2 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
21 Abstract: rt2x00 queue datastructures and routines
27 #include <linux/prefetch.h>
30 * DOC: Entry frame size
32 * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes,
33 * for USB devices this restriction does not apply, but the value of
34 * 2432 makes sense since it is big enough to contain the maximum fragment
35 * size according to the ieee802.11 specs.
36 * The aggregation size depends on support from the driver, but should
37 * be something around 3840 bytes.
39 #define DATA_FRAME_SIZE 2432
40 #define MGMT_FRAME_SIZE 256
41 #define AGGREGATION_SIZE 3840
44 * enum data_queue_qid: Queue identification
46 * @QID_AC_VO: AC VO queue
47 * @QID_AC_VI: AC VI queue
48 * @QID_AC_BE: AC BE queue
49 * @QID_AC_BK: AC BK queue
50 * @QID_HCCA: HCCA queue
51 * @QID_MGMT: MGMT queue (prio queue)
53 * @QID_OTHER: None of the above (don't use, only present for completeness)
54 * @QID_BEACON: Beacon queue (value unspecified, don't send it to device)
55 * @QID_ATIM: Atim queue (value unspecified, don't send it to device)
71 * enum skb_frame_desc_flags: Flags for &struct skb_frame_desc
73 * @SKBDESC_DMA_MAPPED_RX: &skb_dma field has been mapped for RX
74 * @SKBDESC_DMA_MAPPED_TX: &skb_dma field has been mapped for TX
75 * @SKBDESC_IV_STRIPPED: Frame contained a IV/EIV provided by
76 * mac80211 but was stripped for processing by the driver.
77 * @SKBDESC_NOT_MAC80211: Frame didn't originate from mac80211,
78 * don't try to pass it back.
79 * @SKBDESC_DESC_IN_SKB: The descriptor is at the start of the
80 * skb, instead of in the desc field.
82 enum skb_frame_desc_flags
{
83 SKBDESC_DMA_MAPPED_RX
= 1 << 0,
84 SKBDESC_DMA_MAPPED_TX
= 1 << 1,
85 SKBDESC_IV_STRIPPED
= 1 << 2,
86 SKBDESC_NOT_MAC80211
= 1 << 3,
87 SKBDESC_DESC_IN_SKB
= 1 << 4,
91 * struct skb_frame_desc: Descriptor information for the skb buffer
93 * This structure is placed over the driver_data array, this means that
94 * this structure should not exceed the size of that array (40 bytes).
96 * @flags: Frame flags, see &enum skb_frame_desc_flags.
97 * @desc_len: Length of the frame descriptor.
98 * @tx_rate_idx: the index of the TX rate, used for TX status reporting
99 * @tx_rate_flags: the TX rate flags, used for TX status reporting
100 * @desc: Pointer to descriptor part of the frame.
101 * Note that this pointer could point to something outside
102 * of the scope of the skb->data pointer.
103 * @iv: IV/EIV data used during encryption/decryption.
104 * @skb_dma: (PCI-only) the DMA address associated with the sk buffer.
105 * @sta: The station where sk buffer was sent.
107 struct skb_frame_desc
{
119 struct ieee80211_sta
*sta
;
123 * get_skb_frame_desc - Obtain the rt2x00 frame descriptor from a sk_buff.
124 * @skb: &struct sk_buff from where we obtain the &struct skb_frame_desc
126 static inline struct skb_frame_desc
* get_skb_frame_desc(struct sk_buff
*skb
)
128 BUILD_BUG_ON(sizeof(struct skb_frame_desc
) >
129 IEEE80211_TX_INFO_DRIVER_DATA_SIZE
);
130 return (struct skb_frame_desc
*)&IEEE80211_SKB_CB(skb
)->driver_data
;
134 * enum rxdone_entry_desc_flags: Flags for &struct rxdone_entry_desc
136 * @RXDONE_SIGNAL_PLCP: Signal field contains the plcp value.
137 * @RXDONE_SIGNAL_BITRATE: Signal field contains the bitrate value.
138 * @RXDONE_SIGNAL_MCS: Signal field contains the mcs value.
139 * @RXDONE_MY_BSS: Does this frame originate from device's BSS.
140 * @RXDONE_CRYPTO_IV: Driver provided IV/EIV data.
141 * @RXDONE_CRYPTO_ICV: Driver provided ICV data.
142 * @RXDONE_L2PAD: 802.11 payload has been padded to 4-byte boundary.
144 enum rxdone_entry_desc_flags
{
145 RXDONE_SIGNAL_PLCP
= BIT(0),
146 RXDONE_SIGNAL_BITRATE
= BIT(1),
147 RXDONE_SIGNAL_MCS
= BIT(2),
148 RXDONE_MY_BSS
= BIT(3),
149 RXDONE_CRYPTO_IV
= BIT(4),
150 RXDONE_CRYPTO_ICV
= BIT(5),
151 RXDONE_L2PAD
= BIT(6),
155 * RXDONE_SIGNAL_MASK - Define to mask off all &rxdone_entry_desc_flags flags
156 * except for the RXDONE_SIGNAL_* flags. This is useful to convert the dev_flags
157 * from &rxdone_entry_desc to a signal value type.
159 #define RXDONE_SIGNAL_MASK \
160 ( RXDONE_SIGNAL_PLCP | RXDONE_SIGNAL_BITRATE | RXDONE_SIGNAL_MCS )
163 * struct rxdone_entry_desc: RX Entry descriptor
165 * Summary of information that has been read from the RX frame descriptor.
167 * @timestamp: RX Timestamp
168 * @signal: Signal of the received frame.
169 * @rssi: RSSI of the received frame.
170 * @size: Data size of the received frame.
171 * @flags: MAC80211 receive flags (See &enum mac80211_rx_flags).
172 * @dev_flags: Ralink receive flags (See &enum rxdone_entry_desc_flags).
173 * @rate_mode: Rate mode (See @enum rate_modulation).
174 * @cipher: Cipher type used during decryption.
175 * @cipher_status: Decryption status.
176 * @iv: IV/EIV data used during decryption.
177 * @icv: ICV data used during decryption.
179 struct rxdone_entry_desc
{
188 enum mac80211_rx_encoding encoding
;
189 enum rate_info_bw bw
;
198 * enum txdone_entry_desc_flags: Flags for &struct txdone_entry_desc
200 * Every txdone report has to contain the basic result of the
201 * transmission, either &TXDONE_UNKNOWN, &TXDONE_SUCCESS or
202 * &TXDONE_FAILURE. The flag &TXDONE_FALLBACK can be used in
203 * conjunction with all of these flags but should only be set
204 * if retires > 0. The flag &TXDONE_EXCESSIVE_RETRY can only be used
205 * in conjunction with &TXDONE_FAILURE.
207 * @TXDONE_UNKNOWN: Hardware could not determine success of transmission.
208 * @TXDONE_SUCCESS: Frame was successfully send
209 * @TXDONE_FALLBACK: Hardware used fallback rates for retries
210 * @TXDONE_FAILURE: Frame was not successfully send
211 * @TXDONE_EXCESSIVE_RETRY: In addition to &TXDONE_FAILURE, the
212 * frame transmission failed due to excessive retries.
214 enum txdone_entry_desc_flags
{
219 TXDONE_EXCESSIVE_RETRY
,
225 * struct txdone_entry_desc: TX done entry descriptor
227 * Summary of information that has been read from the TX frame descriptor
228 * after the device is done with transmission.
230 * @flags: TX done flags (See &enum txdone_entry_desc_flags).
231 * @retry: Retry count.
233 struct txdone_entry_desc
{
239 * enum txentry_desc_flags: Status flags for TX entry descriptor
241 * @ENTRY_TXD_RTS_FRAME: This frame is a RTS frame.
242 * @ENTRY_TXD_CTS_FRAME: This frame is a CTS-to-self frame.
243 * @ENTRY_TXD_GENERATE_SEQ: This frame requires sequence counter.
244 * @ENTRY_TXD_FIRST_FRAGMENT: This is the first frame.
245 * @ENTRY_TXD_MORE_FRAG: This frame is followed by another fragment.
246 * @ENTRY_TXD_REQ_TIMESTAMP: Require timestamp to be inserted.
247 * @ENTRY_TXD_BURST: This frame belongs to the same burst event.
248 * @ENTRY_TXD_ACK: An ACK is required for this frame.
249 * @ENTRY_TXD_RETRY_MODE: When set, the long retry count is used.
250 * @ENTRY_TXD_ENCRYPT: This frame should be encrypted.
251 * @ENTRY_TXD_ENCRYPT_PAIRWISE: Use pairwise key table (instead of shared).
252 * @ENTRY_TXD_ENCRYPT_IV: Generate IV/EIV in hardware.
253 * @ENTRY_TXD_ENCRYPT_MMIC: Generate MIC in hardware.
254 * @ENTRY_TXD_HT_AMPDU: This frame is part of an AMPDU.
255 * @ENTRY_TXD_HT_BW_40: Use 40MHz Bandwidth.
256 * @ENTRY_TXD_HT_SHORT_GI: Use short GI.
257 * @ENTRY_TXD_HT_MIMO_PS: The receiving STA is in dynamic SM PS mode.
259 enum txentry_desc_flags
{
262 ENTRY_TXD_GENERATE_SEQ
,
263 ENTRY_TXD_FIRST_FRAGMENT
,
265 ENTRY_TXD_REQ_TIMESTAMP
,
268 ENTRY_TXD_RETRY_MODE
,
270 ENTRY_TXD_ENCRYPT_PAIRWISE
,
271 ENTRY_TXD_ENCRYPT_IV
,
272 ENTRY_TXD_ENCRYPT_MMIC
,
275 ENTRY_TXD_HT_SHORT_GI
,
276 ENTRY_TXD_HT_MIMO_PS
,
280 * struct txentry_desc: TX Entry descriptor
282 * Summary of information for the frame descriptor before sending a TX frame.
284 * @flags: Descriptor flags (See &enum queue_entry_flags).
285 * @length: Length of the entire frame.
286 * @header_length: Length of 802.11 header.
287 * @length_high: PLCP length high word.
288 * @length_low: PLCP length low word.
289 * @signal: PLCP signal.
290 * @service: PLCP service.
292 * @stbc: Use Space Time Block Coding (only available for MCS rates < 8).
293 * @ba_size: Size of the recepients RX reorder buffer - 1.
294 * @rate_mode: Rate mode (See @enum rate_modulation).
295 * @mpdu_density: MDPU density.
296 * @retry_limit: Max number of retries.
298 * @txop: IFS value for 11n capable chips.
299 * @cipher: Cipher type used for encryption.
300 * @key_idx: Key index used for encryption.
301 * @iv_offset: Position where IV should be inserted by hardware.
302 * @iv_len: Length of IV data.
304 struct txentry_desc
{
329 enum rate_modulation rate_mode
;
340 * enum queue_entry_flags: Status flags for queue entry
342 * @ENTRY_BCN_ASSIGNED: This entry has been assigned to an interface.
343 * As long as this bit is set, this entry may only be touched
344 * through the interface structure.
345 * @ENTRY_OWNER_DEVICE_DATA: This entry is owned by the device for data
346 * transfer (either TX or RX depending on the queue). The entry should
347 * only be touched after the device has signaled it is done with it.
348 * @ENTRY_DATA_PENDING: This entry contains a valid frame and is waiting
349 * for the signal to start sending.
350 * @ENTRY_DATA_IO_FAILED: Hardware indicated that an IO error occurred
351 * while transferring the data to the hardware. No TX status report will
352 * be expected from the hardware.
353 * @ENTRY_DATA_STATUS_PENDING: The entry has been send to the device and
354 * returned. It is now waiting for the status reporting before the
355 * entry can be reused again.
357 enum queue_entry_flags
{
360 ENTRY_OWNER_DEVICE_DATA
,
362 ENTRY_DATA_IO_FAILED
,
363 ENTRY_DATA_STATUS_PENDING
,
367 * struct queue_entry: Entry inside the &struct data_queue
369 * @flags: Entry flags, see &enum queue_entry_flags.
370 * @last_action: Timestamp of last change.
371 * @queue: The data queue (&struct data_queue) to which this entry belongs.
372 * @skb: The buffer which is currently being transmitted (for TX queue),
373 * or used to directly receive data in (for RX queue).
374 * @entry_idx: The entry index number.
375 * @priv_data: Private data belonging to this queue entry. The pointer
376 * points to data specific to a particular driver and queue type.
377 * @status: Device specific status
381 unsigned long last_action
;
383 struct data_queue
*queue
;
387 unsigned int entry_idx
;
393 * enum queue_index: Queue index type
395 * @Q_INDEX: Index pointer to the current entry in the queue, if this entry is
396 * owned by the hardware then the queue is considered to be full.
397 * @Q_INDEX_DMA_DONE: Index pointer for the next entry which will have been
398 * transferred to the hardware.
399 * @Q_INDEX_DONE: Index pointer to the next entry which will be completed by
400 * the hardware and for which we need to run the txdone handler. If this
401 * entry is not owned by the hardware the queue is considered to be empty.
402 * @Q_INDEX_MAX: Keep last, used in &struct data_queue to determine the size
403 * of the index array.
413 * enum data_queue_flags: Status flags for data queues
415 * @QUEUE_STARTED: The queue has been started. Fox RX queues this means the
416 * device might be DMA'ing skbuffers. TX queues will accept skbuffers to
417 * be transmitted and beacon queues will start beaconing the configured
419 * @QUEUE_PAUSED: The queue has been started but is currently paused.
420 * When this bit is set, the queue has been stopped in mac80211,
421 * preventing new frames to be enqueued. However, a few frames
422 * might still appear shortly after the pausing...
424 enum data_queue_flags
{
430 * struct data_queue: Data queue
432 * @rt2x00dev: Pointer to main &struct rt2x00dev where this queue belongs to.
433 * @entries: Base address of the &struct queue_entry which are
434 * part of this queue.
435 * @qid: The queue identification, see &enum data_queue_qid.
436 * @flags: Entry flags, see &enum queue_entry_flags.
437 * @status_lock: The mutex for protecting the start/stop/flush
438 * handling on this queue.
439 * @tx_lock: Spinlock to serialize tx operations on this queue.
440 * @index_lock: Spinlock to protect index handling. Whenever @index, @index_done or
441 * @index_crypt needs to be changed this lock should be grabbed to prevent
442 * index corruption due to concurrency.
443 * @count: Number of frames handled in the queue.
444 * @limit: Maximum number of entries in the queue.
445 * @threshold: Minimum number of free entries before queue is kicked by force.
446 * @length: Number of frames in queue.
447 * @index: Index pointers to entry positions in the queue,
448 * use &enum queue_index to get a specific index field.
449 * @txop: maximum burst time.
450 * @aifs: The aifs value for outgoing frames (field ignored in RX queue).
451 * @cw_min: The cw min value for outgoing frames (field ignored in RX queue).
452 * @cw_max: The cw max value for outgoing frames (field ignored in RX queue).
453 * @data_size: Maximum data size for the frames in this queue.
454 * @desc_size: Hardware descriptor size for the data in this queue.
455 * @priv_size: Size of per-queue_entry private data.
456 * @usb_endpoint: Device endpoint used for communication (USB only)
457 * @usb_maxpacket: Max packet size for given endpoint (USB only)
460 struct rt2x00_dev
*rt2x00dev
;
461 struct queue_entry
*entries
;
463 enum data_queue_qid qid
;
466 struct mutex status_lock
;
468 spinlock_t index_lock
;
471 unsigned short limit
;
472 unsigned short threshold
;
473 unsigned short length
;
474 unsigned short index
[Q_INDEX_MAX
];
478 unsigned short cw_min
;
479 unsigned short cw_max
;
481 unsigned short data_size
;
482 unsigned char desc_size
;
483 unsigned char winfo_size
;
484 unsigned short priv_size
;
486 unsigned short usb_endpoint
;
487 unsigned short usb_maxpacket
;
491 * queue_end - Return pointer to the last queue (HELPER MACRO).
492 * @__dev: Pointer to &struct rt2x00_dev
494 * Using the base rx pointer and the maximum number of available queues,
495 * this macro will return the address of 1 position beyond the end of the
498 #define queue_end(__dev) \
499 &(__dev)->rx[(__dev)->data_queues]
502 * tx_queue_end - Return pointer to the last TX queue (HELPER MACRO).
503 * @__dev: Pointer to &struct rt2x00_dev
505 * Using the base tx pointer and the maximum number of available TX
506 * queues, this macro will return the address of 1 position beyond
507 * the end of the TX queue array.
509 #define tx_queue_end(__dev) \
510 &(__dev)->tx[(__dev)->ops->tx_queues]
513 * queue_next - Return pointer to next queue in list (HELPER MACRO).
514 * @__queue: Current queue for which we need the next queue
516 * Using the current queue address we take the address directly
517 * after the queue to take the next queue. Note that this macro
518 * should be used carefully since it does not protect against
519 * moving past the end of the list. (See macros &queue_end and
520 * &tx_queue_end for determining the end of the queue).
522 #define queue_next(__queue) \
526 * queue_loop - Loop through the queues within a specific range (HELPER MACRO).
527 * @__entry: Pointer where the current queue entry will be stored in.
528 * @__start: Start queue pointer.
529 * @__end: End queue pointer.
531 * This macro will loop through all queues between &__start and &__end.
533 #define queue_loop(__entry, __start, __end) \
534 for ((__entry) = (__start); \
535 prefetch(queue_next(__entry)), (__entry) != (__end);\
536 (__entry) = queue_next(__entry))
539 * queue_for_each - Loop through all queues
540 * @__dev: Pointer to &struct rt2x00_dev
541 * @__entry: Pointer where the current queue entry will be stored in.
543 * This macro will loop through all available queues.
545 #define queue_for_each(__dev, __entry) \
546 queue_loop(__entry, (__dev)->rx, queue_end(__dev))
549 * tx_queue_for_each - Loop through the TX queues
550 * @__dev: Pointer to &struct rt2x00_dev
551 * @__entry: Pointer where the current queue entry will be stored in.
553 * This macro will loop through all TX related queues excluding
554 * the Beacon and Atim queues.
556 #define tx_queue_for_each(__dev, __entry) \
557 queue_loop(__entry, (__dev)->tx, tx_queue_end(__dev))
560 * txall_queue_for_each - Loop through all TX related queues
561 * @__dev: Pointer to &struct rt2x00_dev
562 * @__entry: Pointer where the current queue entry will be stored in.
564 * This macro will loop through all TX related queues including
565 * the Beacon and Atim queues.
567 #define txall_queue_for_each(__dev, __entry) \
568 queue_loop(__entry, (__dev)->tx, queue_end(__dev))
571 * rt2x00queue_for_each_entry - Loop through all entries in the queue
572 * @queue: Pointer to @data_queue
573 * @start: &enum queue_index Pointer to start index
574 * @end: &enum queue_index Pointer to end index
575 * @data: Data to pass to the callback function
576 * @fn: The function to call for each &struct queue_entry
578 * This will walk through all entries in the queue, in chronological
579 * order. This means it will start at the current @start pointer
580 * and will walk through the queue until it reaches the @end pointer.
582 * If fn returns true for an entry rt2x00queue_for_each_entry will stop
583 * processing and return true as well.
585 bool rt2x00queue_for_each_entry(struct data_queue
*queue
,
586 enum queue_index start
,
587 enum queue_index end
,
589 bool (*fn
)(struct queue_entry
*entry
,
593 * rt2x00queue_empty - Check if the queue is empty.
594 * @queue: Queue to check if empty.
596 static inline int rt2x00queue_empty(struct data_queue
*queue
)
598 return queue
->length
== 0;
602 * rt2x00queue_full - Check if the queue is full.
603 * @queue: Queue to check if full.
605 static inline int rt2x00queue_full(struct data_queue
*queue
)
607 return queue
->length
== queue
->limit
;
611 * rt2x00queue_free - Check the number of available entries in queue.
612 * @queue: Queue to check.
614 static inline int rt2x00queue_available(struct data_queue
*queue
)
616 return queue
->limit
- queue
->length
;
620 * rt2x00queue_threshold - Check if the queue is below threshold
621 * @queue: Queue to check.
623 static inline int rt2x00queue_threshold(struct data_queue
*queue
)
625 return rt2x00queue_available(queue
) < queue
->threshold
;
628 * rt2x00queue_dma_timeout - Check if a timeout occurred for DMA transfers
629 * @entry: Queue entry to check.
631 static inline int rt2x00queue_dma_timeout(struct queue_entry
*entry
)
633 if (!test_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
))
635 return time_after(jiffies
, entry
->last_action
+ msecs_to_jiffies(100));
639 * _rt2x00_desc_read - Read a word from the hardware descriptor.
640 * @desc: Base descriptor address
641 * @word: Word index from where the descriptor should be read.
643 static inline __le32
_rt2x00_desc_read(__le32
*desc
, const u8 word
)
649 * rt2x00_desc_read - Read a word from the hardware descriptor, this
650 * function will take care of the byte ordering.
651 * @desc: Base descriptor address
652 * @word: Word index from where the descriptor should be read.
654 static inline u32
rt2x00_desc_read(__le32
*desc
, const u8 word
)
656 return le32_to_cpu(_rt2x00_desc_read(desc
, word
));
660 * rt2x00_desc_write - write a word to the hardware descriptor, this
661 * function will take care of the byte ordering.
662 * @desc: Base descriptor address
663 * @word: Word index from where the descriptor should be written.
664 * @value: Value that should be written into the descriptor.
666 static inline void _rt2x00_desc_write(__le32
*desc
, const u8 word
, __le32 value
)
672 * rt2x00_desc_write - write a word to the hardware descriptor.
673 * @desc: Base descriptor address
674 * @word: Word index from where the descriptor should be written.
675 * @value: Value that should be written into the descriptor.
677 static inline void rt2x00_desc_write(__le32
*desc
, const u8 word
, u32 value
)
679 _rt2x00_desc_write(desc
, word
, cpu_to_le32(value
));
682 #endif /* RT2X00QUEUE_H */