2 * Aic94xx SAS/SATA driver hardware interface.
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This file is part of the aic94xx driver.
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/module.h>
31 #include <linux/firmware.h>
34 #include "aic94xx_reg.h"
35 #include "aic94xx_hwi.h"
36 #include "aic94xx_seq.h"
37 #include "aic94xx_dump.h"
41 /* ---------- Initialization ---------- */
43 static int asd_get_user_sas_addr(struct asd_ha_struct
*asd_ha
)
45 /* adapter came with a sas address */
46 if (asd_ha
->hw_prof
.sas_addr
[0])
49 return sas_request_addr(asd_ha
->sas_ha
.core
.shost
,
50 asd_ha
->hw_prof
.sas_addr
);
53 static void asd_propagate_sas_addr(struct asd_ha_struct
*asd_ha
)
57 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
58 if (asd_ha
->hw_prof
.phy_desc
[i
].sas_addr
[0] == 0)
60 /* Set a phy's address only if it has none.
62 ASD_DPRINTK("setting phy%d addr to %llx\n", i
,
63 SAS_ADDR(asd_ha
->hw_prof
.sas_addr
));
64 memcpy(asd_ha
->hw_prof
.phy_desc
[i
].sas_addr
,
65 asd_ha
->hw_prof
.sas_addr
, SAS_ADDR_SIZE
);
69 /* ---------- PHY initialization ---------- */
71 static void asd_init_phy_identify(struct asd_phy
*phy
)
73 phy
->identify_frame
= phy
->id_frm_tok
->vaddr
;
75 memset(phy
->identify_frame
, 0, sizeof(*phy
->identify_frame
));
77 phy
->identify_frame
->dev_type
= SAS_END_DEVICE
;
78 if (phy
->sas_phy
.role
& PHY_ROLE_INITIATOR
)
79 phy
->identify_frame
->initiator_bits
= phy
->sas_phy
.iproto
;
80 if (phy
->sas_phy
.role
& PHY_ROLE_TARGET
)
81 phy
->identify_frame
->target_bits
= phy
->sas_phy
.tproto
;
82 memcpy(phy
->identify_frame
->sas_addr
, phy
->phy_desc
->sas_addr
,
84 phy
->identify_frame
->phy_id
= phy
->sas_phy
.id
;
87 static int asd_init_phy(struct asd_phy
*phy
)
89 struct asd_ha_struct
*asd_ha
= phy
->sas_phy
.ha
->lldd_ha
;
90 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
94 sas_phy
->iproto
= SAS_PROTOCOL_ALL
;
96 sas_phy
->type
= PHY_TYPE_PHYSICAL
;
97 sas_phy
->role
= PHY_ROLE_INITIATOR
;
98 sas_phy
->oob_mode
= OOB_NOT_CONNECTED
;
99 sas_phy
->linkrate
= SAS_LINK_RATE_UNKNOWN
;
101 phy
->id_frm_tok
= asd_alloc_coherent(asd_ha
,
102 sizeof(*phy
->identify_frame
),
104 if (!phy
->id_frm_tok
) {
105 asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy
->id
);
108 asd_init_phy_identify(phy
);
110 memset(phy
->frame_rcvd
, 0, sizeof(phy
->frame_rcvd
));
115 static void asd_init_ports(struct asd_ha_struct
*asd_ha
)
119 spin_lock_init(&asd_ha
->asd_ports_lock
);
120 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
121 struct asd_port
*asd_port
= &asd_ha
->asd_ports
[i
];
123 memset(asd_port
->sas_addr
, 0, SAS_ADDR_SIZE
);
124 memset(asd_port
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
125 asd_port
->phy_mask
= 0;
126 asd_port
->num_phys
= 0;
130 static int asd_init_phys(struct asd_ha_struct
*asd_ha
)
133 u8 phy_mask
= asd_ha
->hw_prof
.enabled_phys
;
135 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
136 struct asd_phy
*phy
= &asd_ha
->phys
[i
];
138 phy
->phy_desc
= &asd_ha
->hw_prof
.phy_desc
[i
];
139 phy
->asd_port
= NULL
;
141 phy
->sas_phy
.enabled
= 0;
143 phy
->sas_phy
.sas_addr
= &phy
->phy_desc
->sas_addr
[0];
144 phy
->sas_phy
.frame_rcvd
= &phy
->frame_rcvd
[0];
145 phy
->sas_phy
.ha
= &asd_ha
->sas_ha
;
146 phy
->sas_phy
.lldd_phy
= phy
;
149 /* Now enable and initialize only the enabled phys. */
150 for_each_phy(phy_mask
, phy_mask
, i
) {
151 int err
= asd_init_phy(&asd_ha
->phys
[i
]);
159 /* ---------- Sliding windows ---------- */
161 static int asd_init_sw(struct asd_ha_struct
*asd_ha
)
163 struct pci_dev
*pcidev
= asd_ha
->pcidev
;
168 err
= pci_read_config_dword(pcidev
, PCI_CONF_MBAR_KEY
, &v
);
170 asd_printk("couldn't access conf. space of %s\n",
175 err
= pci_write_config_dword(pcidev
, PCI_CONF_MBAR_KEY
, v
);
177 asd_printk("couldn't write to MBAR_KEY of %s\n",
182 /* Set sliding windows A, B and C to point to proper internal
185 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWA
, REG_BASE_ADDR
);
186 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWB
,
187 REG_BASE_ADDR_CSEQCIO
);
188 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWC
, REG_BASE_ADDR_EXSI
);
189 asd_ha
->io_handle
[0].swa_base
= REG_BASE_ADDR
;
190 asd_ha
->io_handle
[0].swb_base
= REG_BASE_ADDR_CSEQCIO
;
191 asd_ha
->io_handle
[0].swc_base
= REG_BASE_ADDR_EXSI
;
192 MBAR0_SWB_SIZE
= asd_ha
->io_handle
[0].len
- 0x80;
193 if (!asd_ha
->iospace
) {
194 /* MBAR1 will point to OCM (On Chip Memory) */
195 pci_write_config_dword(pcidev
, PCI_CONF_MBAR1
, OCM_BASE_ADDR
);
196 asd_ha
->io_handle
[1].swa_base
= OCM_BASE_ADDR
;
198 spin_lock_init(&asd_ha
->iolock
);
203 /* ---------- SCB initialization ---------- */
206 * asd_init_scbs - manually allocate the first SCB.
207 * @asd_ha: pointer to host adapter structure
209 * This allocates the very first SCB which would be sent to the
210 * sequencer for execution. Its bus address is written to
211 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of
212 * the _next_ scb to be DMA-ed to the host adapter is read from the last
213 * SCB DMA-ed to the host adapter, we have to always stay one step
214 * ahead of the sequencer and keep one SCB already allocated.
216 static int asd_init_scbs(struct asd_ha_struct
*asd_ha
)
218 struct asd_seq_data
*seq
= &asd_ha
->seq
;
221 /* allocate the index array and bitmap */
222 asd_ha
->seq
.tc_index_bitmap_bits
= asd_ha
->hw_prof
.max_scbs
;
223 asd_ha
->seq
.tc_index_array
= kcalloc(asd_ha
->seq
.tc_index_bitmap_bits
,
226 if (!asd_ha
->seq
.tc_index_array
)
229 bitmap_bytes
= (asd_ha
->seq
.tc_index_bitmap_bits
+7)/8;
230 bitmap_bytes
= BITS_TO_LONGS(bitmap_bytes
*8)*sizeof(unsigned long);
231 asd_ha
->seq
.tc_index_bitmap
= kzalloc(bitmap_bytes
, GFP_KERNEL
);
232 if (!asd_ha
->seq
.tc_index_bitmap
) {
233 kfree(asd_ha
->seq
.tc_index_array
);
234 asd_ha
->seq
.tc_index_array
= NULL
;
238 spin_lock_init(&seq
->tc_index_lock
);
240 seq
->next_scb
.size
= sizeof(struct scb
);
241 seq
->next_scb
.vaddr
= dma_pool_alloc(asd_ha
->scb_pool
, GFP_KERNEL
,
242 &seq
->next_scb
.dma_handle
);
243 if (!seq
->next_scb
.vaddr
) {
244 kfree(asd_ha
->seq
.tc_index_bitmap
);
245 kfree(asd_ha
->seq
.tc_index_array
);
246 asd_ha
->seq
.tc_index_bitmap
= NULL
;
247 asd_ha
->seq
.tc_index_array
= NULL
;
252 spin_lock_init(&seq
->pend_q_lock
);
253 INIT_LIST_HEAD(&seq
->pend_q
);
258 static void asd_get_max_scb_ddb(struct asd_ha_struct
*asd_ha
)
260 asd_ha
->hw_prof
.max_scbs
= asd_get_cmdctx_size(asd_ha
)/ASD_SCB_SIZE
;
261 asd_ha
->hw_prof
.max_ddbs
= asd_get_devctx_size(asd_ha
)/ASD_DDB_SIZE
;
262 ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
263 asd_ha
->hw_prof
.max_scbs
,
264 asd_ha
->hw_prof
.max_ddbs
);
267 /* ---------- Done List initialization ---------- */
269 static void asd_dl_tasklet_handler(unsigned long);
271 static int asd_init_dl(struct asd_ha_struct
*asd_ha
)
273 asd_ha
->seq
.actual_dl
274 = asd_alloc_coherent(asd_ha
,
275 ASD_DL_SIZE
* sizeof(struct done_list_struct
),
277 if (!asd_ha
->seq
.actual_dl
)
279 asd_ha
->seq
.dl
= asd_ha
->seq
.actual_dl
->vaddr
;
280 asd_ha
->seq
.dl_toggle
= ASD_DEF_DL_TOGGLE
;
281 asd_ha
->seq
.dl_next
= 0;
282 tasklet_init(&asd_ha
->seq
.dl_tasklet
, asd_dl_tasklet_handler
,
283 (unsigned long) asd_ha
);
288 /* ---------- EDB and ESCB init ---------- */
290 static int asd_alloc_edbs(struct asd_ha_struct
*asd_ha
, gfp_t gfp_flags
)
292 struct asd_seq_data
*seq
= &asd_ha
->seq
;
295 seq
->edb_arr
= kmalloc_array(seq
->num_edbs
, sizeof(*seq
->edb_arr
),
300 for (i
= 0; i
< seq
->num_edbs
; i
++) {
301 seq
->edb_arr
[i
] = asd_alloc_coherent(asd_ha
, ASD_EDB_SIZE
,
303 if (!seq
->edb_arr
[i
])
305 memset(seq
->edb_arr
[i
]->vaddr
, 0, ASD_EDB_SIZE
);
308 ASD_DPRINTK("num_edbs:%d\n", seq
->num_edbs
);
313 for (i
-- ; i
>= 0; i
--)
314 asd_free_coherent(asd_ha
, seq
->edb_arr
[i
]);
321 static int asd_alloc_escbs(struct asd_ha_struct
*asd_ha
,
324 struct asd_seq_data
*seq
= &asd_ha
->seq
;
325 struct asd_ascb
*escb
;
328 seq
->escb_arr
= kmalloc_array(seq
->num_escbs
, sizeof(*seq
->escb_arr
),
333 escbs
= seq
->num_escbs
;
334 escb
= asd_ascb_alloc_list(asd_ha
, &escbs
, gfp_flags
);
336 asd_printk("couldn't allocate list of escbs\n");
339 seq
->num_escbs
-= escbs
; /* subtract what was not allocated */
340 ASD_DPRINTK("num_escbs:%d\n", seq
->num_escbs
);
342 for (i
= 0; i
< seq
->num_escbs
; i
++, escb
= list_entry(escb
->list
.next
,
345 seq
->escb_arr
[i
] = escb
;
346 escb
->scb
->header
.opcode
= EMPTY_SCB
;
351 kfree(seq
->escb_arr
);
352 seq
->escb_arr
= NULL
;
357 static void asd_assign_edbs2escbs(struct asd_ha_struct
*asd_ha
)
359 struct asd_seq_data
*seq
= &asd_ha
->seq
;
362 for (i
= 0; i
< seq
->num_escbs
; i
++) {
363 struct asd_ascb
*ascb
= seq
->escb_arr
[i
];
364 struct empty_scb
*escb
= &ascb
->scb
->escb
;
368 escb
->num_valid
= ASD_EDBS_PER_SCB
;
370 for (k
= 0; k
< ASD_EDBS_PER_SCB
; k
++) {
371 struct sg_el
*eb
= &escb
->eb
[k
];
372 struct asd_dma_tok
*edb
= seq
->edb_arr
[z
++];
374 memset(eb
, 0, sizeof(*eb
));
375 eb
->bus_addr
= cpu_to_le64(((u64
) edb
->dma_handle
));
376 eb
->size
= cpu_to_le32(((u32
) edb
->size
));
382 * asd_init_escbs -- allocate and initialize empty scbs
383 * @asd_ha: pointer to host adapter structure
385 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
386 * They transport sense data, etc.
388 static int asd_init_escbs(struct asd_ha_struct
*asd_ha
)
390 struct asd_seq_data
*seq
= &asd_ha
->seq
;
393 /* Allocate two empty data buffers (edb) per sequencer. */
394 int edbs
= 2*(1+asd_ha
->hw_prof
.num_phys
);
396 seq
->num_escbs
= (edbs
+ASD_EDBS_PER_SCB
-1)/ASD_EDBS_PER_SCB
;
397 seq
->num_edbs
= seq
->num_escbs
* ASD_EDBS_PER_SCB
;
399 err
= asd_alloc_edbs(asd_ha
, GFP_KERNEL
);
401 asd_printk("couldn't allocate edbs\n");
405 err
= asd_alloc_escbs(asd_ha
, GFP_KERNEL
);
407 asd_printk("couldn't allocate escbs\n");
411 asd_assign_edbs2escbs(asd_ha
);
412 /* In order to insure that normal SCBs do not overfill sequencer
413 * memory and leave no space for escbs (halting condition),
414 * we increment pending here by the number of escbs. However,
415 * escbs are never pending.
417 seq
->pending
= seq
->num_escbs
;
418 seq
->can_queue
= 1 + (asd_ha
->hw_prof
.max_scbs
- seq
->pending
)/2;
423 /* ---------- HW initialization ---------- */
426 * asd_chip_hardrst -- hard reset the chip
427 * @asd_ha: pointer to host adapter structure
429 * This takes 16 cycles and is synchronous to CFCLK, which runs
430 * at 200 MHz, so this should take at most 80 nanoseconds.
432 int asd_chip_hardrst(struct asd_ha_struct
*asd_ha
)
438 for (i
= 0 ; i
< 4 ; i
++) {
439 asd_write_reg_dword(asd_ha
, COMBIST
, HARDRST
);
444 reg
= asd_read_reg_dword(asd_ha
, CHIMINT
);
445 if (reg
& HARDRSTDET
) {
446 asd_write_reg_dword(asd_ha
, CHIMINT
,
447 HARDRSTDET
|PORRSTDET
);
450 } while (--count
> 0);
456 * asd_init_chip -- initialize the chip
457 * @asd_ha: pointer to host adapter structure
459 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
460 * microcode and starts the sequencers. The caller has to explicitly
461 * enable HA interrupts with asd_enable_ints(asd_ha).
463 static int asd_init_chip(struct asd_ha_struct
*asd_ha
)
467 err
= asd_chip_hardrst(asd_ha
);
469 asd_printk("couldn't hard reset %s\n",
470 pci_name(asd_ha
->pcidev
));
474 asd_disable_ints(asd_ha
);
476 err
= asd_init_seqs(asd_ha
);
478 asd_printk("couldn't init seqs for %s\n",
479 pci_name(asd_ha
->pcidev
));
483 err
= asd_start_seqs(asd_ha
);
485 asd_printk("couldn't start seqs for %s\n",
486 pci_name(asd_ha
->pcidev
));
493 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
495 static int max_devs
= 0;
496 module_param_named(max_devs
, max_devs
, int, S_IRUGO
);
497 MODULE_PARM_DESC(max_devs
, "\n"
498 "\tMaximum number of SAS devices to support (not LUs).\n"
499 "\tDefault: 2176, Maximum: 65663.\n");
501 static int max_cmnds
= 0;
502 module_param_named(max_cmnds
, max_cmnds
, int, S_IRUGO
);
503 MODULE_PARM_DESC(max_cmnds
, "\n"
504 "\tMaximum number of commands queuable.\n"
505 "\tDefault: 512, Maximum: 66047.\n");
507 static void asd_extend_devctx_ocm(struct asd_ha_struct
*asd_ha
)
509 unsigned long dma_addr
= OCM_BASE_ADDR
;
512 dma_addr
-= asd_ha
->hw_prof
.max_ddbs
* ASD_DDB_SIZE
;
513 asd_write_reg_addr(asd_ha
, DEVCTXBASE
, (dma_addr_t
) dma_addr
);
514 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
516 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
517 asd_ha
->hw_prof
.max_ddbs
+= MAX_DEVS
;
520 static int asd_extend_devctx(struct asd_ha_struct
*asd_ha
)
522 dma_addr_t dma_handle
;
523 unsigned long dma_addr
;
527 asd_extend_devctx_ocm(asd_ha
);
529 asd_ha
->hw_prof
.ddb_ext
= NULL
;
530 if (max_devs
<= asd_ha
->hw_prof
.max_ddbs
|| max_devs
> 0xFFFF) {
531 max_devs
= asd_ha
->hw_prof
.max_ddbs
;
535 size
= (max_devs
- asd_ha
->hw_prof
.max_ddbs
+ 1) * ASD_DDB_SIZE
;
537 asd_ha
->hw_prof
.ddb_ext
= asd_alloc_coherent(asd_ha
, size
, GFP_KERNEL
);
538 if (!asd_ha
->hw_prof
.ddb_ext
) {
539 asd_printk("couldn't allocate memory for %d devices\n",
541 max_devs
= asd_ha
->hw_prof
.max_ddbs
;
544 dma_handle
= asd_ha
->hw_prof
.ddb_ext
->dma_handle
;
545 dma_addr
= ALIGN((unsigned long) dma_handle
, ASD_DDB_SIZE
);
546 dma_addr
-= asd_ha
->hw_prof
.max_ddbs
* ASD_DDB_SIZE
;
547 dma_handle
= (dma_addr_t
) dma_addr
;
548 asd_write_reg_addr(asd_ha
, DEVCTXBASE
, dma_handle
);
549 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
551 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
553 asd_ha
->hw_prof
.max_ddbs
= max_devs
;
558 static int asd_extend_cmdctx(struct asd_ha_struct
*asd_ha
)
560 dma_addr_t dma_handle
;
561 unsigned long dma_addr
;
565 asd_ha
->hw_prof
.scb_ext
= NULL
;
566 if (max_cmnds
<= asd_ha
->hw_prof
.max_scbs
|| max_cmnds
> 0xFFFF) {
567 max_cmnds
= asd_ha
->hw_prof
.max_scbs
;
571 size
= (max_cmnds
- asd_ha
->hw_prof
.max_scbs
+ 1) * ASD_SCB_SIZE
;
573 asd_ha
->hw_prof
.scb_ext
= asd_alloc_coherent(asd_ha
, size
, GFP_KERNEL
);
574 if (!asd_ha
->hw_prof
.scb_ext
) {
575 asd_printk("couldn't allocate memory for %d commands\n",
577 max_cmnds
= asd_ha
->hw_prof
.max_scbs
;
580 dma_handle
= asd_ha
->hw_prof
.scb_ext
->dma_handle
;
581 dma_addr
= ALIGN((unsigned long) dma_handle
, ASD_SCB_SIZE
);
582 dma_addr
-= asd_ha
->hw_prof
.max_scbs
* ASD_SCB_SIZE
;
583 dma_handle
= (dma_addr_t
) dma_addr
;
584 asd_write_reg_addr(asd_ha
, CMDCTXBASE
, dma_handle
);
585 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
587 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
589 asd_ha
->hw_prof
.max_scbs
= max_cmnds
;
595 * asd_init_ctxmem -- initialize context memory
596 * asd_ha: pointer to host adapter structure
598 * This function sets the maximum number of SCBs and
599 * DDBs which can be used by the sequencer. This is normally
600 * 512 and 128 respectively. If support for more SCBs or more DDBs
601 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
602 * initialized here to extend context memory to point to host memory,
603 * thus allowing unlimited support for SCBs and DDBs -- only limited
606 static int asd_init_ctxmem(struct asd_ha_struct
*asd_ha
)
610 asd_get_max_scb_ddb(asd_ha
);
611 asd_extend_devctx(asd_ha
);
612 asd_extend_cmdctx(asd_ha
);
614 /* The kernel wants bitmaps to be unsigned long sized. */
615 bitmap_bytes
= (asd_ha
->hw_prof
.max_ddbs
+7)/8;
616 bitmap_bytes
= BITS_TO_LONGS(bitmap_bytes
*8)*sizeof(unsigned long);
617 asd_ha
->hw_prof
.ddb_bitmap
= kzalloc(bitmap_bytes
, GFP_KERNEL
);
618 if (!asd_ha
->hw_prof
.ddb_bitmap
)
620 spin_lock_init(&asd_ha
->hw_prof
.ddb_lock
);
625 int asd_init_hw(struct asd_ha_struct
*asd_ha
)
630 err
= asd_init_sw(asd_ha
);
634 err
= pci_read_config_dword(asd_ha
->pcidev
, PCIC_HSTPCIX_CNTRL
, &v
);
636 asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
637 pci_name(asd_ha
->pcidev
));
640 err
= pci_write_config_dword(asd_ha
->pcidev
, PCIC_HSTPCIX_CNTRL
,
643 asd_printk("couldn't disable split completion timer of %s\n",
644 pci_name(asd_ha
->pcidev
));
648 err
= asd_read_ocm(asd_ha
);
650 asd_printk("couldn't read ocm(%d)\n", err
);
651 /* While suspicios, it is not an error that we
652 * couldn't read the OCM. */
655 err
= asd_read_flash(asd_ha
);
657 asd_printk("couldn't read flash(%d)\n", err
);
658 /* While suspicios, it is not an error that we
659 * couldn't read FLASH memory.
663 asd_init_ctxmem(asd_ha
);
665 if (asd_get_user_sas_addr(asd_ha
)) {
666 asd_printk("No SAS Address provided for %s\n",
667 pci_name(asd_ha
->pcidev
));
672 asd_propagate_sas_addr(asd_ha
);
674 err
= asd_init_phys(asd_ha
);
676 asd_printk("couldn't initialize phys for %s\n",
677 pci_name(asd_ha
->pcidev
));
681 asd_init_ports(asd_ha
);
683 err
= asd_init_scbs(asd_ha
);
685 asd_printk("couldn't initialize scbs for %s\n",
686 pci_name(asd_ha
->pcidev
));
690 err
= asd_init_dl(asd_ha
);
692 asd_printk("couldn't initialize the done list:%d\n",
697 err
= asd_init_escbs(asd_ha
);
699 asd_printk("couldn't initialize escbs\n");
703 err
= asd_init_chip(asd_ha
);
705 asd_printk("couldn't init the chip\n");
712 /* ---------- Chip reset ---------- */
715 * asd_chip_reset -- reset the host adapter, etc
716 * @asd_ha: pointer to host adapter structure of interest
718 * Called from the ISR. Hard reset the chip. Let everything
719 * timeout. This should be no different than hot-unplugging the
720 * host adapter. Once everything times out we'll init the chip with
721 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
724 static void asd_chip_reset(struct asd_ha_struct
*asd_ha
)
726 ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha
->pcidev
));
727 asd_chip_hardrst(asd_ha
);
730 /* ---------- Done List Routines ---------- */
732 static void asd_dl_tasklet_handler(unsigned long data
)
734 struct asd_ha_struct
*asd_ha
= (struct asd_ha_struct
*) data
;
735 struct asd_seq_data
*seq
= &asd_ha
->seq
;
739 struct done_list_struct
*dl
= &seq
->dl
[seq
->dl_next
];
740 struct asd_ascb
*ascb
;
742 if ((dl
->toggle
& DL_TOGGLE_MASK
) != seq
->dl_toggle
)
746 spin_lock_irqsave(&seq
->tc_index_lock
, flags
);
747 ascb
= asd_tc_index_find(seq
, (int)le16_to_cpu(dl
->index
));
748 spin_unlock_irqrestore(&seq
->tc_index_lock
, flags
);
749 if (unlikely(!ascb
)) {
750 ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
752 } else if (ascb
->scb
->header
.opcode
== EMPTY_SCB
) {
754 } else if (!ascb
->uldd_timer
&& !del_timer(&ascb
->timer
)) {
757 spin_lock_irqsave(&seq
->pend_q_lock
, flags
);
758 list_del_init(&ascb
->list
);
760 spin_unlock_irqrestore(&seq
->pend_q_lock
, flags
);
762 ascb
->tasklet_complete(ascb
, dl
);
765 seq
->dl_next
= (seq
->dl_next
+ 1) & (ASD_DL_SIZE
-1);
767 seq
->dl_toggle
^= DL_TOGGLE_MASK
;
771 /* ---------- Interrupt Service Routines ---------- */
774 * asd_process_donelist_isr -- schedule processing of done list entries
775 * @asd_ha: pointer to host adapter structure
777 static void asd_process_donelist_isr(struct asd_ha_struct
*asd_ha
)
779 tasklet_schedule(&asd_ha
->seq
.dl_tasklet
);
783 * asd_com_sas_isr -- process device communication interrupt (COMINT)
784 * @asd_ha: pointer to host adapter structure
786 static void asd_com_sas_isr(struct asd_ha_struct
*asd_ha
)
788 u32 comstat
= asd_read_reg_dword(asd_ha
, COMSTAT
);
790 /* clear COMSTAT int */
791 asd_write_reg_dword(asd_ha
, COMSTAT
, 0xFFFFFFFF);
793 if (comstat
& CSBUFPERR
) {
794 asd_printk("%s: command/status buffer dma parity error\n",
795 pci_name(asd_ha
->pcidev
));
796 } else if (comstat
& CSERR
) {
798 u32 dmaerr
= asd_read_reg_dword(asd_ha
, DMAERR
);
800 asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
801 "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
802 pci_name(asd_ha
->pcidev
),
804 asd_read_reg_dword(asd_ha
, CSDMAADR
),
805 asd_read_reg_dword(asd_ha
, CSDMAADR
+4));
806 asd_printk("CSBUFFER:\n");
807 for (i
= 0; i
< 8; i
++) {
808 asd_printk("%08x %08x %08x %08x\n",
809 asd_read_reg_dword(asd_ha
, CSBUFFER
),
810 asd_read_reg_dword(asd_ha
, CSBUFFER
+4),
811 asd_read_reg_dword(asd_ha
, CSBUFFER
+8),
812 asd_read_reg_dword(asd_ha
, CSBUFFER
+12));
814 asd_dump_seq_state(asd_ha
, 0);
815 } else if (comstat
& OVLYERR
) {
816 u32 dmaerr
= asd_read_reg_dword(asd_ha
, DMAERR
);
817 dmaerr
= (dmaerr
>> 8) & 0xFF;
818 asd_printk("%s: overlay dma error:0x%x\n",
819 pci_name(asd_ha
->pcidev
),
822 asd_chip_reset(asd_ha
);
825 static void asd_arp2_err(struct asd_ha_struct
*asd_ha
, u32 dchstatus
)
827 static const char *halt_code
[256] = {
828 "UNEXPECTED_INTERRUPT0",
829 "UNEXPECTED_INTERRUPT1",
830 "UNEXPECTED_INTERRUPT2",
831 "UNEXPECTED_INTERRUPT3",
832 "UNEXPECTED_INTERRUPT4",
833 "UNEXPECTED_INTERRUPT5",
834 "UNEXPECTED_INTERRUPT6",
835 "UNEXPECTED_INTERRUPT7",
836 "UNEXPECTED_INTERRUPT8",
837 "UNEXPECTED_INTERRUPT9",
838 "UNEXPECTED_INTERRUPT10",
839 [11 ... 19] = "unknown[11,19]",
840 "NO_FREE_SCB_AVAILABLE",
841 "INVALID_SCB_OPCODE",
842 "INVALID_MBX_OPCODE",
845 "ATA_TAG_TABLE_FAULT",
846 "ATA_TAG_MASK_FAULT",
847 "BAD_LINK_QUEUE_STATE",
848 "DMA2CHIM_QUEUE_ERROR",
849 "EMPTY_SCB_LIST_FULL",
851 "IN_USE_SCB_ON_FREE_LIST",
852 "BAD_OPEN_WAIT_STATE",
853 "INVALID_STP_AFFILIATION",
856 "TOO_MANY_EMPTIES_NEEDED",
857 "EMPTY_REQ_QUEUE_ERROR",
858 "Q_MONIRTT_MGMT_ERROR",
859 "TARGET_MODE_FLOW_ERROR",
860 "DEVICE_QUEUE_NOT_FOUND",
861 "START_IRTT_TIMER_ERROR",
862 "ABORT_TASK_ILLEGAL_REQ",
863 [43 ... 255] = "unknown[43,255]"
866 if (dchstatus
& CSEQINT
) {
867 u32 arp2int
= asd_read_reg_dword(asd_ha
, CARP2INT
);
869 if (arp2int
& (ARP2WAITTO
|ARP2ILLOPC
|ARP2PERR
|ARP2CIOPERR
)) {
870 asd_printk("%s: CSEQ arp2int:0x%x\n",
871 pci_name(asd_ha
->pcidev
),
873 } else if (arp2int
& ARP2HALTC
)
874 asd_printk("%s: CSEQ halted: %s\n",
875 pci_name(asd_ha
->pcidev
),
876 halt_code
[(arp2int
>>16)&0xFF]);
878 asd_printk("%s: CARP2INT:0x%x\n",
879 pci_name(asd_ha
->pcidev
),
882 if (dchstatus
& LSEQINT_MASK
) {
884 u8 lseq_mask
= dchstatus
& LSEQINT_MASK
;
886 for_each_sequencer(lseq_mask
, lseq_mask
, lseq
) {
887 u32 arp2int
= asd_read_reg_dword(asd_ha
,
889 if (arp2int
& (ARP2WAITTO
| ARP2ILLOPC
| ARP2PERR
891 asd_printk("%s: LSEQ%d arp2int:0x%x\n",
892 pci_name(asd_ha
->pcidev
),
894 /* XXX we should only do lseq reset */
895 } else if (arp2int
& ARP2HALTC
)
896 asd_printk("%s: LSEQ%d halted: %s\n",
897 pci_name(asd_ha
->pcidev
),
898 lseq
,halt_code
[(arp2int
>>16)&0xFF]);
900 asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
901 pci_name(asd_ha
->pcidev
), lseq
,
905 asd_chip_reset(asd_ha
);
909 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
910 * @asd_ha: pointer to host adapter structure
912 static void asd_dch_sas_isr(struct asd_ha_struct
*asd_ha
)
914 u32 dchstatus
= asd_read_reg_dword(asd_ha
, DCHSTATUS
);
916 if (dchstatus
& CFIFTOERR
) {
917 asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha
->pcidev
));
918 asd_chip_reset(asd_ha
);
920 asd_arp2_err(asd_ha
, dchstatus
);
924 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
925 * @asd_ha: pointer to host adapter structure
927 static void asd_rbi_exsi_isr(struct asd_ha_struct
*asd_ha
)
929 u32 stat0r
= asd_read_reg_dword(asd_ha
, ASISTAT0R
);
931 if (!(stat0r
& ASIERR
)) {
932 asd_printk("hmm, EXSI interrupted but no error?\n");
936 if (stat0r
& ASIFMTERR
) {
937 asd_printk("ASI SEEPROM format error for %s\n",
938 pci_name(asd_ha
->pcidev
));
939 } else if (stat0r
& ASISEECHKERR
) {
940 u32 stat1r
= asd_read_reg_dword(asd_ha
, ASISTAT1R
);
941 asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
942 stat1r
& CHECKSUM_MASK
,
943 pci_name(asd_ha
->pcidev
));
945 u32 statr
= asd_read_reg_dword(asd_ha
, ASIERRSTATR
);
947 if (!(statr
& CPI2ASIMSTERR_MASK
)) {
948 ASD_DPRINTK("hmm, ASIERR?\n");
951 u32 addr
= asd_read_reg_dword(asd_ha
, ASIERRADDR
);
952 u32 data
= asd_read_reg_dword(asd_ha
, ASIERRDATAR
);
954 asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
955 "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
956 "master id: 0x%x, master err: 0x%x\n",
957 pci_name(asd_ha
->pcidev
),
959 (statr
& CPI2ASIBYTECNT_MASK
) >> 16,
960 (statr
& CPI2ASIBYTEEN_MASK
) >> 12,
961 (statr
& CPI2ASITARGERR_MASK
) >> 8,
962 (statr
& CPI2ASITARGMID_MASK
) >> 4,
963 (statr
& CPI2ASIMSTERR_MASK
));
966 asd_chip_reset(asd_ha
);
970 * asd_hst_pcix_isr -- process host interface interrupts
971 * @asd_ha: pointer to host adapter structure
973 * Asserted on PCIX errors: target abort, etc.
975 static void asd_hst_pcix_isr(struct asd_ha_struct
*asd_ha
)
981 pci_read_config_word(asd_ha
->pcidev
, PCI_STATUS
, &status
);
982 pci_read_config_dword(asd_ha
->pcidev
, PCIX_STATUS
, &pcix_status
);
983 pci_read_config_dword(asd_ha
->pcidev
, ECC_CTRL_STAT
, &ecc_status
);
985 if (status
& PCI_STATUS_DETECTED_PARITY
)
986 asd_printk("parity error for %s\n", pci_name(asd_ha
->pcidev
));
987 else if (status
& PCI_STATUS_REC_MASTER_ABORT
)
988 asd_printk("master abort for %s\n", pci_name(asd_ha
->pcidev
));
989 else if (status
& PCI_STATUS_REC_TARGET_ABORT
)
990 asd_printk("target abort for %s\n", pci_name(asd_ha
->pcidev
));
991 else if (status
& PCI_STATUS_PARITY
)
992 asd_printk("data parity for %s\n", pci_name(asd_ha
->pcidev
));
993 else if (pcix_status
& RCV_SCE
) {
994 asd_printk("received split completion error for %s\n",
995 pci_name(asd_ha
->pcidev
));
996 pci_write_config_dword(asd_ha
->pcidev
,PCIX_STATUS
,pcix_status
);
997 /* XXX: Abort task? */
999 } else if (pcix_status
& UNEXP_SC
) {
1000 asd_printk("unexpected split completion for %s\n",
1001 pci_name(asd_ha
->pcidev
));
1002 pci_write_config_dword(asd_ha
->pcidev
,PCIX_STATUS
,pcix_status
);
1005 } else if (pcix_status
& SC_DISCARD
)
1006 asd_printk("split completion discarded for %s\n",
1007 pci_name(asd_ha
->pcidev
));
1008 else if (ecc_status
& UNCOR_ECCERR
)
1009 asd_printk("uncorrectable ECC error for %s\n",
1010 pci_name(asd_ha
->pcidev
));
1011 asd_chip_reset(asd_ha
);
1015 * asd_hw_isr -- host adapter interrupt service routine
1017 * @dev_id: pointer to host adapter structure
1019 * The ISR processes done list entries and level 3 error handling.
1021 irqreturn_t
asd_hw_isr(int irq
, void *dev_id
)
1023 struct asd_ha_struct
*asd_ha
= dev_id
;
1024 u32 chimint
= asd_read_reg_dword(asd_ha
, CHIMINT
);
1029 asd_write_reg_dword(asd_ha
, CHIMINT
, chimint
);
1030 (void) asd_read_reg_dword(asd_ha
, CHIMINT
);
1032 if (chimint
& DLAVAIL
)
1033 asd_process_donelist_isr(asd_ha
);
1034 if (chimint
& COMINT
)
1035 asd_com_sas_isr(asd_ha
);
1036 if (chimint
& DEVINT
)
1037 asd_dch_sas_isr(asd_ha
);
1038 if (chimint
& INITERR
)
1039 asd_rbi_exsi_isr(asd_ha
);
1040 if (chimint
& HOSTERR
)
1041 asd_hst_pcix_isr(asd_ha
);
1046 /* ---------- SCB handling ---------- */
1048 static struct asd_ascb
*asd_ascb_alloc(struct asd_ha_struct
*asd_ha
,
1051 extern struct kmem_cache
*asd_ascb_cache
;
1052 struct asd_seq_data
*seq
= &asd_ha
->seq
;
1053 struct asd_ascb
*ascb
;
1054 unsigned long flags
;
1056 ascb
= kmem_cache_zalloc(asd_ascb_cache
, gfp_flags
);
1059 ascb
->dma_scb
.size
= sizeof(struct scb
);
1060 ascb
->dma_scb
.vaddr
= dma_pool_zalloc(asd_ha
->scb_pool
,
1062 &ascb
->dma_scb
.dma_handle
);
1063 if (!ascb
->dma_scb
.vaddr
) {
1064 kmem_cache_free(asd_ascb_cache
, ascb
);
1067 asd_init_ascb(asd_ha
, ascb
);
1069 spin_lock_irqsave(&seq
->tc_index_lock
, flags
);
1070 ascb
->tc_index
= asd_tc_index_get(seq
, ascb
);
1071 spin_unlock_irqrestore(&seq
->tc_index_lock
, flags
);
1072 if (ascb
->tc_index
== -1)
1075 ascb
->scb
->header
.index
= cpu_to_le16((u16
)ascb
->tc_index
);
1080 dma_pool_free(asd_ha
->scb_pool
, ascb
->dma_scb
.vaddr
,
1081 ascb
->dma_scb
.dma_handle
);
1082 kmem_cache_free(asd_ascb_cache
, ascb
);
1083 ASD_DPRINTK("no index for ascb\n");
1088 * asd_ascb_alloc_list -- allocate a list of aSCBs
1089 * @asd_ha: pointer to host adapter structure
1090 * @num: pointer to integer number of aSCBs
1091 * @gfp_flags: GFP_ flags.
1093 * This is the only function which is used to allocate aSCBs.
1094 * It can allocate one or many. If more than one, then they form
1095 * a linked list in two ways: by their list field of the ascb struct
1096 * and by the next_scb field of the scb_header.
1098 * Returns NULL if no memory was available, else pointer to a list
1099 * of ascbs. When this function returns, @num would be the number
1100 * of SCBs which were not able to be allocated, 0 if all requested
1101 * were able to be allocated.
1103 struct asd_ascb
*asd_ascb_alloc_list(struct asd_ha_struct
1107 struct asd_ascb
*first
= NULL
;
1109 for ( ; *num
> 0; --*num
) {
1110 struct asd_ascb
*ascb
= asd_ascb_alloc(asd_ha
, gfp_flags
);
1117 struct asd_ascb
*last
= list_entry(first
->list
.prev
,
1120 list_add_tail(&ascb
->list
, &first
->list
);
1121 last
->scb
->header
.next_scb
=
1122 cpu_to_le64(((u64
)ascb
->dma_scb
.dma_handle
));
1130 * asd_swap_head_scb -- swap the head scb
1131 * @asd_ha: pointer to host adapter structure
1132 * @ascb: pointer to the head of an ascb list
1134 * The sequencer knows the DMA address of the next SCB to be DMAed to
1135 * the host adapter, from initialization or from the last list DMAed.
1136 * seq->next_scb keeps the address of this SCB. The sequencer will
1137 * DMA to the host adapter this list of SCBs. But the head (first
1138 * element) of this list is not known to the sequencer. Here we swap
1139 * the head of the list with the known SCB (memcpy()).
1140 * Only one memcpy() is required per list so it is in our interest
1141 * to keep the list of SCB as long as possible so that the ratio
1142 * of number of memcpy calls to the number of SCB DMA-ed is as small
1145 * LOCKING: called with the pending list lock held.
1147 static void asd_swap_head_scb(struct asd_ha_struct
*asd_ha
,
1148 struct asd_ascb
*ascb
)
1150 struct asd_seq_data
*seq
= &asd_ha
->seq
;
1151 struct asd_ascb
*last
= list_entry(ascb
->list
.prev
,
1154 struct asd_dma_tok t
= ascb
->dma_scb
;
1156 memcpy(seq
->next_scb
.vaddr
, ascb
->scb
, sizeof(*ascb
->scb
));
1157 ascb
->dma_scb
= seq
->next_scb
;
1158 ascb
->scb
= ascb
->dma_scb
.vaddr
;
1160 last
->scb
->header
.next_scb
=
1161 cpu_to_le64(((u64
)seq
->next_scb
.dma_handle
));
1165 * asd_start_timers -- (add and) start timers of SCBs
1166 * @list: pointer to struct list_head of the scbs
1167 * @to: timeout in jiffies
1169 * If an SCB in the @list has no timer function, assign the default
1170 * one, then start the timer of the SCB. This function is
1171 * intended to be called from asd_post_ascb_list(), just prior to
1172 * posting the SCBs to the sequencer.
1174 static void asd_start_scb_timers(struct list_head
*list
)
1176 struct asd_ascb
*ascb
;
1177 list_for_each_entry(ascb
, list
, list
) {
1178 if (!ascb
->uldd_timer
) {
1179 ascb
->timer
.function
= asd_ascb_timedout
;
1180 ascb
->timer
.expires
= jiffies
+ AIC94XX_SCB_TIMEOUT
;
1181 add_timer(&ascb
->timer
);
1187 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1188 * @asd_ha: pointer to a host adapter structure
1189 * @ascb: pointer to the first aSCB in the list
1190 * @num: number of aSCBs in the list (to be posted)
1192 * See queueing comment in asd_post_escb_list().
1194 * Additional note on queuing: In order to minimize the ratio of memcpy()
1195 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1197 * Two cases are possible:
1198 * A) can_queue >= num,
1199 * B) can_queue < num.
1200 * Case A: we can send the whole batch at once. Increment "pending"
1201 * in the beginning of this function, when it is checked, in order to
1202 * eliminate races when this function is called by multiple processes.
1203 * Case B: should never happen.
1205 int asd_post_ascb_list(struct asd_ha_struct
*asd_ha
, struct asd_ascb
*ascb
,
1208 unsigned long flags
;
1212 spin_lock_irqsave(&asd_ha
->seq
.pend_q_lock
, flags
);
1213 can_queue
= asd_ha
->hw_prof
.max_scbs
- asd_ha
->seq
.pending
;
1214 if (can_queue
>= num
)
1215 asd_ha
->seq
.pending
+= num
;
1220 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1221 asd_printk("%s: scb queue full\n", pci_name(asd_ha
->pcidev
));
1222 return -SAS_QUEUE_FULL
;
1225 asd_swap_head_scb(asd_ha
, ascb
);
1227 __list_add(&list
, ascb
->list
.prev
, &ascb
->list
);
1229 asd_start_scb_timers(&list
);
1231 asd_ha
->seq
.scbpro
+= num
;
1232 list_splice_init(&list
, asd_ha
->seq
.pend_q
.prev
);
1233 asd_write_reg_dword(asd_ha
, SCBPRO
, (u32
)asd_ha
->seq
.scbpro
);
1234 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1240 * asd_post_escb_list -- post a list of 1 or more empty scb
1241 * @asd_ha: pointer to a host adapter structure
1242 * @ascb: pointer to the first empty SCB in the list
1243 * @num: number of aSCBs in the list (to be posted)
1245 * This is essentially the same as asd_post_ascb_list, but we do not
1246 * increment pending, add those to the pending list or get indexes.
1247 * See asd_init_escbs() and asd_init_post_escbs().
1249 * Since sending a list of ascbs is a superset of sending a single
1250 * ascb, this function exists to generalize this. More specifically,
1251 * when sending a list of those, we want to do only a _single_
1252 * memcpy() at swap head, as opposed to for each ascb sent (in the
1253 * case of sending them one by one). That is, we want to minimize the
1254 * ratio of memcpy() operations to the number of ascbs sent. The same
1255 * logic applies to asd_post_ascb_list().
1257 int asd_post_escb_list(struct asd_ha_struct
*asd_ha
, struct asd_ascb
*ascb
,
1260 unsigned long flags
;
1262 spin_lock_irqsave(&asd_ha
->seq
.pend_q_lock
, flags
);
1263 asd_swap_head_scb(asd_ha
, ascb
);
1264 asd_ha
->seq
.scbpro
+= num
;
1265 asd_write_reg_dword(asd_ha
, SCBPRO
, (u32
)asd_ha
->seq
.scbpro
);
1266 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1271 /* ---------- LED ---------- */
1274 * asd_turn_led -- turn on/off an LED
1275 * @asd_ha: pointer to host adapter structure
1276 * @phy_id: the PHY id whose LED we want to manupulate
1277 * @op: 1 to turn on, 0 to turn off
1279 void asd_turn_led(struct asd_ha_struct
*asd_ha
, int phy_id
, int op
)
1281 if (phy_id
< ASD_MAX_PHYS
) {
1282 u32 v
= asd_read_reg_dword(asd_ha
, LmCONTROL(phy_id
));
1287 asd_write_reg_dword(asd_ha
, LmCONTROL(phy_id
), v
);
1292 * asd_control_led -- enable/disable an LED on the board
1293 * @asd_ha: pointer to host adapter structure
1294 * @phy_id: integer, the phy id
1295 * @op: integer, 1 to enable, 0 to disable the LED
1297 * First we output enable the LED, then we set the source
1298 * to be an external module.
1300 void asd_control_led(struct asd_ha_struct
*asd_ha
, int phy_id
, int op
)
1302 if (phy_id
< ASD_MAX_PHYS
) {
1305 v
= asd_read_reg_dword(asd_ha
, GPIOOER
);
1309 v
&= ~(1 << phy_id
);
1310 asd_write_reg_dword(asd_ha
, GPIOOER
, v
);
1312 v
= asd_read_reg_dword(asd_ha
, GPIOCNFGR
);
1316 v
&= ~(1 << phy_id
);
1317 asd_write_reg_dword(asd_ha
, GPIOCNFGR
, v
);
1321 /* ---------- PHY enable ---------- */
1323 static int asd_enable_phy(struct asd_ha_struct
*asd_ha
, int phy_id
)
1325 struct asd_phy
*phy
= &asd_ha
->phys
[phy_id
];
1327 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, INT_ENABLE_2
), 0);
1328 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, HOT_PLUG_DELAY
),
1329 HOTPLUG_DELAY_TIMEOUT
);
1331 /* Get defaults from manuf. sector */
1332 /* XXX we need defaults for those in case MS is broken. */
1333 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_0
),
1334 phy
->phy_desc
->phy_control_0
);
1335 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_1
),
1336 phy
->phy_desc
->phy_control_1
);
1337 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_2
),
1338 phy
->phy_desc
->phy_control_2
);
1339 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_3
),
1340 phy
->phy_desc
->phy_control_3
);
1342 asd_write_reg_dword(asd_ha
, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id
),
1343 ASD_COMINIT_TIMEOUT
);
1345 asd_write_reg_addr(asd_ha
, LmSEQ_TX_ID_ADDR_FRAME(phy_id
),
1346 phy
->id_frm_tok
->dma_handle
);
1348 asd_control_led(asd_ha
, phy_id
, 1);
1353 int asd_enable_phys(struct asd_ha_struct
*asd_ha
, const u8 phy_mask
)
1358 struct asd_ascb
*ascb
;
1359 struct asd_ascb
*ascb_list
;
1362 asd_printk("%s called with phy_mask of 0!?\n", __func__
);
1366 for_each_phy(phy_mask
, phy_m
, i
) {
1368 asd_enable_phy(asd_ha
, i
);
1372 ascb_list
= asd_ascb_alloc_list(asd_ha
, &k
, GFP_KERNEL
);
1374 asd_printk("no memory for control phy ascb list\n");
1380 for_each_phy(phy_mask
, phy_m
, i
) {
1381 asd_build_control_phy(ascb
, i
, ENABLE_PHY
);
1382 ascb
= list_entry(ascb
->list
.next
, struct asd_ascb
, list
);
1384 ASD_DPRINTK("posting %d control phy scbs\n", num
);
1385 k
= asd_post_ascb_list(asd_ha
, ascb_list
, num
);
1387 asd_ascb_free_list(ascb_list
);