * If this is not the largest possible page, check if the buddy
977 * of the next-highest order is free. If it is, it's possible
978 * that pages are being freed that will coalesce soon. In case,
979 * that is happening, add the free page to the tail of the list
980 * so it's less likely to be used soon and more likely to be merged
981 * as a higher order page
983 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)
984 && !is_shuffle_order(order
)) {
985 struct page
*higher_page
, *higher_buddy
;
986 combined_pfn
= buddy_pfn
& pfn
;
987 higher_page
= page
+ (combined_pfn
- pfn
);
988 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
989 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
990 if (pfn_valid_within(buddy_pfn
) &&
991 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
992 add_to_free_area_tail(page
, &zone
->free_area
[order
],
998 if (is_shuffle_order(order
))
999 add_to_free_area_random(page
, &zone
->free_area
[order
],
1002 add_to_free_area(page
, &zone
->free_area
[order
], migratetype
);
1007 * A bad page could be due to a number of fields. Instead of multiple branches,
1008 * try and check multiple fields with one check. The caller must do a detailed
1009 * check if necessary.
1011 static inline bool page_expected_state(struct page
*page
,
1012 unsigned long check_flags
)
1014 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1017 if (unlikely((unsigned long)page
->mapping
|
1018 page_ref_count(page
) |
1020 (unsigned long)page
->mem_cgroup
|
1022 (page
->flags
& check_flags
)))
1028 static void free_pages_check_bad(struct page
*page
)
1030 const char *bad_reason
;
1031 unsigned long bad_flags
;
1036 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1037 bad_reason
= "nonzero mapcount";
1038 if (unlikely(page
->mapping
!= NULL
))
1039 bad_reason
= "non-NULL mapping";
1040 if (unlikely(page_ref_count(page
) != 0))
1041 bad_reason
= "nonzero _refcount";
1042 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
1043 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1044 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
1047 if (unlikely(page
->mem_cgroup
))
1048 bad_reason
= "page still charged to cgroup";
1050 bad_page(page
, bad_reason
, bad_flags
);
1053 static inline int free_pages_check(struct page
*page
)
1055 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
1058 /* Something has gone sideways, find it */
1059 free_pages_check_bad(page
);
1063 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
1068 * We rely page->lru.next never has bit 0 set, unless the page
1069 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1071 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
1073 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
1077 switch (page
- head_page
) {
1079 /* the first tail page: ->mapping may be compound_mapcount() */
1080 if (unlikely(compound_mapcount(page
))) {
1081 bad_page(page
, "nonzero compound_mapcount", 0);
1087 * the second tail page: ->mapping is
1088 * deferred_list.next -- ignore value.
1092 if (page
->mapping
!= TAIL_MAPPING
) {
1093 bad_page(page
, "corrupted mapping in tail page", 0);
1098 if (unlikely(!PageTail(page
))) {
1099 bad_page(page
, "PageTail not set", 0);
1102 if (unlikely(compound_head(page
) != head_page
)) {
1103 bad_page(page
, "compound_head not consistent", 0);
1108 page
->mapping
= NULL
;
1109 clear_compound_head(page
);
1113 static void kernel_init_free_pages(struct page
*page
, int numpages
)
1117 for (i
= 0; i
< numpages
; i
++)
1118 clear_highpage(page
+ i
);
1121 static __always_inline
bool free_pages_prepare(struct page
*page
,
1122 unsigned int order
, bool check_free
)
1126 VM_BUG_ON_PAGE(PageTail(page
), page
);
1128 trace_mm_page_free(page
, order
);
1131 * Check tail pages before head page information is cleared to
1132 * avoid checking PageCompound for order-0 pages.
1134 if (unlikely(order
)) {
1135 bool compound
= PageCompound(page
);
1138 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1141 ClearPageDoubleMap(page
);
1142 for (i
= 1; i
< (1 << order
); i
++) {
1144 bad
+= free_tail_pages_check(page
, page
+ i
);
1145 if (unlikely(free_pages_check(page
+ i
))) {
1149 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1152 if (PageMappingFlags(page
))
1153 page
->mapping
= NULL
;
1154 if (memcg_kmem_enabled() && PageKmemcg(page
))
1155 __memcg_kmem_uncharge(page
, order
);
1157 bad
+= free_pages_check(page
);
1161 page_cpupid_reset_last(page
);
1162 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1163 reset_page_owner(page
, order
);
1165 if (!PageHighMem(page
)) {
1166 debug_check_no_locks_freed(page_address(page
),
1167 PAGE_SIZE
<< order
);
1168 debug_check_no_obj_freed(page_address(page
),
1169 PAGE_SIZE
<< order
);
1171 if (want_init_on_free())
1172 kernel_init_free_pages(page
, 1 << order
);
1174 kernel_poison_pages(page
, 1 << order
, 0);
1176 * arch_free_page() can make the page's contents inaccessible. s390
1177 * does this. So nothing which can access the page's contents should
1178 * happen after this.
1180 arch_free_page(page
, order
);
1182 if (debug_pagealloc_enabled_static())
1183 kernel_map_pages(page
, 1 << order
, 0);
1185 kasan_free_nondeferred_pages(page
, order
);
1190 #ifdef CONFIG_DEBUG_VM
1192 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1193 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1194 * moved from pcp lists to free lists.
1196 static bool free_pcp_prepare(struct page
*page
)
1198 return free_pages_prepare(page
, 0, true);
1201 static bool bulkfree_pcp_prepare(struct page
*page
)
1203 if (debug_pagealloc_enabled_static())
1204 return free_pages_check(page
);
1210 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1211 * moving from pcp lists to free list in order to reduce overhead. With
1212 * debug_pagealloc enabled, they are checked also immediately when being freed
1215 static bool free_pcp_prepare(struct page
*page
)
1217 if (debug_pagealloc_enabled_static())
1218 return free_pages_prepare(page
, 0, true);
1220 return free_pages_prepare(page
, 0, false);
1223 static bool bulkfree_pcp_prepare(struct page
*page
)
1225 return free_pages_check(page
);
1227 #endif /* CONFIG_DEBUG_VM */
1229 static inline void prefetch_buddy(struct page
*page
)
1231 unsigned long pfn
= page_to_pfn(page
);
1232 unsigned long buddy_pfn
= __find_buddy_pfn(pfn
, 0);
1233 struct page
*buddy
= page
+ (buddy_pfn
- pfn
);
1239 * Frees a number of pages from the PCP lists
1240 * Assumes all pages on list are in same zone, and of same order.
1241 * count is the number of pages to free.
1243 * If the zone was previously in an "all pages pinned" state then look to
1244 * see if this freeing clears that state.
1246 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1247 * pinned" detection logic.
1249 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1250 struct per_cpu_pages
*pcp
)
1252 int migratetype
= 0;
1254 int prefetch_nr
= 0;
1255 bool isolated_pageblocks
;
1256 struct page
*page
, *tmp
;
1260 struct list_head
*list
;
1263 * Remove pages from lists in a round-robin fashion. A
1264 * batch_free count is maintained that is incremented when an
1265 * empty list is encountered. This is so more pages are freed
1266 * off fuller lists instead of spinning excessively around empty
1271 if (++migratetype
== MIGRATE_PCPTYPES
)
1273 list
= &pcp
->lists
[migratetype
];
1274 } while (list_empty(list
));
1276 /* This is the only non-empty list. Free them all. */
1277 if (batch_free
== MIGRATE_PCPTYPES
)
1281 page
= list_last_entry(list
, struct page
, lru
);
1282 /* must delete to avoid corrupting pcp list */
1283 list_del(&page
->lru
);
1286 if (bulkfree_pcp_prepare(page
))
1289 list_add_tail(&page
->lru
, &head
);
1292 * We are going to put the page back to the global
1293 * pool, prefetch its buddy to speed up later access
1294 * under zone->lock. It is believed the overhead of
1295 * an additional test and calculating buddy_pfn here
1296 * can be offset by reduced memory latency later. To
1297 * avoid excessive prefetching due to large count, only
1298 * prefetch buddy for the first pcp->batch nr of pages.
1300 if (prefetch_nr
++ < pcp
->batch
)
1301 prefetch_buddy(page
);
1302 } while (--count
&& --batch_free
&& !list_empty(list
));
1305 spin_lock(&zone
->lock
);
1306 isolated_pageblocks
= has_isolate_pageblock(zone
);
1309 * Use safe version since after __free_one_page(),
1310 * page->lru.next will not point to original list.
1312 list_for_each_entry_safe(page
, tmp
, &head
, lru
) {
1313 int mt
= get_pcppage_migratetype(page
);
1314 /* MIGRATE_ISOLATE page should not go to pcplists */
1315 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1316 /* Pageblock could have been isolated meanwhile */
1317 if (unlikely(isolated_pageblocks
))
1318 mt
= get_pageblock_migratetype(page
);
1320 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1321 trace_mm_page_pcpu_drain(page
, 0, mt
);
1323 spin_unlock(&zone
->lock
);
1326 static void free_one_page(struct zone
*zone
,
1327 struct page
*page
, unsigned long pfn
,
1331 spin_lock(&zone
->lock
);
1332 if (unlikely(has_isolate_pageblock(zone
) ||
1333 is_migrate_isolate(migratetype
))) {
1334 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1336 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1337 spin_unlock(&zone
->lock
);
1340 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1341 unsigned long zone
, int nid
)
1343 mm_zero_struct_page(page
);
1344 set_page_links(page
, zone
, nid
, pfn
);
1345 init_page_count(page
);
1346 page_mapcount_reset(page
);
1347 page_cpupid_reset_last(page
);
1348 page_kasan_tag_reset(page
);
1350 INIT_LIST_HEAD(&page
->lru
);
1351 #ifdef WANT_PAGE_VIRTUAL
1352 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1353 if (!is_highmem_idx(zone
))
1354 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1359 static void __meminit
init_reserved_page(unsigned long pfn
)
1364 if (!early_page_uninitialised(pfn
))
1367 nid
= early_pfn_to_nid(pfn
);
1368 pgdat
= NODE_DATA(nid
);
1370 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1371 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1373 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1376 __init_single_page(pfn_to_page(pfn
), pfn
, zid
, nid
);
1379 static inline void init_reserved_page(unsigned long pfn
)
1382 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1385 * Initialised pages do not have PageReserved set. This function is
1386 * called for each range allocated by the bootmem allocator and
1387 * marks the pages PageReserved. The remaining valid pages are later
1388 * sent to the buddy page allocator.
1390 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1392 unsigned long start_pfn
= PFN_DOWN(start
);
1393 unsigned long end_pfn
= PFN_UP(end
);
1395 for (; start_pfn
< end_pfn
; start_pfn
++) {
1396 if (pfn_valid(start_pfn
)) {
1397 struct page
*page
= pfn_to_page(start_pfn
);
1399 init_reserved_page(start_pfn
);
1401 /* Avoid false-positive PageTail() */
1402 INIT_LIST_HEAD(&page
->lru
);
1405 * no need for atomic set_bit because the struct
1406 * page is not visible yet so nobody should
1409 __SetPageReserved(page
);
1414 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1416 unsigned long flags
;
1418 unsigned long pfn
= page_to_pfn(page
);
1420 if (!free_pages_prepare(page
, order
, true))
1423 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1424 local_irq_save(flags
);
1425 __count_vm_events(PGFREE
, 1 << order
);
1426 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1427 local_irq_restore(flags
);
1430 void __free_pages_core(struct page
*page
, unsigned int order
)
1432 unsigned int nr_pages
= 1 << order
;
1433 struct page
*p
= page
;
1437 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1439 __ClearPageReserved(p
);
1440 set_page_count(p
, 0);
1442 __ClearPageReserved(p
);
1443 set_page_count(p
, 0);
1445 atomic_long_add(nr_pages
, &page_zone(page
)->managed_pages
);
1446 set_page_refcounted(page
);
1447 __free_pages(page
, order
);
1450 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1451 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1453 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1455 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1457 static DEFINE_SPINLOCK(early_pfn_lock
);
1460 spin_lock(&early_pfn_lock
);
1461 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1463 nid
= first_online_node
;
1464 spin_unlock(&early_pfn_lock
);
1470 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1471 /* Only safe to use early in boot when initialisation is single-threaded */
1472 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1476 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1477 if (nid
>= 0 && nid
!= node
)
1483 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1490 void __init
memblock_free_pages(struct page
*page
, unsigned long pfn
,
1493 if (early_page_uninitialised(pfn
))
1495 __free_pages_core(page
, order
);
1499 * Check that the whole (or subset of) a pageblock given by the interval of
1500 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1501 * with the migration of free compaction scanner. The scanners then need to
1502 * use only pfn_valid_within() check for arches that allow holes within
1505 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1507 * It's possible on some configurations to have a setup like node0 node1 node0
1508 * i.e. it's possible that all pages within a zones range of pages do not
1509 * belong to a single zone. We assume that a border between node0 and node1
1510 * can occur within a single pageblock, but not a node0 node1 node0
1511 * interleaving within a single pageblock. It is therefore sufficient to check
1512 * the first and last page of a pageblock and avoid checking each individual
1513 * page in a pageblock.
1515 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1516 unsigned long end_pfn
, struct zone
*zone
)
1518 struct page
*start_page
;
1519 struct page
*end_page
;
1521 /* end_pfn is one past the range we are checking */
1524 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1527 start_page
= pfn_to_online_page(start_pfn
);
1531 if (page_zone(start_page
) != zone
)
1534 end_page
= pfn_to_page(end_pfn
);
1536 /* This gives a shorter code than deriving page_zone(end_page) */
1537 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1543 void set_zone_contiguous(struct zone
*zone
)
1545 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1546 unsigned long block_end_pfn
;
1548 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1549 for (; block_start_pfn
< zone_end_pfn(zone
);
1550 block_start_pfn
= block_end_pfn
,
1551 block_end_pfn
+= pageblock_nr_pages
) {
1553 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1555 if (!__pageblock_pfn_to_page(block_start_pfn
,
1556 block_end_pfn
, zone
))
1560 /* We confirm that there is no hole */
1561 zone
->contiguous
= true;
1564 void clear_zone_contiguous(struct zone
*zone
)
1566 zone
->contiguous
= false;
1569 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1570 static void __init
deferred_free_range(unsigned long pfn
,
1571 unsigned long nr_pages
)
1579 page
= pfn_to_page(pfn
);
1581 /* Free a large naturally-aligned chunk if possible */
1582 if (nr_pages
== pageblock_nr_pages
&&
1583 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1584 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1585 __free_pages_core(page
, pageblock_order
);
1589 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1590 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1591 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1592 __free_pages_core(page
, 0);
1596 /* Completion tracking for deferred_init_memmap() threads */
1597 static atomic_t pgdat_init_n_undone __initdata
;
1598 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1600 static inline void __init
pgdat_init_report_one_done(void)
1602 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1603 complete(&pgdat_init_all_done_comp
);
1607 * Returns true if page needs to be initialized or freed to buddy allocator.
1609 * First we check if pfn is valid on architectures where it is possible to have
1610 * holes within pageblock_nr_pages. On systems where it is not possible, this
1611 * function is optimized out.
1613 * Then, we check if a current large page is valid by only checking the validity
1616 static inline bool __init
deferred_pfn_valid(unsigned long pfn
)
1618 if (!pfn_valid_within(pfn
))
1620 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1626 * Free pages to buddy allocator. Try to free aligned pages in
1627 * pageblock_nr_pages sizes.
1629 static void __init
deferred_free_pages(unsigned long pfn
,
1630 unsigned long end_pfn
)
1632 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1633 unsigned long nr_free
= 0;
1635 for (; pfn
< end_pfn
; pfn
++) {
1636 if (!deferred_pfn_valid(pfn
)) {
1637 deferred_free_range(pfn
- nr_free
, nr_free
);
1639 } else if (!(pfn
& nr_pgmask
)) {
1640 deferred_free_range(pfn
- nr_free
, nr_free
);
1642 touch_nmi_watchdog();
1647 /* Free the last block of pages to allocator */
1648 deferred_free_range(pfn
- nr_free
, nr_free
);
1652 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1653 * by performing it only once every pageblock_nr_pages.
1654 * Return number of pages initialized.
1656 static unsigned long __init
deferred_init_pages(struct zone
*zone
,
1658 unsigned long end_pfn
)
1660 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1661 int nid
= zone_to_nid(zone
);
1662 unsigned long nr_pages
= 0;
1663 int zid
= zone_idx(zone
);
1664 struct page
*page
= NULL
;
1666 for (; pfn
< end_pfn
; pfn
++) {
1667 if (!deferred_pfn_valid(pfn
)) {
1670 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1671 page
= pfn_to_page(pfn
);
1672 touch_nmi_watchdog();
1676 __init_single_page(page
, pfn
, zid
, nid
);
1683 * This function is meant to pre-load the iterator for the zone init.
1684 * Specifically it walks through the ranges until we are caught up to the
1685 * first_init_pfn value and exits there. If we never encounter the value we
1686 * return false indicating there are no valid ranges left.
1689 deferred_init_mem_pfn_range_in_zone(u64
*i
, struct zone
*zone
,
1690 unsigned long *spfn
, unsigned long *epfn
,
1691 unsigned long first_init_pfn
)
1696 * Start out by walking through the ranges in this zone that have
1697 * already been initialized. We don't need to do anything with them
1698 * so we just need to flush them out of the system.
1700 for_each_free_mem_pfn_range_in_zone(j
, zone
, spfn
, epfn
) {
1701 if (*epfn
<= first_init_pfn
)
1703 if (*spfn
< first_init_pfn
)
1704 *spfn
= first_init_pfn
;
1713 * Initialize and free pages. We do it in two loops: first we initialize
1714 * struct page, then free to buddy allocator, because while we are
1715 * freeing pages we can access pages that are ahead (computing buddy
1716 * page in __free_one_page()).
1718 * In order to try and keep some memory in the cache we have the loop
1719 * broken along max page order boundaries. This way we will not cause
1720 * any issues with the buddy page computation.
1722 static unsigned long __init
1723 deferred_init_maxorder(u64
*i
, struct zone
*zone
, unsigned long *start_pfn
,
1724 unsigned long *end_pfn
)
1726 unsigned long mo_pfn
= ALIGN(*start_pfn
+ 1, MAX_ORDER_NR_PAGES
);
1727 unsigned long spfn
= *start_pfn
, epfn
= *end_pfn
;
1728 unsigned long nr_pages
= 0;
1731 /* First we loop through and initialize the page values */
1732 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, start_pfn
, end_pfn
) {
1735 if (mo_pfn
<= *start_pfn
)
1738 t
= min(mo_pfn
, *end_pfn
);
1739 nr_pages
+= deferred_init_pages(zone
, *start_pfn
, t
);
1741 if (mo_pfn
< *end_pfn
) {
1742 *start_pfn
= mo_pfn
;
1747 /* Reset values and now loop through freeing pages as needed */
1750 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, &spfn
, &epfn
) {
1756 t
= min(mo_pfn
, epfn
);
1757 deferred_free_pages(spfn
, t
);
1766 /* Initialise remaining memory on a node */
1767 static int __init
deferred_init_memmap(void *data
)
1769 pg_data_t
*pgdat
= data
;
1770 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1771 unsigned long spfn
= 0, epfn
= 0, nr_pages
= 0;
1772 unsigned long first_init_pfn
, flags
;
1773 unsigned long start
= jiffies
;
1778 /* Bind memory initialisation thread to a local node if possible */
1779 if (!cpumask_empty(cpumask
))
1780 set_cpus_allowed_ptr(current
, cpumask
);
1782 pgdat_resize_lock(pgdat
, &flags
);
1783 first_init_pfn
= pgdat
->first_deferred_pfn
;
1784 if (first_init_pfn
== ULONG_MAX
) {
1785 pgdat_resize_unlock(pgdat
, &flags
);
1786 pgdat_init_report_one_done();
1790 /* Sanity check boundaries */
1791 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1792 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1793 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1795 /* Only the highest zone is deferred so find it */
1796 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1797 zone
= pgdat
->node_zones
+ zid
;
1798 if (first_init_pfn
< zone_end_pfn(zone
))
1802 /* If the zone is empty somebody else may have cleared out the zone */
1803 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1808 * Initialize and free pages in MAX_ORDER sized increments so
1809 * that we can avoid introducing any issues with the buddy
1813 nr_pages
+= deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
1815 pgdat_resize_unlock(pgdat
, &flags
);
1817 /* Sanity check that the next zone really is unpopulated */
1818 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1820 pr_info("node %d initialised, %lu pages in %ums\n",
1821 pgdat
->node_id
, nr_pages
, jiffies_to_msecs(jiffies
- start
));
1823 pgdat_init_report_one_done();
1828 * If this zone has deferred pages, try to grow it by initializing enough
1829 * deferred pages to satisfy the allocation specified by order, rounded up to
1830 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1831 * of SECTION_SIZE bytes by initializing struct pages in increments of
1832 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1834 * Return true when zone was grown, otherwise return false. We return true even
1835 * when we grow less than requested, to let the caller decide if there are
1836 * enough pages to satisfy the allocation.
1838 * Note: We use noinline because this function is needed only during boot, and
1839 * it is called from a __ref function _deferred_grow_zone. This way we are
1840 * making sure that it is not inlined into permanent text section.
1842 static noinline
bool __init
1843 deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1845 unsigned long nr_pages_needed
= ALIGN(1 << order
, PAGES_PER_SECTION
);
1846 pg_data_t
*pgdat
= zone
->zone_pgdat
;
1847 unsigned long first_deferred_pfn
= pgdat
->first_deferred_pfn
;
1848 unsigned long spfn
, epfn
, flags
;
1849 unsigned long nr_pages
= 0;
1852 /* Only the last zone may have deferred pages */
1853 if (zone_end_pfn(zone
) != pgdat_end_pfn(pgdat
))
1856 pgdat_resize_lock(pgdat
, &flags
);
1859 * If deferred pages have been initialized while we were waiting for
1860 * the lock, return true, as the zone was grown. The caller will retry
1861 * this zone. We won't return to this function since the caller also
1862 * has this static branch.
1864 if (!static_branch_unlikely(&deferred_pages
)) {
1865 pgdat_resize_unlock(pgdat
, &flags
);
1870 * If someone grew this zone while we were waiting for spinlock, return
1871 * true, as there might be enough pages already.
1873 if (first_deferred_pfn
!= pgdat
->first_deferred_pfn
) {
1874 pgdat_resize_unlock(pgdat
, &flags
);
1878 /* If the zone is empty somebody else may have cleared out the zone */
1879 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1880 first_deferred_pfn
)) {
1881 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1882 pgdat_resize_unlock(pgdat
, &flags
);
1883 /* Retry only once. */
1884 return first_deferred_pfn
!= ULONG_MAX
;
1888 * Initialize and free pages in MAX_ORDER sized increments so
1889 * that we can avoid introducing any issues with the buddy
1892 while (spfn
< epfn
) {
1893 /* update our first deferred PFN for this section */
1894 first_deferred_pfn
= spfn
;
1896 nr_pages
+= deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
1898 /* We should only stop along section boundaries */
1899 if ((first_deferred_pfn
^ spfn
) < PAGES_PER_SECTION
)
1902 /* If our quota has been met we can stop here */
1903 if (nr_pages
>= nr_pages_needed
)
1907 pgdat
->first_deferred_pfn
= spfn
;
1908 pgdat_resize_unlock(pgdat
, &flags
);
1910 return nr_pages
> 0;
1914 * deferred_grow_zone() is __init, but it is called from
1915 * get_page_from_freelist() during early boot until deferred_pages permanently
1916 * disables this call. This is why we have refdata wrapper to avoid warning,
1917 * and to ensure that the function body gets unloaded.
1920 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1922 return deferred_grow_zone(zone
, order
);
1925 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1927 void __init
page_alloc_init_late(void)
1932 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1934 /* There will be num_node_state(N_MEMORY) threads */
1935 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1936 for_each_node_state(nid
, N_MEMORY
) {
1937 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1940 /* Block until all are initialised */
1941 wait_for_completion(&pgdat_init_all_done_comp
);
1944 * The number of managed pages has changed due to the initialisation
1945 * so the pcpu batch and high limits needs to be updated or the limits
1946 * will be artificially small.
1948 for_each_populated_zone(zone
)
1949 zone_pcp_update(zone
);
1952 * We initialized the rest of the deferred pages. Permanently disable
1953 * on-demand struct page initialization.
1955 static_branch_disable(&deferred_pages
);
1957 /* Reinit limits that are based on free pages after the kernel is up */
1958 files_maxfiles_init();
1961 /* Discard memblock private memory */
1964 for_each_node_state(nid
, N_MEMORY
)
1965 shuffle_free_memory(NODE_DATA(nid
));
1967 for_each_populated_zone(zone
)
1968 set_zone_contiguous(zone
);
1972 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1973 void __init
init_cma_reserved_pageblock(struct page
*page
)
1975 unsigned i
= pageblock_nr_pages
;
1976 struct page
*p
= page
;
1979 __ClearPageReserved(p
);
1980 set_page_count(p
, 0);
1983 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1985 if (pageblock_order
>= MAX_ORDER
) {
1986 i
= pageblock_nr_pages
;
1989 set_page_refcounted(p
);
1990 __free_pages(p
, MAX_ORDER
- 1);
1991 p
+= MAX_ORDER_NR_PAGES
;
1992 } while (i
-= MAX_ORDER_NR_PAGES
);
1994 set_page_refcounted(page
);
1995 __free_pages(page
, pageblock_order
);
1998 adjust_managed_page_count(page
, pageblock_nr_pages
);
2003 * The order of subdivision here is critical for the IO subsystem.
2004 * Please do not alter this order without good reasons and regression
2005 * testing. Specifically, as large blocks of memory are subdivided,
2006 * the order in which smaller blocks are delivered depends on the order
2007 * they're subdivided in this function. This is the primary factor
2008 * influencing the order in which pages are delivered to the IO
2009 * subsystem according to empirical testing, and this is also justified
2010 * by considering the behavior of a buddy system containing a single
2011 * large block of memory acted on by a series of small allocations.
2012 * This behavior is a critical factor in sglist merging's success.
2016 static inline void expand(struct zone
*zone
, struct page
*page
,
2017 int low
, int high
, struct free_area
*area
,
2020 unsigned long size
= 1 << high
;
2022 while (high
> low
) {
2026 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
2029 * Mark as guard pages (or page), that will allow to
2030 * merge back to allocator when buddy will be freed.
2031 * Corresponding page table entries will not be touched,
2032 * pages will stay not present in virtual address space
2034 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
2037 add_to_free_area(&page
[size
], area
, migratetype
);
2038 set_page_order(&page
[size
], high
);
2042 static void check_new_page_bad(struct page
*page
)
2044 const char *bad_reason
= NULL
;
2045 unsigned long bad_flags
= 0;
2047 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
2048 bad_reason
= "nonzero mapcount";
2049 if (unlikely(page
->mapping
!= NULL
))
2050 bad_reason
= "non-NULL mapping";
2051 if (unlikely(page_ref_count(page
) != 0))
2052 bad_reason
= "nonzero _refcount";
2053 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
2054 bad_reason
= "HWPoisoned (hardware-corrupted)";
2055 bad_flags
= __PG_HWPOISON
;
2056 /* Don't complain about hwpoisoned pages */
2057 page_mapcount_reset(page
); /* remove PageBuddy */
2060 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
2061 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
2062 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
2065 if (unlikely(page
->mem_cgroup
))
2066 bad_reason
= "page still charged to cgroup";
2068 bad_page(page
, bad_reason
, bad_flags
);
2072 * This page is about to be returned from the page allocator
2074 static inline int check_new_page(struct page
*page
)
2076 if (likely(page_expected_state(page
,
2077 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
2080 check_new_page_bad(page
);
2084 static inline bool free_pages_prezeroed(void)
2086 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
2087 page_poisoning_enabled()) || want_init_on_free();
2090 #ifdef CONFIG_DEBUG_VM
2092 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2093 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2094 * also checked when pcp lists are refilled from the free lists.
2096 static inline bool check_pcp_refill(struct page
*page
)
2098 if (debug_pagealloc_enabled_static())
2099 return check_new_page(page
);
2104 static inline bool check_new_pcp(struct page
*page
)
2106 return check_new_page(page
);
2110 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2111 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2112 * enabled, they are also checked when being allocated from the pcp lists.
2114 static inline bool check_pcp_refill(struct page
*page
)
2116 return check_new_page(page
);
2118 static inline bool check_new_pcp(struct page
*page
)
2120 if (debug_pagealloc_enabled_static())
2121 return check_new_page(page
);
2125 #endif /* CONFIG_DEBUG_VM */
2127 static bool check_new_pages(struct page
*page
, unsigned int order
)
2130 for (i
= 0; i
< (1 << order
); i
++) {
2131 struct page
*p
= page
+ i
;
2133 if (unlikely(check_new_page(p
)))
2140 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
2143 set_page_private(page
, 0);
2144 set_page_refcounted(page
);
2146 arch_alloc_page(page
, order
);
2147 if (debug_pagealloc_enabled_static())
2148 kernel_map_pages(page
, 1 << order
, 1);
2149 kasan_alloc_pages(page
, order
);
2150 kernel_poison_pages(page
, 1 << order
, 1);
2151 set_page_owner(page
, order
, gfp_flags
);
2154 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
2155 unsigned int alloc_flags
)
2157 post_alloc_hook(page
, order
, gfp_flags
);
2159 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags
))
2160 kernel_init_free_pages(page
, 1 << order
);
2162 if (order
&& (gfp_flags
& __GFP_COMP
))
2163 prep_compound_page(page
, order
);
2166 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2167 * allocate the page. The expectation is that the caller is taking
2168 * steps that will free more memory. The caller should avoid the page
2169 * being used for !PFMEMALLOC purposes.
2171 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2172 set_page_pfmemalloc(page
);
2174 clear_page_pfmemalloc(page
);
2178 * Go through the free lists for the given migratetype and remove
2179 * the smallest available page from the freelists
2181 static __always_inline
2182 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
2185 unsigned int current_order
;
2186 struct free_area
*area
;
2189 /* Find a page of the appropriate size in the preferred list */
2190 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
2191 area
= &(zone
->free_area
[current_order
]);
2192 page
= get_page_from_free_area(area
, migratetype
);
2195 del_page_from_free_area(page
, area
);
2196 expand(zone
, page
, order
, current_order
, area
, migratetype
);
2197 set_pcppage_migratetype(page
, migratetype
);
2206 * This array describes the order lists are fallen back to when
2207 * the free lists for the desirable migrate type are depleted
2209 static int fallbacks
[MIGRATE_TYPES
][4] = {
2210 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2211 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
2212 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2214 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
2216 #ifdef CONFIG_MEMORY_ISOLATION
2217 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
2222 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2225 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
2228 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2229 unsigned int order
) { return NULL
; }
2233 * Move the free pages in a range to the free lists of the requested type.
2234 * Note that start_page and end_pages are not aligned on a pageblock
2235 * boundary. If alignment is required, use move_freepages_block()
2237 static int move_freepages(struct zone
*zone
,
2238 struct page
*start_page
, struct page
*end_page
,
2239 int migratetype
, int *num_movable
)
2243 int pages_moved
= 0;
2245 for (page
= start_page
; page
<= end_page
;) {
2246 if (!pfn_valid_within(page_to_pfn(page
))) {
2251 if (!PageBuddy(page
)) {
2253 * We assume that pages that could be isolated for
2254 * migration are movable. But we don't actually try
2255 * isolating, as that would be expensive.
2258 (PageLRU(page
) || __PageMovable(page
)))
2265 /* Make sure we are not inadvertently changing nodes */
2266 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
2267 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
2269 order
= page_order(page
);
2270 move_to_free_area(page
, &zone
->free_area
[order
], migratetype
);
2272 pages_moved
+= 1 << order
;
2278 int move_freepages_block(struct zone
*zone
, struct page
*page
,
2279 int migratetype
, int *num_movable
)
2281 unsigned long start_pfn
, end_pfn
;
2282 struct page
*start_page
, *end_page
;
2287 start_pfn
= page_to_pfn(page
);
2288 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
2289 start_page
= pfn_to_page(start_pfn
);
2290 end_page
= start_page
+ pageblock_nr_pages
- 1;
2291 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
2293 /* Do not cross zone boundaries */
2294 if (!zone_spans_pfn(zone
, start_pfn
))
2296 if (!zone_spans_pfn(zone
, end_pfn
))
2299 return move_freepages(zone
, start_page
, end_page
, migratetype
,
2303 static void change_pageblock_range(struct page
*pageblock_page
,
2304 int start_order
, int migratetype
)
2306 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
2308 while (nr_pageblocks
--) {
2309 set_pageblock_migratetype(pageblock_page
, migratetype
);
2310 pageblock_page
+= pageblock_nr_pages
;
2315 * When we are falling back to another migratetype during allocation, try to
2316 * steal extra free pages from the same pageblocks to satisfy further
2317 * allocations, instead of polluting multiple pageblocks.
2319 * If we are stealing a relatively large buddy page, it is likely there will
2320 * be more free pages in the pageblock, so try to steal them all. For
2321 * reclaimable and unmovable allocations, we steal regardless of page size,
2322 * as fragmentation caused by those allocations polluting movable pageblocks
2323 * is worse than movable allocations stealing from unmovable and reclaimable
2326 static bool can_steal_fallback(unsigned int order
, int start_mt
)
2329 * Leaving this order check is intended, although there is
2330 * relaxed order check in next check. The reason is that
2331 * we can actually steal whole pageblock if this condition met,
2332 * but, below check doesn't guarantee it and that is just heuristic
2333 * so could be changed anytime.
2335 if (order
>= pageblock_order
)
2338 if (order
>= pageblock_order
/ 2 ||
2339 start_mt
== MIGRATE_RECLAIMABLE
||
2340 start_mt
== MIGRATE_UNMOVABLE
||
2341 page_group_by_mobility_disabled
)
2347 static inline void boost_watermark(struct zone
*zone
)
2349 unsigned long max_boost
;
2351 if (!watermark_boost_factor
)
2354 max_boost
= mult_frac(zone
->_watermark
[WMARK_HIGH
],
2355 watermark_boost_factor
, 10000);
2358 * high watermark may be uninitialised if fragmentation occurs
2359 * very early in boot so do not boost. We do not fall
2360 * through and boost by pageblock_nr_pages as failing
2361 * allocations that early means that reclaim is not going
2362 * to help and it may even be impossible to reclaim the
2363 * boosted watermark resulting in a hang.
2368 max_boost
= max(pageblock_nr_pages
, max_boost
);
2370 zone
->watermark_boost
= min(zone
->watermark_boost
+ pageblock_nr_pages
,
2375 * This function implements actual steal behaviour. If order is large enough,
2376 * we can steal whole pageblock. If not, we first move freepages in this
2377 * pageblock to our migratetype and determine how many already-allocated pages
2378 * are there in the pageblock with a compatible migratetype. If at least half
2379 * of pages are free or compatible, we can change migratetype of the pageblock
2380 * itself, so pages freed in the future will be put on the correct free list.
2382 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2383 unsigned int alloc_flags
, int start_type
, bool whole_block
)
2385 unsigned int current_order
= page_order(page
);
2386 struct free_area
*area
;
2387 int free_pages
, movable_pages
, alike_pages
;
2390 old_block_type
= get_pageblock_migratetype(page
);
2393 * This can happen due to races and we want to prevent broken
2394 * highatomic accounting.
2396 if (is_migrate_highatomic(old_block_type
))
2399 /* Take ownership for orders >= pageblock_order */
2400 if (current_order
>= pageblock_order
) {
2401 change_pageblock_range(page
, current_order
, start_type
);
2406 * Boost watermarks to increase reclaim pressure to reduce the
2407 * likelihood of future fallbacks. Wake kswapd now as the node
2408 * may be balanced overall and kswapd will not wake naturally.
2410 boost_watermark(zone
);
2411 if (alloc_flags
& ALLOC_KSWAPD
)
2412 set_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
2414 /* We are not allowed to try stealing from the whole block */
2418 free_pages
= move_freepages_block(zone
, page
, start_type
,
2421 * Determine how many pages are compatible with our allocation.
2422 * For movable allocation, it's the number of movable pages which
2423 * we just obtained. For other types it's a bit more tricky.
2425 if (start_type
== MIGRATE_MOVABLE
) {
2426 alike_pages
= movable_pages
;
2429 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2430 * to MOVABLE pageblock, consider all non-movable pages as
2431 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2432 * vice versa, be conservative since we can't distinguish the
2433 * exact migratetype of non-movable pages.
2435 if (old_block_type
== MIGRATE_MOVABLE
)
2436 alike_pages
= pageblock_nr_pages
2437 - (free_pages
+ movable_pages
);
2442 /* moving whole block can fail due to zone boundary conditions */
2447 * If a sufficient number of pages in the block are either free or of
2448 * comparable migratability as our allocation, claim the whole block.
2450 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2451 page_group_by_mobility_disabled
)
2452 set_pageblock_migratetype(page
, start_type
);
2457 area
= &zone
->free_area
[current_order
];
2458 move_to_free_area(page
, area
, start_type
);
2462 * Check whether there is a suitable fallback freepage with requested order.
2463 * If only_stealable is true, this function returns fallback_mt only if
2464 * we can steal other freepages all together. This would help to reduce
2465 * fragmentation due to mixed migratetype pages in one pageblock.
2467 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2468 int migratetype
, bool only_stealable
, bool *can_steal
)
2473 if (area
->nr_free
== 0)
2478 fallback_mt
= fallbacks
[migratetype
][i
];
2479 if (fallback_mt
== MIGRATE_TYPES
)
2482 if (free_area_empty(area
, fallback_mt
))
2485 if (can_steal_fallback(order
, migratetype
))
2488 if (!only_stealable
)
2499 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2500 * there are no empty page blocks that contain a page with a suitable order
2502 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2503 unsigned int alloc_order
)
2506 unsigned long max_managed
, flags
;
2509 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2510 * Check is race-prone but harmless.
2512 max_managed
= (zone_managed_pages(zone
) / 100) + pageblock_nr_pages
;
2513 if (zone
->nr_reserved_highatomic
>= max_managed
)
2516 spin_lock_irqsave(&zone
->lock
, flags
);
2518 /* Recheck the nr_reserved_highatomic limit under the lock */
2519 if (zone
->nr_reserved_highatomic
>= max_managed
)
2523 mt
= get_pageblock_migratetype(page
);
2524 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2525 && !is_migrate_cma(mt
)) {
2526 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2527 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2528 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2532 spin_unlock_irqrestore(&zone
->lock
, flags
);
2536 * Used when an allocation is about to fail under memory pressure. This
2537 * potentially hurts the reliability of high-order allocations when under
2538 * intense memory pressure but failed atomic allocations should be easier
2539 * to recover from than an OOM.
2541 * If @force is true, try to unreserve a pageblock even though highatomic
2542 * pageblock is exhausted.
2544 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2547 struct zonelist
*zonelist
= ac
->zonelist
;
2548 unsigned long flags
;
2555 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2558 * Preserve at least one pageblock unless memory pressure
2561 if (!force
&& zone
->nr_reserved_highatomic
<=
2565 spin_lock_irqsave(&zone
->lock
, flags
);
2566 for (order
= 0; order
< MAX_ORDER
; order
++) {
2567 struct free_area
*area
= &(zone
->free_area
[order
]);
2569 page
= get_page_from_free_area(area
, MIGRATE_HIGHATOMIC
);
2574 * In page freeing path, migratetype change is racy so
2575 * we can counter several free pages in a pageblock
2576 * in this loop althoug we changed the pageblock type
2577 * from highatomic to ac->migratetype. So we should
2578 * adjust the count once.
2580 if (is_migrate_highatomic_page(page
)) {
2582 * It should never happen but changes to
2583 * locking could inadvertently allow a per-cpu
2584 * drain to add pages to MIGRATE_HIGHATOMIC
2585 * while unreserving so be safe and watch for
2588 zone
->nr_reserved_highatomic
-= min(
2590 zone
->nr_reserved_highatomic
);
2594 * Convert to ac->migratetype and avoid the normal
2595 * pageblock stealing heuristics. Minimally, the caller
2596 * is doing the work and needs the pages. More
2597 * importantly, if the block was always converted to
2598 * MIGRATE_UNMOVABLE or another type then the number
2599 * of pageblocks that cannot be completely freed
2602 set_pageblock_migratetype(page
, ac
->migratetype
);
2603 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2606 spin_unlock_irqrestore(&zone
->lock
, flags
);
2610 spin_unlock_irqrestore(&zone
->lock
, flags
);
2617 * Try finding a free buddy page on the fallback list and put it on the free
2618 * list of requested migratetype, possibly along with other pages from the same
2619 * block, depending on fragmentation avoidance heuristics. Returns true if
2620 * fallback was found so that __rmqueue_smallest() can grab it.
2622 * The use of signed ints for order and current_order is a deliberate
2623 * deviation from the rest of this file, to make the for loop
2624 * condition simpler.
2626 static __always_inline
bool
2627 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
,
2628 unsigned int alloc_flags
)
2630 struct free_area
*area
;
2632 int min_order
= order
;
2638 * Do not steal pages from freelists belonging to other pageblocks
2639 * i.e. orders < pageblock_order. If there are no local zones free,
2640 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2642 if (alloc_flags
& ALLOC_NOFRAGMENT
)
2643 min_order
= pageblock_order
;
2646 * Find the largest available free page in the other list. This roughly
2647 * approximates finding the pageblock with the most free pages, which
2648 * would be too costly to do exactly.
2650 for (current_order
= MAX_ORDER
- 1; current_order
>= min_order
;
2652 area
= &(zone
->free_area
[current_order
]);
2653 fallback_mt
= find_suitable_fallback(area
, current_order
,
2654 start_migratetype
, false, &can_steal
);
2655 if (fallback_mt
== -1)
2659 * We cannot steal all free pages from the pageblock and the
2660 * requested migratetype is movable. In that case it's better to
2661 * steal and split the smallest available page instead of the
2662 * largest available page, because even if the next movable
2663 * allocation falls back into a different pageblock than this
2664 * one, it won't cause permanent fragmentation.
2666 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2667 && current_order
> order
)
2676 for (current_order
= order
; current_order
< MAX_ORDER
;
2678 area
= &(zone
->free_area
[current_order
]);
2679 fallback_mt
= find_suitable_fallback(area
, current_order
,
2680 start_migratetype
, false, &can_steal
);
2681 if (fallback_mt
!= -1)
2686 * This should not happen - we already found a suitable fallback
2687 * when looking for the largest page.
2689 VM_BUG_ON(current_order
== MAX_ORDER
);
2692 page
= get_page_from_free_area(area
, fallback_mt
);
2694 steal_suitable_fallback(zone
, page
, alloc_flags
, start_migratetype
,
2697 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2698 start_migratetype
, fallback_mt
);
2705 * Do the hard work of removing an element from the buddy allocator.
2706 * Call me with the zone->lock already held.
2708 static __always_inline
struct page
*
2709 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
,
2710 unsigned int alloc_flags
)
2715 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2716 if (unlikely(!page
)) {
2717 if (migratetype
== MIGRATE_MOVABLE
)
2718 page
= __rmqueue_cma_fallback(zone
, order
);
2720 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
,
2725 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2730 * Obtain a specified number of elements from the buddy allocator, all under
2731 * a single hold of the lock, for efficiency. Add them to the supplied list.
2732 * Returns the number of new pages which were placed at *list.
2734 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2735 unsigned long count
, struct list_head
*list
,
2736 int migratetype
, unsigned int alloc_flags
)
2740 spin_lock(&zone
->lock
);
2741 for (i
= 0; i
< count
; ++i
) {
2742 struct page
*page
= __rmqueue(zone
, order
, migratetype
,
2744 if (unlikely(page
== NULL
))
2747 if (unlikely(check_pcp_refill(page
)))
2751 * Split buddy pages returned by expand() are received here in
2752 * physical page order. The page is added to the tail of
2753 * caller's list. From the callers perspective, the linked list
2754 * is ordered by page number under some conditions. This is
2755 * useful for IO devices that can forward direction from the
2756 * head, thus also in the physical page order. This is useful
2757 * for IO devices that can merge IO requests if the physical
2758 * pages are ordered properly.
2760 list_add_tail(&page
->lru
, list
);
2762 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2763 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2768 * i pages were removed from the buddy list even if some leak due
2769 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2770 * on i. Do not confuse with 'alloced' which is the number of
2771 * pages added to the pcp list.
2773 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2774 spin_unlock(&zone
->lock
);
2780 * Called from the vmstat counter updater to drain pagesets of this
2781 * currently executing processor on remote nodes after they have
2784 * Note that this function must be called with the thread pinned to
2785 * a single processor.
2787 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2789 unsigned long flags
;
2790 int to_drain
, batch
;
2792 local_irq_save(flags
);
2793 batch
= READ_ONCE(pcp
->batch
);
2794 to_drain
= min(pcp
->count
, batch
);
2796 free_pcppages_bulk(zone
, to_drain
, pcp
);
2797 local_irq_restore(flags
);
2802 * Drain pcplists of the indicated processor and zone.
2804 * The processor must either be the current processor and the
2805 * thread pinned to the current processor or a processor that
2808 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2810 unsigned long flags
;
2811 struct per_cpu_pageset
*pset
;
2812 struct per_cpu_pages
*pcp
;
2814 local_irq_save(flags
);
2815 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2819 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2820 local_irq_restore(flags
);
2824 * Drain pcplists of all zones on the indicated processor.
2826 * The processor must either be the current processor and the
2827 * thread pinned to the current processor or a processor that
2830 static void drain_pages(unsigned int cpu
)
2834 for_each_populated_zone(zone
) {
2835 drain_pages_zone(cpu
, zone
);
2840 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2842 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2843 * the single zone's pages.
2845 void drain_local_pages(struct zone
*zone
)
2847 int cpu
= smp_processor_id();
2850 drain_pages_zone(cpu
, zone
);
2855 static void drain_local_pages_wq(struct work_struct
*work
)
2857 struct pcpu_drain
*drain
;
2859 drain
= container_of(work
, struct pcpu_drain
, work
);
2862 * drain_all_pages doesn't use proper cpu hotplug protection so
2863 * we can race with cpu offline when the WQ can move this from
2864 * a cpu pinned worker to an unbound one. We can operate on a different
2865 * cpu which is allright but we also have to make sure to not move to
2869 drain_local_pages(drain
->zone
);
2874 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2876 * When zone parameter is non-NULL, spill just the single zone's pages.
2878 * Note that this can be extremely slow as the draining happens in a workqueue.
2880 void drain_all_pages(struct zone
*zone
)
2885 * Allocate in the BSS so we wont require allocation in
2886 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2888 static cpumask_t cpus_with_pcps
;
2891 * Make sure nobody triggers this path before mm_percpu_wq is fully
2894 if (WARN_ON_ONCE(!mm_percpu_wq
))
2898 * Do not drain if one is already in progress unless it's specific to
2899 * a zone. Such callers are primarily CMA and memory hotplug and need
2900 * the drain to be complete when the call returns.
2902 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2905 mutex_lock(&pcpu_drain_mutex
);
2909 * We don't care about racing with CPU hotplug event
2910 * as offline notification will cause the notified
2911 * cpu to drain that CPU pcps and on_each_cpu_mask
2912 * disables preemption as part of its processing
2914 for_each_online_cpu(cpu
) {
2915 struct per_cpu_pageset
*pcp
;
2917 bool has_pcps
= false;
2920 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2924 for_each_populated_zone(z
) {
2925 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2926 if (pcp
->pcp
.count
) {
2934 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2936 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2939 for_each_cpu(cpu
, &cpus_with_pcps
) {
2940 struct pcpu_drain
*drain
= per_cpu_ptr(&pcpu_drain
, cpu
);
2943 INIT_WORK(&drain
->work
, drain_local_pages_wq
);
2944 queue_work_on(cpu
, mm_percpu_wq
, &drain
->work
);
2946 for_each_cpu(cpu
, &cpus_with_pcps
)
2947 flush_work(&per_cpu_ptr(&pcpu_drain
, cpu
)->work
);
2949 mutex_unlock(&pcpu_drain_mutex
);
2952 #ifdef CONFIG_HIBERNATION
2955 * Touch the watchdog for every WD_PAGE_COUNT pages.
2957 #define WD_PAGE_COUNT (128*1024)
2959 void mark_free_pages(struct zone
*zone
)
2961 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
2962 unsigned long flags
;
2963 unsigned int order
, t
;
2966 if (zone_is_empty(zone
))
2969 spin_lock_irqsave(&zone
->lock
, flags
);
2971 max_zone_pfn
= zone_end_pfn(zone
);
2972 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2973 if (pfn_valid(pfn
)) {
2974 page
= pfn_to_page(pfn
);
2976 if (!--page_count
) {
2977 touch_nmi_watchdog();
2978 page_count
= WD_PAGE_COUNT
;
2981 if (page_zone(page
) != zone
)
2984 if (!swsusp_page_is_forbidden(page
))
2985 swsusp_unset_page_free(page
);
2988 for_each_migratetype_order(order
, t
) {
2989 list_for_each_entry(page
,
2990 &zone
->free_area
[order
].free_list
[t
], lru
) {
2993 pfn
= page_to_pfn(page
);
2994 for (i
= 0; i
< (1UL << order
); i
++) {
2995 if (!--page_count
) {
2996 touch_nmi_watchdog();
2997 page_count
= WD_PAGE_COUNT
;
2999 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
3003 spin_unlock_irqrestore(&zone
->lock
, flags
);
3005 #endif /* CONFIG_PM */
3007 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
3011 if (!free_pcp_prepare(page
))
3014 migratetype
= get_pfnblock_migratetype(page
, pfn
);
3015 set_pcppage_migratetype(page
, migratetype
);
3019 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
3021 struct zone
*zone
= page_zone(page
);
3022 struct per_cpu_pages
*pcp
;
3025 migratetype
= get_pcppage_migratetype(page
);
3026 __count_vm_event(PGFREE
);
3029 * We only track unmovable, reclaimable and movable on pcp lists.
3030 * Free ISOLATE pages back to the allocator because they are being
3031 * offlined but treat HIGHATOMIC as movable pages so we can get those
3032 * areas back if necessary. Otherwise, we may have to free
3033 * excessively into the page allocator
3035 if (migratetype
>= MIGRATE_PCPTYPES
) {
3036 if (unlikely(is_migrate_isolate(migratetype
))) {
3037 free_one_page(zone
, page
, pfn
, 0, migratetype
);
3040 migratetype
= MIGRATE_MOVABLE
;
3043 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3044 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
3046 if (pcp
->count
>= pcp
->high
) {
3047 unsigned long batch
= READ_ONCE(pcp
->batch
);
3048 free_pcppages_bulk(zone
, batch
, pcp
);
3053 * Free a 0-order page
3055 void free_unref_page(struct page
*page
)
3057 unsigned long flags
;
3058 unsigned long pfn
= page_to_pfn(page
);
3060 if (!free_unref_page_prepare(page
, pfn
))
3063 local_irq_save(flags
);
3064 free_unref_page_commit(page
, pfn
);
3065 local_irq_restore(flags
);
3069 * Free a list of 0-order pages
3071 void free_unref_page_list(struct list_head
*list
)
3073 struct page
*page
, *next
;
3074 unsigned long flags
, pfn
;
3075 int batch_count
= 0;
3077 /* Prepare pages for freeing */
3078 list_for_each_entry_safe(page
, next
, list
, lru
) {
3079 pfn
= page_to_pfn(page
);
3080 if (!free_unref_page_prepare(page
, pfn
))
3081 list_del(&page
->lru
);
3082 set_page_private(page
, pfn
);
3085 local_irq_save(flags
);
3086 list_for_each_entry_safe(page
, next
, list
, lru
) {
3087 unsigned long pfn
= page_private(page
);
3089 set_page_private(page
, 0);
3090 trace_mm_page_free_batched(page
);
3091 free_unref_page_commit(page
, pfn
);
3094 * Guard against excessive IRQ disabled times when we get
3095 * a large list of pages to free.
3097 if (++batch_count
== SWAP_CLUSTER_MAX
) {
3098 local_irq_restore(flags
);
3100 local_irq_save(flags
);
3103 local_irq_restore(flags
);
3107 * split_page takes a non-compound higher-order page, and splits it into
3108 * n (1<<order) sub-pages: page[0..n]
3109 * Each sub-page must be freed individually.
3111 * Note: this is probably too low level an operation for use in drivers.
3112 * Please consult with lkml before using this in your driver.
3114 void split_page(struct page
*page
, unsigned int order
)
3118 VM_BUG_ON_PAGE(PageCompound(page
), page
);
3119 VM_BUG_ON_PAGE(!page_count(page
), page
);
3121 for (i
= 1; i
< (1 << order
); i
++)
3122 set_page_refcounted(page
+ i
);
3123 split_page_owner(page
, order
);
3125 EXPORT_SYMBOL_GPL(split_page
);
3127 int __isolate_free_page(struct page
*page
, unsigned int order
)
3129 struct free_area
*area
= &page_zone(page
)->free_area
[order
];
3130 unsigned long watermark
;
3134 BUG_ON(!PageBuddy(page
));
3136 zone
= page_zone(page
);
3137 mt
= get_pageblock_migratetype(page
);
3139 if (!is_migrate_isolate(mt
)) {
3141 * Obey watermarks as if the page was being allocated. We can
3142 * emulate a high-order watermark check with a raised order-0
3143 * watermark, because we already know our high-order page
3146 watermark
= zone
->_watermark
[WMARK_MIN
] + (1UL << order
);
3147 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
3150 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
3153 /* Remove page from free list */
3155 del_page_from_free_area(page
, area
);
3158 * Set the pageblock if the isolated page is at least half of a
3161 if (order
>= pageblock_order
- 1) {
3162 struct page
*endpage
= page
+ (1 << order
) - 1;
3163 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
3164 int mt
= get_pageblock_migratetype(page
);
3165 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
3166 && !is_migrate_highatomic(mt
))
3167 set_pageblock_migratetype(page
,
3173 return 1UL << order
;
3177 * Update NUMA hit/miss statistics
3179 * Must be called with interrupts disabled.
3181 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
3184 enum numa_stat_item local_stat
= NUMA_LOCAL
;
3186 /* skip numa counters update if numa stats is disabled */
3187 if (!static_branch_likely(&vm_numa_stat_key
))
3190 if (zone_to_nid(z
) != numa_node_id())
3191 local_stat
= NUMA_OTHER
;
3193 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
3194 __inc_numa_state(z
, NUMA_HIT
);
3196 __inc_numa_state(z
, NUMA_MISS
);
3197 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
3199 __inc_numa_state(z
, local_stat
);
3203 /* Remove page from the per-cpu list, caller must protect the list */
3204 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
3205 unsigned int alloc_flags
,
3206 struct per_cpu_pages
*pcp
,
3207 struct list_head
*list
)
3212 if (list_empty(list
)) {
3213 pcp
->count
+= rmqueue_bulk(zone
, 0,
3215 migratetype
, alloc_flags
);
3216 if (unlikely(list_empty(list
)))
3220 page
= list_first_entry(list
, struct page
, lru
);
3221 list_del(&page
->lru
);
3223 } while (check_new_pcp(page
));
3228 /* Lock and remove page from the per-cpu list */
3229 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
3230 struct zone
*zone
, gfp_t gfp_flags
,
3231 int migratetype
, unsigned int alloc_flags
)
3233 struct per_cpu_pages
*pcp
;
3234 struct list_head
*list
;
3236 unsigned long flags
;
3238 local_irq_save(flags
);
3239 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3240 list
= &pcp
->lists
[migratetype
];
3241 page
= __rmqueue_pcplist(zone
, migratetype
, alloc_flags
, pcp
, list
);
3243 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1);
3244 zone_statistics(preferred_zone
, zone
);
3246 local_irq_restore(flags
);
3251 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3254 struct page
*rmqueue(struct zone
*preferred_zone
,
3255 struct zone
*zone
, unsigned int order
,
3256 gfp_t gfp_flags
, unsigned int alloc_flags
,
3259 unsigned long flags
;
3262 if (likely(order
== 0)) {
3263 page
= rmqueue_pcplist(preferred_zone
, zone
, gfp_flags
,
3264 migratetype
, alloc_flags
);
3269 * We most definitely don't want callers attempting to
3270 * allocate greater than order-1 page units with __GFP_NOFAIL.
3272 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
3273 spin_lock_irqsave(&zone
->lock
, flags
);
3277 if (alloc_flags
& ALLOC_HARDER
) {
3278 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
3280 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
3283 page
= __rmqueue(zone
, order
, migratetype
, alloc_flags
);
3284 } while (page
&& check_new_pages(page
, order
));
3285 spin_unlock(&zone
->lock
);
3288 __mod_zone_freepage_state(zone
, -(1 << order
),
3289 get_pcppage_migratetype(page
));
3291 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3292 zone_statistics(preferred_zone
, zone
);
3293 local_irq_restore(flags
);
3296 /* Separate test+clear to avoid unnecessary atomics */
3297 if (test_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
)) {
3298 clear_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
3299 wakeup_kswapd(zone
, 0, 0, zone_idx(zone
));
3302 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3306 local_irq_restore(flags
);
3310 #ifdef CONFIG_FAIL_PAGE_ALLOC
3313 struct fault_attr attr
;
3315 bool ignore_gfp_highmem
;
3316 bool ignore_gfp_reclaim
;
3318 } fail_page_alloc
= {
3319 .attr
= FAULT_ATTR_INITIALIZER
,
3320 .ignore_gfp_reclaim
= true,
3321 .ignore_gfp_highmem
= true,
3325 static int __init
setup_fail_page_alloc(char *str
)
3327 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
3329 __setup("fail_page_alloc=", setup_fail_page_alloc
);
3331 static bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3333 if (order
< fail_page_alloc
.min_order
)
3335 if (gfp_mask
& __GFP_NOFAIL
)
3337 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
3339 if (fail_page_alloc
.ignore_gfp_reclaim
&&
3340 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
3343 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
3346 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3348 static int __init
fail_page_alloc_debugfs(void)
3350 umode_t mode
= S_IFREG
| 0600;
3353 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
3354 &fail_page_alloc
.attr
);
3356 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3357 &fail_page_alloc
.ignore_gfp_reclaim
);
3358 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
3359 &fail_page_alloc
.ignore_gfp_highmem
);
3360 debugfs_create_u32("min-order", mode
, dir
, &fail_page_alloc
.min_order
);
3365 late_initcall(fail_page_alloc_debugfs
);
3367 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3369 #else /* CONFIG_FAIL_PAGE_ALLOC */
3371 static inline bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3376 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3378 static noinline
bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3380 return __should_fail_alloc_page(gfp_mask
, order
);
3382 ALLOW_ERROR_INJECTION(should_fail_alloc_page
, TRUE
);
3385 * Return true if free base pages are above 'mark'. For high-order checks it
3386 * will return true of the order-0 watermark is reached and there is at least
3387 * one free page of a suitable size. Checking now avoids taking the zone lock
3388 * to check in the allocation paths if no pages are free.
3390 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3391 int classzone_idx
, unsigned int alloc_flags
,
3396 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3398 /* free_pages may go negative - that's OK */
3399 free_pages
-= (1 << order
) - 1;
3401 if (alloc_flags
& ALLOC_HIGH
)
3405 * If the caller does not have rights to ALLOC_HARDER then subtract
3406 * the high-atomic reserves. This will over-estimate the size of the
3407 * atomic reserve but it avoids a search.
3409 if (likely(!alloc_harder
)) {
3410 free_pages
-= z
->nr_reserved_highatomic
;
3413 * OOM victims can try even harder than normal ALLOC_HARDER
3414 * users on the grounds that it's definitely going to be in
3415 * the exit path shortly and free memory. Any allocation it
3416 * makes during the free path will be small and short-lived.
3418 if (alloc_flags
& ALLOC_OOM
)
3426 /* If allocation can't use CMA areas don't use free CMA pages */
3427 if (!(alloc_flags
& ALLOC_CMA
))
3428 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3432 * Check watermarks for an order-0 allocation request. If these
3433 * are not met, then a high-order request also cannot go ahead
3434 * even if a suitable page happened to be free.
3436 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
3439 /* If this is an order-0 request then the watermark is fine */
3443 /* For a high-order request, check at least one suitable page is free */
3444 for (o
= order
; o
< MAX_ORDER
; o
++) {
3445 struct free_area
*area
= &z
->free_area
[o
];
3451 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3452 if (!free_area_empty(area
, mt
))
3457 if ((alloc_flags
& ALLOC_CMA
) &&
3458 !free_area_empty(area
, MIGRATE_CMA
)) {
3463 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
3469 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3470 int classzone_idx
, unsigned int alloc_flags
)
3472 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3473 zone_page_state(z
, NR_FREE_PAGES
));
3476 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3477 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3479 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3483 /* If allocation can't use CMA areas don't use free CMA pages */
3484 if (!(alloc_flags
& ALLOC_CMA
))
3485 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3489 * Fast check for order-0 only. If this fails then the reserves
3490 * need to be calculated. There is a corner case where the check
3491 * passes but only the high-order atomic reserve are free. If
3492 * the caller is !atomic then it'll uselessly search the free
3493 * list. That corner case is then slower but it is harmless.
3495 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3498 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3502 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3503 unsigned long mark
, int classzone_idx
)
3505 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3507 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3508 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3510 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3515 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3517 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3518 node_reclaim_distance
;
3520 #else /* CONFIG_NUMA */
3521 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3525 #endif /* CONFIG_NUMA */
3528 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3529 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3530 * premature use of a lower zone may cause lowmem pressure problems that
3531 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3532 * probably too small. It only makes sense to spread allocations to avoid
3533 * fragmentation between the Normal and DMA32 zones.
3535 static inline unsigned int
3536 alloc_flags_nofragment(struct zone
*zone
, gfp_t gfp_mask
)
3538 unsigned int alloc_flags
= 0;
3540 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3541 alloc_flags
|= ALLOC_KSWAPD
;
3543 #ifdef CONFIG_ZONE_DMA32
3547 if (zone_idx(zone
) != ZONE_NORMAL
)
3551 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3552 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3553 * on UMA that if Normal is populated then so is DMA32.
3555 BUILD_BUG_ON(ZONE_NORMAL
- ZONE_DMA32
!= 1);
3556 if (nr_online_nodes
> 1 && !populated_zone(--zone
))
3559 alloc_flags
|= ALLOC_NOFRAGMENT
;
3560 #endif /* CONFIG_ZONE_DMA32 */
3565 * get_page_from_freelist goes through the zonelist trying to allocate
3568 static struct page
*
3569 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3570 const struct alloc_context
*ac
)
3574 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3579 * Scan zonelist, looking for a zone with enough free.
3580 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3582 no_fallback
= alloc_flags
& ALLOC_NOFRAGMENT
;
3583 z
= ac
->preferred_zoneref
;
3584 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3589 if (cpusets_enabled() &&
3590 (alloc_flags
& ALLOC_CPUSET
) &&
3591 !__cpuset_zone_allowed(zone
, gfp_mask
))
3594 * When allocating a page cache page for writing, we
3595 * want to get it from a node that is within its dirty
3596 * limit, such that no single node holds more than its
3597 * proportional share of globally allowed dirty pages.
3598 * The dirty limits take into account the node's
3599 * lowmem reserves and high watermark so that kswapd
3600 * should be able to balance it without having to
3601 * write pages from its LRU list.
3603 * XXX: For now, allow allocations to potentially
3604 * exceed the per-node dirty limit in the slowpath
3605 * (spread_dirty_pages unset) before going into reclaim,
3606 * which is important when on a NUMA setup the allowed
3607 * nodes are together not big enough to reach the
3608 * global limit. The proper fix for these situations
3609 * will require awareness of nodes in the
3610 * dirty-throttling and the flusher threads.
3612 if (ac
->spread_dirty_pages
) {
3613 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3616 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3617 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3622 if (no_fallback
&& nr_online_nodes
> 1 &&
3623 zone
!= ac
->preferred_zoneref
->zone
) {
3627 * If moving to a remote node, retry but allow
3628 * fragmenting fallbacks. Locality is more important
3629 * than fragmentation avoidance.
3631 local_nid
= zone_to_nid(ac
->preferred_zoneref
->zone
);
3632 if (zone_to_nid(zone
) != local_nid
) {
3633 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3638 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
);
3639 if (!zone_watermark_fast(zone
, order
, mark
,
3640 ac_classzone_idx(ac
), alloc_flags
)) {
3643 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3645 * Watermark failed for this zone, but see if we can
3646 * grow this zone if it contains deferred pages.
3648 if (static_branch_unlikely(&deferred_pages
)) {
3649 if (_deferred_grow_zone(zone
, order
))
3653 /* Checked here to keep the fast path fast */
3654 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3655 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3658 if (node_reclaim_mode
== 0 ||
3659 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3662 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3664 case NODE_RECLAIM_NOSCAN
:
3667 case NODE_RECLAIM_FULL
:
3668 /* scanned but unreclaimable */
3671 /* did we reclaim enough */
3672 if (zone_watermark_ok(zone
, order
, mark
,
3673 ac_classzone_idx(ac
), alloc_flags
))
3681 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3682 gfp_mask
, alloc_flags
, ac
->migratetype
);
3684 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3687 * If this is a high-order atomic allocation then check
3688 * if the pageblock should be reserved for the future
3690 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3691 reserve_highatomic_pageblock(page
, zone
, order
);
3695 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3696 /* Try again if zone has deferred pages */
3697 if (static_branch_unlikely(&deferred_pages
)) {
3698 if (_deferred_grow_zone(zone
, order
))
3706 * It's possible on a UMA machine to get through all zones that are
3707 * fragmented. If avoiding fragmentation, reset and try again.
3710 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3717 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3719 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3722 * This documents exceptions given to allocations in certain
3723 * contexts that are allowed to allocate outside current's set
3726 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3727 if (tsk_is_oom_victim(current
) ||
3728 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3729 filter
&= ~SHOW_MEM_FILTER_NODES
;
3730 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3731 filter
&= ~SHOW_MEM_FILTER_NODES
;
3733 show_mem(filter
, nodemask
);
3736 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3738 struct va_format vaf
;
3740 static DEFINE_RATELIMIT_STATE(nopage_rs
, 10*HZ
, 1);
3742 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3745 va_start(args
, fmt
);
3748 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3749 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3750 nodemask_pr_args(nodemask
));
3753 cpuset_print_current_mems_allowed();
3756 warn_alloc_show_mem(gfp_mask
, nodemask
);
3759 static inline struct page
*
3760 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3761 unsigned int alloc_flags
,
3762 const struct alloc_context
*ac
)
3766 page
= get_page_from_freelist(gfp_mask
, order
,
3767 alloc_flags
|ALLOC_CPUSET
, ac
);
3769 * fallback to ignore cpuset restriction if our nodes
3773 page
= get_page_from_freelist(gfp_mask
, order
,
3779 static inline struct page
*
3780 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3781 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3783 struct oom_control oc
= {
3784 .zonelist
= ac
->zonelist
,
3785 .nodemask
= ac
->nodemask
,
3787 .gfp_mask
= gfp_mask
,
3792 *did_some_progress
= 0;
3795 * Acquire the oom lock. If that fails, somebody else is
3796 * making progress for us.
3798 if (!mutex_trylock(&oom_lock
)) {
3799 *did_some_progress
= 1;
3800 schedule_timeout_uninterruptible(1);
3805 * Go through the zonelist yet one more time, keep very high watermark
3806 * here, this is only to catch a parallel oom killing, we must fail if
3807 * we're still under heavy pressure. But make sure that this reclaim
3808 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3809 * allocation which will never fail due to oom_lock already held.
3811 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3812 ~__GFP_DIRECT_RECLAIM
, order
,
3813 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3817 /* Coredumps can quickly deplete all memory reserves */
3818 if (current
->flags
& PF_DUMPCORE
)
3820 /* The OOM killer will not help higher order allocs */
3821 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3824 * We have already exhausted all our reclaim opportunities without any
3825 * success so it is time to admit defeat. We will skip the OOM killer
3826 * because it is very likely that the caller has a more reasonable
3827 * fallback than shooting a random task.
3829 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3831 /* The OOM killer does not needlessly kill tasks for lowmem */
3832 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3834 if (pm_suspended_storage())
3837 * XXX: GFP_NOFS allocations should rather fail than rely on
3838 * other request to make a forward progress.
3839 * We are in an unfortunate situation where out_of_memory cannot
3840 * do much for this context but let's try it to at least get
3841 * access to memory reserved if the current task is killed (see
3842 * out_of_memory). Once filesystems are ready to handle allocation
3843 * failures more gracefully we should just bail out here.
3846 /* The OOM killer may not free memory on a specific node */
3847 if (gfp_mask
& __GFP_THISNODE
)
3850 /* Exhausted what can be done so it's blame time */
3851 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3852 *did_some_progress
= 1;
3855 * Help non-failing allocations by giving them access to memory
3858 if (gfp_mask
& __GFP_NOFAIL
)
3859 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3860 ALLOC_NO_WATERMARKS
, ac
);
3863 mutex_unlock(&oom_lock
);
3868 * Maximum number of compaction retries wit a progress before OOM
3869 * killer is consider as the only way to move forward.
3871 #define MAX_COMPACT_RETRIES 16
3873 #ifdef CONFIG_COMPACTION
3874 /* Try memory compaction for high-order allocations before reclaim */
3875 static struct page
*
3876 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3877 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3878 enum compact_priority prio
, enum compact_result
*compact_result
)
3880 struct page
*page
= NULL
;
3881 unsigned long pflags
;
3882 unsigned int noreclaim_flag
;
3887 psi_memstall_enter(&pflags
);
3888 noreclaim_flag
= memalloc_noreclaim_save();
3890 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3893 memalloc_noreclaim_restore(noreclaim_flag
);
3894 psi_memstall_leave(&pflags
);
3897 * At least in one zone compaction wasn't deferred or skipped, so let's
3898 * count a compaction stall
3900 count_vm_event(COMPACTSTALL
);
3902 /* Prep a captured page if available */
3904 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3906 /* Try get a page from the freelist if available */
3908 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3911 struct zone
*zone
= page_zone(page
);
3913 zone
->compact_blockskip_flush
= false;
3914 compaction_defer_reset(zone
, order
, true);
3915 count_vm_event(COMPACTSUCCESS
);
3920 * It's bad if compaction run occurs and fails. The most likely reason
3921 * is that pages exist, but not enough to satisfy watermarks.
3923 count_vm_event(COMPACTFAIL
);
3931 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3932 enum compact_result compact_result
,
3933 enum compact_priority
*compact_priority
,
3934 int *compaction_retries
)
3936 int max_retries
= MAX_COMPACT_RETRIES
;
3939 int retries
= *compaction_retries
;
3940 enum compact_priority priority
= *compact_priority
;
3945 if (compaction_made_progress(compact_result
))
3946 (*compaction_retries
)++;
3949 * compaction considers all the zone as desperately out of memory
3950 * so it doesn't really make much sense to retry except when the
3951 * failure could be caused by insufficient priority
3953 if (compaction_failed(compact_result
))
3954 goto check_priority
;
3957 * compaction was skipped because there are not enough order-0 pages
3958 * to work with, so we retry only if it looks like reclaim can help.
3960 if (compaction_needs_reclaim(compact_result
)) {
3961 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3966 * make sure the compaction wasn't deferred or didn't bail out early
3967 * due to locks contention before we declare that we should give up.
3968 * But the next retry should use a higher priority if allowed, so
3969 * we don't just keep bailing out endlessly.
3971 if (compaction_withdrawn(compact_result
)) {
3972 goto check_priority
;
3976 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3977 * costly ones because they are de facto nofail and invoke OOM
3978 * killer to move on while costly can fail and users are ready
3979 * to cope with that. 1/4 retries is rather arbitrary but we
3980 * would need much more detailed feedback from compaction to
3981 * make a better decision.
3983 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3985 if (*compaction_retries
<= max_retries
) {
3991 * Make sure there are attempts at the highest priority if we exhausted
3992 * all retries or failed at the lower priorities.
3995 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3996 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3998 if (*compact_priority
> min_priority
) {
3999 (*compact_priority
)--;
4000 *compaction_retries
= 0;
4004 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
4008 static inline struct page
*
4009 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
4010 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4011 enum compact_priority prio
, enum compact_result
*compact_result
)
4013 *compact_result
= COMPACT_SKIPPED
;
4018 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
4019 enum compact_result compact_result
,
4020 enum compact_priority
*compact_priority
,
4021 int *compaction_retries
)
4026 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
4030 * There are setups with compaction disabled which would prefer to loop
4031 * inside the allocator rather than hit the oom killer prematurely.
4032 * Let's give them a good hope and keep retrying while the order-0
4033 * watermarks are OK.
4035 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
4037 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
4038 ac_classzone_idx(ac
), alloc_flags
))
4043 #endif /* CONFIG_COMPACTION */
4045 #ifdef CONFIG_LOCKDEP
4046 static struct lockdep_map __fs_reclaim_map
=
4047 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
4049 static bool __need_fs_reclaim(gfp_t gfp_mask
)
4051 gfp_mask
= current_gfp_context(gfp_mask
);
4053 /* no reclaim without waiting on it */
4054 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
4057 /* this guy won't enter reclaim */
4058 if (current
->flags
& PF_MEMALLOC
)
4061 /* We're only interested __GFP_FS allocations for now */
4062 if (!(gfp_mask
& __GFP_FS
))
4065 if (gfp_mask
& __GFP_NOLOCKDEP
)
4071 void __fs_reclaim_acquire(void)
4073 lock_map_acquire(&__fs_reclaim_map
);
4076 void __fs_reclaim_release(void)
4078 lock_map_release(&__fs_reclaim_map
);
4081 void fs_reclaim_acquire(gfp_t gfp_mask
)
4083 if (__need_fs_reclaim(gfp_mask
))
4084 __fs_reclaim_acquire();
4086 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
4088 void fs_reclaim_release(gfp_t gfp_mask
)
4090 if (__need_fs_reclaim(gfp_mask
))
4091 __fs_reclaim_release();
4093 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
4096 /* Perform direct synchronous page reclaim */
4098 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
4099 const struct alloc_context
*ac
)
4102 unsigned int noreclaim_flag
;
4103 unsigned long pflags
;
4107 /* We now go into synchronous reclaim */
4108 cpuset_memory_pressure_bump();
4109 psi_memstall_enter(&pflags
);
4110 fs_reclaim_acquire(gfp_mask
);
4111 noreclaim_flag
= memalloc_noreclaim_save();
4113 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
4116 memalloc_noreclaim_restore(noreclaim_flag
);
4117 fs_reclaim_release(gfp_mask
);
4118 psi_memstall_leave(&pflags
);
4125 /* The really slow allocator path where we enter direct reclaim */
4126 static inline struct page
*
4127 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
4128 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4129 unsigned long *did_some_progress
)
4131 struct page
*page
= NULL
;
4132 bool drained
= false;
4134 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
4135 if (unlikely(!(*did_some_progress
)))
4139 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4142 * If an allocation failed after direct reclaim, it could be because
4143 * pages are pinned on the per-cpu lists or in high alloc reserves.
4144 * Shrink them them and try again
4146 if (!page
&& !drained
) {
4147 unreserve_highatomic_pageblock(ac
, false);
4148 drain_all_pages(NULL
);
4156 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
4157 const struct alloc_context
*ac
)
4161 pg_data_t
*last_pgdat
= NULL
;
4162 enum zone_type high_zoneidx
= ac
->high_zoneidx
;
4164 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, high_zoneidx
,
4166 if (last_pgdat
!= zone
->zone_pgdat
)
4167 wakeup_kswapd(zone
, gfp_mask
, order
, high_zoneidx
);
4168 last_pgdat
= zone
->zone_pgdat
;
4172 static inline unsigned int
4173 gfp_to_alloc_flags(gfp_t gfp_mask
)
4175 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
4177 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4178 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
4181 * The caller may dip into page reserves a bit more if the caller
4182 * cannot run direct reclaim, or if the caller has realtime scheduling
4183 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4184 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4186 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
4188 if (gfp_mask
& __GFP_ATOMIC
) {
4190 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4191 * if it can't schedule.
4193 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
4194 alloc_flags
|= ALLOC_HARDER
;
4196 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4197 * comment for __cpuset_node_allowed().
4199 alloc_flags
&= ~ALLOC_CPUSET
;
4200 } else if (unlikely(rt_task(current
)) && !in_interrupt())
4201 alloc_flags
|= ALLOC_HARDER
;
4203 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4204 alloc_flags
|= ALLOC_KSWAPD
;
4207 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
4208 alloc_flags
|= ALLOC_CMA
;
4213 static bool oom_reserves_allowed(struct task_struct
*tsk
)
4215 if (!tsk_is_oom_victim(tsk
))
4219 * !MMU doesn't have oom reaper so give access to memory reserves
4220 * only to the thread with TIF_MEMDIE set
4222 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
4229 * Distinguish requests which really need access to full memory
4230 * reserves from oom victims which can live with a portion of it
4232 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
4234 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
4236 if (gfp_mask
& __GFP_MEMALLOC
)
4237 return ALLOC_NO_WATERMARKS
;
4238 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
4239 return ALLOC_NO_WATERMARKS
;
4240 if (!in_interrupt()) {
4241 if (current
->flags
& PF_MEMALLOC
)
4242 return ALLOC_NO_WATERMARKS
;
4243 else if (oom_reserves_allowed(current
))
4250 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
4252 return !!__gfp_pfmemalloc_flags(gfp_mask
);
4256 * Checks whether it makes sense to retry the reclaim to make a forward progress
4257 * for the given allocation request.
4259 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4260 * without success, or when we couldn't even meet the watermark if we
4261 * reclaimed all remaining pages on the LRU lists.
4263 * Returns true if a retry is viable or false to enter the oom path.
4266 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
4267 struct alloc_context
*ac
, int alloc_flags
,
4268 bool did_some_progress
, int *no_progress_loops
)
4275 * Costly allocations might have made a progress but this doesn't mean
4276 * their order will become available due to high fragmentation so
4277 * always increment the no progress counter for them
4279 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
4280 *no_progress_loops
= 0;
4282 (*no_progress_loops
)++;
4285 * Make sure we converge to OOM if we cannot make any progress
4286 * several times in the row.
4288 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
4289 /* Before OOM, exhaust highatomic_reserve */
4290 return unreserve_highatomic_pageblock(ac
, true);
4294 * Keep reclaiming pages while there is a chance this will lead
4295 * somewhere. If none of the target zones can satisfy our allocation
4296 * request even if all reclaimable pages are considered then we are
4297 * screwed and have to go OOM.
4299 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
4301 unsigned long available
;
4302 unsigned long reclaimable
;
4303 unsigned long min_wmark
= min_wmark_pages(zone
);
4306 available
= reclaimable
= zone_reclaimable_pages(zone
);
4307 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
4310 * Would the allocation succeed if we reclaimed all
4311 * reclaimable pages?
4313 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
4314 ac_classzone_idx(ac
), alloc_flags
, available
);
4315 trace_reclaim_retry_zone(z
, order
, reclaimable
,
4316 available
, min_wmark
, *no_progress_loops
, wmark
);
4319 * If we didn't make any progress and have a lot of
4320 * dirty + writeback pages then we should wait for
4321 * an IO to complete to slow down the reclaim and
4322 * prevent from pre mature OOM
4324 if (!did_some_progress
) {
4325 unsigned long write_pending
;
4327 write_pending
= zone_page_state_snapshot(zone
,
4328 NR_ZONE_WRITE_PENDING
);
4330 if (2 * write_pending
> reclaimable
) {
4331 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4343 * Memory allocation/reclaim might be called from a WQ context and the
4344 * current implementation of the WQ concurrency control doesn't
4345 * recognize that a particular WQ is congested if the worker thread is
4346 * looping without ever sleeping. Therefore we have to do a short sleep
4347 * here rather than calling cond_resched().
4349 if (current
->flags
& PF_WQ_WORKER
)
4350 schedule_timeout_uninterruptible(1);
4357 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4360 * It's possible that cpuset's mems_allowed and the nodemask from
4361 * mempolicy don't intersect. This should be normally dealt with by
4362 * policy_nodemask(), but it's possible to race with cpuset update in
4363 * such a way the check therein was true, and then it became false
4364 * before we got our cpuset_mems_cookie here.
4365 * This assumes that for all allocations, ac->nodemask can come only
4366 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4367 * when it does not intersect with the cpuset restrictions) or the
4368 * caller can deal with a violated nodemask.
4370 if (cpusets_enabled() && ac
->nodemask
&&
4371 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4372 ac
->nodemask
= NULL
;
4377 * When updating a task's mems_allowed or mempolicy nodemask, it is
4378 * possible to race with parallel threads in such a way that our
4379 * allocation can fail while the mask is being updated. If we are about
4380 * to fail, check if the cpuset changed during allocation and if so,
4383 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4389 static inline struct page
*
4390 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4391 struct alloc_context
*ac
)
4393 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4394 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4395 struct page
*page
= NULL
;
4396 unsigned int alloc_flags
;
4397 unsigned long did_some_progress
;
4398 enum compact_priority compact_priority
;
4399 enum compact_result compact_result
;
4400 int compaction_retries
;
4401 int no_progress_loops
;
4402 unsigned int cpuset_mems_cookie
;
4406 * We also sanity check to catch abuse of atomic reserves being used by
4407 * callers that are not in atomic context.
4409 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
4410 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
4411 gfp_mask
&= ~__GFP_ATOMIC
;
4414 compaction_retries
= 0;
4415 no_progress_loops
= 0;
4416 compact_priority
= DEF_COMPACT_PRIORITY
;
4417 cpuset_mems_cookie
= read_mems_allowed_begin();
4420 * The fast path uses conservative alloc_flags to succeed only until
4421 * kswapd needs to be woken up, and to avoid the cost of setting up
4422 * alloc_flags precisely. So we do that now.
4424 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
4427 * We need to recalculate the starting point for the zonelist iterator
4428 * because we might have used different nodemask in the fast path, or
4429 * there was a cpuset modification and we are retrying - otherwise we
4430 * could end up iterating over non-eligible zones endlessly.
4432 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4433 ac
->high_zoneidx
, ac
->nodemask
);
4434 if (!ac
->preferred_zoneref
->zone
)
4437 if (alloc_flags
& ALLOC_KSWAPD
)
4438 wake_all_kswapds(order
, gfp_mask
, ac
);
4441 * The adjusted alloc_flags might result in immediate success, so try
4444 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4449 * For costly allocations, try direct compaction first, as it's likely
4450 * that we have enough base pages and don't need to reclaim. For non-
4451 * movable high-order allocations, do that as well, as compaction will
4452 * try prevent permanent fragmentation by migrating from blocks of the
4454 * Don't try this for allocations that are allowed to ignore
4455 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4457 if (can_direct_reclaim
&&
4459 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4460 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4461 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4463 INIT_COMPACT_PRIORITY
,
4469 * Checks for costly allocations with __GFP_NORETRY, which
4470 * includes some THP page fault allocations
4472 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4474 * If allocating entire pageblock(s) and compaction
4475 * failed because all zones are below low watermarks
4476 * or is prohibited because it recently failed at this
4477 * order, fail immediately unless the allocator has
4478 * requested compaction and reclaim retry.
4481 * - potentially very expensive because zones are far
4482 * below their low watermarks or this is part of very
4483 * bursty high order allocations,
4484 * - not guaranteed to help because isolate_freepages()
4485 * may not iterate over freed pages as part of its
4487 * - unlikely to make entire pageblocks free on its
4490 if (compact_result
== COMPACT_SKIPPED
||
4491 compact_result
== COMPACT_DEFERRED
)
4495 * Looks like reclaim/compaction is worth trying, but
4496 * sync compaction could be very expensive, so keep
4497 * using async compaction.
4499 compact_priority
= INIT_COMPACT_PRIORITY
;
4504 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4505 if (alloc_flags
& ALLOC_KSWAPD
)
4506 wake_all_kswapds(order
, gfp_mask
, ac
);
4508 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4510 alloc_flags
= reserve_flags
;
4513 * Reset the nodemask and zonelist iterators if memory policies can be
4514 * ignored. These allocations are high priority and system rather than
4517 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4518 ac
->nodemask
= NULL
;
4519 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4520 ac
->high_zoneidx
, ac
->nodemask
);
4523 /* Attempt with potentially adjusted zonelist and alloc_flags */
4524 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4528 /* Caller is not willing to reclaim, we can't balance anything */
4529 if (!can_direct_reclaim
)
4532 /* Avoid recursion of direct reclaim */
4533 if (current
->flags
& PF_MEMALLOC
)
4536 /* Try direct reclaim and then allocating */
4537 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4538 &did_some_progress
);
4542 /* Try direct compaction and then allocating */
4543 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4544 compact_priority
, &compact_result
);
4548 /* Do not loop if specifically requested */
4549 if (gfp_mask
& __GFP_NORETRY
)
4553 * Do not retry costly high order allocations unless they are
4554 * __GFP_RETRY_MAYFAIL
4556 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4559 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4560 did_some_progress
> 0, &no_progress_loops
))
4564 * It doesn't make any sense to retry for the compaction if the order-0
4565 * reclaim is not able to make any progress because the current
4566 * implementation of the compaction depends on the sufficient amount
4567 * of free memory (see __compaction_suitable)
4569 if (did_some_progress
> 0 &&
4570 should_compact_retry(ac
, order
, alloc_flags
,
4571 compact_result
, &compact_priority
,
4572 &compaction_retries
))
4576 /* Deal with possible cpuset update races before we start OOM killing */
4577 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4580 /* Reclaim has failed us, start killing things */
4581 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4585 /* Avoid allocations with no watermarks from looping endlessly */
4586 if (tsk_is_oom_victim(current
) &&
4587 (alloc_flags
== ALLOC_OOM
||
4588 (gfp_mask
& __GFP_NOMEMALLOC
)))
4591 /* Retry as long as the OOM killer is making progress */
4592 if (did_some_progress
) {
4593 no_progress_loops
= 0;
4598 /* Deal with possible cpuset update races before we fail */
4599 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4603 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4606 if (gfp_mask
& __GFP_NOFAIL
) {
4608 * All existing users of the __GFP_NOFAIL are blockable, so warn
4609 * of any new users that actually require GFP_NOWAIT
4611 if (WARN_ON_ONCE(!can_direct_reclaim
))
4615 * PF_MEMALLOC request from this context is rather bizarre
4616 * because we cannot reclaim anything and only can loop waiting
4617 * for somebody to do a work for us
4619 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4622 * non failing costly orders are a hard requirement which we
4623 * are not prepared for much so let's warn about these users
4624 * so that we can identify them and convert them to something
4627 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4630 * Help non-failing allocations by giving them access to memory
4631 * reserves but do not use ALLOC_NO_WATERMARKS because this
4632 * could deplete whole memory reserves which would just make
4633 * the situation worse
4635 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4643 warn_alloc(gfp_mask
, ac
->nodemask
,
4644 "page allocation failure: order:%u", order
);
4649 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4650 int preferred_nid
, nodemask_t
*nodemask
,
4651 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4652 unsigned int *alloc_flags
)
4654 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4655 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4656 ac
->nodemask
= nodemask
;
4657 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4659 if (cpusets_enabled()) {
4660 *alloc_mask
|= __GFP_HARDWALL
;
4662 ac
->nodemask
= &cpuset_current_mems_allowed
;
4664 *alloc_flags
|= ALLOC_CPUSET
;
4667 fs_reclaim_acquire(gfp_mask
);
4668 fs_reclaim_release(gfp_mask
);
4670 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4672 if (should_fail_alloc_page(gfp_mask
, order
))
4675 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4676 *alloc_flags
|= ALLOC_CMA
;
4681 /* Determine whether to spread dirty pages and what the first usable zone */
4682 static inline void finalise_ac(gfp_t gfp_mask
, struct alloc_context
*ac
)
4684 /* Dirty zone balancing only done in the fast path */
4685 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4688 * The preferred zone is used for statistics but crucially it is
4689 * also used as the starting point for the zonelist iterator. It
4690 * may get reset for allocations that ignore memory policies.
4692 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4693 ac
->high_zoneidx
, ac
->nodemask
);
4697 * This is the 'heart' of the zoned buddy allocator.
4700 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4701 nodemask_t
*nodemask
)
4704 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4705 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4706 struct alloc_context ac
= { };
4709 * There are several places where we assume that the order value is sane
4710 * so bail out early if the request is out of bound.
4712 if (unlikely(order
>= MAX_ORDER
)) {
4713 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4717 gfp_mask
&= gfp_allowed_mask
;
4718 alloc_mask
= gfp_mask
;
4719 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4722 finalise_ac(gfp_mask
, &ac
);
4725 * Forbid the first pass from falling back to types that fragment
4726 * memory until all local zones are considered.
4728 alloc_flags
|= alloc_flags_nofragment(ac
.preferred_zoneref
->zone
, gfp_mask
);
4730 /* First allocation attempt */
4731 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4736 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4737 * resp. GFP_NOIO which has to be inherited for all allocation requests
4738 * from a particular context which has been marked by
4739 * memalloc_no{fs,io}_{save,restore}.
4741 alloc_mask
= current_gfp_context(gfp_mask
);
4742 ac
.spread_dirty_pages
= false;
4745 * Restore the original nodemask if it was potentially replaced with
4746 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4748 if (unlikely(ac
.nodemask
!= nodemask
))
4749 ac
.nodemask
= nodemask
;
4751 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4754 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4755 unlikely(__memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4756 __free_pages(page
, order
);
4760 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4764 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4767 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4768 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4769 * you need to access high mem.
4771 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4775 page
= alloc_pages(gfp_mask
& ~__GFP_HIGHMEM
, order
);
4778 return (unsigned long) page_address(page
);
4780 EXPORT_SYMBOL(__get_free_pages
);
4782 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4784 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4786 EXPORT_SYMBOL(get_zeroed_page
);
4788 static inline void free_the_page(struct page
*page
, unsigned int order
)
4790 if (order
== 0) /* Via pcp? */
4791 free_unref_page(page
);
4793 __free_pages_ok(page
, order
);
4796 void __free_pages(struct page
*page
, unsigned int order
)
4798 if (put_page_testzero(page
))
4799 free_the_page(page
, order
);
4801 EXPORT_SYMBOL(__free_pages
);
4803 void free_pages(unsigned long addr
, unsigned int order
)
4806 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4807 __free_pages(virt_to_page((void *)addr
), order
);
4811 EXPORT_SYMBOL(free_pages
);
4815 * An arbitrary-length arbitrary-offset area of memory which resides
4816 * within a 0 or higher order page. Multiple fragments within that page
4817 * are individually refcounted, in the page's reference counter.
4819 * The page_frag functions below provide a simple allocation framework for
4820 * page fragments. This is used by the network stack and network device
4821 * drivers to provide a backing region of memory for use as either an
4822 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4824 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4827 struct page
*page
= NULL
;
4828 gfp_t gfp
= gfp_mask
;
4830 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4831 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4833 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4834 PAGE_FRAG_CACHE_MAX_ORDER
);
4835 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4837 if (unlikely(!page
))
4838 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4840 nc
->va
= page
? page_address(page
) : NULL
;
4845 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4847 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4849 if (page_ref_sub_and_test(page
, count
))
4850 free_the_page(page
, compound_order(page
));
4852 EXPORT_SYMBOL(__page_frag_cache_drain
);
4854 void *page_frag_alloc(struct page_frag_cache
*nc
,
4855 unsigned int fragsz
, gfp_t gfp_mask
)
4857 unsigned int size
= PAGE_SIZE
;
4861 if (unlikely(!nc
->va
)) {
4863 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4867 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4868 /* if size can vary use size else just use PAGE_SIZE */
4871 /* Even if we own the page, we do not use atomic_set().
4872 * This would break get_page_unless_zero() users.
4874 page_ref_add(page
, PAGE_FRAG_CACHE_MAX_SIZE
);
4876 /* reset page count bias and offset to start of new frag */
4877 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4878 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
4882 offset
= nc
->offset
- fragsz
;
4883 if (unlikely(offset
< 0)) {
4884 page
= virt_to_page(nc
->va
);
4886 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4889 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4890 /* if size can vary use size else just use PAGE_SIZE */
4893 /* OK, page count is 0, we can safely set it */
4894 set_page_count(page
, PAGE_FRAG_CACHE_MAX_SIZE
+ 1);
4896 /* reset page count bias and offset to start of new frag */
4897 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
4898 offset
= size
- fragsz
;
4902 nc
->offset
= offset
;
4904 return nc
->va
+ offset
;
4906 EXPORT_SYMBOL(page_frag_alloc
);
4909 * Frees a page fragment allocated out of either a compound or order 0 page.
4911 void page_frag_free(void *addr
)
4913 struct page
*page
= virt_to_head_page(addr
);
4915 if (unlikely(put_page_testzero(page
)))
4916 free_the_page(page
, compound_order(page
));
4918 EXPORT_SYMBOL(page_frag_free
);
4920 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4924 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4925 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4927 split_page(virt_to_page((void *)addr
), order
);
4928 while (used
< alloc_end
) {
4933 return (void *)addr
;
4937 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4938 * @size: the number of bytes to allocate
4939 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4941 * This function is similar to alloc_pages(), except that it allocates the
4942 * minimum number of pages to satisfy the request. alloc_pages() can only
4943 * allocate memory in power-of-two pages.
4945 * This function is also limited by MAX_ORDER.
4947 * Memory allocated by this function must be released by free_pages_exact().
4949 * Return: pointer to the allocated area or %NULL in case of error.
4951 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4953 unsigned int order
= get_order(size
);
4956 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
4957 gfp_mask
&= ~__GFP_COMP
;
4959 addr
= __get_free_pages(gfp_mask
, order
);
4960 return make_alloc_exact(addr
, order
, size
);
4962 EXPORT_SYMBOL(alloc_pages_exact
);
4965 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4967 * @nid: the preferred node ID where memory should be allocated
4968 * @size: the number of bytes to allocate
4969 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4971 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4974 * Return: pointer to the allocated area or %NULL in case of error.
4976 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4978 unsigned int order
= get_order(size
);
4981 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
4982 gfp_mask
&= ~__GFP_COMP
;
4984 p
= alloc_pages_node(nid
, gfp_mask
, order
);
4987 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4991 * free_pages_exact - release memory allocated via alloc_pages_exact()
4992 * @virt: the value returned by alloc_pages_exact.
4993 * @size: size of allocation, same value as passed to alloc_pages_exact().
4995 * Release the memory allocated by a previous call to alloc_pages_exact.
4997 void free_pages_exact(void *virt
, size_t size
)
4999 unsigned long addr
= (unsigned long)virt
;
5000 unsigned long end
= addr
+ PAGE_ALIGN(size
);
5002 while (addr
< end
) {
5007 EXPORT_SYMBOL(free_pages_exact
);
5010 * nr_free_zone_pages - count number of pages beyond high watermark
5011 * @offset: The zone index of the highest zone
5013 * nr_free_zone_pages() counts the number of pages which are beyond the
5014 * high watermark within all zones at or below a given zone index. For each
5015 * zone, the number of pages is calculated as:
5017 * nr_free_zone_pages = managed_pages - high_pages
5019 * Return: number of pages beyond high watermark.
5021 static unsigned long nr_free_zone_pages(int offset
)
5026 /* Just pick one node, since fallback list is circular */
5027 unsigned long sum
= 0;
5029 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
5031 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
5032 unsigned long size
= zone_managed_pages(zone
);
5033 unsigned long high
= high_wmark_pages(zone
);
5042 * nr_free_buffer_pages - count number of pages beyond high watermark
5044 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5045 * watermark within ZONE_DMA and ZONE_NORMAL.
5047 * Return: number of pages beyond high watermark within ZONE_DMA and
5050 unsigned long nr_free_buffer_pages(void)
5052 return nr_free_zone_pages(gfp_zone(GFP_USER
));
5054 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
5057 * nr_free_pagecache_pages - count number of pages beyond high watermark
5059 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5060 * high watermark within all zones.
5062 * Return: number of pages beyond high watermark within all zones.
5064 unsigned long nr_free_pagecache_pages(void)
5066 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
5069 static inline void show_node(struct zone
*zone
)
5071 if (IS_ENABLED(CONFIG_NUMA
))
5072 printk("Node %d ", zone_to_nid(zone
));
5075 long si_mem_available(void)
5078 unsigned long pagecache
;
5079 unsigned long wmark_low
= 0;
5080 unsigned long pages
[NR_LRU_LISTS
];
5081 unsigned long reclaimable
;
5085 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
5086 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
5089 wmark_low
+= low_wmark_pages(zone
);
5092 * Estimate the amount of memory available for userspace allocations,
5093 * without causing swapping.
5095 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
5098 * Not all the page cache can be freed, otherwise the system will
5099 * start swapping. Assume at least half of the page cache, or the
5100 * low watermark worth of cache, needs to stay.
5102 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
5103 pagecache
-= min(pagecache
/ 2, wmark_low
);
5104 available
+= pagecache
;
5107 * Part of the reclaimable slab and other kernel memory consists of
5108 * items that are in use, and cannot be freed. Cap this estimate at the
5111 reclaimable
= global_node_page_state(NR_SLAB_RECLAIMABLE
) +
5112 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE
);
5113 available
+= reclaimable
- min(reclaimable
/ 2, wmark_low
);
5119 EXPORT_SYMBOL_GPL(si_mem_available
);
5121 void si_meminfo(struct sysinfo
*val
)
5123 val
->totalram
= totalram_pages();
5124 val
->sharedram
= global_node_page_state(NR_SHMEM
);
5125 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
5126 val
->bufferram
= nr_blockdev_pages();
5127 val
->totalhigh
= totalhigh_pages();
5128 val
->freehigh
= nr_free_highpages();
5129 val
->mem_unit
= PAGE_SIZE
;
5132 EXPORT_SYMBOL(si_meminfo
);
5135 void si_meminfo_node(struct sysinfo
*val
, int nid
)
5137 int zone_type
; /* needs to be signed */
5138 unsigned long managed_pages
= 0;
5139 unsigned long managed_highpages
= 0;
5140 unsigned long free_highpages
= 0;
5141 pg_data_t
*pgdat
= NODE_DATA(nid
);
5143 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
5144 managed_pages
+= zone_managed_pages(&pgdat
->node_zones
[zone_type
]);
5145 val
->totalram
= managed_pages
;
5146 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
5147 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
5148 #ifdef CONFIG_HIGHMEM
5149 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
5150 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5152 if (is_highmem(zone
)) {
5153 managed_highpages
+= zone_managed_pages(zone
);
5154 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
5157 val
->totalhigh
= managed_highpages
;
5158 val
->freehigh
= free_highpages
;
5160 val
->totalhigh
= managed_highpages
;
5161 val
->freehigh
= free_highpages
;
5163 val
->mem_unit
= PAGE_SIZE
;
5168 * Determine whether the node should be displayed or not, depending on whether
5169 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5171 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
5173 if (!(flags
& SHOW_MEM_FILTER_NODES
))
5177 * no node mask - aka implicit memory numa policy. Do not bother with
5178 * the synchronization - read_mems_allowed_begin - because we do not
5179 * have to be precise here.
5182 nodemask
= &cpuset_current_mems_allowed
;
5184 return !node_isset(nid
, *nodemask
);
5187 #define K(x) ((x) << (PAGE_SHIFT-10))
5189 static void show_migration_types(unsigned char type
)
5191 static const char types
[MIGRATE_TYPES
] = {
5192 [MIGRATE_UNMOVABLE
] = 'U',
5193 [MIGRATE_MOVABLE
] = 'M',
5194 [MIGRATE_RECLAIMABLE
] = 'E',
5195 [MIGRATE_HIGHATOMIC
] = 'H',
5197 [MIGRATE_CMA
] = 'C',
5199 #ifdef CONFIG_MEMORY_ISOLATION
5200 [MIGRATE_ISOLATE
] = 'I',
5203 char tmp
[MIGRATE_TYPES
+ 1];
5207 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
5208 if (type
& (1 << i
))
5213 printk(KERN_CONT
"(%s) ", tmp
);
5217 * Show free area list (used inside shift_scroll-lock stuff)
5218 * We also calculate the percentage fragmentation. We do this by counting the
5219 * memory on each free list with the exception of the first item on the list.
5222 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5225 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
5227 unsigned long free_pcp
= 0;
5232 for_each_populated_zone(zone
) {
5233 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5236 for_each_online_cpu(cpu
)
5237 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5240 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5241 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5242 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5243 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5244 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5245 " free:%lu free_pcp:%lu free_cma:%lu\n",
5246 global_node_page_state(NR_ACTIVE_ANON
),
5247 global_node_page_state(NR_INACTIVE_ANON
),
5248 global_node_page_state(NR_ISOLATED_ANON
),
5249 global_node_page_state(NR_ACTIVE_FILE
),
5250 global_node_page_state(NR_INACTIVE_FILE
),
5251 global_node_page_state(NR_ISOLATED_FILE
),
5252 global_node_page_state(NR_UNEVICTABLE
),
5253 global_node_page_state(NR_FILE_DIRTY
),
5254 global_node_page_state(NR_WRITEBACK
),
5255 global_node_page_state(NR_UNSTABLE_NFS
),
5256 global_node_page_state(NR_SLAB_RECLAIMABLE
),
5257 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
5258 global_node_page_state(NR_FILE_MAPPED
),
5259 global_node_page_state(NR_SHMEM
),
5260 global_zone_page_state(NR_PAGETABLE
),
5261 global_zone_page_state(NR_BOUNCE
),
5262 global_zone_page_state(NR_FREE_PAGES
),
5264 global_zone_page_state(NR_FREE_CMA_PAGES
));
5266 for_each_online_pgdat(pgdat
) {
5267 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
5271 " active_anon:%lukB"
5272 " inactive_anon:%lukB"
5273 " active_file:%lukB"
5274 " inactive_file:%lukB"
5275 " unevictable:%lukB"
5276 " isolated(anon):%lukB"
5277 " isolated(file):%lukB"
5282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5284 " shmem_pmdmapped: %lukB"
5287 " writeback_tmp:%lukB"
5289 " all_unreclaimable? %s"
5292 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
5293 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
5294 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
5295 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
5296 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
5297 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
5298 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
5299 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
5300 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
5301 K(node_page_state(pgdat
, NR_WRITEBACK
)),
5302 K(node_page_state(pgdat
, NR_SHMEM
)),
5303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5304 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
5305 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
5307 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
5309 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
5310 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
5311 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
5315 for_each_populated_zone(zone
) {
5318 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5322 for_each_online_cpu(cpu
)
5323 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5332 " reserved_highatomic:%luKB"
5333 " active_anon:%lukB"
5334 " inactive_anon:%lukB"
5335 " active_file:%lukB"
5336 " inactive_file:%lukB"
5337 " unevictable:%lukB"
5338 " writepending:%lukB"
5342 " kernel_stack:%lukB"
5350 K(zone_page_state(zone
, NR_FREE_PAGES
)),
5351 K(min_wmark_pages(zone
)),
5352 K(low_wmark_pages(zone
)),
5353 K(high_wmark_pages(zone
)),
5354 K(zone
->nr_reserved_highatomic
),
5355 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
5356 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
5357 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
5358 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
5359 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
5360 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
5361 K(zone
->present_pages
),
5362 K(zone_managed_pages(zone
)),
5363 K(zone_page_state(zone
, NR_MLOCK
)),
5364 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
5365 K(zone_page_state(zone
, NR_PAGETABLE
)),
5366 K(zone_page_state(zone
, NR_BOUNCE
)),
5368 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
5369 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
5370 printk("lowmem_reserve[]:");
5371 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
5372 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
5373 printk(KERN_CONT
"\n");
5376 for_each_populated_zone(zone
) {
5378 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
5379 unsigned char types
[MAX_ORDER
];
5381 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5384 printk(KERN_CONT
"%s: ", zone
->name
);
5386 spin_lock_irqsave(&zone
->lock
, flags
);
5387 for (order
= 0; order
< MAX_ORDER
; order
++) {
5388 struct free_area
*area
= &zone
->free_area
[order
];
5391 nr
[order
] = area
->nr_free
;
5392 total
+= nr
[order
] << order
;
5395 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
5396 if (!free_area_empty(area
, type
))
5397 types
[order
] |= 1 << type
;
5400 spin_unlock_irqrestore(&zone
->lock
, flags
);
5401 for (order
= 0; order
< MAX_ORDER
; order
++) {
5402 printk(KERN_CONT
"%lu*%lukB ",
5403 nr
[order
], K(1UL) << order
);
5405 show_migration_types(types
[order
]);
5407 printk(KERN_CONT
"= %lukB\n", K(total
));
5410 hugetlb_show_meminfo();
5412 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
5414 show_swap_cache_info();
5417 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5419 zoneref
->zone
= zone
;
5420 zoneref
->zone_idx
= zone_idx(zone
);
5424 * Builds allocation fallback zone lists.
5426 * Add all populated zones of a node to the zonelist.
5428 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5431 enum zone_type zone_type
= MAX_NR_ZONES
;
5436 zone
= pgdat
->node_zones
+ zone_type
;
5437 if (managed_zone(zone
)) {
5438 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5439 check_highest_zone(zone_type
);
5441 } while (zone_type
);
5448 static int __parse_numa_zonelist_order(char *s
)
5451 * We used to support different zonlists modes but they turned
5452 * out to be just not useful. Let's keep the warning in place
5453 * if somebody still use the cmd line parameter so that we do
5454 * not fail it silently
5456 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5457 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5463 static __init
int setup_numa_zonelist_order(char *s
)
5468 return __parse_numa_zonelist_order(s
);
5470 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
5472 char numa_zonelist_order
[] = "Node";
5475 * sysctl handler for numa_zonelist_order
5477 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
5478 void __user
*buffer
, size_t *length
,
5485 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5486 str
= memdup_user_nul(buffer
, 16);
5488 return PTR_ERR(str
);
5490 ret
= __parse_numa_zonelist_order(str
);
5496 #define MAX_NODE_LOAD (nr_online_nodes)
5497 static int node_load
[MAX_NUMNODES
];
5500 * find_next_best_node - find the next node that should appear in a given node's fallback list
5501 * @node: node whose fallback list we're appending
5502 * @used_node_mask: nodemask_t of already used nodes
5504 * We use a number of factors to determine which is the next node that should
5505 * appear on a given node's fallback list. The node should not have appeared
5506 * already in @node's fallback list, and it should be the next closest node
5507 * according to the distance array (which contains arbitrary distance values
5508 * from each node to each node in the system), and should also prefer nodes
5509 * with no CPUs, since presumably they'll have very little allocation pressure
5510 * on them otherwise.
5512 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5514 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5517 int min_val
= INT_MAX
;
5518 int best_node
= NUMA_NO_NODE
;
5519 const struct cpumask
*tmp
= cpumask_of_node(0);
5521 /* Use the local node if we haven't already */
5522 if (!node_isset(node
, *used_node_mask
)) {
5523 node_set(node
, *used_node_mask
);
5527 for_each_node_state(n
, N_MEMORY
) {
5529 /* Don't want a node to appear more than once */
5530 if (node_isset(n
, *used_node_mask
))
5533 /* Use the distance array to find the distance */
5534 val
= node_distance(node
, n
);
5536 /* Penalize nodes under us ("prefer the next node") */
5539 /* Give preference to headless and unused nodes */
5540 tmp
= cpumask_of_node(n
);
5541 if (!cpumask_empty(tmp
))
5542 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5544 /* Slight preference for less loaded node */
5545 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5546 val
+= node_load
[n
];
5548 if (val
< min_val
) {
5555 node_set(best_node
, *used_node_mask
);
5562 * Build zonelists ordered by node and zones within node.
5563 * This results in maximum locality--normal zone overflows into local
5564 * DMA zone, if any--but risks exhausting DMA zone.
5566 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5569 struct zoneref
*zonerefs
;
5572 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5574 for (i
= 0; i
< nr_nodes
; i
++) {
5577 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5579 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5580 zonerefs
+= nr_zones
;
5582 zonerefs
->zone
= NULL
;
5583 zonerefs
->zone_idx
= 0;
5587 * Build gfp_thisnode zonelists
5589 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5591 struct zoneref
*zonerefs
;
5594 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5595 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5596 zonerefs
+= nr_zones
;
5597 zonerefs
->zone
= NULL
;
5598 zonerefs
->zone_idx
= 0;
5602 * Build zonelists ordered by zone and nodes within zones.
5603 * This results in conserving DMA zone[s] until all Normal memory is
5604 * exhausted, but results in overflowing to remote node while memory
5605 * may still exist in local DMA zone.
5608 static void build_zonelists(pg_data_t
*pgdat
)
5610 static int node_order
[MAX_NUMNODES
];
5611 int node
, load
, nr_nodes
= 0;
5612 nodemask_t used_mask
;
5613 int local_node
, prev_node
;
5615 /* NUMA-aware ordering of nodes */
5616 local_node
= pgdat
->node_id
;
5617 load
= nr_online_nodes
;
5618 prev_node
= local_node
;
5619 nodes_clear(used_mask
);
5621 memset(node_order
, 0, sizeof(node_order
));
5622 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5624 * We don't want to pressure a particular node.
5625 * So adding penalty to the first node in same
5626 * distance group to make it round-robin.
5628 if (node_distance(local_node
, node
) !=
5629 node_distance(local_node
, prev_node
))
5630 node_load
[node
] = load
;
5632 node_order
[nr_nodes
++] = node
;
5637 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5638 build_thisnode_zonelists(pgdat
);
5641 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5643 * Return node id of node used for "local" allocations.
5644 * I.e., first node id of first zone in arg node's generic zonelist.
5645 * Used for initializing percpu 'numa_mem', which is used primarily
5646 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5648 int local_memory_node(int node
)
5652 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5653 gfp_zone(GFP_KERNEL
),
5655 return zone_to_nid(z
->zone
);
5659 static void setup_min_unmapped_ratio(void);
5660 static void setup_min_slab_ratio(void);
5661 #else /* CONFIG_NUMA */
5663 static void build_zonelists(pg_data_t
*pgdat
)
5665 int node
, local_node
;
5666 struct zoneref
*zonerefs
;
5669 local_node
= pgdat
->node_id
;
5671 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5672 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5673 zonerefs
+= nr_zones
;
5676 * Now we build the zonelist so that it contains the zones
5677 * of all the other nodes.
5678 * We don't want to pressure a particular node, so when
5679 * building the zones for node N, we make sure that the
5680 * zones coming right after the local ones are those from
5681 * node N+1 (modulo N)
5683 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5684 if (!node_online(node
))
5686 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5687 zonerefs
+= nr_zones
;
5689 for (node
= 0; node
< local_node
; node
++) {
5690 if (!node_online(node
))
5692 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5693 zonerefs
+= nr_zones
;
5696 zonerefs
->zone
= NULL
;
5697 zonerefs
->zone_idx
= 0;
5700 #endif /* CONFIG_NUMA */
5703 * Boot pageset table. One per cpu which is going to be used for all
5704 * zones and all nodes. The parameters will be set in such a way
5705 * that an item put on a list will immediately be handed over to
5706 * the buddy list. This is safe since pageset manipulation is done
5707 * with interrupts disabled.
5709 * The boot_pagesets must be kept even after bootup is complete for
5710 * unused processors and/or zones. They do play a role for bootstrapping
5711 * hotplugged processors.
5713 * zoneinfo_show() and maybe other functions do
5714 * not check if the processor is online before following the pageset pointer.
5715 * Other parts of the kernel may not check if the zone is available.
5717 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5718 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5719 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5721 static void __build_all_zonelists(void *data
)
5724 int __maybe_unused cpu
;
5725 pg_data_t
*self
= data
;
5726 static DEFINE_SPINLOCK(lock
);
5731 memset(node_load
, 0, sizeof(node_load
));
5735 * This node is hotadded and no memory is yet present. So just
5736 * building zonelists is fine - no need to touch other nodes.
5738 if (self
&& !node_online(self
->node_id
)) {
5739 build_zonelists(self
);
5741 for_each_online_node(nid
) {
5742 pg_data_t
*pgdat
= NODE_DATA(nid
);
5744 build_zonelists(pgdat
);
5747 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5749 * We now know the "local memory node" for each node--
5750 * i.e., the node of the first zone in the generic zonelist.
5751 * Set up numa_mem percpu variable for on-line cpus. During
5752 * boot, only the boot cpu should be on-line; we'll init the
5753 * secondary cpus' numa_mem as they come on-line. During
5754 * node/memory hotplug, we'll fixup all on-line cpus.
5756 for_each_online_cpu(cpu
)
5757 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5764 static noinline
void __init
5765 build_all_zonelists_init(void)
5769 __build_all_zonelists(NULL
);
5772 * Initialize the boot_pagesets that are going to be used
5773 * for bootstrapping processors. The real pagesets for
5774 * each zone will be allocated later when the per cpu
5775 * allocator is available.
5777 * boot_pagesets are used also for bootstrapping offline
5778 * cpus if the system is already booted because the pagesets
5779 * are needed to initialize allocators on a specific cpu too.
5780 * F.e. the percpu allocator needs the page allocator which
5781 * needs the percpu allocator in order to allocate its pagesets
5782 * (a chicken-egg dilemma).
5784 for_each_possible_cpu(cpu
)
5785 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5787 mminit_verify_zonelist();
5788 cpuset_init_current_mems_allowed();
5792 * unless system_state == SYSTEM_BOOTING.
5794 * __ref due to call of __init annotated helper build_all_zonelists_init
5795 * [protected by SYSTEM_BOOTING].
5797 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5799 if (system_state
== SYSTEM_BOOTING
) {
5800 build_all_zonelists_init();
5802 __build_all_zonelists(pgdat
);
5803 /* cpuset refresh routine should be here */
5805 vm_total_pages
= nr_free_pagecache_pages();
5807 * Disable grouping by mobility if the number of pages in the
5808 * system is too low to allow the mechanism to work. It would be
5809 * more accurate, but expensive to check per-zone. This check is
5810 * made on memory-hotadd so a system can start with mobility
5811 * disabled and enable it later
5813 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5814 page_group_by_mobility_disabled
= 1;
5816 page_group_by_mobility_disabled
= 0;
5818 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5820 page_group_by_mobility_disabled
? "off" : "on",
5823 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5827 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5828 static bool __meminit
5829 overlap_memmap_init(unsigned long zone
, unsigned long *pfn
)
5831 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5832 static struct memblock_region
*r
;
5834 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5835 if (!r
|| *pfn
>= memblock_region_memory_end_pfn(r
)) {
5836 for_each_memblock(memory
, r
) {
5837 if (*pfn
< memblock_region_memory_end_pfn(r
))
5841 if (*pfn
>= memblock_region_memory_base_pfn(r
) &&
5842 memblock_is_mirror(r
)) {
5843 *pfn
= memblock_region_memory_end_pfn(r
);
5851 #ifdef CONFIG_SPARSEMEM
5852 /* Skip PFNs that belong to non-present sections */
5853 static inline __meminit
unsigned long next_pfn(unsigned long pfn
)
5855 const unsigned long section_nr
= pfn_to_section_nr(++pfn
);
5857 if (present_section_nr(section_nr
))
5859 return section_nr_to_pfn(next_present_section_nr(section_nr
));
5862 static inline __meminit
unsigned long next_pfn(unsigned long pfn
)
5869 * Initially all pages are reserved - free ones are freed
5870 * up by memblock_free_all() once the early boot process is
5871 * done. Non-atomic initialization, single-pass.
5873 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5874 unsigned long start_pfn
, enum memmap_context context
,
5875 struct vmem_altmap
*altmap
)
5877 unsigned long pfn
, end_pfn
= start_pfn
+ size
;
5880 if (highest_memmap_pfn
< end_pfn
- 1)
5881 highest_memmap_pfn
= end_pfn
- 1;
5883 #ifdef CONFIG_ZONE_DEVICE
5885 * Honor reservation requested by the driver for this ZONE_DEVICE
5886 * memory. We limit the total number of pages to initialize to just
5887 * those that might contain the memory mapping. We will defer the
5888 * ZONE_DEVICE page initialization until after we have released
5891 if (zone
== ZONE_DEVICE
) {
5895 if (start_pfn
== altmap
->base_pfn
)
5896 start_pfn
+= altmap
->reserve
;
5897 end_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
5901 for (pfn
= start_pfn
; pfn
< end_pfn
; ) {
5903 * There can be holes in boot-time mem_map[]s handed to this
5904 * function. They do not exist on hotplugged memory.
5906 if (context
== MEMMAP_EARLY
) {
5907 if (!early_pfn_valid(pfn
)) {
5908 pfn
= next_pfn(pfn
);
5911 if (!early_pfn_in_nid(pfn
, nid
)) {
5915 if (overlap_memmap_init(zone
, &pfn
))
5917 if (defer_init(nid
, pfn
, end_pfn
))
5921 page
= pfn_to_page(pfn
);
5922 __init_single_page(page
, pfn
, zone
, nid
);
5923 if (context
== MEMMAP_HOTPLUG
)
5924 __SetPageReserved(page
);
5927 * Mark the block movable so that blocks are reserved for
5928 * movable at startup. This will force kernel allocations
5929 * to reserve their blocks rather than leaking throughout
5930 * the address space during boot when many long-lived
5931 * kernel allocations are made.
5933 * bitmap is created for zone's valid pfn range. but memmap
5934 * can be created for invalid pages (for alignment)
5935 * check here not to call set_pageblock_migratetype() against
5938 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5939 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5946 #ifdef CONFIG_ZONE_DEVICE
5947 void __ref
memmap_init_zone_device(struct zone
*zone
,
5948 unsigned long start_pfn
,
5949 unsigned long nr_pages
,
5950 struct dev_pagemap
*pgmap
)
5952 unsigned long pfn
, end_pfn
= start_pfn
+ nr_pages
;
5953 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5954 struct vmem_altmap
*altmap
= pgmap_altmap(pgmap
);
5955 unsigned long zone_idx
= zone_idx(zone
);
5956 unsigned long start
= jiffies
;
5957 int nid
= pgdat
->node_id
;
5959 if (WARN_ON_ONCE(!pgmap
|| zone_idx(zone
) != ZONE_DEVICE
))
5963 * The call to memmap_init_zone should have already taken care
5964 * of the pages reserved for the memmap, so we can just jump to
5965 * the end of that region and start processing the device pages.
5968 start_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
5969 nr_pages
= end_pfn
- start_pfn
;
5972 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5973 struct page
*page
= pfn_to_page(pfn
);
5975 __init_single_page(page
, pfn
, zone_idx
, nid
);
5978 * Mark page reserved as it will need to wait for onlining
5979 * phase for it to be fully associated with a zone.
5981 * We can use the non-atomic __set_bit operation for setting
5982 * the flag as we are still initializing the pages.
5984 __SetPageReserved(page
);
5987 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5988 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5989 * ever freed or placed on a driver-private list.
5991 page
->pgmap
= pgmap
;
5992 page
->zone_device_data
= NULL
;
5995 * Mark the block movable so that blocks are reserved for
5996 * movable at startup. This will force kernel allocations
5997 * to reserve their blocks rather than leaking throughout
5998 * the address space during boot when many long-lived
5999 * kernel allocations are made.
6001 * bitmap is created for zone's valid pfn range. but memmap
6002 * can be created for invalid pages (for alignment)
6003 * check here not to call set_pageblock_migratetype() against
6006 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6007 * because this is done early in section_activate()
6009 if (!(pfn
& (pageblock_nr_pages
- 1))) {
6010 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
6015 pr_info("%s initialised %lu pages in %ums\n", __func__
,
6016 nr_pages
, jiffies_to_msecs(jiffies
- start
));
6020 static void __meminit
zone_init_free_lists(struct zone
*zone
)
6022 unsigned int order
, t
;
6023 for_each_migratetype_order(order
, t
) {
6024 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
6025 zone
->free_area
[order
].nr_free
= 0;
6029 void __meminit __weak
memmap_init(unsigned long size
, int nid
,
6030 unsigned long zone
, unsigned long start_pfn
)
6032 memmap_init_zone(size
, nid
, zone
, start_pfn
, MEMMAP_EARLY
, NULL
);
6035 static int zone_batchsize(struct zone
*zone
)
6041 * The per-cpu-pages pools are set to around 1000th of the
6044 batch
= zone_managed_pages(zone
) / 1024;
6045 /* But no more than a meg. */
6046 if (batch
* PAGE_SIZE
> 1024 * 1024)
6047 batch
= (1024 * 1024) / PAGE_SIZE
;
6048 batch
/= 4; /* We effectively *= 4 below */
6053 * Clamp the batch to a 2^n - 1 value. Having a power
6054 * of 2 value was found to be more likely to have
6055 * suboptimal cache aliasing properties in some cases.
6057 * For example if 2 tasks are alternately allocating
6058 * batches of pages, one task can end up with a lot
6059 * of pages of one half of the possible page colors
6060 * and the other with pages of the other colors.
6062 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
6067 /* The deferral and batching of frees should be suppressed under NOMMU
6070 * The problem is that NOMMU needs to be able to allocate large chunks
6071 * of contiguous memory as there's no hardware page translation to
6072 * assemble apparent contiguous memory from discontiguous pages.
6074 * Queueing large contiguous runs of pages for batching, however,
6075 * causes the pages to actually be freed in smaller chunks. As there
6076 * can be a significant delay between the individual batches being
6077 * recycled, this leads to the once large chunks of space being
6078 * fragmented and becoming unavailable for high-order allocations.
6085 * pcp->high and pcp->batch values are related and dependent on one another:
6086 * ->batch must never be higher then ->high.
6087 * The following function updates them in a safe manner without read side
6090 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6091 * those fields changing asynchronously (acording the the above rule).
6093 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6094 * outside of boot time (or some other assurance that no concurrent updaters
6097 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
6098 unsigned long batch
)
6100 /* start with a fail safe value for batch */
6104 /* Update high, then batch, in order */
6111 /* a companion to pageset_set_high() */
6112 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
6114 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
6117 static void pageset_init(struct per_cpu_pageset
*p
)
6119 struct per_cpu_pages
*pcp
;
6122 memset(p
, 0, sizeof(*p
));
6125 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
6126 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
6129 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
6132 pageset_set_batch(p
, batch
);
6136 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6137 * to the value high for the pageset p.
6139 static void pageset_set_high(struct per_cpu_pageset
*p
,
6142 unsigned long batch
= max(1UL, high
/ 4);
6143 if ((high
/ 4) > (PAGE_SHIFT
* 8))
6144 batch
= PAGE_SHIFT
* 8;
6146 pageset_update(&p
->pcp
, high
, batch
);
6149 static void pageset_set_high_and_batch(struct zone
*zone
,
6150 struct per_cpu_pageset
*pcp
)
6152 if (percpu_pagelist_fraction
)
6153 pageset_set_high(pcp
,
6154 (zone_managed_pages(zone
) /
6155 percpu_pagelist_fraction
));
6157 pageset_set_batch(pcp
, zone_batchsize(zone
));
6160 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
6162 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
6165 pageset_set_high_and_batch(zone
, pcp
);
6168 void __meminit
setup_zone_pageset(struct zone
*zone
)
6171 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
6172 for_each_possible_cpu(cpu
)
6173 zone_pageset_init(zone
, cpu
);
6177 * Allocate per cpu pagesets and initialize them.
6178 * Before this call only boot pagesets were available.
6180 void __init
setup_per_cpu_pageset(void)
6182 struct pglist_data
*pgdat
;
6185 for_each_populated_zone(zone
)
6186 setup_zone_pageset(zone
);
6188 for_each_online_pgdat(pgdat
)
6189 pgdat
->per_cpu_nodestats
=
6190 alloc_percpu(struct per_cpu_nodestat
);
6193 static __meminit
void zone_pcp_init(struct zone
*zone
)
6196 * per cpu subsystem is not up at this point. The following code
6197 * relies on the ability of the linker to provide the
6198 * offset of a (static) per cpu variable into the per cpu area.
6200 zone
->pageset
= &boot_pageset
;
6202 if (populated_zone(zone
))
6203 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
6204 zone
->name
, zone
->present_pages
,
6205 zone_batchsize(zone
));
6208 void __meminit
init_currently_empty_zone(struct zone
*zone
,
6209 unsigned long zone_start_pfn
,
6212 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
6213 int zone_idx
= zone_idx(zone
) + 1;
6215 if (zone_idx
> pgdat
->nr_zones
)
6216 pgdat
->nr_zones
= zone_idx
;
6218 zone
->zone_start_pfn
= zone_start_pfn
;
6220 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
6221 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6223 (unsigned long)zone_idx(zone
),
6224 zone_start_pfn
, (zone_start_pfn
+ size
));
6226 zone_init_free_lists(zone
);
6227 zone
->initialized
= 1;
6230 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6231 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6234 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6236 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
6237 struct mminit_pfnnid_cache
*state
)
6239 unsigned long start_pfn
, end_pfn
;
6242 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
6243 return state
->last_nid
;
6245 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
6246 if (nid
!= NUMA_NO_NODE
) {
6247 state
->last_start
= start_pfn
;
6248 state
->last_end
= end_pfn
;
6249 state
->last_nid
= nid
;
6254 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6257 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6258 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6259 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6261 * If an architecture guarantees that all ranges registered contain no holes
6262 * and may be freed, this this function may be used instead of calling
6263 * memblock_free_early_nid() manually.
6265 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
6267 unsigned long start_pfn
, end_pfn
;
6270 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
6271 start_pfn
= min(start_pfn
, max_low_pfn
);
6272 end_pfn
= min(end_pfn
, max_low_pfn
);
6274 if (start_pfn
< end_pfn
)
6275 memblock_free_early_nid(PFN_PHYS(start_pfn
),
6276 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
6282 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6283 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6285 * If an architecture guarantees that all ranges registered contain no holes and may
6286 * be freed, this function may be used instead of calling memory_present() manually.
6288 void __init
sparse_memory_present_with_active_regions(int nid
)
6290 unsigned long start_pfn
, end_pfn
;
6293 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
6294 memory_present(this_nid
, start_pfn
, end_pfn
);
6298 * get_pfn_range_for_nid - Return the start and end page frames for a node
6299 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6300 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6301 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6303 * It returns the start and end page frame of a node based on information
6304 * provided by memblock_set_node(). If called for a node
6305 * with no available memory, a warning is printed and the start and end
6308 void __init
get_pfn_range_for_nid(unsigned int nid
,
6309 unsigned long *start_pfn
, unsigned long *end_pfn
)
6311 unsigned long this_start_pfn
, this_end_pfn
;
6317 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
6318 *start_pfn
= min(*start_pfn
, this_start_pfn
);
6319 *end_pfn
= max(*end_pfn
, this_end_pfn
);
6322 if (*start_pfn
== -1UL)
6327 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6328 * assumption is made that zones within a node are ordered in monotonic
6329 * increasing memory addresses so that the "highest" populated zone is used
6331 static void __init
find_usable_zone_for_movable(void)
6334 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
6335 if (zone_index
== ZONE_MOVABLE
)
6338 if (arch_zone_highest_possible_pfn
[zone_index
] >
6339 arch_zone_lowest_possible_pfn
[zone_index
])
6343 VM_BUG_ON(zone_index
== -1);
6344 movable_zone
= zone_index
;
6348 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6349 * because it is sized independent of architecture. Unlike the other zones,
6350 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6351 * in each node depending on the size of each node and how evenly kernelcore
6352 * is distributed. This helper function adjusts the zone ranges
6353 * provided by the architecture for a given node by using the end of the
6354 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6355 * zones within a node are in order of monotonic increases memory addresses
6357 static void __init
adjust_zone_range_for_zone_movable(int nid
,
6358 unsigned long zone_type
,
6359 unsigned long node_start_pfn
,
6360 unsigned long node_end_pfn
,
6361 unsigned long *zone_start_pfn
,
6362 unsigned long *zone_end_pfn
)
6364 /* Only adjust if ZONE_MOVABLE is on this node */
6365 if (zone_movable_pfn
[nid
]) {
6366 /* Size ZONE_MOVABLE */
6367 if (zone_type
== ZONE_MOVABLE
) {
6368 *zone_start_pfn
= zone_movable_pfn
[nid
];
6369 *zone_end_pfn
= min(node_end_pfn
,
6370 arch_zone_highest_possible_pfn
[movable_zone
]);
6372 /* Adjust for ZONE_MOVABLE starting within this range */
6373 } else if (!mirrored_kernelcore
&&
6374 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
6375 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
6376 *zone_end_pfn
= zone_movable_pfn
[nid
];
6378 /* Check if this whole range is within ZONE_MOVABLE */
6379 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
6380 *zone_start_pfn
= *zone_end_pfn
;
6385 * Return the number of pages a zone spans in a node, including holes
6386 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6388 static unsigned long __init
zone_spanned_pages_in_node(int nid
,
6389 unsigned long zone_type
,
6390 unsigned long node_start_pfn
,
6391 unsigned long node_end_pfn
,
6392 unsigned long *zone_start_pfn
,
6393 unsigned long *zone_end_pfn
,
6394 unsigned long *ignored
)
6396 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6397 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6398 /* When hotadd a new node from cpu_up(), the node should be empty */
6399 if (!node_start_pfn
&& !node_end_pfn
)
6402 /* Get the start and end of the zone */
6403 *zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6404 *zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6405 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6406 node_start_pfn
, node_end_pfn
,
6407 zone_start_pfn
, zone_end_pfn
);
6409 /* Check that this node has pages within the zone's required range */
6410 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
6413 /* Move the zone boundaries inside the node if necessary */
6414 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
6415 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
6417 /* Return the spanned pages */
6418 return *zone_end_pfn
- *zone_start_pfn
;
6422 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6423 * then all holes in the requested range will be accounted for.
6425 unsigned long __init
__absent_pages_in_range(int nid
,
6426 unsigned long range_start_pfn
,
6427 unsigned long range_end_pfn
)
6429 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
6430 unsigned long start_pfn
, end_pfn
;
6433 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6434 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
6435 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
6436 nr_absent
-= end_pfn
- start_pfn
;
6442 * absent_pages_in_range - Return number of page frames in holes within a range
6443 * @start_pfn: The start PFN to start searching for holes
6444 * @end_pfn: The end PFN to stop searching for holes
6446 * Return: the number of pages frames in memory holes within a range.
6448 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
6449 unsigned long end_pfn
)
6451 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
6454 /* Return the number of page frames in holes in a zone on a node */
6455 static unsigned long __init
zone_absent_pages_in_node(int nid
,
6456 unsigned long zone_type
,
6457 unsigned long node_start_pfn
,
6458 unsigned long node_end_pfn
,
6459 unsigned long *ignored
)
6461 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6462 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6463 unsigned long zone_start_pfn
, zone_end_pfn
;
6464 unsigned long nr_absent
;
6466 /* When hotadd a new node from cpu_up(), the node should be empty */
6467 if (!node_start_pfn
&& !node_end_pfn
)
6470 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6471 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6473 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6474 node_start_pfn
, node_end_pfn
,
6475 &zone_start_pfn
, &zone_end_pfn
);
6476 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
6479 * ZONE_MOVABLE handling.
6480 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6483 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
6484 unsigned long start_pfn
, end_pfn
;
6485 struct memblock_region
*r
;
6487 for_each_memblock(memory
, r
) {
6488 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
6489 zone_start_pfn
, zone_end_pfn
);
6490 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
6491 zone_start_pfn
, zone_end_pfn
);
6493 if (zone_type
== ZONE_MOVABLE
&&
6494 memblock_is_mirror(r
))
6495 nr_absent
+= end_pfn
- start_pfn
;
6497 if (zone_type
== ZONE_NORMAL
&&
6498 !memblock_is_mirror(r
))
6499 nr_absent
+= end_pfn
- start_pfn
;
6506 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6507 static inline unsigned long __init
zone_spanned_pages_in_node(int nid
,
6508 unsigned long zone_type
,
6509 unsigned long node_start_pfn
,
6510 unsigned long node_end_pfn
,
6511 unsigned long *zone_start_pfn
,
6512 unsigned long *zone_end_pfn
,
6513 unsigned long *zones_size
)
6517 *zone_start_pfn
= node_start_pfn
;
6518 for (zone
= 0; zone
< zone_type
; zone
++)
6519 *zone_start_pfn
+= zones_size
[zone
];
6521 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
6523 return zones_size
[zone_type
];
6526 static inline unsigned long __init
zone_absent_pages_in_node(int nid
,
6527 unsigned long zone_type
,
6528 unsigned long node_start_pfn
,
6529 unsigned long node_end_pfn
,
6530 unsigned long *zholes_size
)
6535 return zholes_size
[zone_type
];
6538 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6540 static void __init
calculate_node_totalpages(struct pglist_data
*pgdat
,
6541 unsigned long node_start_pfn
,
6542 unsigned long node_end_pfn
,
6543 unsigned long *zones_size
,
6544 unsigned long *zholes_size
)
6546 unsigned long realtotalpages
= 0, totalpages
= 0;
6549 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6550 struct zone
*zone
= pgdat
->node_zones
+ i
;
6551 unsigned long zone_start_pfn
, zone_end_pfn
;
6552 unsigned long size
, real_size
;
6554 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
6560 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
6561 node_start_pfn
, node_end_pfn
,
6564 zone
->zone_start_pfn
= zone_start_pfn
;
6566 zone
->zone_start_pfn
= 0;
6567 zone
->spanned_pages
= size
;
6568 zone
->present_pages
= real_size
;
6571 realtotalpages
+= real_size
;
6574 pgdat
->node_spanned_pages
= totalpages
;
6575 pgdat
->node_present_pages
= realtotalpages
;
6576 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6580 #ifndef CONFIG_SPARSEMEM
6582 * Calculate the size of the zone->blockflags rounded to an unsigned long
6583 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6584 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6585 * round what is now in bits to nearest long in bits, then return it in
6588 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6590 unsigned long usemapsize
;
6592 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6593 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6594 usemapsize
= usemapsize
>> pageblock_order
;
6595 usemapsize
*= NR_PAGEBLOCK_BITS
;
6596 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6598 return usemapsize
/ 8;
6601 static void __ref
setup_usemap(struct pglist_data
*pgdat
,
6603 unsigned long zone_start_pfn
,
6604 unsigned long zonesize
)
6606 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6607 zone
->pageblock_flags
= NULL
;
6609 zone
->pageblock_flags
=
6610 memblock_alloc_node(usemapsize
, SMP_CACHE_BYTES
,
6612 if (!zone
->pageblock_flags
)
6613 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6614 usemapsize
, zone
->name
, pgdat
->node_id
);
6618 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6619 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6620 #endif /* CONFIG_SPARSEMEM */
6622 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6624 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6625 void __init
set_pageblock_order(void)
6629 /* Check that pageblock_nr_pages has not already been setup */
6630 if (pageblock_order
)
6633 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6634 order
= HUGETLB_PAGE_ORDER
;
6636 order
= MAX_ORDER
- 1;
6639 * Assume the largest contiguous order of interest is a huge page.
6640 * This value may be variable depending on boot parameters on IA64 and
6643 pageblock_order
= order
;
6645 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6648 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6649 * is unused as pageblock_order is set at compile-time. See
6650 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6653 void __init
set_pageblock_order(void)
6657 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6659 static unsigned long __init
calc_memmap_size(unsigned long spanned_pages
,
6660 unsigned long present_pages
)
6662 unsigned long pages
= spanned_pages
;
6665 * Provide a more accurate estimation if there are holes within
6666 * the zone and SPARSEMEM is in use. If there are holes within the
6667 * zone, each populated memory region may cost us one or two extra
6668 * memmap pages due to alignment because memmap pages for each
6669 * populated regions may not be naturally aligned on page boundary.
6670 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6672 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6673 IS_ENABLED(CONFIG_SPARSEMEM
))
6674 pages
= present_pages
;
6676 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6680 static void pgdat_init_split_queue(struct pglist_data
*pgdat
)
6682 struct deferred_split
*ds_queue
= &pgdat
->deferred_split_queue
;
6684 spin_lock_init(&ds_queue
->split_queue_lock
);
6685 INIT_LIST_HEAD(&ds_queue
->split_queue
);
6686 ds_queue
->split_queue_len
= 0;
6689 static void pgdat_init_split_queue(struct pglist_data
*pgdat
) {}
6692 #ifdef CONFIG_COMPACTION
6693 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
)
6695 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6698 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
) {}
6701 static void __meminit
pgdat_init_internals(struct pglist_data
*pgdat
)
6703 pgdat_resize_init(pgdat
);
6705 pgdat_init_split_queue(pgdat
);
6706 pgdat_init_kcompactd(pgdat
);
6708 init_waitqueue_head(&pgdat
->kswapd_wait
);
6709 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6711 pgdat_page_ext_init(pgdat
);
6712 spin_lock_init(&pgdat
->lru_lock
);
6713 lruvec_init(&pgdat
->__lruvec
);
6716 static void __meminit
zone_init_internals(struct zone
*zone
, enum zone_type idx
, int nid
,
6717 unsigned long remaining_pages
)
6719 atomic_long_set(&zone
->managed_pages
, remaining_pages
);
6720 zone_set_nid(zone
, nid
);
6721 zone
->name
= zone_names
[idx
];
6722 zone
->zone_pgdat
= NODE_DATA(nid
);
6723 spin_lock_init(&zone
->lock
);
6724 zone_seqlock_init(zone
);
6725 zone_pcp_init(zone
);
6729 * Set up the zone data structures
6730 * - init pgdat internals
6731 * - init all zones belonging to this node
6733 * NOTE: this function is only called during memory hotplug
6735 #ifdef CONFIG_MEMORY_HOTPLUG
6736 void __ref
free_area_init_core_hotplug(int nid
)
6739 pg_data_t
*pgdat
= NODE_DATA(nid
);
6741 pgdat_init_internals(pgdat
);
6742 for (z
= 0; z
< MAX_NR_ZONES
; z
++)
6743 zone_init_internals(&pgdat
->node_zones
[z
], z
, nid
, 0);
6748 * Set up the zone data structures:
6749 * - mark all pages reserved
6750 * - mark all memory queues empty
6751 * - clear the memory bitmaps
6753 * NOTE: pgdat should get zeroed by caller.
6754 * NOTE: this function is only called during early init.
6756 static void __init
free_area_init_core(struct pglist_data
*pgdat
)
6759 int nid
= pgdat
->node_id
;
6761 pgdat_init_internals(pgdat
);
6762 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6764 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6765 struct zone
*zone
= pgdat
->node_zones
+ j
;
6766 unsigned long size
, freesize
, memmap_pages
;
6767 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6769 size
= zone
->spanned_pages
;
6770 freesize
= zone
->present_pages
;
6773 * Adjust freesize so that it accounts for how much memory
6774 * is used by this zone for memmap. This affects the watermark
6775 * and per-cpu initialisations
6777 memmap_pages
= calc_memmap_size(size
, freesize
);
6778 if (!is_highmem_idx(j
)) {
6779 if (freesize
>= memmap_pages
) {
6780 freesize
-= memmap_pages
;
6783 " %s zone: %lu pages used for memmap\n",
6784 zone_names
[j
], memmap_pages
);
6786 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6787 zone_names
[j
], memmap_pages
, freesize
);
6790 /* Account for reserved pages */
6791 if (j
== 0 && freesize
> dma_reserve
) {
6792 freesize
-= dma_reserve
;
6793 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6794 zone_names
[0], dma_reserve
);
6797 if (!is_highmem_idx(j
))
6798 nr_kernel_pages
+= freesize
;
6799 /* Charge for highmem memmap if there are enough kernel pages */
6800 else if (nr_kernel_pages
> memmap_pages
* 2)
6801 nr_kernel_pages
-= memmap_pages
;
6802 nr_all_pages
+= freesize
;
6805 * Set an approximate value for lowmem here, it will be adjusted
6806 * when the bootmem allocator frees pages into the buddy system.
6807 * And all highmem pages will be managed by the buddy system.
6809 zone_init_internals(zone
, j
, nid
, freesize
);
6814 set_pageblock_order();
6815 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6816 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6817 memmap_init(size
, nid
, j
, zone_start_pfn
);
6821 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6822 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6824 unsigned long __maybe_unused start
= 0;
6825 unsigned long __maybe_unused offset
= 0;
6827 /* Skip empty nodes */
6828 if (!pgdat
->node_spanned_pages
)
6831 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6832 offset
= pgdat
->node_start_pfn
- start
;
6833 /* ia64 gets its own node_mem_map, before this, without bootmem */
6834 if (!pgdat
->node_mem_map
) {
6835 unsigned long size
, end
;
6839 * The zone's endpoints aren't required to be MAX_ORDER
6840 * aligned but the node_mem_map endpoints must be in order
6841 * for the buddy allocator to function correctly.
6843 end
= pgdat_end_pfn(pgdat
);
6844 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6845 size
= (end
- start
) * sizeof(struct page
);
6846 map
= memblock_alloc_node(size
, SMP_CACHE_BYTES
,
6849 panic("Failed to allocate %ld bytes for node %d memory map\n",
6850 size
, pgdat
->node_id
);
6851 pgdat
->node_mem_map
= map
+ offset
;
6853 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6854 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
6855 (unsigned long)pgdat
->node_mem_map
);
6856 #ifndef CONFIG_NEED_MULTIPLE_NODES
6858 * With no DISCONTIG, the global mem_map is just set as node 0's
6860 if (pgdat
== NODE_DATA(0)) {
6861 mem_map
= NODE_DATA(0)->node_mem_map
;
6862 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6863 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6865 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6870 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
6871 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6873 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6874 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
)
6876 pgdat
->first_deferred_pfn
= ULONG_MAX
;
6879 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
) {}
6882 void __init
free_area_init_node(int nid
, unsigned long *zones_size
,
6883 unsigned long node_start_pfn
,
6884 unsigned long *zholes_size
)
6886 pg_data_t
*pgdat
= NODE_DATA(nid
);
6887 unsigned long start_pfn
= 0;
6888 unsigned long end_pfn
= 0;
6890 /* pg_data_t should be reset to zero when it's allocated */
6891 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6893 pgdat
->node_id
= nid
;
6894 pgdat
->node_start_pfn
= node_start_pfn
;
6895 pgdat
->per_cpu_nodestats
= NULL
;
6896 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6897 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6898 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6899 (u64
)start_pfn
<< PAGE_SHIFT
,
6900 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6902 start_pfn
= node_start_pfn
;
6904 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6905 zones_size
, zholes_size
);
6907 alloc_node_mem_map(pgdat
);
6908 pgdat_set_deferred_range(pgdat
);
6910 free_area_init_core(pgdat
);
6913 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6915 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6916 * PageReserved(). Return the number of struct pages that were initialized.
6918 static u64 __init
init_unavailable_range(unsigned long spfn
, unsigned long epfn
)
6923 for (pfn
= spfn
; pfn
< epfn
; pfn
++) {
6924 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
))) {
6925 pfn
= ALIGN_DOWN(pfn
, pageblock_nr_pages
)
6926 + pageblock_nr_pages
- 1;
6930 * Use a fake node/zone (0) for now. Some of these pages
6931 * (in memblock.reserved but not in memblock.memory) will
6932 * get re-initialized via reserve_bootmem_region() later.
6934 __init_single_page(pfn_to_page(pfn
), pfn
, 0, 0);
6935 __SetPageReserved(pfn_to_page(pfn
));
6943 * Only struct pages that are backed by physical memory are zeroed and
6944 * initialized by going through __init_single_page(). But, there are some
6945 * struct pages which are reserved in memblock allocator and their fields
6946 * may be accessed (for example page_to_pfn() on some configuration accesses
6947 * flags). We must explicitly initialize those struct pages.
6949 * This function also addresses a similar issue where struct pages are left
6950 * uninitialized because the physical address range is not covered by
6951 * memblock.memory or memblock.reserved. That could happen when memblock
6952 * layout is manually configured via memmap=, or when the highest physical
6953 * address (max_pfn) does not end on a section boundary.
6955 static void __init
init_unavailable_mem(void)
6957 phys_addr_t start
, end
;
6959 phys_addr_t next
= 0;
6962 * Loop through unavailable ranges not covered by memblock.memory.
6965 for_each_mem_range(i
, &memblock
.memory
, NULL
,
6966 NUMA_NO_NODE
, MEMBLOCK_NONE
, &start
, &end
, NULL
) {
6968 pgcnt
+= init_unavailable_range(PFN_DOWN(next
),
6974 * Early sections always have a fully populated memmap for the whole
6975 * section - see pfn_valid(). If the last section has holes at the
6976 * end and that section is marked "online", the memmap will be
6977 * considered initialized. Make sure that memmap has a well defined
6980 pgcnt
+= init_unavailable_range(PFN_DOWN(next
),
6981 round_up(max_pfn
, PAGES_PER_SECTION
));
6984 * Struct pages that do not have backing memory. This could be because
6985 * firmware is using some of this memory, or for some other reasons.
6988 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt
);
6991 static inline void __init
init_unavailable_mem(void)
6994 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6996 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6998 #if MAX_NUMNODES > 1
7000 * Figure out the number of possible node ids.
7002 void __init
setup_nr_node_ids(void)
7004 unsigned int highest
;
7006 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
7007 nr_node_ids
= highest
+ 1;
7012 * node_map_pfn_alignment - determine the maximum internode alignment
7014 * This function should be called after node map is populated and sorted.
7015 * It calculates the maximum power of two alignment which can distinguish
7018 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7019 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7020 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7021 * shifted, 1GiB is enough and this function will indicate so.
7023 * This is used to test whether pfn -> nid mapping of the chosen memory
7024 * model has fine enough granularity to avoid incorrect mapping for the
7025 * populated node map.
7027 * Return: the determined alignment in pfn's. 0 if there is no alignment
7028 * requirement (single node).
7030 unsigned long __init
node_map_pfn_alignment(void)
7032 unsigned long accl_mask
= 0, last_end
= 0;
7033 unsigned long start
, end
, mask
;
7034 int last_nid
= NUMA_NO_NODE
;
7037 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
7038 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
7045 * Start with a mask granular enough to pin-point to the
7046 * start pfn and tick off bits one-by-one until it becomes
7047 * too coarse to separate the current node from the last.
7049 mask
= ~((1 << __ffs(start
)) - 1);
7050 while (mask
&& last_end
<= (start
& (mask
<< 1)))
7053 /* accumulate all internode masks */
7057 /* convert mask to number of pages */
7058 return ~accl_mask
+ 1;
7061 /* Find the lowest pfn for a node */
7062 static unsigned long __init
find_min_pfn_for_node(int nid
)
7064 unsigned long min_pfn
= ULONG_MAX
;
7065 unsigned long start_pfn
;
7068 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
7069 min_pfn
= min(min_pfn
, start_pfn
);
7071 if (min_pfn
== ULONG_MAX
) {
7072 pr_warn("Could not find start_pfn for node %d\n", nid
);
7080 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7082 * Return: the minimum PFN based on information provided via
7083 * memblock_set_node().
7085 unsigned long __init
find_min_pfn_with_active_regions(void)
7087 return find_min_pfn_for_node(MAX_NUMNODES
);
7091 * early_calculate_totalpages()
7092 * Sum pages in active regions for movable zone.
7093 * Populate N_MEMORY for calculating usable_nodes.
7095 static unsigned long __init
early_calculate_totalpages(void)
7097 unsigned long totalpages
= 0;
7098 unsigned long start_pfn
, end_pfn
;
7101 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7102 unsigned long pages
= end_pfn
- start_pfn
;
7104 totalpages
+= pages
;
7106 node_set_state(nid
, N_MEMORY
);
7112 * Find the PFN the Movable zone begins in each node. Kernel memory
7113 * is spread evenly between nodes as long as the nodes have enough
7114 * memory. When they don't, some nodes will have more kernelcore than
7117 static void __init
find_zone_movable_pfns_for_nodes(void)
7120 unsigned long usable_startpfn
;
7121 unsigned long kernelcore_node
, kernelcore_remaining
;
7122 /* save the state before borrow the nodemask */
7123 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
7124 unsigned long totalpages
= early_calculate_totalpages();
7125 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
7126 struct memblock_region
*r
;
7128 /* Need to find movable_zone earlier when movable_node is specified. */
7129 find_usable_zone_for_movable();
7132 * If movable_node is specified, ignore kernelcore and movablecore
7135 if (movable_node_is_enabled()) {
7136 for_each_memblock(memory
, r
) {
7137 if (!memblock_is_hotpluggable(r
))
7142 usable_startpfn
= PFN_DOWN(r
->base
);
7143 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7144 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7152 * If kernelcore=mirror is specified, ignore movablecore option
7154 if (mirrored_kernelcore
) {
7155 bool mem_below_4gb_not_mirrored
= false;
7157 for_each_memblock(memory
, r
) {
7158 if (memblock_is_mirror(r
))
7163 usable_startpfn
= memblock_region_memory_base_pfn(r
);
7165 if (usable_startpfn
< 0x100000) {
7166 mem_below_4gb_not_mirrored
= true;
7170 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7171 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7175 if (mem_below_4gb_not_mirrored
)
7176 pr_warn("This configuration results in unmirrored kernel memory.");
7182 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7183 * amount of necessary memory.
7185 if (required_kernelcore_percent
)
7186 required_kernelcore
= (totalpages
* 100 * required_kernelcore_percent
) /
7188 if (required_movablecore_percent
)
7189 required_movablecore
= (totalpages
* 100 * required_movablecore_percent
) /
7193 * If movablecore= was specified, calculate what size of
7194 * kernelcore that corresponds so that memory usable for
7195 * any allocation type is evenly spread. If both kernelcore
7196 * and movablecore are specified, then the value of kernelcore
7197 * will be used for required_kernelcore if it's greater than
7198 * what movablecore would have allowed.
7200 if (required_movablecore
) {
7201 unsigned long corepages
;
7204 * Round-up so that ZONE_MOVABLE is at least as large as what
7205 * was requested by the user
7207 required_movablecore
=
7208 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
7209 required_movablecore
= min(totalpages
, required_movablecore
);
7210 corepages
= totalpages
- required_movablecore
;
7212 required_kernelcore
= max(required_kernelcore
, corepages
);
7216 * If kernelcore was not specified or kernelcore size is larger
7217 * than totalpages, there is no ZONE_MOVABLE.
7219 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
7222 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7223 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
7226 /* Spread kernelcore memory as evenly as possible throughout nodes */
7227 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7228 for_each_node_state(nid
, N_MEMORY
) {
7229 unsigned long start_pfn
, end_pfn
;
7232 * Recalculate kernelcore_node if the division per node
7233 * now exceeds what is necessary to satisfy the requested
7234 * amount of memory for the kernel
7236 if (required_kernelcore
< kernelcore_node
)
7237 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7240 * As the map is walked, we track how much memory is usable
7241 * by the kernel using kernelcore_remaining. When it is
7242 * 0, the rest of the node is usable by ZONE_MOVABLE
7244 kernelcore_remaining
= kernelcore_node
;
7246 /* Go through each range of PFNs within this node */
7247 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
7248 unsigned long size_pages
;
7250 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
7251 if (start_pfn
>= end_pfn
)
7254 /* Account for what is only usable for kernelcore */
7255 if (start_pfn
< usable_startpfn
) {
7256 unsigned long kernel_pages
;
7257 kernel_pages
= min(end_pfn
, usable_startpfn
)
7260 kernelcore_remaining
-= min(kernel_pages
,
7261 kernelcore_remaining
);
7262 required_kernelcore
-= min(kernel_pages
,
7263 required_kernelcore
);
7265 /* Continue if range is now fully accounted */
7266 if (end_pfn
<= usable_startpfn
) {
7269 * Push zone_movable_pfn to the end so
7270 * that if we have to rebalance
7271 * kernelcore across nodes, we will
7272 * not double account here
7274 zone_movable_pfn
[nid
] = end_pfn
;
7277 start_pfn
= usable_startpfn
;
7281 * The usable PFN range for ZONE_MOVABLE is from
7282 * start_pfn->end_pfn. Calculate size_pages as the
7283 * number of pages used as kernelcore
7285 size_pages
= end_pfn
- start_pfn
;
7286 if (size_pages
> kernelcore_remaining
)
7287 size_pages
= kernelcore_remaining
;
7288 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
7291 * Some kernelcore has been met, update counts and
7292 * break if the kernelcore for this node has been
7295 required_kernelcore
-= min(required_kernelcore
,
7297 kernelcore_remaining
-= size_pages
;
7298 if (!kernelcore_remaining
)
7304 * If there is still required_kernelcore, we do another pass with one
7305 * less node in the count. This will push zone_movable_pfn[nid] further
7306 * along on the nodes that still have memory until kernelcore is
7310 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
7314 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7315 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
7316 zone_movable_pfn
[nid
] =
7317 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
7320 /* restore the node_state */
7321 node_states
[N_MEMORY
] = saved_node_state
;
7324 /* Any regular or high memory on that node ? */
7325 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
7327 enum zone_type zone_type
;
7329 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
7330 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
7331 if (populated_zone(zone
)) {
7332 if (IS_ENABLED(CONFIG_HIGHMEM
))
7333 node_set_state(nid
, N_HIGH_MEMORY
);
7334 if (zone_type
<= ZONE_NORMAL
)
7335 node_set_state(nid
, N_NORMAL_MEMORY
);
7342 * free_area_init_nodes - Initialise all pg_data_t and zone data
7343 * @max_zone_pfn: an array of max PFNs for each zone
7345 * This will call free_area_init_node() for each active node in the system.
7346 * Using the page ranges provided by memblock_set_node(), the size of each
7347 * zone in each node and their holes is calculated. If the maximum PFN
7348 * between two adjacent zones match, it is assumed that the zone is empty.
7349 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7350 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7351 * starts where the previous one ended. For example, ZONE_DMA32 starts
7352 * at arch_max_dma_pfn.
7354 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
7356 unsigned long start_pfn
, end_pfn
;
7359 /* Record where the zone boundaries are */
7360 memset(arch_zone_lowest_possible_pfn
, 0,
7361 sizeof(arch_zone_lowest_possible_pfn
));
7362 memset(arch_zone_highest_possible_pfn
, 0,
7363 sizeof(arch_zone_highest_possible_pfn
));
7365 start_pfn
= find_min_pfn_with_active_regions();
7367 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7368 if (i
== ZONE_MOVABLE
)
7371 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
7372 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
7373 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
7375 start_pfn
= end_pfn
;
7378 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7379 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
7380 find_zone_movable_pfns_for_nodes();
7382 /* Print out the zone ranges */
7383 pr_info("Zone ranges:\n");
7384 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7385 if (i
== ZONE_MOVABLE
)
7387 pr_info(" %-8s ", zone_names
[i
]);
7388 if (arch_zone_lowest_possible_pfn
[i
] ==
7389 arch_zone_highest_possible_pfn
[i
])
7392 pr_cont("[mem %#018Lx-%#018Lx]\n",
7393 (u64
)arch_zone_lowest_possible_pfn
[i
]
7395 ((u64
)arch_zone_highest_possible_pfn
[i
]
7396 << PAGE_SHIFT
) - 1);
7399 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7400 pr_info("Movable zone start for each node\n");
7401 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7402 if (zone_movable_pfn
[i
])
7403 pr_info(" Node %d: %#018Lx\n", i
,
7404 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
7408 * Print out the early node map, and initialize the
7409 * subsection-map relative to active online memory ranges to
7410 * enable future "sub-section" extensions of the memory map.
7412 pr_info("Early memory node ranges\n");
7413 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7414 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
7415 (u64
)start_pfn
<< PAGE_SHIFT
,
7416 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
7417 subsection_map_init(start_pfn
, end_pfn
- start_pfn
);
7420 /* Initialise every node */
7421 mminit_verify_pageflags_layout();
7422 setup_nr_node_ids();
7423 init_unavailable_mem();
7424 for_each_online_node(nid
) {
7425 pg_data_t
*pgdat
= NODE_DATA(nid
);
7426 free_area_init_node(nid
, NULL
,
7427 find_min_pfn_for_node(nid
), NULL
);
7429 /* Any memory on that node */
7430 if (pgdat
->node_present_pages
)
7431 node_set_state(nid
, N_MEMORY
);
7432 check_for_memory(pgdat
, nid
);
7436 static int __init
cmdline_parse_core(char *p
, unsigned long *core
,
7437 unsigned long *percent
)
7439 unsigned long long coremem
;
7445 /* Value may be a percentage of total memory, otherwise bytes */
7446 coremem
= simple_strtoull(p
, &endptr
, 0);
7447 if (*endptr
== '%') {
7448 /* Paranoid check for percent values greater than 100 */
7449 WARN_ON(coremem
> 100);
7453 coremem
= memparse(p
, &p
);
7454 /* Paranoid check that UL is enough for the coremem value */
7455 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
7457 *core
= coremem
>> PAGE_SHIFT
;
7464 * kernelcore=size sets the amount of memory for use for allocations that
7465 * cannot be reclaimed or migrated.
7467 static int __init
cmdline_parse_kernelcore(char *p
)
7469 /* parse kernelcore=mirror */
7470 if (parse_option_str(p
, "mirror")) {
7471 mirrored_kernelcore
= true;
7475 return cmdline_parse_core(p
, &required_kernelcore
,
7476 &required_kernelcore_percent
);
7480 * movablecore=size sets the amount of memory for use for allocations that
7481 * can be reclaimed or migrated.
7483 static int __init
cmdline_parse_movablecore(char *p
)
7485 return cmdline_parse_core(p
, &required_movablecore
,
7486 &required_movablecore_percent
);
7489 early_param("kernelcore", cmdline_parse_kernelcore
);
7490 early_param("movablecore", cmdline_parse_movablecore
);
7492 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7494 void adjust_managed_page_count(struct page
*page
, long count
)
7496 atomic_long_add(count
, &page_zone(page
)->managed_pages
);
7497 totalram_pages_add(count
);
7498 #ifdef CONFIG_HIGHMEM
7499 if (PageHighMem(page
))
7500 totalhigh_pages_add(count
);
7503 EXPORT_SYMBOL(adjust_managed_page_count
);
7505 unsigned long free_reserved_area(void *start
, void *end
, int poison
, const char *s
)
7508 unsigned long pages
= 0;
7510 start
= (void *)PAGE_ALIGN((unsigned long)start
);
7511 end
= (void *)((unsigned long)end
& PAGE_MASK
);
7512 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
7513 struct page
*page
= virt_to_page(pos
);
7514 void *direct_map_addr
;
7517 * 'direct_map_addr' might be different from 'pos'
7518 * because some architectures' virt_to_page()
7519 * work with aliases. Getting the direct map
7520 * address ensures that we get a _writeable_
7521 * alias for the memset().
7523 direct_map_addr
= page_address(page
);
7524 if ((unsigned int)poison
<= 0xFF)
7525 memset(direct_map_addr
, poison
, PAGE_SIZE
);
7527 free_reserved_page(page
);
7531 pr_info("Freeing %s memory: %ldK\n",
7532 s
, pages
<< (PAGE_SHIFT
- 10));
7537 #ifdef CONFIG_HIGHMEM
7538 void free_highmem_page(struct page
*page
)
7540 __free_reserved_page(page
);
7541 totalram_pages_inc();
7542 atomic_long_inc(&page_zone(page
)->managed_pages
);
7543 totalhigh_pages_inc();
7548 void __init
mem_init_print_info(const char *str
)
7550 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
7551 unsigned long init_code_size
, init_data_size
;
7553 physpages
= get_num_physpages();
7554 codesize
= _etext
- _stext
;
7555 datasize
= _edata
- _sdata
;
7556 rosize
= __end_rodata
- __start_rodata
;
7557 bss_size
= __bss_stop
- __bss_start
;
7558 init_data_size
= __init_end
- __init_begin
;
7559 init_code_size
= _einittext
- _sinittext
;
7562 * Detect special cases and adjust section sizes accordingly:
7563 * 1) .init.* may be embedded into .data sections
7564 * 2) .init.text.* may be out of [__init_begin, __init_end],
7565 * please refer to arch/tile/kernel/vmlinux.lds.S.
7566 * 3) .rodata.* may be embedded into .text or .data sections.
7568 #define adj_init_size(start, end, size, pos, adj) \
7570 if (start <= pos && pos < end && size > adj) \
7574 adj_init_size(__init_begin
, __init_end
, init_data_size
,
7575 _sinittext
, init_code_size
);
7576 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
7577 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
7578 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
7579 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
7581 #undef adj_init_size
7583 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7584 #ifdef CONFIG_HIGHMEM
7588 nr_free_pages() << (PAGE_SHIFT
- 10),
7589 physpages
<< (PAGE_SHIFT
- 10),
7590 codesize
>> 10, datasize
>> 10, rosize
>> 10,
7591 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
7592 (physpages
- totalram_pages() - totalcma_pages
) << (PAGE_SHIFT
- 10),
7593 totalcma_pages
<< (PAGE_SHIFT
- 10),
7594 #ifdef CONFIG_HIGHMEM
7595 totalhigh_pages() << (PAGE_SHIFT
- 10),
7597 str
? ", " : "", str
? str
: "");
7601 * set_dma_reserve - set the specified number of pages reserved in the first zone
7602 * @new_dma_reserve: The number of pages to mark reserved
7604 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7605 * In the DMA zone, a significant percentage may be consumed by kernel image
7606 * and other unfreeable allocations which can skew the watermarks badly. This
7607 * function may optionally be used to account for unfreeable pages in the
7608 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7609 * smaller per-cpu batchsize.
7611 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
7613 dma_reserve
= new_dma_reserve
;
7616 void __init
free_area_init(unsigned long *zones_size
)
7618 init_unavailable_mem();
7619 free_area_init_node(0, zones_size
,
7620 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
7623 static int page_alloc_cpu_dead(unsigned int cpu
)
7626 lru_add_drain_cpu(cpu
);
7630 * Spill the event counters of the dead processor
7631 * into the current processors event counters.
7632 * This artificially elevates the count of the current
7635 vm_events_fold_cpu(cpu
);
7638 * Zero the differential counters of the dead processor
7639 * so that the vm statistics are consistent.
7641 * This is only okay since the processor is dead and cannot
7642 * race with what we are doing.
7644 cpu_vm_stats_fold(cpu
);
7649 int hashdist
= HASHDIST_DEFAULT
;
7651 static int __init
set_hashdist(char *str
)
7655 hashdist
= simple_strtoul(str
, &str
, 0);
7658 __setup("hashdist=", set_hashdist
);
7661 void __init
page_alloc_init(void)
7666 if (num_node_state(N_MEMORY
) == 1)
7670 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
7671 "mm/page_alloc:dead", NULL
,
7672 page_alloc_cpu_dead
);
7677 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7678 * or min_free_kbytes changes.
7680 static void calculate_totalreserve_pages(void)
7682 struct pglist_data
*pgdat
;
7683 unsigned long reserve_pages
= 0;
7684 enum zone_type i
, j
;
7686 for_each_online_pgdat(pgdat
) {
7688 pgdat
->totalreserve_pages
= 0;
7690 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7691 struct zone
*zone
= pgdat
->node_zones
+ i
;
7693 unsigned long managed_pages
= zone_managed_pages(zone
);
7695 /* Find valid and maximum lowmem_reserve in the zone */
7696 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
7697 if (zone
->lowmem_reserve
[j
] > max
)
7698 max
= zone
->lowmem_reserve
[j
];
7701 /* we treat the high watermark as reserved pages. */
7702 max
+= high_wmark_pages(zone
);
7704 if (max
> managed_pages
)
7705 max
= managed_pages
;
7707 pgdat
->totalreserve_pages
+= max
;
7709 reserve_pages
+= max
;
7712 totalreserve_pages
= reserve_pages
;
7716 * setup_per_zone_lowmem_reserve - called whenever
7717 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7718 * has a correct pages reserved value, so an adequate number of
7719 * pages are left in the zone after a successful __alloc_pages().
7721 static void setup_per_zone_lowmem_reserve(void)
7723 struct pglist_data
*pgdat
;
7724 enum zone_type j
, idx
;
7726 for_each_online_pgdat(pgdat
) {
7727 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
7728 struct zone
*zone
= pgdat
->node_zones
+ j
;
7729 unsigned long managed_pages
= zone_managed_pages(zone
);
7731 zone
->lowmem_reserve
[j
] = 0;
7735 struct zone
*lower_zone
;
7738 lower_zone
= pgdat
->node_zones
+ idx
;
7740 if (sysctl_lowmem_reserve_ratio
[idx
] < 1) {
7741 sysctl_lowmem_reserve_ratio
[idx
] = 0;
7742 lower_zone
->lowmem_reserve
[j
] = 0;
7744 lower_zone
->lowmem_reserve
[j
] =
7745 managed_pages
/ sysctl_lowmem_reserve_ratio
[idx
];
7747 managed_pages
+= zone_managed_pages(lower_zone
);
7752 /* update totalreserve_pages */
7753 calculate_totalreserve_pages();
7756 static void __setup_per_zone_wmarks(void)
7758 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
7759 unsigned long lowmem_pages
= 0;
7761 unsigned long flags
;
7763 /* Calculate total number of !ZONE_HIGHMEM pages */
7764 for_each_zone(zone
) {
7765 if (!is_highmem(zone
))
7766 lowmem_pages
+= zone_managed_pages(zone
);
7769 for_each_zone(zone
) {
7772 spin_lock_irqsave(&zone
->lock
, flags
);
7773 tmp
= (u64
)pages_min
* zone_managed_pages(zone
);
7774 do_div(tmp
, lowmem_pages
);
7775 if (is_highmem(zone
)) {
7777 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7778 * need highmem pages, so cap pages_min to a small
7781 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7782 * deltas control async page reclaim, and so should
7783 * not be capped for highmem.
7785 unsigned long min_pages
;
7787 min_pages
= zone_managed_pages(zone
) / 1024;
7788 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7789 zone
->_watermark
[WMARK_MIN
] = min_pages
;
7792 * If it's a lowmem zone, reserve a number of pages
7793 * proportionate to the zone's size.
7795 zone
->_watermark
[WMARK_MIN
] = tmp
;
7799 * Set the kswapd watermarks distance according to the
7800 * scale factor in proportion to available memory, but
7801 * ensure a minimum size on small systems.
7803 tmp
= max_t(u64
, tmp
>> 2,
7804 mult_frac(zone_managed_pages(zone
),
7805 watermark_scale_factor
, 10000));
7807 zone
->_watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7808 zone
->_watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7809 zone
->watermark_boost
= 0;
7811 spin_unlock_irqrestore(&zone
->lock
, flags
);
7814 /* update totalreserve_pages */
7815 calculate_totalreserve_pages();
7819 * setup_per_zone_wmarks - called when min_free_kbytes changes
7820 * or when memory is hot-{added|removed}
7822 * Ensures that the watermark[min,low,high] values for each zone are set
7823 * correctly with respect to min_free_kbytes.
7825 void setup_per_zone_wmarks(void)
7827 static DEFINE_SPINLOCK(lock
);
7830 __setup_per_zone_wmarks();
7835 * Initialise min_free_kbytes.
7837 * For small machines we want it small (128k min). For large machines
7838 * we want it large (64MB max). But it is not linear, because network
7839 * bandwidth does not increase linearly with machine size. We use
7841 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7842 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7858 int __meminit
init_per_zone_wmark_min(void)
7860 unsigned long lowmem_kbytes
;
7861 int new_min_free_kbytes
;
7863 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7864 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7866 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7867 min_free_kbytes
= new_min_free_kbytes
;
7868 if (min_free_kbytes
< 128)
7869 min_free_kbytes
= 128;
7870 if (min_free_kbytes
> 65536)
7871 min_free_kbytes
= 65536;
7873 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7874 new_min_free_kbytes
, user_min_free_kbytes
);
7876 setup_per_zone_wmarks();
7877 refresh_zone_stat_thresholds();
7878 setup_per_zone_lowmem_reserve();
7881 setup_min_unmapped_ratio();
7882 setup_min_slab_ratio();
7887 core_initcall(init_per_zone_wmark_min
)
7890 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7891 * that we can call two helper functions whenever min_free_kbytes
7894 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7895 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7899 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7904 user_min_free_kbytes
= min_free_kbytes
;
7905 setup_per_zone_wmarks();
7910 int watermark_boost_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7911 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7915 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7922 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7923 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7927 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7932 setup_per_zone_wmarks();
7938 static void setup_min_unmapped_ratio(void)
7943 for_each_online_pgdat(pgdat
)
7944 pgdat
->min_unmapped_pages
= 0;
7947 zone
->zone_pgdat
->min_unmapped_pages
+= (zone_managed_pages(zone
) *
7948 sysctl_min_unmapped_ratio
) / 100;
7952 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7953 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7957 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7961 setup_min_unmapped_ratio();
7966 static void setup_min_slab_ratio(void)
7971 for_each_online_pgdat(pgdat
)
7972 pgdat
->min_slab_pages
= 0;
7975 zone
->zone_pgdat
->min_slab_pages
+= (zone_managed_pages(zone
) *
7976 sysctl_min_slab_ratio
) / 100;
7979 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7980 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7984 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7988 setup_min_slab_ratio();
7995 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7996 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7997 * whenever sysctl_lowmem_reserve_ratio changes.
7999 * The reserve ratio obviously has absolutely no relation with the
8000 * minimum watermarks. The lowmem reserve ratio can only make sense
8001 * if in function of the boot time zone sizes.
8003 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8004 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
8006 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8007 setup_per_zone_lowmem_reserve();
8011 static void __zone_pcp_update(struct zone
*zone
)
8015 for_each_possible_cpu(cpu
)
8016 pageset_set_high_and_batch(zone
,
8017 per_cpu_ptr(zone
->pageset
, cpu
));
8021 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8022 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8023 * pagelist can have before it gets flushed back to buddy allocator.
8025 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
8026 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
8029 int old_percpu_pagelist_fraction
;
8032 mutex_lock(&pcp_batch_high_lock
);
8033 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
8035 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8036 if (!write
|| ret
< 0)
8039 /* Sanity checking to avoid pcp imbalance */
8040 if (percpu_pagelist_fraction
&&
8041 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
8042 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
8048 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
8051 for_each_populated_zone(zone
)
8052 __zone_pcp_update(zone
);
8054 mutex_unlock(&pcp_batch_high_lock
);
8058 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8060 * Returns the number of pages that arch has reserved but
8061 * is not known to alloc_large_system_hash().
8063 static unsigned long __init
arch_reserved_kernel_pages(void)
8070 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8071 * machines. As memory size is increased the scale is also increased but at
8072 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8073 * quadruples the scale is increased by one, which means the size of hash table
8074 * only doubles, instead of quadrupling as well.
8075 * Because 32-bit systems cannot have large physical memory, where this scaling
8076 * makes sense, it is disabled on such platforms.
8078 #if __BITS_PER_LONG > 32
8079 #define ADAPT_SCALE_BASE (64ul << 30)
8080 #define ADAPT_SCALE_SHIFT 2
8081 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8085 * allocate a large system hash table from bootmem
8086 * - it is assumed that the hash table must contain an exact power-of-2
8087 * quantity of entries
8088 * - limit is the number of hash buckets, not the total allocation size
8090 void *__init
alloc_large_system_hash(const char *tablename
,
8091 unsigned long bucketsize
,
8092 unsigned long numentries
,
8095 unsigned int *_hash_shift
,
8096 unsigned int *_hash_mask
,
8097 unsigned long low_limit
,
8098 unsigned long high_limit
)
8100 unsigned long long max
= high_limit
;
8101 unsigned long log2qty
, size
;
8106 /* allow the kernel cmdline to have a say */
8108 /* round applicable memory size up to nearest megabyte */
8109 numentries
= nr_kernel_pages
;
8110 numentries
-= arch_reserved_kernel_pages();
8112 /* It isn't necessary when PAGE_SIZE >= 1MB */
8113 if (PAGE_SHIFT
< 20)
8114 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
8116 #if __BITS_PER_LONG > 32
8118 unsigned long adapt
;
8120 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
8121 adapt
<<= ADAPT_SCALE_SHIFT
)
8126 /* limit to 1 bucket per 2^scale bytes of low memory */
8127 if (scale
> PAGE_SHIFT
)
8128 numentries
>>= (scale
- PAGE_SHIFT
);
8130 numentries
<<= (PAGE_SHIFT
- scale
);
8132 /* Make sure we've got at least a 0-order allocation.. */
8133 if (unlikely(flags
& HASH_SMALL
)) {
8134 /* Makes no sense without HASH_EARLY */
8135 WARN_ON(!(flags
& HASH_EARLY
));
8136 if (!(numentries
>> *_hash_shift
)) {
8137 numentries
= 1UL << *_hash_shift
;
8138 BUG_ON(!numentries
);
8140 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
8141 numentries
= PAGE_SIZE
/ bucketsize
;
8143 numentries
= roundup_pow_of_two(numentries
);
8145 /* limit allocation size to 1/16 total memory by default */
8147 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
8148 do_div(max
, bucketsize
);
8150 max
= min(max
, 0x80000000ULL
);
8152 if (numentries
< low_limit
)
8153 numentries
= low_limit
;
8154 if (numentries
> max
)
8157 log2qty
= ilog2(numentries
);
8159 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
8162 size
= bucketsize
<< log2qty
;
8163 if (flags
& HASH_EARLY
) {
8164 if (flags
& HASH_ZERO
)
8165 table
= memblock_alloc(size
, SMP_CACHE_BYTES
);
8167 table
= memblock_alloc_raw(size
,
8169 } else if (get_order(size
) >= MAX_ORDER
|| hashdist
) {
8170 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
8174 * If bucketsize is not a power-of-two, we may free
8175 * some pages at the end of hash table which
8176 * alloc_pages_exact() automatically does
8178 table
= alloc_pages_exact(size
, gfp_flags
);
8179 kmemleak_alloc(table
, size
, 1, gfp_flags
);
8181 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
8184 panic("Failed to allocate %s hash table\n", tablename
);
8186 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8187 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
,
8188 virt
? "vmalloc" : "linear");
8191 *_hash_shift
= log2qty
;
8193 *_hash_mask
= (1 << log2qty
) - 1;
8199 * This function checks whether pageblock includes unmovable pages or not.
8201 * PageLRU check without isolation or lru_lock could race so that
8202 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8203 * check without lock_page also may miss some movable non-lru pages at
8204 * race condition. So you can't expect this function should be exact.
8206 * Returns a page without holding a reference. If the caller wants to
8207 * dereference that page (e.g., dumping), it has to make sure that that it
8208 * cannot get removed (e.g., via memory unplug) concurrently.
8211 struct page
*has_unmovable_pages(struct zone
*zone
, struct page
*page
,
8212 int migratetype
, int flags
)
8214 unsigned long iter
= 0;
8215 unsigned long pfn
= page_to_pfn(page
);
8218 * TODO we could make this much more efficient by not checking every
8219 * page in the range if we know all of them are in MOVABLE_ZONE and
8220 * that the movable zone guarantees that pages are migratable but
8221 * the later is not the case right now unfortunatelly. E.g. movablecore
8222 * can still lead to having bootmem allocations in zone_movable.
8225 if (is_migrate_cma_page(page
)) {
8227 * CMA allocations (alloc_contig_range) really need to mark
8228 * isolate CMA pageblocks even when they are not movable in fact
8229 * so consider them movable here.
8231 if (is_migrate_cma(migratetype
))
8237 for (; iter
< pageblock_nr_pages
; iter
++) {
8238 if (!pfn_valid_within(pfn
+ iter
))
8241 page
= pfn_to_page(pfn
+ iter
);
8243 if (PageReserved(page
))
8247 * If the zone is movable and we have ruled out all reserved
8248 * pages then it should be reasonably safe to assume the rest
8251 if (zone_idx(zone
) == ZONE_MOVABLE
)
8255 * Hugepages are not in LRU lists, but they're movable.
8256 * We need not scan over tail pages because we don't
8257 * handle each tail page individually in migration.
8259 if (PageHuge(page
)) {
8260 struct page
*head
= compound_head(page
);
8261 unsigned int skip_pages
;
8263 if (!hugepage_migration_supported(page_hstate(head
)))
8266 skip_pages
= compound_nr(head
) - (page
- head
);
8267 iter
+= skip_pages
- 1;
8272 * We can't use page_count without pin a page
8273 * because another CPU can free compound page.
8274 * This check already skips compound tails of THP
8275 * because their page->_refcount is zero at all time.
8277 if (!page_ref_count(page
)) {
8278 if (PageBuddy(page
))
8279 iter
+= (1 << page_order(page
)) - 1;
8284 * The HWPoisoned page may be not in buddy system, and
8285 * page_count() is not 0.
8287 if ((flags
& MEMORY_OFFLINE
) && PageHWPoison(page
))
8290 if (__PageMovable(page
) || PageLRU(page
))
8294 * If there are RECLAIMABLE pages, we need to check
8295 * it. But now, memory offline itself doesn't call
8296 * shrink_node_slabs() and it still to be fixed.
8299 * If the page is not RAM, page_count()should be 0.
8300 * we don't need more check. This is an _used_ not-movable page.
8302 * The problematic thing here is PG_reserved pages. PG_reserved
8303 * is set to both of a memory hole page and a _used_ kernel
8311 #ifdef CONFIG_CONTIG_ALLOC
8312 static unsigned long pfn_max_align_down(unsigned long pfn
)
8314 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8315 pageblock_nr_pages
) - 1);
8318 static unsigned long pfn_max_align_up(unsigned long pfn
)
8320 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8321 pageblock_nr_pages
));
8324 /* [start, end) must belong to a single zone. */
8325 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
8326 unsigned long start
, unsigned long end
)
8328 /* This function is based on compact_zone() from compaction.c. */
8329 unsigned long nr_reclaimed
;
8330 unsigned long pfn
= start
;
8331 unsigned int tries
= 0;
8336 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
8337 if (fatal_signal_pending(current
)) {
8342 if (list_empty(&cc
->migratepages
)) {
8343 cc
->nr_migratepages
= 0;
8344 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
8350 } else if (++tries
== 5) {
8351 ret
= ret
< 0 ? ret
: -EBUSY
;
8355 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
8357 cc
->nr_migratepages
-= nr_reclaimed
;
8359 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
8360 NULL
, 0, cc
->mode
, MR_CONTIG_RANGE
);
8363 putback_movable_pages(&cc
->migratepages
);
8370 * alloc_contig_range() -- tries to allocate given range of pages
8371 * @start: start PFN to allocate
8372 * @end: one-past-the-last PFN to allocate
8373 * @migratetype: migratetype of the underlaying pageblocks (either
8374 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8375 * in range must have the same migratetype and it must
8376 * be either of the two.
8377 * @gfp_mask: GFP mask to use during compaction
8379 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8380 * aligned. The PFN range must belong to a single zone.
8382 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8383 * pageblocks in the range. Once isolated, the pageblocks should not
8384 * be modified by others.
8386 * Return: zero on success or negative error code. On success all
8387 * pages which PFN is in [start, end) are allocated for the caller and
8388 * need to be freed with free_contig_range().
8390 int alloc_contig_range(unsigned long start
, unsigned long end
,
8391 unsigned migratetype
, gfp_t gfp_mask
)
8393 unsigned long outer_start
, outer_end
;
8397 struct compact_control cc
= {
8398 .nr_migratepages
= 0,
8400 .zone
= page_zone(pfn_to_page(start
)),
8401 .mode
= MIGRATE_SYNC
,
8402 .ignore_skip_hint
= true,
8403 .no_set_skip_hint
= true,
8404 .gfp_mask
= current_gfp_context(gfp_mask
),
8406 INIT_LIST_HEAD(&cc
.migratepages
);
8409 * What we do here is we mark all pageblocks in range as
8410 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8411 * have different sizes, and due to the way page allocator
8412 * work, we align the range to biggest of the two pages so
8413 * that page allocator won't try to merge buddies from
8414 * different pageblocks and change MIGRATE_ISOLATE to some
8415 * other migration type.
8417 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8418 * migrate the pages from an unaligned range (ie. pages that
8419 * we are interested in). This will put all the pages in
8420 * range back to page allocator as MIGRATE_ISOLATE.
8422 * When this is done, we take the pages in range from page
8423 * allocator removing them from the buddy system. This way
8424 * page allocator will never consider using them.
8426 * This lets us mark the pageblocks back as
8427 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8428 * aligned range but not in the unaligned, original range are
8429 * put back to page allocator so that buddy can use them.
8432 ret
= start_isolate_page_range(pfn_max_align_down(start
),
8433 pfn_max_align_up(end
), migratetype
, 0);
8438 * In case of -EBUSY, we'd like to know which page causes problem.
8439 * So, just fall through. test_pages_isolated() has a tracepoint
8440 * which will report the busy page.
8442 * It is possible that busy pages could become available before
8443 * the call to test_pages_isolated, and the range will actually be
8444 * allocated. So, if we fall through be sure to clear ret so that
8445 * -EBUSY is not accidentally used or returned to caller.
8447 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
8448 if (ret
&& ret
!= -EBUSY
)
8453 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8454 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8455 * more, all pages in [start, end) are free in page allocator.
8456 * What we are going to do is to allocate all pages from
8457 * [start, end) (that is remove them from page allocator).
8459 * The only problem is that pages at the beginning and at the
8460 * end of interesting range may be not aligned with pages that
8461 * page allocator holds, ie. they can be part of higher order
8462 * pages. Because of this, we reserve the bigger range and
8463 * once this is done free the pages we are not interested in.
8465 * We don't have to hold zone->lock here because the pages are
8466 * isolated thus they won't get removed from buddy.
8469 lru_add_drain_all();
8472 outer_start
= start
;
8473 while (!PageBuddy(pfn_to_page(outer_start
))) {
8474 if (++order
>= MAX_ORDER
) {
8475 outer_start
= start
;
8478 outer_start
&= ~0UL << order
;
8481 if (outer_start
!= start
) {
8482 order
= page_order(pfn_to_page(outer_start
));
8485 * outer_start page could be small order buddy page and
8486 * it doesn't include start page. Adjust outer_start
8487 * in this case to report failed page properly
8488 * on tracepoint in test_pages_isolated()
8490 if (outer_start
+ (1UL << order
) <= start
)
8491 outer_start
= start
;
8494 /* Make sure the range is really isolated. */
8495 if (test_pages_isolated(outer_start
, end
, 0)) {
8496 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8497 __func__
, outer_start
, end
);
8502 /* Grab isolated pages from freelists. */
8503 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
8509 /* Free head and tail (if any) */
8510 if (start
!= outer_start
)
8511 free_contig_range(outer_start
, start
- outer_start
);
8512 if (end
!= outer_end
)
8513 free_contig_range(end
, outer_end
- end
);
8516 undo_isolate_page_range(pfn_max_align_down(start
),
8517 pfn_max_align_up(end
), migratetype
);
8521 static int __alloc_contig_pages(unsigned long start_pfn
,
8522 unsigned long nr_pages
, gfp_t gfp_mask
)
8524 unsigned long end_pfn
= start_pfn
+ nr_pages
;
8526 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
8530 static bool pfn_range_valid_contig(struct zone
*z
, unsigned long start_pfn
,
8531 unsigned long nr_pages
)
8533 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
8536 for (i
= start_pfn
; i
< end_pfn
; i
++) {
8537 page
= pfn_to_online_page(i
);
8541 if (page_zone(page
) != z
)
8544 if (PageReserved(page
))
8547 if (page_count(page
) > 0)
8556 static bool zone_spans_last_pfn(const struct zone
*zone
,
8557 unsigned long start_pfn
, unsigned long nr_pages
)
8559 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
8561 return zone_spans_pfn(zone
, last_pfn
);
8565 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8566 * @nr_pages: Number of contiguous pages to allocate
8567 * @gfp_mask: GFP mask to limit search and used during compaction
8569 * @nodemask: Mask for other possible nodes
8571 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8572 * on an applicable zonelist to find a contiguous pfn range which can then be
8573 * tried for allocation with alloc_contig_range(). This routine is intended
8574 * for allocation requests which can not be fulfilled with the buddy allocator.
8576 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8577 * power of two then the alignment is guaranteed to be to the given nr_pages
8578 * (e.g. 1GB request would be aligned to 1GB).
8580 * Allocated pages can be freed with free_contig_range() or by manually calling
8581 * __free_page() on each allocated page.
8583 * Return: pointer to contiguous pages on success, or NULL if not successful.
8585 struct page
*alloc_contig_pages(unsigned long nr_pages
, gfp_t gfp_mask
,
8586 int nid
, nodemask_t
*nodemask
)
8588 unsigned long ret
, pfn
, flags
;
8589 struct zonelist
*zonelist
;
8593 zonelist
= node_zonelist(nid
, gfp_mask
);
8594 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
8595 gfp_zone(gfp_mask
), nodemask
) {
8596 spin_lock_irqsave(&zone
->lock
, flags
);
8598 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
8599 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
8600 if (pfn_range_valid_contig(zone
, pfn
, nr_pages
)) {
8602 * We release the zone lock here because
8603 * alloc_contig_range() will also lock the zone
8604 * at some point. If there's an allocation
8605 * spinning on this lock, it may win the race
8606 * and cause alloc_contig_range() to fail...
8608 spin_unlock_irqrestore(&zone
->lock
, flags
);
8609 ret
= __alloc_contig_pages(pfn
, nr_pages
,
8612 return pfn_to_page(pfn
);
8613 spin_lock_irqsave(&zone
->lock
, flags
);
8617 spin_unlock_irqrestore(&zone
->lock
, flags
);
8621 #endif /* CONFIG_CONTIG_ALLOC */
8623 void free_contig_range(unsigned long pfn
, unsigned int nr_pages
)
8625 unsigned int count
= 0;
8627 for (; nr_pages
--; pfn
++) {
8628 struct page
*page
= pfn_to_page(pfn
);
8630 count
+= page_count(page
) != 1;
8633 WARN(count
!= 0, "%d pages are still in use!\n", count
);
8637 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8638 * page high values need to be recalulated.
8640 void __meminit
zone_pcp_update(struct zone
*zone
)
8642 mutex_lock(&pcp_batch_high_lock
);
8643 __zone_pcp_update(zone
);
8644 mutex_unlock(&pcp_batch_high_lock
);
8647 void zone_pcp_reset(struct zone
*zone
)
8649 unsigned long flags
;
8651 struct per_cpu_pageset
*pset
;
8653 /* avoid races with drain_pages() */
8654 local_irq_save(flags
);
8655 if (zone
->pageset
!= &boot_pageset
) {
8656 for_each_online_cpu(cpu
) {
8657 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
8658 drain_zonestat(zone
, pset
);
8660 free_percpu(zone
->pageset
);
8661 zone
->pageset
= &boot_pageset
;
8663 local_irq_restore(flags
);
8666 #ifdef CONFIG_MEMORY_HOTREMOVE
8668 * All pages in the range must be in a single zone and isolated
8669 * before calling this.
8672 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
8678 unsigned long flags
;
8679 unsigned long offlined_pages
= 0;
8681 /* find the first valid pfn */
8682 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
8686 return offlined_pages
;
8688 offline_mem_sections(pfn
, end_pfn
);
8689 zone
= page_zone(pfn_to_page(pfn
));
8690 spin_lock_irqsave(&zone
->lock
, flags
);
8692 while (pfn
< end_pfn
) {
8693 if (!pfn_valid(pfn
)) {
8697 page
= pfn_to_page(pfn
);
8699 * The HWPoisoned page may be not in buddy system, and
8700 * page_count() is not 0.
8702 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
8708 BUG_ON(page_count(page
));
8709 BUG_ON(!PageBuddy(page
));
8710 order
= page_order(page
);
8711 offlined_pages
+= 1 << order
;
8712 del_page_from_free_area(page
, &zone
->free_area
[order
]);
8713 pfn
+= (1 << order
);
8715 spin_unlock_irqrestore(&zone
->lock
, flags
);
8717 return offlined_pages
;
8721 bool is_free_buddy_page(struct page
*page
)
8723 struct zone
*zone
= page_zone(page
);
8724 unsigned long pfn
= page_to_pfn(page
);
8725 unsigned long flags
;
8728 spin_lock_irqsave(&zone
->lock
, flags
);
8729 for (order
= 0; order
< MAX_ORDER
; order
++) {
8730 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8732 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
8735 spin_unlock_irqrestore(&zone
->lock
, flags
);
8737 return order
< MAX_ORDER
;
8740 #ifdef CONFIG_MEMORY_FAILURE
8742 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8743 * test is performed under the zone lock to prevent a race against page
8746 bool set_hwpoison_free_buddy_page(struct page
*page
)
8748 struct zone
*zone
= page_zone(page
);
8749 unsigned long pfn
= page_to_pfn(page
);
8750 unsigned long flags
;
8752 bool hwpoisoned
= false;
8754 spin_lock_irqsave(&zone
->lock
, flags
);
8755 for (order
= 0; order
< MAX_ORDER
; order
++) {
8756 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8758 if (PageBuddy(page_head
) && page_order(page_head
) >= order
) {
8759 if (!TestSetPageHWPoison(page
))
8764 spin_unlock_irqrestore(&zone
->lock
, flags
);