2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.20-160"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION
);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
86 static int hpsa_simple_mode
;
87 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
88 MODULE_PARM_DESC(hpsa_simple_mode
,
89 "Use 'simple mode' rather than 'performant mode'");
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id
[] = {
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1920},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1925},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
147 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
148 {PCI_VENDOR_ID_COMPAQ
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
149 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
153 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
155 /* board_id = Subsystem Device ID & Vendor ID
156 * product = Marketing Name for the board
157 * access = Address of the struct of function pointers
159 static struct board_type products
[] = {
160 {0x40700E11, "Smart Array 5300", &SA5A_access
},
161 {0x40800E11, "Smart Array 5i", &SA5B_access
},
162 {0x40820E11, "Smart Array 532", &SA5B_access
},
163 {0x40830E11, "Smart Array 5312", &SA5B_access
},
164 {0x409A0E11, "Smart Array 641", &SA5A_access
},
165 {0x409B0E11, "Smart Array 642", &SA5A_access
},
166 {0x409C0E11, "Smart Array 6400", &SA5A_access
},
167 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access
},
168 {0x40910E11, "Smart Array 6i", &SA5A_access
},
169 {0x3225103C, "Smart Array P600", &SA5A_access
},
170 {0x3223103C, "Smart Array P800", &SA5A_access
},
171 {0x3234103C, "Smart Array P400", &SA5A_access
},
172 {0x3235103C, "Smart Array P400i", &SA5A_access
},
173 {0x3211103C, "Smart Array E200i", &SA5A_access
},
174 {0x3212103C, "Smart Array E200", &SA5A_access
},
175 {0x3213103C, "Smart Array E200i", &SA5A_access
},
176 {0x3214103C, "Smart Array E200i", &SA5A_access
},
177 {0x3215103C, "Smart Array E200i", &SA5A_access
},
178 {0x3237103C, "Smart Array E500", &SA5A_access
},
179 {0x323D103C, "Smart Array P700m", &SA5A_access
},
180 {0x3241103C, "Smart Array P212", &SA5_access
},
181 {0x3243103C, "Smart Array P410", &SA5_access
},
182 {0x3245103C, "Smart Array P410i", &SA5_access
},
183 {0x3247103C, "Smart Array P411", &SA5_access
},
184 {0x3249103C, "Smart Array P812", &SA5_access
},
185 {0x324A103C, "Smart Array P712m", &SA5_access
},
186 {0x324B103C, "Smart Array P711m", &SA5_access
},
187 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
188 {0x3350103C, "Smart Array P222", &SA5_access
},
189 {0x3351103C, "Smart Array P420", &SA5_access
},
190 {0x3352103C, "Smart Array P421", &SA5_access
},
191 {0x3353103C, "Smart Array P822", &SA5_access
},
192 {0x3354103C, "Smart Array P420i", &SA5_access
},
193 {0x3355103C, "Smart Array P220i", &SA5_access
},
194 {0x3356103C, "Smart Array P721m", &SA5_access
},
195 {0x1920103C, "Smart Array P430i", &SA5_access
},
196 {0x1921103C, "Smart Array P830i", &SA5_access
},
197 {0x1922103C, "Smart Array P430", &SA5_access
},
198 {0x1923103C, "Smart Array P431", &SA5_access
},
199 {0x1924103C, "Smart Array P830", &SA5_access
},
200 {0x1925103C, "Smart Array P831", &SA5_access
},
201 {0x1926103C, "Smart Array P731m", &SA5_access
},
202 {0x1928103C, "Smart Array P230i", &SA5_access
},
203 {0x1929103C, "Smart Array P530", &SA5_access
},
204 {0x21BD103C, "Smart Array P244br", &SA5_access
},
205 {0x21BE103C, "Smart Array P741m", &SA5_access
},
206 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
207 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
208 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
209 {0x21C2103C, "Smart Array P440", &SA5_access
},
210 {0x21C3103C, "Smart Array P441", &SA5_access
},
211 {0x21C4103C, "Smart Array", &SA5_access
},
212 {0x21C5103C, "Smart Array P841", &SA5_access
},
213 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
214 {0x21C7103C, "Smart HBA H240", &SA5_access
},
215 {0x21C8103C, "Smart HBA H241", &SA5_access
},
216 {0x21C9103C, "Smart Array", &SA5_access
},
217 {0x21CA103C, "Smart Array P246br", &SA5_access
},
218 {0x21CB103C, "Smart Array P840", &SA5_access
},
219 {0x21CC103C, "Smart Array", &SA5_access
},
220 {0x21CD103C, "Smart Array", &SA5_access
},
221 {0x21CE103C, "Smart HBA", &SA5_access
},
222 {0x05809005, "SmartHBA-SA", &SA5_access
},
223 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
224 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
225 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
226 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
227 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
228 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
229 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
230 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
231 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
232 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
233 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
236 static struct scsi_transport_template
*hpsa_sas_transport_template
;
237 static int hpsa_add_sas_host(struct ctlr_info
*h
);
238 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
239 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
240 struct hpsa_scsi_dev_t
*device
);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
242 static struct hpsa_scsi_dev_t
243 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
244 struct sas_rphy
*rphy
);
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy
;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle
;
250 static int number_of_controllers
;
252 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
253 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
254 static int hpsa_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
258 static int hpsa_compat_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
262 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
263 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
264 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
265 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
266 struct scsi_cmnd
*scmd
);
267 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
268 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
270 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
271 #define VPD_PAGE (1 << 8)
272 #define HPSA_SIMPLE_ERROR_BITS 0x03
274 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
275 static void hpsa_scan_start(struct Scsi_Host
*);
276 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
277 unsigned long elapsed_time
);
278 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
280 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
281 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
282 static int hpsa_slave_configure(struct scsi_device
*sdev
);
283 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
285 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
286 static int check_for_unit_attention(struct ctlr_info
*h
,
287 struct CommandList
*c
);
288 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
289 struct CommandList
*c
);
290 /* performant mode helper functions */
291 static void calc_bucket_map(int *bucket
, int num_buckets
,
292 int nsgs
, int min_blocks
, u32
*bucket_map
);
293 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
294 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
295 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
296 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
297 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
299 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
300 unsigned long *memory_bar
);
301 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
303 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
304 unsigned char lunaddr
[],
306 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
308 static inline void finish_cmd(struct CommandList
*c
);
309 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
310 #define BOARD_NOT_READY 0
311 #define BOARD_READY 1
312 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
313 static void hpsa_flush_cache(struct ctlr_info
*h
);
314 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
315 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
316 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
317 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
318 static u32
lockup_detected(struct ctlr_info
*h
);
319 static int detect_controller_lockup(struct ctlr_info
*h
);
320 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
321 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
322 struct ReportExtendedLUNdata
*buf
, int bufsize
);
323 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
324 unsigned char scsi3addr
[], u8 page
);
325 static int hpsa_luns_changed(struct ctlr_info
*h
);
326 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
327 struct hpsa_scsi_dev_t
*dev
,
328 unsigned char *scsi3addr
);
330 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
332 unsigned long *priv
= shost_priv(sdev
->host
);
333 return (struct ctlr_info
*) *priv
;
336 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
338 unsigned long *priv
= shost_priv(sh
);
339 return (struct ctlr_info
*) *priv
;
342 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
344 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
347 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
349 return c
->reset_pending
;
352 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
353 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
354 u8
*sense_key
, u8
*asc
, u8
*ascq
)
356 struct scsi_sense_hdr sshdr
;
363 if (sense_data_len
< 1)
366 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
368 *sense_key
= sshdr
.sense_key
;
374 static int check_for_unit_attention(struct ctlr_info
*h
,
375 struct CommandList
*c
)
377 u8 sense_key
, asc
, ascq
;
380 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
381 sense_len
= sizeof(c
->err_info
->SenseInfo
);
383 sense_len
= c
->err_info
->SenseLen
;
385 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
386 &sense_key
, &asc
, &ascq
);
387 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
392 dev_warn(&h
->pdev
->dev
,
393 "%s: a state change detected, command retried\n",
397 dev_warn(&h
->pdev
->dev
,
398 "%s: LUN failure detected\n", h
->devname
);
400 case REPORT_LUNS_CHANGED
:
401 dev_warn(&h
->pdev
->dev
,
402 "%s: report LUN data changed\n", h
->devname
);
404 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 * target (array) devices.
409 dev_warn(&h
->pdev
->dev
,
410 "%s: a power on or device reset detected\n",
413 case UNIT_ATTENTION_CLEARED
:
414 dev_warn(&h
->pdev
->dev
,
415 "%s: unit attention cleared by another initiator\n",
419 dev_warn(&h
->pdev
->dev
,
420 "%s: unknown unit attention detected\n",
427 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
429 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
430 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
431 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
433 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
437 static u32
lockup_detected(struct ctlr_info
*h
);
438 static ssize_t
host_show_lockup_detected(struct device
*dev
,
439 struct device_attribute
*attr
, char *buf
)
443 struct Scsi_Host
*shost
= class_to_shost(dev
);
445 h
= shost_to_hba(shost
);
446 ld
= lockup_detected(h
);
448 return sprintf(buf
, "ld=%d\n", ld
);
451 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
452 struct device_attribute
*attr
,
453 const char *buf
, size_t count
)
457 struct Scsi_Host
*shost
= class_to_shost(dev
);
460 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
462 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
463 strncpy(tmpbuf
, buf
, len
);
465 if (sscanf(tmpbuf
, "%d", &status
) != 1)
467 h
= shost_to_hba(shost
);
468 h
->acciopath_status
= !!status
;
469 dev_warn(&h
->pdev
->dev
,
470 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 h
->acciopath_status
? "enabled" : "disabled");
475 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
476 struct device_attribute
*attr
,
477 const char *buf
, size_t count
)
479 int debug_level
, len
;
481 struct Scsi_Host
*shost
= class_to_shost(dev
);
484 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
486 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
487 strncpy(tmpbuf
, buf
, len
);
489 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
493 h
= shost_to_hba(shost
);
494 h
->raid_offload_debug
= debug_level
;
495 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
496 h
->raid_offload_debug
);
500 static ssize_t
host_store_rescan(struct device
*dev
,
501 struct device_attribute
*attr
,
502 const char *buf
, size_t count
)
505 struct Scsi_Host
*shost
= class_to_shost(dev
);
506 h
= shost_to_hba(shost
);
507 hpsa_scan_start(h
->scsi_host
);
511 static ssize_t
host_show_firmware_revision(struct device
*dev
,
512 struct device_attribute
*attr
, char *buf
)
515 struct Scsi_Host
*shost
= class_to_shost(dev
);
516 unsigned char *fwrev
;
518 h
= shost_to_hba(shost
);
519 if (!h
->hba_inquiry_data
)
521 fwrev
= &h
->hba_inquiry_data
[32];
522 return snprintf(buf
, 20, "%c%c%c%c\n",
523 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
526 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
527 struct device_attribute
*attr
, char *buf
)
529 struct Scsi_Host
*shost
= class_to_shost(dev
);
530 struct ctlr_info
*h
= shost_to_hba(shost
);
532 return snprintf(buf
, 20, "%d\n",
533 atomic_read(&h
->commands_outstanding
));
536 static ssize_t
host_show_transport_mode(struct device
*dev
,
537 struct device_attribute
*attr
, char *buf
)
540 struct Scsi_Host
*shost
= class_to_shost(dev
);
542 h
= shost_to_hba(shost
);
543 return snprintf(buf
, 20, "%s\n",
544 h
->transMethod
& CFGTBL_Trans_Performant
?
545 "performant" : "simple");
548 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
549 struct device_attribute
*attr
, char *buf
)
552 struct Scsi_Host
*shost
= class_to_shost(dev
);
554 h
= shost_to_hba(shost
);
555 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
556 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
559 /* List of controllers which cannot be hard reset on kexec with reset_devices */
560 static u32 unresettable_controller
[] = {
561 0x324a103C, /* Smart Array P712m */
562 0x324b103C, /* Smart Array P711m */
563 0x3223103C, /* Smart Array P800 */
564 0x3234103C, /* Smart Array P400 */
565 0x3235103C, /* Smart Array P400i */
566 0x3211103C, /* Smart Array E200i */
567 0x3212103C, /* Smart Array E200 */
568 0x3213103C, /* Smart Array E200i */
569 0x3214103C, /* Smart Array E200i */
570 0x3215103C, /* Smart Array E200i */
571 0x3237103C, /* Smart Array E500 */
572 0x323D103C, /* Smart Array P700m */
573 0x40800E11, /* Smart Array 5i */
574 0x409C0E11, /* Smart Array 6400 */
575 0x409D0E11, /* Smart Array 6400 EM */
576 0x40700E11, /* Smart Array 5300 */
577 0x40820E11, /* Smart Array 532 */
578 0x40830E11, /* Smart Array 5312 */
579 0x409A0E11, /* Smart Array 641 */
580 0x409B0E11, /* Smart Array 642 */
581 0x40910E11, /* Smart Array 6i */
584 /* List of controllers which cannot even be soft reset */
585 static u32 soft_unresettable_controller
[] = {
586 0x40800E11, /* Smart Array 5i */
587 0x40700E11, /* Smart Array 5300 */
588 0x40820E11, /* Smart Array 532 */
589 0x40830E11, /* Smart Array 5312 */
590 0x409A0E11, /* Smart Array 641 */
591 0x409B0E11, /* Smart Array 642 */
592 0x40910E11, /* Smart Array 6i */
593 /* Exclude 640x boards. These are two pci devices in one slot
594 * which share a battery backed cache module. One controls the
595 * cache, the other accesses the cache through the one that controls
596 * it. If we reset the one controlling the cache, the other will
597 * likely not be happy. Just forbid resetting this conjoined mess.
598 * The 640x isn't really supported by hpsa anyway.
600 0x409C0E11, /* Smart Array 6400 */
601 0x409D0E11, /* Smart Array 6400 EM */
604 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
608 for (i
= 0; i
< nelems
; i
++)
609 if (a
[i
] == board_id
)
614 static int ctlr_is_hard_resettable(u32 board_id
)
616 return !board_id_in_array(unresettable_controller
,
617 ARRAY_SIZE(unresettable_controller
), board_id
);
620 static int ctlr_is_soft_resettable(u32 board_id
)
622 return !board_id_in_array(soft_unresettable_controller
,
623 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
626 static int ctlr_is_resettable(u32 board_id
)
628 return ctlr_is_hard_resettable(board_id
) ||
629 ctlr_is_soft_resettable(board_id
);
632 static ssize_t
host_show_resettable(struct device
*dev
,
633 struct device_attribute
*attr
, char *buf
)
636 struct Scsi_Host
*shost
= class_to_shost(dev
);
638 h
= shost_to_hba(shost
);
639 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
642 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
644 return (scsi3addr
[3] & 0xC0) == 0x40;
647 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
648 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
650 #define HPSA_RAID_0 0
651 #define HPSA_RAID_4 1
652 #define HPSA_RAID_1 2 /* also used for RAID 10 */
653 #define HPSA_RAID_5 3 /* also used for RAID 50 */
654 #define HPSA_RAID_51 4
655 #define HPSA_RAID_6 5 /* also used for RAID 60 */
656 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
657 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
658 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
660 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
662 return !device
->physical_device
;
665 static ssize_t
raid_level_show(struct device
*dev
,
666 struct device_attribute
*attr
, char *buf
)
669 unsigned char rlevel
;
671 struct scsi_device
*sdev
;
672 struct hpsa_scsi_dev_t
*hdev
;
675 sdev
= to_scsi_device(dev
);
676 h
= sdev_to_hba(sdev
);
677 spin_lock_irqsave(&h
->lock
, flags
);
678 hdev
= sdev
->hostdata
;
680 spin_unlock_irqrestore(&h
->lock
, flags
);
684 /* Is this even a logical drive? */
685 if (!is_logical_device(hdev
)) {
686 spin_unlock_irqrestore(&h
->lock
, flags
);
687 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
691 rlevel
= hdev
->raid_level
;
692 spin_unlock_irqrestore(&h
->lock
, flags
);
693 if (rlevel
> RAID_UNKNOWN
)
694 rlevel
= RAID_UNKNOWN
;
695 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
699 static ssize_t
lunid_show(struct device
*dev
,
700 struct device_attribute
*attr
, char *buf
)
703 struct scsi_device
*sdev
;
704 struct hpsa_scsi_dev_t
*hdev
;
706 unsigned char lunid
[8];
708 sdev
= to_scsi_device(dev
);
709 h
= sdev_to_hba(sdev
);
710 spin_lock_irqsave(&h
->lock
, flags
);
711 hdev
= sdev
->hostdata
;
713 spin_unlock_irqrestore(&h
->lock
, flags
);
716 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
717 spin_unlock_irqrestore(&h
->lock
, flags
);
718 return snprintf(buf
, 20, "0x%8phN\n", lunid
);
721 static ssize_t
unique_id_show(struct device
*dev
,
722 struct device_attribute
*attr
, char *buf
)
725 struct scsi_device
*sdev
;
726 struct hpsa_scsi_dev_t
*hdev
;
728 unsigned char sn
[16];
730 sdev
= to_scsi_device(dev
);
731 h
= sdev_to_hba(sdev
);
732 spin_lock_irqsave(&h
->lock
, flags
);
733 hdev
= sdev
->hostdata
;
735 spin_unlock_irqrestore(&h
->lock
, flags
);
738 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
739 spin_unlock_irqrestore(&h
->lock
, flags
);
740 return snprintf(buf
, 16 * 2 + 2,
741 "%02X%02X%02X%02X%02X%02X%02X%02X"
742 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
743 sn
[0], sn
[1], sn
[2], sn
[3],
744 sn
[4], sn
[5], sn
[6], sn
[7],
745 sn
[8], sn
[9], sn
[10], sn
[11],
746 sn
[12], sn
[13], sn
[14], sn
[15]);
749 static ssize_t
sas_address_show(struct device
*dev
,
750 struct device_attribute
*attr
, char *buf
)
753 struct scsi_device
*sdev
;
754 struct hpsa_scsi_dev_t
*hdev
;
758 sdev
= to_scsi_device(dev
);
759 h
= sdev_to_hba(sdev
);
760 spin_lock_irqsave(&h
->lock
, flags
);
761 hdev
= sdev
->hostdata
;
762 if (!hdev
|| is_logical_device(hdev
) || !hdev
->expose_device
) {
763 spin_unlock_irqrestore(&h
->lock
, flags
);
766 sas_address
= hdev
->sas_address
;
767 spin_unlock_irqrestore(&h
->lock
, flags
);
769 return snprintf(buf
, PAGE_SIZE
, "0x%016llx\n", sas_address
);
772 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
773 struct device_attribute
*attr
, char *buf
)
776 struct scsi_device
*sdev
;
777 struct hpsa_scsi_dev_t
*hdev
;
781 sdev
= to_scsi_device(dev
);
782 h
= sdev_to_hba(sdev
);
783 spin_lock_irqsave(&h
->lock
, flags
);
784 hdev
= sdev
->hostdata
;
786 spin_unlock_irqrestore(&h
->lock
, flags
);
789 offload_enabled
= hdev
->offload_enabled
;
790 spin_unlock_irqrestore(&h
->lock
, flags
);
792 if (hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
)
793 return snprintf(buf
, 20, "%d\n", offload_enabled
);
795 return snprintf(buf
, 40, "%s\n",
796 "Not applicable for a controller");
800 static ssize_t
path_info_show(struct device
*dev
,
801 struct device_attribute
*attr
, char *buf
)
804 struct scsi_device
*sdev
;
805 struct hpsa_scsi_dev_t
*hdev
;
811 u8 path_map_index
= 0;
813 unsigned char phys_connector
[2];
815 sdev
= to_scsi_device(dev
);
816 h
= sdev_to_hba(sdev
);
817 spin_lock_irqsave(&h
->devlock
, flags
);
818 hdev
= sdev
->hostdata
;
820 spin_unlock_irqrestore(&h
->devlock
, flags
);
825 for (i
= 0; i
< MAX_PATHS
; i
++) {
826 path_map_index
= 1<<i
;
827 if (i
== hdev
->active_path_index
)
829 else if (hdev
->path_map
& path_map_index
)
834 output_len
+= scnprintf(buf
+ output_len
,
835 PAGE_SIZE
- output_len
,
836 "[%d:%d:%d:%d] %20.20s ",
837 h
->scsi_host
->host_no
,
838 hdev
->bus
, hdev
->target
, hdev
->lun
,
839 scsi_device_type(hdev
->devtype
));
841 if (hdev
->devtype
== TYPE_RAID
|| is_logical_device(hdev
)) {
842 output_len
+= scnprintf(buf
+ output_len
,
843 PAGE_SIZE
- output_len
,
849 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
850 sizeof(phys_connector
));
851 if (phys_connector
[0] < '0')
852 phys_connector
[0] = '0';
853 if (phys_connector
[1] < '0')
854 phys_connector
[1] = '0';
855 output_len
+= scnprintf(buf
+ output_len
,
856 PAGE_SIZE
- output_len
,
859 if ((hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
) &&
860 hdev
->expose_device
) {
861 if (box
== 0 || box
== 0xFF) {
862 output_len
+= scnprintf(buf
+ output_len
,
863 PAGE_SIZE
- output_len
,
867 output_len
+= scnprintf(buf
+ output_len
,
868 PAGE_SIZE
- output_len
,
869 "BOX: %hhu BAY: %hhu %s\n",
872 } else if (box
!= 0 && box
!= 0xFF) {
873 output_len
+= scnprintf(buf
+ output_len
,
874 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
877 output_len
+= scnprintf(buf
+ output_len
,
878 PAGE_SIZE
- output_len
, "%s\n", active
);
881 spin_unlock_irqrestore(&h
->devlock
, flags
);
885 static ssize_t
host_show_ctlr_num(struct device
*dev
,
886 struct device_attribute
*attr
, char *buf
)
889 struct Scsi_Host
*shost
= class_to_shost(dev
);
891 h
= shost_to_hba(shost
);
892 return snprintf(buf
, 20, "%d\n", h
->ctlr
);
895 static ssize_t
host_show_legacy_board(struct device
*dev
,
896 struct device_attribute
*attr
, char *buf
)
899 struct Scsi_Host
*shost
= class_to_shost(dev
);
901 h
= shost_to_hba(shost
);
902 return snprintf(buf
, 20, "%d\n", h
->legacy_board
? 1 : 0);
905 static DEVICE_ATTR_RO(raid_level
);
906 static DEVICE_ATTR_RO(lunid
);
907 static DEVICE_ATTR_RO(unique_id
);
908 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
909 static DEVICE_ATTR_RO(sas_address
);
910 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
911 host_show_hp_ssd_smart_path_enabled
, NULL
);
912 static DEVICE_ATTR_RO(path_info
);
913 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
914 host_show_hp_ssd_smart_path_status
,
915 host_store_hp_ssd_smart_path_status
);
916 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
917 host_store_raid_offload_debug
);
918 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
919 host_show_firmware_revision
, NULL
);
920 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
921 host_show_commands_outstanding
, NULL
);
922 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
923 host_show_transport_mode
, NULL
);
924 static DEVICE_ATTR(resettable
, S_IRUGO
,
925 host_show_resettable
, NULL
);
926 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
927 host_show_lockup_detected
, NULL
);
928 static DEVICE_ATTR(ctlr_num
, S_IRUGO
,
929 host_show_ctlr_num
, NULL
);
930 static DEVICE_ATTR(legacy_board
, S_IRUGO
,
931 host_show_legacy_board
, NULL
);
933 static struct device_attribute
*hpsa_sdev_attrs
[] = {
934 &dev_attr_raid_level
,
937 &dev_attr_hp_ssd_smart_path_enabled
,
939 &dev_attr_sas_address
,
943 static struct device_attribute
*hpsa_shost_attrs
[] = {
945 &dev_attr_firmware_revision
,
946 &dev_attr_commands_outstanding
,
947 &dev_attr_transport_mode
,
948 &dev_attr_resettable
,
949 &dev_attr_hp_ssd_smart_path_status
,
950 &dev_attr_raid_offload_debug
,
951 &dev_attr_lockup_detected
,
953 &dev_attr_legacy_board
,
957 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
958 HPSA_MAX_CONCURRENT_PASSTHRUS)
960 static struct scsi_host_template hpsa_driver_template
= {
961 .module
= THIS_MODULE
,
964 .queuecommand
= hpsa_scsi_queue_command
,
965 .scan_start
= hpsa_scan_start
,
966 .scan_finished
= hpsa_scan_finished
,
967 .change_queue_depth
= hpsa_change_queue_depth
,
969 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
971 .slave_alloc
= hpsa_slave_alloc
,
972 .slave_configure
= hpsa_slave_configure
,
973 .slave_destroy
= hpsa_slave_destroy
,
975 .compat_ioctl
= hpsa_compat_ioctl
,
977 .sdev_attrs
= hpsa_sdev_attrs
,
978 .shost_attrs
= hpsa_shost_attrs
,
983 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
986 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
988 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
989 return h
->access
.command_completed(h
, q
);
991 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
992 return h
->access
.command_completed(h
, q
);
994 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
995 a
= rq
->head
[rq
->current_entry
];
997 atomic_dec(&h
->commands_outstanding
);
1001 /* Check for wraparound */
1002 if (rq
->current_entry
== h
->max_commands
) {
1003 rq
->current_entry
= 0;
1004 rq
->wraparound
^= 1;
1010 * There are some special bits in the bus address of the
1011 * command that we have to set for the controller to know
1012 * how to process the command:
1014 * Normal performant mode:
1015 * bit 0: 1 means performant mode, 0 means simple mode.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 0)
1020 * bit 0 = "performant mode" bit.
1021 * bits 1-3 = block fetch table entry
1022 * bits 4-6 = command type (== 110)
1023 * (command type is needed because ioaccel1 mode
1024 * commands are submitted through the same register as normal
1025 * mode commands, so this is how the controller knows whether
1026 * the command is normal mode or ioaccel1 mode.)
1029 * bit 0 = "performant mode" bit.
1030 * bits 1-4 = block fetch table entry (note extra bit)
1031 * bits 4-6 = not needed, because ioaccel2 mode has
1032 * a separate special register for submitting commands.
1036 * set_performant_mode: Modify the tag for cciss performant
1037 * set bit 0 for pull model, bits 3-1 for block fetch
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
1044 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
1045 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
1046 if (unlikely(!h
->msix_vectors
))
1048 c
->Header
.ReplyQueue
= reply_queue
;
1052 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
1053 struct CommandList
*c
,
1056 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
1059 * Tell the controller to post the reply to the queue for this
1060 * processor. This seems to give the best I/O throughput.
1062 cp
->ReplyQueue
= reply_queue
;
1064 * Set the bits in the address sent down to include:
1065 * - performant mode bit (bit 0)
1066 * - pull count (bits 1-3)
1067 * - command type (bits 4-6)
1069 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1070 IOACCEL1_BUSADDR_CMDTYPE
;
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1074 struct CommandList
*c
,
1077 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1078 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1080 /* Tell the controller to post the reply to the queue for this
1081 * processor. This seems to give the best I/O throughput.
1083 cp
->reply_queue
= reply_queue
;
1084 /* Set the bits in the address sent down to include:
1085 * - performant mode bit not used in ioaccel mode 2
1086 * - pull count (bits 0-3)
1087 * - command type isn't needed for ioaccel2
1089 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1092 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1093 struct CommandList
*c
,
1096 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1099 * Tell the controller to post the reply to the queue for this
1100 * processor. This seems to give the best I/O throughput.
1102 cp
->reply_queue
= reply_queue
;
1104 * Set the bits in the address sent down to include:
1105 * - performant mode bit not used in ioaccel mode 2
1106 * - pull count (bits 0-3)
1107 * - command type isn't needed for ioaccel2
1109 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1112 static int is_firmware_flash_cmd(u8
*cdb
)
1114 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1118 * During firmware flash, the heartbeat register may not update as frequently
1119 * as it should. So we dial down lockup detection during firmware flash. and
1120 * dial it back up when firmware flash completes.
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1126 struct CommandList
*c
)
1128 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1130 atomic_inc(&h
->firmware_flash_in_progress
);
1131 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1135 struct CommandList
*c
)
1137 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1138 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1139 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1143 struct CommandList
*c
, int reply_queue
)
1145 dial_down_lockup_detection_during_fw_flash(h
, c
);
1146 atomic_inc(&h
->commands_outstanding
);
1148 reply_queue
= h
->reply_map
[raw_smp_processor_id()];
1149 switch (c
->cmd_type
) {
1151 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1152 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1155 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1156 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1159 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1160 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1163 set_performant_mode(h
, c
, reply_queue
);
1164 h
->access
.submit_command(h
, c
);
1168 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1170 if (unlikely(hpsa_is_pending_event(c
)))
1171 return finish_cmd(c
);
1173 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1176 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1178 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1181 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1183 if (!h
->hba_inquiry_data
)
1185 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1190 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1191 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1193 /* finds an unused bus, target, lun for a new physical device
1194 * assumes h->devlock is held
1197 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1199 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1201 for (i
= 0; i
< h
->ndevices
; i
++) {
1202 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1203 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1206 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1207 if (i
< HPSA_MAX_DEVICES
) {
1216 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1217 struct hpsa_scsi_dev_t
*dev
, char *description
)
1219 #define LABEL_SIZE 25
1220 char label
[LABEL_SIZE
];
1222 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1225 switch (dev
->devtype
) {
1227 snprintf(label
, LABEL_SIZE
, "controller");
1229 case TYPE_ENCLOSURE
:
1230 snprintf(label
, LABEL_SIZE
, "enclosure");
1235 snprintf(label
, LABEL_SIZE
, "external");
1236 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1237 snprintf(label
, LABEL_SIZE
, "%s",
1238 raid_label
[PHYSICAL_DRIVE
]);
1240 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1241 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1242 raid_label
[dev
->raid_level
]);
1245 snprintf(label
, LABEL_SIZE
, "rom");
1248 snprintf(label
, LABEL_SIZE
, "tape");
1250 case TYPE_MEDIUM_CHANGER
:
1251 snprintf(label
, LABEL_SIZE
, "changer");
1254 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1258 dev_printk(level
, &h
->pdev
->dev
,
1259 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1262 scsi_device_type(dev
->devtype
),
1266 dev
->offload_config
? '+' : '-',
1267 dev
->offload_to_be_enabled
? '+' : '-',
1268 dev
->expose_device
);
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1273 struct hpsa_scsi_dev_t
*device
,
1274 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1276 /* assumes h->devlock is held */
1277 int n
= h
->ndevices
;
1279 unsigned char addr1
[8], addr2
[8];
1280 struct hpsa_scsi_dev_t
*sd
;
1282 if (n
>= HPSA_MAX_DEVICES
) {
1283 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1288 /* physical devices do not have lun or target assigned until now. */
1289 if (device
->lun
!= -1)
1290 /* Logical device, lun is already assigned. */
1293 /* If this device a non-zero lun of a multi-lun device
1294 * byte 4 of the 8-byte LUN addr will contain the logical
1295 * unit no, zero otherwise.
1297 if (device
->scsi3addr
[4] == 0) {
1298 /* This is not a non-zero lun of a multi-lun device */
1299 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1300 device
->bus
, &device
->target
, &device
->lun
) != 0)
1305 /* This is a non-zero lun of a multi-lun device.
1306 * Search through our list and find the device which
1307 * has the same 8 byte LUN address, excepting byte 4 and 5.
1308 * Assign the same bus and target for this new LUN.
1309 * Use the logical unit number from the firmware.
1311 memcpy(addr1
, device
->scsi3addr
, 8);
1314 for (i
= 0; i
< n
; i
++) {
1316 memcpy(addr2
, sd
->scsi3addr
, 8);
1319 /* differ only in byte 4 and 5? */
1320 if (memcmp(addr1
, addr2
, 8) == 0) {
1321 device
->bus
= sd
->bus
;
1322 device
->target
= sd
->target
;
1323 device
->lun
= device
->scsi3addr
[4];
1327 if (device
->lun
== -1) {
1328 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1329 " suspect firmware bug or unsupported hardware "
1330 "configuration.\n");
1338 added
[*nadded
] = device
;
1340 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1341 device
->expose_device
? "added" : "masked");
1346 * Called during a scan operation.
1348 * Update an entry in h->dev[] array.
1350 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1351 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1353 /* assumes h->devlock is held */
1354 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1356 /* Raid level changed. */
1357 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1360 * ioacccel_handle may have changed for a dual domain disk
1362 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1364 /* Raid offload parameters changed. Careful about the ordering. */
1365 if (new_entry
->offload_config
&& new_entry
->offload_to_be_enabled
) {
1367 * if drive is newly offload_enabled, we want to copy the
1368 * raid map data first. If previously offload_enabled and
1369 * offload_config were set, raid map data had better be
1370 * the same as it was before. If raid map data has changed
1371 * then it had better be the case that
1372 * h->dev[entry]->offload_enabled is currently 0.
1374 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1375 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1377 if (new_entry
->offload_to_be_enabled
) {
1378 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1379 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1381 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1382 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1383 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1384 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1387 * We can turn off ioaccel offload now, but need to delay turning
1388 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389 * can't do that until all the devices are updated.
1391 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_to_be_enabled
;
1394 * turn ioaccel off immediately if told to do so.
1396 if (!new_entry
->offload_to_be_enabled
)
1397 h
->dev
[entry
]->offload_enabled
= 0;
1399 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1404 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1405 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1406 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1408 /* assumes h->devlock is held */
1409 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1410 removed
[*nremoved
] = h
->dev
[entry
];
1414 * New physical devices won't have target/lun assigned yet
1415 * so we need to preserve the values in the slot we are replacing.
1417 if (new_entry
->target
== -1) {
1418 new_entry
->target
= h
->dev
[entry
]->target
;
1419 new_entry
->lun
= h
->dev
[entry
]->lun
;
1422 h
->dev
[entry
] = new_entry
;
1423 added
[*nadded
] = new_entry
;
1426 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1431 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1433 /* assumes h->devlock is held */
1435 struct hpsa_scsi_dev_t
*sd
;
1437 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1440 removed
[*nremoved
] = h
->dev
[entry
];
1443 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1444 h
->dev
[i
] = h
->dev
[i
+1];
1446 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 (a)[7] == (b)[7] && \
1451 (a)[6] == (b)[6] && \
1452 (a)[5] == (b)[5] && \
1453 (a)[4] == (b)[4] && \
1454 (a)[3] == (b)[3] && \
1455 (a)[2] == (b)[2] && \
1456 (a)[1] == (b)[1] && \
1459 static void fixup_botched_add(struct ctlr_info
*h
,
1460 struct hpsa_scsi_dev_t
*added
)
1462 /* called when scsi_add_device fails in order to re-adjust
1463 * h->dev[] to match the mid layer's view.
1465 unsigned long flags
;
1468 spin_lock_irqsave(&h
->lock
, flags
);
1469 for (i
= 0; i
< h
->ndevices
; i
++) {
1470 if (h
->dev
[i
] == added
) {
1471 for (j
= i
; j
< h
->ndevices
-1; j
++)
1472 h
->dev
[j
] = h
->dev
[j
+1];
1477 spin_unlock_irqrestore(&h
->lock
, flags
);
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1482 struct hpsa_scsi_dev_t
*dev2
)
1484 /* we compare everything except lun and target as these
1485 * are not yet assigned. Compare parts likely
1488 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1489 sizeof(dev1
->scsi3addr
)) != 0)
1491 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1492 sizeof(dev1
->device_id
)) != 0)
1494 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1496 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1498 if (dev1
->devtype
!= dev2
->devtype
)
1500 if (dev1
->bus
!= dev2
->bus
)
1505 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1506 struct hpsa_scsi_dev_t
*dev2
)
1508 /* Device attributes that can change, but don't mean
1509 * that the device is a different device, nor that the OS
1510 * needs to be told anything about the change.
1512 if (dev1
->raid_level
!= dev2
->raid_level
)
1514 if (dev1
->offload_config
!= dev2
->offload_config
)
1516 if (dev1
->offload_to_be_enabled
!= dev2
->offload_to_be_enabled
)
1518 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1519 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1522 * This can happen for dual domain devices. An active
1523 * path change causes the ioaccel handle to change
1525 * for example note the handle differences between p0 and p1
1526 * Device WWN ,WWN hash,Handle
1527 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1530 if (dev1
->ioaccel_handle
!= dev2
->ioaccel_handle
)
1535 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1536 * and return needle location in *index. If scsi3addr matches, but not
1537 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538 * location in *index.
1539 * In the case of a minor device attribute change, such as RAID level, just
1540 * return DEVICE_UPDATED, along with the updated device's location in index.
1541 * If needle not found, return DEVICE_NOT_FOUND.
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1544 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1553 return DEVICE_NOT_FOUND
;
1555 for (i
= 0; i
< haystack_size
; i
++) {
1556 if (haystack
[i
] == NULL
) /* previously removed. */
1558 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1560 if (device_is_the_same(needle
, haystack
[i
])) {
1561 if (device_updated(needle
, haystack
[i
]))
1562 return DEVICE_UPDATED
;
1565 /* Keep offline devices offline */
1566 if (needle
->volume_offline
)
1567 return DEVICE_NOT_FOUND
;
1568 return DEVICE_CHANGED
;
1573 return DEVICE_NOT_FOUND
;
1576 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1577 unsigned char scsi3addr
[])
1579 struct offline_device_entry
*device
;
1580 unsigned long flags
;
1582 /* Check to see if device is already on the list */
1583 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1584 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1585 if (memcmp(device
->scsi3addr
, scsi3addr
,
1586 sizeof(device
->scsi3addr
)) == 0) {
1587 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1591 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1593 /* Device is not on the list, add it. */
1594 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1598 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1599 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1600 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1601 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1606 struct hpsa_scsi_dev_t
*sd
)
1608 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1609 dev_info(&h
->pdev
->dev
,
1610 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611 h
->scsi_host
->host_no
,
1612 sd
->bus
, sd
->target
, sd
->lun
);
1613 switch (sd
->volume_offline
) {
1616 case HPSA_LV_UNDERGOING_ERASE
:
1617 dev_info(&h
->pdev
->dev
,
1618 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619 h
->scsi_host
->host_no
,
1620 sd
->bus
, sd
->target
, sd
->lun
);
1622 case HPSA_LV_NOT_AVAILABLE
:
1623 dev_info(&h
->pdev
->dev
,
1624 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625 h
->scsi_host
->host_no
,
1626 sd
->bus
, sd
->target
, sd
->lun
);
1628 case HPSA_LV_UNDERGOING_RPI
:
1629 dev_info(&h
->pdev
->dev
,
1630 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631 h
->scsi_host
->host_no
,
1632 sd
->bus
, sd
->target
, sd
->lun
);
1634 case HPSA_LV_PENDING_RPI
:
1635 dev_info(&h
->pdev
->dev
,
1636 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637 h
->scsi_host
->host_no
,
1638 sd
->bus
, sd
->target
, sd
->lun
);
1640 case HPSA_LV_ENCRYPTED_NO_KEY
:
1641 dev_info(&h
->pdev
->dev
,
1642 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643 h
->scsi_host
->host_no
,
1644 sd
->bus
, sd
->target
, sd
->lun
);
1646 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1647 dev_info(&h
->pdev
->dev
,
1648 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649 h
->scsi_host
->host_no
,
1650 sd
->bus
, sd
->target
, sd
->lun
);
1652 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1653 dev_info(&h
->pdev
->dev
,
1654 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655 h
->scsi_host
->host_no
,
1656 sd
->bus
, sd
->target
, sd
->lun
);
1658 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1659 dev_info(&h
->pdev
->dev
,
1660 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661 h
->scsi_host
->host_no
,
1662 sd
->bus
, sd
->target
, sd
->lun
);
1664 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1665 dev_info(&h
->pdev
->dev
,
1666 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667 h
->scsi_host
->host_no
,
1668 sd
->bus
, sd
->target
, sd
->lun
);
1670 case HPSA_LV_PENDING_ENCRYPTION
:
1671 dev_info(&h
->pdev
->dev
,
1672 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673 h
->scsi_host
->host_no
,
1674 sd
->bus
, sd
->target
, sd
->lun
);
1676 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1677 dev_info(&h
->pdev
->dev
,
1678 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679 h
->scsi_host
->host_no
,
1680 sd
->bus
, sd
->target
, sd
->lun
);
1686 * Figure the list of physical drive pointers for a logical drive with
1687 * raid offload configured.
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1690 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1691 struct hpsa_scsi_dev_t
*logical_drive
)
1693 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1694 struct raid_map_disk_data
*dd
= &map
->data
[0];
1696 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1697 le16_to_cpu(map
->metadata_disks_per_row
);
1698 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1699 le16_to_cpu(map
->layout_map_count
) *
1700 total_disks_per_row
;
1701 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1702 total_disks_per_row
;
1705 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1706 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1708 logical_drive
->nphysical_disks
= nraid_map_entries
;
1711 for (i
= 0; i
< nraid_map_entries
; i
++) {
1712 logical_drive
->phys_disk
[i
] = NULL
;
1713 if (!logical_drive
->offload_config
)
1715 for (j
= 0; j
< ndevices
; j
++) {
1718 if (dev
[j
]->devtype
!= TYPE_DISK
&&
1719 dev
[j
]->devtype
!= TYPE_ZBC
)
1721 if (is_logical_device(dev
[j
]))
1723 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1726 logical_drive
->phys_disk
[i
] = dev
[j
];
1728 qdepth
= min(h
->nr_cmds
, qdepth
+
1729 logical_drive
->phys_disk
[i
]->queue_depth
);
1734 * This can happen if a physical drive is removed and
1735 * the logical drive is degraded. In that case, the RAID
1736 * map data will refer to a physical disk which isn't actually
1737 * present. And in that case offload_enabled should already
1738 * be 0, but we'll turn it off here just in case
1740 if (!logical_drive
->phys_disk
[i
]) {
1741 dev_warn(&h
->pdev
->dev
,
1742 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1744 h
->scsi_host
->host_no
, logical_drive
->bus
,
1745 logical_drive
->target
, logical_drive
->lun
);
1746 logical_drive
->offload_enabled
= 0;
1747 logical_drive
->offload_to_be_enabled
= 0;
1748 logical_drive
->queue_depth
= 8;
1751 if (nraid_map_entries
)
1753 * This is correct for reads, too high for full stripe writes,
1754 * way too high for partial stripe writes
1756 logical_drive
->queue_depth
= qdepth
;
1758 if (logical_drive
->external
)
1759 logical_drive
->queue_depth
= EXTERNAL_QD
;
1761 logical_drive
->queue_depth
= h
->nr_cmds
;
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1766 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1770 for (i
= 0; i
< ndevices
; i
++) {
1773 if (dev
[i
]->devtype
!= TYPE_DISK
&&
1774 dev
[i
]->devtype
!= TYPE_ZBC
)
1776 if (!is_logical_device(dev
[i
]))
1780 * If offload is currently enabled, the RAID map and
1781 * phys_disk[] assignment *better* not be changing
1782 * because we would be changing ioaccel phsy_disk[] pointers
1783 * on a ioaccel volume processing I/O requests.
1785 * If an ioaccel volume status changed, initially because it was
1786 * re-configured and thus underwent a transformation, or
1787 * a drive failed, we would have received a state change
1788 * request and ioaccel should have been turned off. When the
1789 * transformation completes, we get another state change
1790 * request to turn ioaccel back on. In this case, we need
1791 * to update the ioaccel information.
1793 * Thus: If it is not currently enabled, but will be after
1794 * the scan completes, make sure the ioaccel pointers
1798 if (!dev
[i
]->offload_enabled
&& dev
[i
]->offload_to_be_enabled
)
1799 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1803 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1810 if (is_logical_device(device
)) /* RAID */
1811 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1812 device
->target
, device
->lun
);
1814 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info
*h
,
1820 struct hpsa_scsi_dev_t
*dev
)
1825 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1826 struct CommandList
*c
= h
->cmd_pool
+ i
;
1827 int refcount
= atomic_inc_return(&c
->refcount
);
1829 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
,
1831 unsigned long flags
;
1833 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
1834 if (!hpsa_is_cmd_idle(c
))
1836 spin_unlock_irqrestore(&h
->lock
, flags
);
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info
*h
,
1846 struct hpsa_scsi_dev_t
*device
)
1852 cmds
= hpsa_find_outstanding_commands_for_dev(h
, device
);
1861 dev_warn(&h
->pdev
->dev
,
1862 "%s: removing device with %d outstanding commands!\n",
1866 static void hpsa_remove_device(struct ctlr_info
*h
,
1867 struct hpsa_scsi_dev_t
*device
)
1869 struct scsi_device
*sdev
= NULL
;
1875 * Allow for commands to drain
1877 device
->removed
= 1;
1878 hpsa_wait_for_outstanding_commands_for_dev(h
, device
);
1880 if (is_logical_device(device
)) { /* RAID */
1881 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1882 device
->target
, device
->lun
);
1884 scsi_remove_device(sdev
);
1885 scsi_device_put(sdev
);
1888 * We don't expect to get here. Future commands
1889 * to this device will get a selection timeout as
1890 * if the device were gone.
1892 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1893 "didn't find device for removal.");
1897 hpsa_remove_sas_device(device
);
1901 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1902 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1904 /* sd contains scsi3 addresses and devtypes, and inquiry
1905 * data. This function takes what's in sd to be the current
1906 * reality and updates h->dev[] to reflect that reality.
1908 int i
, entry
, device_change
, changes
= 0;
1909 struct hpsa_scsi_dev_t
*csd
;
1910 unsigned long flags
;
1911 struct hpsa_scsi_dev_t
**added
, **removed
;
1912 int nadded
, nremoved
;
1915 * A reset can cause a device status to change
1916 * re-schedule the scan to see what happened.
1918 spin_lock_irqsave(&h
->reset_lock
, flags
);
1919 if (h
->reset_in_progress
) {
1920 h
->drv_req_rescan
= 1;
1921 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1924 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1926 added
= kcalloc(HPSA_MAX_DEVICES
, sizeof(*added
), GFP_KERNEL
);
1927 removed
= kcalloc(HPSA_MAX_DEVICES
, sizeof(*removed
), GFP_KERNEL
);
1929 if (!added
|| !removed
) {
1930 dev_warn(&h
->pdev
->dev
, "out of memory in "
1931 "adjust_hpsa_scsi_table\n");
1935 spin_lock_irqsave(&h
->devlock
, flags
);
1937 /* find any devices in h->dev[] that are not in
1938 * sd[] and remove them from h->dev[], and for any
1939 * devices which have changed, remove the old device
1940 * info and add the new device info.
1941 * If minor device attributes change, just update
1942 * the existing device structure.
1947 while (i
< h
->ndevices
) {
1949 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1950 if (device_change
== DEVICE_NOT_FOUND
) {
1952 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1953 continue; /* remove ^^^, hence i not incremented */
1954 } else if (device_change
== DEVICE_CHANGED
) {
1956 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1957 added
, &nadded
, removed
, &nremoved
);
1958 /* Set it to NULL to prevent it from being freed
1959 * at the bottom of hpsa_update_scsi_devices()
1962 } else if (device_change
== DEVICE_UPDATED
) {
1963 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1968 /* Now, make sure every device listed in sd[] is also
1969 * listed in h->dev[], adding them if they aren't found
1972 for (i
= 0; i
< nsds
; i
++) {
1973 if (!sd
[i
]) /* if already added above. */
1976 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977 * as the SCSI mid-layer does not handle such devices well.
1978 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979 * at 160Hz, and prevents the system from coming up.
1981 if (sd
[i
]->volume_offline
) {
1982 hpsa_show_volume_status(h
, sd
[i
]);
1983 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1987 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1988 h
->ndevices
, &entry
);
1989 if (device_change
== DEVICE_NOT_FOUND
) {
1991 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
1993 sd
[i
] = NULL
; /* prevent from being freed later. */
1994 } else if (device_change
== DEVICE_CHANGED
) {
1995 /* should never happen... */
1997 dev_warn(&h
->pdev
->dev
,
1998 "device unexpectedly changed.\n");
1999 /* but if it does happen, we just ignore that device */
2002 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
2005 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006 * any logical drives that need it enabled.
2008 * The raid map should be current by now.
2010 * We are updating the device list used for I/O requests.
2012 for (i
= 0; i
< h
->ndevices
; i
++) {
2013 if (h
->dev
[i
] == NULL
)
2015 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
2018 spin_unlock_irqrestore(&h
->devlock
, flags
);
2020 /* Monitor devices which are in one of several NOT READY states to be
2021 * brought online later. This must be done without holding h->devlock,
2022 * so don't touch h->dev[]
2024 for (i
= 0; i
< nsds
; i
++) {
2025 if (!sd
[i
]) /* if already added above. */
2027 if (sd
[i
]->volume_offline
)
2028 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
2031 /* Don't notify scsi mid layer of any changes the first time through
2032 * (or if there are no changes) scsi_scan_host will do it later the
2033 * first time through.
2038 /* Notify scsi mid layer of any removed devices */
2039 for (i
= 0; i
< nremoved
; i
++) {
2040 if (removed
[i
] == NULL
)
2042 if (removed
[i
]->expose_device
)
2043 hpsa_remove_device(h
, removed
[i
]);
2048 /* Notify scsi mid layer of any added devices */
2049 for (i
= 0; i
< nadded
; i
++) {
2052 if (added
[i
] == NULL
)
2054 if (!(added
[i
]->expose_device
))
2056 rc
= hpsa_add_device(h
, added
[i
]);
2059 dev_warn(&h
->pdev
->dev
,
2060 "addition failed %d, device not added.", rc
);
2061 /* now we have to remove it from h->dev,
2062 * since it didn't get added to scsi mid layer
2064 fixup_botched_add(h
, added
[i
]);
2065 h
->drv_req_rescan
= 1;
2074 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075 * Assume's h->devlock is held.
2077 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
2078 int bus
, int target
, int lun
)
2081 struct hpsa_scsi_dev_t
*sd
;
2083 for (i
= 0; i
< h
->ndevices
; i
++) {
2085 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
2091 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
2093 struct hpsa_scsi_dev_t
*sd
= NULL
;
2094 unsigned long flags
;
2095 struct ctlr_info
*h
;
2097 h
= sdev_to_hba(sdev
);
2098 spin_lock_irqsave(&h
->devlock
, flags
);
2099 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
2100 struct scsi_target
*starget
;
2101 struct sas_rphy
*rphy
;
2103 starget
= scsi_target(sdev
);
2104 rphy
= target_to_rphy(starget
);
2105 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
2107 sd
->target
= sdev_id(sdev
);
2108 sd
->lun
= sdev
->lun
;
2112 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
2113 sdev_id(sdev
), sdev
->lun
);
2115 if (sd
&& sd
->expose_device
) {
2116 atomic_set(&sd
->ioaccel_cmds_out
, 0);
2117 sdev
->hostdata
= sd
;
2119 sdev
->hostdata
= NULL
;
2120 spin_unlock_irqrestore(&h
->devlock
, flags
);
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device
*sdev
)
2127 struct hpsa_scsi_dev_t
*sd
;
2130 sd
= sdev
->hostdata
;
2131 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
2135 queue_depth
= EXTERNAL_QD
;
2137 queue_depth
= sd
->queue_depth
!= 0 ?
2138 sd
->queue_depth
: sdev
->host
->can_queue
;
2140 queue_depth
= sdev
->host
->can_queue
;
2142 scsi_change_queue_depth(sdev
, queue_depth
);
2147 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
2149 /* nothing to do. */
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2156 if (!h
->ioaccel2_cmd_sg_list
)
2158 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2159 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
2160 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
2162 kfree(h
->ioaccel2_cmd_sg_list
);
2163 h
->ioaccel2_cmd_sg_list
= NULL
;
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2170 if (h
->chainsize
<= 0)
2173 h
->ioaccel2_cmd_sg_list
=
2174 kcalloc(h
->nr_cmds
, sizeof(*h
->ioaccel2_cmd_sg_list
),
2176 if (!h
->ioaccel2_cmd_sg_list
)
2178 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2179 h
->ioaccel2_cmd_sg_list
[i
] =
2180 kmalloc_array(h
->maxsgentries
,
2181 sizeof(*h
->ioaccel2_cmd_sg_list
[i
]),
2183 if (!h
->ioaccel2_cmd_sg_list
[i
])
2189 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2193 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2197 if (!h
->cmd_sg_list
)
2199 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2200 kfree(h
->cmd_sg_list
[i
]);
2201 h
->cmd_sg_list
[i
] = NULL
;
2203 kfree(h
->cmd_sg_list
);
2204 h
->cmd_sg_list
= NULL
;
2207 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2211 if (h
->chainsize
<= 0)
2214 h
->cmd_sg_list
= kcalloc(h
->nr_cmds
, sizeof(*h
->cmd_sg_list
),
2216 if (!h
->cmd_sg_list
)
2219 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2220 h
->cmd_sg_list
[i
] = kmalloc_array(h
->chainsize
,
2221 sizeof(*h
->cmd_sg_list
[i
]),
2223 if (!h
->cmd_sg_list
[i
])
2230 hpsa_free_sg_chain_blocks(h
);
2234 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2235 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2237 struct ioaccel2_sg_element
*chain_block
;
2241 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2242 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2243 temp64
= dma_map_single(&h
->pdev
->dev
, chain_block
, chain_size
,
2245 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2246 /* prevent subsequent unmapping */
2247 cp
->sg
->address
= 0;
2250 cp
->sg
->address
= cpu_to_le64(temp64
);
2254 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2255 struct io_accel2_cmd
*cp
)
2257 struct ioaccel2_sg_element
*chain_sg
;
2262 temp64
= le64_to_cpu(chain_sg
->address
);
2263 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2264 dma_unmap_single(&h
->pdev
->dev
, temp64
, chain_size
, DMA_TO_DEVICE
);
2267 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2268 struct CommandList
*c
)
2270 struct SGDescriptor
*chain_sg
, *chain_block
;
2274 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2275 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2276 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2277 chain_len
= sizeof(*chain_sg
) *
2278 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2279 chain_sg
->Len
= cpu_to_le32(chain_len
);
2280 temp64
= dma_map_single(&h
->pdev
->dev
, chain_block
, chain_len
,
2282 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2283 /* prevent subsequent unmapping */
2284 chain_sg
->Addr
= cpu_to_le64(0);
2287 chain_sg
->Addr
= cpu_to_le64(temp64
);
2291 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2292 struct CommandList
*c
)
2294 struct SGDescriptor
*chain_sg
;
2296 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2299 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2300 dma_unmap_single(&h
->pdev
->dev
, le64_to_cpu(chain_sg
->Addr
),
2301 le32_to_cpu(chain_sg
->Len
), DMA_TO_DEVICE
);
2305 /* Decode the various types of errors on ioaccel2 path.
2306 * Return 1 for any error that should generate a RAID path retry.
2307 * Return 0 for errors that don't require a RAID path retry.
2309 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2310 struct CommandList
*c
,
2311 struct scsi_cmnd
*cmd
,
2312 struct io_accel2_cmd
*c2
,
2313 struct hpsa_scsi_dev_t
*dev
)
2317 u32 ioaccel2_resid
= 0;
2319 switch (c2
->error_data
.serv_response
) {
2320 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2321 switch (c2
->error_data
.status
) {
2322 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2324 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2325 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2326 if (c2
->error_data
.data_present
!=
2327 IOACCEL2_SENSE_DATA_PRESENT
) {
2328 memset(cmd
->sense_buffer
, 0,
2329 SCSI_SENSE_BUFFERSIZE
);
2332 /* copy the sense data */
2333 data_len
= c2
->error_data
.sense_data_len
;
2334 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2335 data_len
= SCSI_SENSE_BUFFERSIZE
;
2336 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2338 sizeof(c2
->error_data
.sense_data_buff
);
2339 memcpy(cmd
->sense_buffer
,
2340 c2
->error_data
.sense_data_buff
, data_len
);
2343 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2346 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2349 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2352 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2360 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2361 switch (c2
->error_data
.status
) {
2362 case IOACCEL2_STATUS_SR_IO_ERROR
:
2363 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2364 case IOACCEL2_STATUS_SR_OVERRUN
:
2367 case IOACCEL2_STATUS_SR_UNDERRUN
:
2368 cmd
->result
= (DID_OK
<< 16); /* host byte */
2369 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2370 ioaccel2_resid
= get_unaligned_le32(
2371 &c2
->error_data
.resid_cnt
[0]);
2372 scsi_set_resid(cmd
, ioaccel2_resid
);
2374 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2375 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2376 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2378 * Did an HBA disk disappear? We will eventually
2379 * get a state change event from the controller but
2380 * in the meantime, we need to tell the OS that the
2381 * HBA disk is no longer there and stop I/O
2382 * from going down. This allows the potential re-insert
2383 * of the disk to get the same device node.
2385 if (dev
->physical_device
&& dev
->expose_device
) {
2386 cmd
->result
= DID_NO_CONNECT
<< 16;
2388 h
->drv_req_rescan
= 1;
2389 dev_warn(&h
->pdev
->dev
,
2390 "%s: device is gone!\n", __func__
);
2393 * Retry by sending down the RAID path.
2394 * We will get an event from ctlr to
2395 * trigger rescan regardless.
2403 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2405 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2407 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2410 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2417 return retry
; /* retry on raid path? */
2420 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2421 struct CommandList
*c
)
2423 bool do_wake
= false;
2426 * Reset c->scsi_cmd here so that the reset handler will know
2427 * this command has completed. Then, check to see if the handler is
2428 * waiting for this command, and, if so, wake it.
2430 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2431 mb(); /* Declare command idle before checking for pending events. */
2432 if (c
->reset_pending
) {
2433 unsigned long flags
;
2434 struct hpsa_scsi_dev_t
*dev
;
2437 * There appears to be a reset pending; lock the lock and
2438 * reconfirm. If so, then decrement the count of outstanding
2439 * commands and wake the reset command if this is the last one.
2441 spin_lock_irqsave(&h
->lock
, flags
);
2442 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2443 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2445 c
->reset_pending
= NULL
;
2446 spin_unlock_irqrestore(&h
->lock
, flags
);
2450 wake_up_all(&h
->event_sync_wait_queue
);
2453 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2454 struct CommandList
*c
)
2456 hpsa_cmd_resolve_events(h
, c
);
2457 cmd_tagged_free(h
, c
);
2460 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2461 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2463 hpsa_cmd_resolve_and_free(h
, c
);
2464 if (cmd
&& cmd
->scsi_done
)
2465 cmd
->scsi_done(cmd
);
2468 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2470 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2471 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2474 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2475 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2476 struct hpsa_scsi_dev_t
*dev
)
2478 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2480 /* check for good status */
2481 if (likely(c2
->error_data
.serv_response
== 0 &&
2482 c2
->error_data
.status
== 0))
2483 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2486 * Any RAID offload error results in retry which will use
2487 * the normal I/O path so the controller can handle whatever is
2490 if (is_logical_device(dev
) &&
2491 c2
->error_data
.serv_response
==
2492 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2493 if (c2
->error_data
.status
==
2494 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
) {
2495 dev
->offload_enabled
= 0;
2496 dev
->offload_to_be_enabled
= 0;
2499 return hpsa_retry_cmd(h
, c
);
2502 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
, dev
))
2503 return hpsa_retry_cmd(h
, c
);
2505 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2508 /* Returns 0 on success, < 0 otherwise. */
2509 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2510 struct CommandList
*cp
)
2512 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2514 switch (tmf_status
) {
2515 case CISS_TMF_COMPLETE
:
2517 * CISS_TMF_COMPLETE never happens, instead,
2518 * ei->CommandStatus == 0 for this case.
2520 case CISS_TMF_SUCCESS
:
2522 case CISS_TMF_INVALID_FRAME
:
2523 case CISS_TMF_NOT_SUPPORTED
:
2524 case CISS_TMF_FAILED
:
2525 case CISS_TMF_WRONG_LUN
:
2526 case CISS_TMF_OVERLAPPED_TAG
:
2529 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2536 static void complete_scsi_command(struct CommandList
*cp
)
2538 struct scsi_cmnd
*cmd
;
2539 struct ctlr_info
*h
;
2540 struct ErrorInfo
*ei
;
2541 struct hpsa_scsi_dev_t
*dev
;
2542 struct io_accel2_cmd
*c2
;
2545 u8 asc
; /* additional sense code */
2546 u8 ascq
; /* additional sense code qualifier */
2547 unsigned long sense_data_size
;
2554 cmd
->result
= DID_NO_CONNECT
<< 16;
2555 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2558 dev
= cmd
->device
->hostdata
;
2560 cmd
->result
= DID_NO_CONNECT
<< 16;
2561 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2563 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2565 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2566 if ((cp
->cmd_type
== CMD_SCSI
) &&
2567 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2568 hpsa_unmap_sg_chain_block(h
, cp
);
2570 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2571 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2572 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2574 cmd
->result
= (DID_OK
<< 16); /* host byte */
2575 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2577 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
) {
2578 if (dev
->physical_device
&& dev
->expose_device
&&
2580 cmd
->result
= DID_NO_CONNECT
<< 16;
2581 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2583 if (likely(cp
->phys_disk
!= NULL
))
2584 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2588 * We check for lockup status here as it may be set for
2589 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2590 * fail_all_oustanding_cmds()
2592 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2593 /* DID_NO_CONNECT will prevent a retry */
2594 cmd
->result
= DID_NO_CONNECT
<< 16;
2595 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2598 if ((unlikely(hpsa_is_pending_event(cp
))))
2599 if (cp
->reset_pending
)
2600 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2602 if (cp
->cmd_type
== CMD_IOACCEL2
)
2603 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2605 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2606 if (ei
->CommandStatus
== 0)
2607 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2609 /* For I/O accelerator commands, copy over some fields to the normal
2610 * CISS header used below for error handling.
2612 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2613 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2614 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2615 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2616 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2617 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2618 cp
->Header
.tag
= c
->tag
;
2619 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2620 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2622 /* Any RAID offload error results in retry which will use
2623 * the normal I/O path so the controller can handle whatever's
2626 if (is_logical_device(dev
)) {
2627 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2628 dev
->offload_enabled
= 0;
2629 return hpsa_retry_cmd(h
, cp
);
2633 /* an error has occurred */
2634 switch (ei
->CommandStatus
) {
2636 case CMD_TARGET_STATUS
:
2637 cmd
->result
|= ei
->ScsiStatus
;
2638 /* copy the sense data */
2639 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2640 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2642 sense_data_size
= sizeof(ei
->SenseInfo
);
2643 if (ei
->SenseLen
< sense_data_size
)
2644 sense_data_size
= ei
->SenseLen
;
2645 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2647 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2648 &sense_key
, &asc
, &ascq
);
2649 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2650 switch (sense_key
) {
2651 case ABORTED_COMMAND
:
2652 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2654 case UNIT_ATTENTION
:
2655 if (asc
== 0x3F && ascq
== 0x0E)
2656 h
->drv_req_rescan
= 1;
2658 case ILLEGAL_REQUEST
:
2659 if (asc
== 0x25 && ascq
== 0x00) {
2661 cmd
->result
= DID_NO_CONNECT
<< 16;
2667 /* Problem was not a check condition
2668 * Pass it up to the upper layers...
2670 if (ei
->ScsiStatus
) {
2671 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2672 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2673 "Returning result: 0x%x\n",
2675 sense_key
, asc
, ascq
,
2677 } else { /* scsi status is zero??? How??? */
2678 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2679 "Returning no connection.\n", cp
),
2681 /* Ordinarily, this case should never happen,
2682 * but there is a bug in some released firmware
2683 * revisions that allows it to happen if, for
2684 * example, a 4100 backplane loses power and
2685 * the tape drive is in it. We assume that
2686 * it's a fatal error of some kind because we
2687 * can't show that it wasn't. We will make it
2688 * look like selection timeout since that is
2689 * the most common reason for this to occur,
2690 * and it's severe enough.
2693 cmd
->result
= DID_NO_CONNECT
<< 16;
2697 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2699 case CMD_DATA_OVERRUN
:
2700 dev_warn(&h
->pdev
->dev
,
2701 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2704 /* print_bytes(cp, sizeof(*cp), 1, 0);
2706 /* We get CMD_INVALID if you address a non-existent device
2707 * instead of a selection timeout (no response). You will
2708 * see this if you yank out a drive, then try to access it.
2709 * This is kind of a shame because it means that any other
2710 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2711 * missing target. */
2712 cmd
->result
= DID_NO_CONNECT
<< 16;
2715 case CMD_PROTOCOL_ERR
:
2716 cmd
->result
= DID_ERROR
<< 16;
2717 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2720 case CMD_HARDWARE_ERR
:
2721 cmd
->result
= DID_ERROR
<< 16;
2722 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2725 case CMD_CONNECTION_LOST
:
2726 cmd
->result
= DID_ERROR
<< 16;
2727 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2731 cmd
->result
= DID_ABORT
<< 16;
2733 case CMD_ABORT_FAILED
:
2734 cmd
->result
= DID_ERROR
<< 16;
2735 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2738 case CMD_UNSOLICITED_ABORT
:
2739 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2740 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2744 cmd
->result
= DID_TIME_OUT
<< 16;
2745 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2748 case CMD_UNABORTABLE
:
2749 cmd
->result
= DID_ERROR
<< 16;
2750 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2752 case CMD_TMF_STATUS
:
2753 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2754 cmd
->result
= DID_ERROR
<< 16;
2756 case CMD_IOACCEL_DISABLED
:
2757 /* This only handles the direct pass-through case since RAID
2758 * offload is handled above. Just attempt a retry.
2760 cmd
->result
= DID_SOFT_ERROR
<< 16;
2761 dev_warn(&h
->pdev
->dev
,
2762 "cp %p had HP SSD Smart Path error\n", cp
);
2765 cmd
->result
= DID_ERROR
<< 16;
2766 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2767 cp
, ei
->CommandStatus
);
2770 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2773 static void hpsa_pci_unmap(struct pci_dev
*pdev
, struct CommandList
*c
,
2774 int sg_used
, enum dma_data_direction data_direction
)
2778 for (i
= 0; i
< sg_used
; i
++)
2779 dma_unmap_single(&pdev
->dev
, le64_to_cpu(c
->SG
[i
].Addr
),
2780 le32_to_cpu(c
->SG
[i
].Len
),
2784 static int hpsa_map_one(struct pci_dev
*pdev
,
2785 struct CommandList
*cp
,
2788 enum dma_data_direction data_direction
)
2792 if (buflen
== 0 || data_direction
== DMA_NONE
) {
2793 cp
->Header
.SGList
= 0;
2794 cp
->Header
.SGTotal
= cpu_to_le16(0);
2798 addr64
= dma_map_single(&pdev
->dev
, buf
, buflen
, data_direction
);
2799 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2800 /* Prevent subsequent unmap of something never mapped */
2801 cp
->Header
.SGList
= 0;
2802 cp
->Header
.SGTotal
= cpu_to_le16(0);
2805 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2806 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2807 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2808 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2809 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2813 #define NO_TIMEOUT ((unsigned long) -1)
2814 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2815 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2816 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2818 DECLARE_COMPLETION_ONSTACK(wait
);
2821 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2822 if (timeout_msecs
== NO_TIMEOUT
) {
2823 /* TODO: get rid of this no-timeout thing */
2824 wait_for_completion_io(&wait
);
2827 if (!wait_for_completion_io_timeout(&wait
,
2828 msecs_to_jiffies(timeout_msecs
))) {
2829 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2835 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2836 int reply_queue
, unsigned long timeout_msecs
)
2838 if (unlikely(lockup_detected(h
))) {
2839 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2842 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2845 static u32
lockup_detected(struct ctlr_info
*h
)
2848 u32 rc
, *lockup_detected
;
2851 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2852 rc
= *lockup_detected
;
2857 #define MAX_DRIVER_CMD_RETRIES 25
2858 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2859 struct CommandList
*c
, enum dma_data_direction data_direction
,
2860 unsigned long timeout_msecs
)
2862 int backoff_time
= 10, retry_count
= 0;
2866 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2867 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2872 if (retry_count
> 3) {
2873 msleep(backoff_time
);
2874 if (backoff_time
< 1000)
2877 } while ((check_for_unit_attention(h
, c
) ||
2878 check_for_busy(h
, c
)) &&
2879 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2880 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2881 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2886 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2887 struct CommandList
*c
)
2889 const u8
*cdb
= c
->Request
.CDB
;
2890 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2892 dev_warn(&h
->pdev
->dev
, "%s: LUN:%8phN CDB:%16phN\n",
2896 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2897 struct CommandList
*cp
)
2899 const struct ErrorInfo
*ei
= cp
->err_info
;
2900 struct device
*d
= &cp
->h
->pdev
->dev
;
2901 u8 sense_key
, asc
, ascq
;
2904 switch (ei
->CommandStatus
) {
2905 case CMD_TARGET_STATUS
:
2906 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2907 sense_len
= sizeof(ei
->SenseInfo
);
2909 sense_len
= ei
->SenseLen
;
2910 decode_sense_data(ei
->SenseInfo
, sense_len
,
2911 &sense_key
, &asc
, &ascq
);
2912 hpsa_print_cmd(h
, "SCSI status", cp
);
2913 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2914 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2915 sense_key
, asc
, ascq
);
2917 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2918 if (ei
->ScsiStatus
== 0)
2919 dev_warn(d
, "SCSI status is abnormally zero. "
2920 "(probably indicates selection timeout "
2921 "reported incorrectly due to a known "
2922 "firmware bug, circa July, 2001.)\n");
2924 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2926 case CMD_DATA_OVERRUN
:
2927 hpsa_print_cmd(h
, "overrun condition", cp
);
2930 /* controller unfortunately reports SCSI passthru's
2931 * to non-existent targets as invalid commands.
2933 hpsa_print_cmd(h
, "invalid command", cp
);
2934 dev_warn(d
, "probably means device no longer present\n");
2937 case CMD_PROTOCOL_ERR
:
2938 hpsa_print_cmd(h
, "protocol error", cp
);
2940 case CMD_HARDWARE_ERR
:
2941 hpsa_print_cmd(h
, "hardware error", cp
);
2943 case CMD_CONNECTION_LOST
:
2944 hpsa_print_cmd(h
, "connection lost", cp
);
2947 hpsa_print_cmd(h
, "aborted", cp
);
2949 case CMD_ABORT_FAILED
:
2950 hpsa_print_cmd(h
, "abort failed", cp
);
2952 case CMD_UNSOLICITED_ABORT
:
2953 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2956 hpsa_print_cmd(h
, "timed out", cp
);
2958 case CMD_UNABORTABLE
:
2959 hpsa_print_cmd(h
, "unabortable", cp
);
2961 case CMD_CTLR_LOCKUP
:
2962 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2965 hpsa_print_cmd(h
, "unknown status", cp
);
2966 dev_warn(d
, "Unknown command status %x\n",
2971 static int hpsa_do_receive_diagnostic(struct ctlr_info
*h
, u8
*scsi3addr
,
2972 u8 page
, u8
*buf
, size_t bufsize
)
2975 struct CommandList
*c
;
2976 struct ErrorInfo
*ei
;
2979 if (fill_cmd(c
, RECEIVE_DIAGNOSTIC
, h
, buf
, bufsize
,
2980 page
, scsi3addr
, TYPE_CMD
)) {
2984 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
2989 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2990 hpsa_scsi_interpret_error(h
, c
);
2998 static u64
hpsa_get_enclosure_logical_identifier(struct ctlr_info
*h
,
3005 buf
= kzalloc(1024, GFP_KERNEL
);
3009 rc
= hpsa_do_receive_diagnostic(h
, scsi3addr
, RECEIVE_DIAGNOSTIC
,
3015 sa
= get_unaligned_be64(buf
+12);
3022 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3023 u16 page
, unsigned char *buf
,
3024 unsigned char bufsize
)
3027 struct CommandList
*c
;
3028 struct ErrorInfo
*ei
;
3032 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
3033 page
, scsi3addr
, TYPE_CMD
)) {
3037 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3042 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3043 hpsa_scsi_interpret_error(h
, c
);
3051 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3052 u8 reset_type
, int reply_queue
)
3055 struct CommandList
*c
;
3056 struct ErrorInfo
*ei
;
3061 /* fill_cmd can't fail here, no data buffer to map. */
3062 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0,
3063 scsi3addr
, TYPE_MSG
);
3064 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
3066 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
3069 /* no unmap needed here because no data xfer. */
3072 if (ei
->CommandStatus
!= 0) {
3073 hpsa_scsi_interpret_error(h
, c
);
3081 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
3082 struct hpsa_scsi_dev_t
*dev
,
3083 unsigned char *scsi3addr
)
3087 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
3088 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
3090 if (hpsa_is_cmd_idle(c
))
3093 switch (c
->cmd_type
) {
3095 case CMD_IOCTL_PEND
:
3096 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
3097 sizeof(c
->Header
.LUN
.LunAddrBytes
));
3102 if (c
->phys_disk
== dev
) {
3103 /* HBA mode match */
3106 /* Possible RAID mode -- check each phys dev. */
3107 /* FIXME: Do we need to take out a lock here? If
3108 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3110 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3111 /* FIXME: an alternate test might be
3113 * match = dev->phys_disk[i]->ioaccel_handle
3114 * == c2->scsi_nexus; */
3115 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
3121 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3122 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
3123 le32_to_cpu(ac
->it_nexus
);
3127 case 0: /* The command is in the middle of being initialized. */
3132 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
3140 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3141 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
3146 /* We can really only handle one reset at a time */
3147 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
3148 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
3152 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
3154 for (i
= 0; i
< h
->nr_cmds
; i
++) {
3155 struct CommandList
*c
= h
->cmd_pool
+ i
;
3156 int refcount
= atomic_inc_return(&c
->refcount
);
3158 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
3159 unsigned long flags
;
3162 * Mark the target command as having a reset pending,
3163 * then lock a lock so that the command cannot complete
3164 * while we're considering it. If the command is not
3165 * idle then count it; otherwise revoke the event.
3167 c
->reset_pending
= dev
;
3168 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
3169 if (!hpsa_is_cmd_idle(c
))
3170 atomic_inc(&dev
->reset_cmds_out
);
3172 c
->reset_pending
= NULL
;
3173 spin_unlock_irqrestore(&h
->lock
, flags
);
3179 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
3181 wait_event(h
->event_sync_wait_queue
,
3182 atomic_read(&dev
->reset_cmds_out
) == 0 ||
3183 lockup_detected(h
));
3185 if (unlikely(lockup_detected(h
))) {
3186 dev_warn(&h
->pdev
->dev
,
3187 "Controller lockup detected during reset wait\n");
3192 atomic_set(&dev
->reset_cmds_out
, 0);
3194 rc
= wait_for_device_to_become_ready(h
, scsi3addr
, 0);
3196 mutex_unlock(&h
->reset_mutex
);
3200 static void hpsa_get_raid_level(struct ctlr_info
*h
,
3201 unsigned char *scsi3addr
, unsigned char *raid_level
)
3206 *raid_level
= RAID_UNKNOWN
;
3207 buf
= kzalloc(64, GFP_KERNEL
);
3211 if (!hpsa_vpd_page_supported(h
, scsi3addr
,
3212 HPSA_VPD_LV_DEVICE_GEOMETRY
))
3215 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3216 HPSA_VPD_LV_DEVICE_GEOMETRY
, buf
, 64);
3219 *raid_level
= buf
[8];
3220 if (*raid_level
> RAID_UNKNOWN
)
3221 *raid_level
= RAID_UNKNOWN
;
3227 #define HPSA_MAP_DEBUG
3228 #ifdef HPSA_MAP_DEBUG
3229 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
3230 struct raid_map_data
*map_buff
)
3232 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
3234 u16 map_cnt
, row_cnt
, disks_per_row
;
3239 /* Show details only if debugging has been activated. */
3240 if (h
->raid_offload_debug
< 2)
3243 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3244 le32_to_cpu(map_buff
->structure_size
));
3245 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3246 le32_to_cpu(map_buff
->volume_blk_size
));
3247 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3248 le64_to_cpu(map_buff
->volume_blk_cnt
));
3249 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3250 map_buff
->phys_blk_shift
);
3251 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3252 map_buff
->parity_rotation_shift
);
3253 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3254 le16_to_cpu(map_buff
->strip_size
));
3255 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3256 le64_to_cpu(map_buff
->disk_starting_blk
));
3257 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3258 le64_to_cpu(map_buff
->disk_blk_cnt
));
3259 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3260 le16_to_cpu(map_buff
->data_disks_per_row
));
3261 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3262 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3263 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3264 le16_to_cpu(map_buff
->row_cnt
));
3265 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3266 le16_to_cpu(map_buff
->layout_map_count
));
3267 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3268 le16_to_cpu(map_buff
->flags
));
3269 dev_info(&h
->pdev
->dev
, "encryption = %s\n",
3270 le16_to_cpu(map_buff
->flags
) &
3271 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3272 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3273 le16_to_cpu(map_buff
->dekindex
));
3274 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3275 for (map
= 0; map
< map_cnt
; map
++) {
3276 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3277 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3278 for (row
= 0; row
< row_cnt
; row
++) {
3279 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3281 le16_to_cpu(map_buff
->data_disks_per_row
);
3282 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3283 dev_info(&h
->pdev
->dev
,
3284 " D%02u: h=0x%04x xor=%u,%u\n",
3285 col
, dd
->ioaccel_handle
,
3286 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3288 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3289 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3290 dev_info(&h
->pdev
->dev
,
3291 " M%02u: h=0x%04x xor=%u,%u\n",
3292 col
, dd
->ioaccel_handle
,
3293 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3298 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3299 __attribute__((unused
)) int rc
,
3300 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3305 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3306 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3309 struct CommandList
*c
;
3310 struct ErrorInfo
*ei
;
3314 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3315 sizeof(this_device
->raid_map
), 0,
3316 scsi3addr
, TYPE_CMD
)) {
3317 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3321 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3326 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3327 hpsa_scsi_interpret_error(h
, c
);
3333 /* @todo in the future, dynamically allocate RAID map memory */
3334 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3335 sizeof(this_device
->raid_map
)) {
3336 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3339 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3347 unsigned char scsi3addr
[], u16 bmic_device_index
,
3348 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3351 struct CommandList
*c
;
3352 struct ErrorInfo
*ei
;
3356 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3357 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3361 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3362 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3364 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3369 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3370 hpsa_scsi_interpret_error(h
, c
);
3378 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3379 struct bmic_identify_controller
*buf
, size_t bufsize
)
3382 struct CommandList
*c
;
3383 struct ErrorInfo
*ei
;
3387 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3388 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3392 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3397 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3398 hpsa_scsi_interpret_error(h
, c
);
3406 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3407 unsigned char scsi3addr
[], u16 bmic_device_index
,
3408 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3411 struct CommandList
*c
;
3412 struct ErrorInfo
*ei
;
3415 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3416 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3420 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3421 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3423 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3426 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3427 hpsa_scsi_interpret_error(h
, c
);
3437 * get enclosure information
3438 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440 * Uses id_physical_device to determine the box_index.
3442 static void hpsa_get_enclosure_info(struct ctlr_info
*h
,
3443 unsigned char *scsi3addr
,
3444 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3445 struct hpsa_scsi_dev_t
*encl_dev
)
3448 struct CommandList
*c
= NULL
;
3449 struct ErrorInfo
*ei
= NULL
;
3450 struct bmic_sense_storage_box_params
*bssbp
= NULL
;
3451 struct bmic_identify_physical_device
*id_phys
= NULL
;
3452 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3453 u16 bmic_device_index
= 0;
3456 hpsa_get_enclosure_logical_identifier(h
, scsi3addr
);
3458 bmic_device_index
= GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]);
3460 if (encl_dev
->target
== -1 || encl_dev
->lun
== -1) {
3465 if (bmic_device_index
== 0xFF00 || MASKED_DEVICE(&rle
->lunid
[0])) {
3470 bssbp
= kzalloc(sizeof(*bssbp
), GFP_KERNEL
);
3474 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3478 rc
= hpsa_bmic_id_physical_device(h
, scsi3addr
, bmic_device_index
,
3479 id_phys
, sizeof(*id_phys
));
3481 dev_warn(&h
->pdev
->dev
, "%s: id_phys failed %d bdi[0x%x]\n",
3482 __func__
, encl_dev
->external
, bmic_device_index
);
3488 rc
= fill_cmd(c
, BMIC_SENSE_STORAGE_BOX_PARAMS
, h
, bssbp
,
3489 sizeof(*bssbp
), 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3494 if (id_phys
->phys_connector
[1] == 'E')
3495 c
->Request
.CDB
[5] = id_phys
->box_index
;
3497 c
->Request
.CDB
[5] = 0;
3499 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3505 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3510 encl_dev
->box
[id_phys
->active_path_number
] = bssbp
->phys_box_on_port
;
3511 memcpy(&encl_dev
->phys_connector
[id_phys
->active_path_number
],
3512 bssbp
->phys_connector
, sizeof(bssbp
->phys_connector
));
3523 hpsa_show_dev_msg(KERN_INFO
, h
, encl_dev
,
3524 "Error, could not get enclosure information");
3527 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3528 unsigned char *scsi3addr
)
3530 struct ReportExtendedLUNdata
*physdev
;
3535 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3539 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3540 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3544 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3546 for (i
= 0; i
< nphysicals
; i
++)
3547 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3548 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3557 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3558 struct hpsa_scsi_dev_t
*dev
)
3563 if (is_hba_lunid(scsi3addr
)) {
3564 struct bmic_sense_subsystem_info
*ssi
;
3566 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3570 rc
= hpsa_bmic_sense_subsystem_information(h
,
3571 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3573 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3574 h
->sas_address
= sa
;
3579 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3581 dev
->sas_address
= sa
;
3584 static void hpsa_ext_ctrl_present(struct ctlr_info
*h
,
3585 struct ReportExtendedLUNdata
*physdev
)
3590 if (h
->discovery_polling
)
3593 nphysicals
= (get_unaligned_be32(physdev
->LUNListLength
) / 24) + 1;
3595 for (i
= 0; i
< nphysicals
; i
++) {
3596 if (physdev
->LUN
[i
].device_type
==
3597 BMIC_DEVICE_TYPE_CONTROLLER
3598 && !is_hba_lunid(physdev
->LUN
[i
].lunid
)) {
3599 dev_info(&h
->pdev
->dev
,
3600 "External controller present, activate discovery polling and disable rld caching\n");
3601 hpsa_disable_rld_caching(h
);
3602 h
->discovery_polling
= 1;
3608 /* Get a device id from inquiry page 0x83 */
3609 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
3610 unsigned char scsi3addr
[], u8 page
)
3615 unsigned char *buf
, bufsize
;
3617 buf
= kzalloc(256, GFP_KERNEL
);
3621 /* Get the size of the page list first */
3622 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3623 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3624 buf
, HPSA_VPD_HEADER_SZ
);
3626 goto exit_unsupported
;
3628 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3629 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3633 /* Get the whole VPD page list */
3634 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3635 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3638 goto exit_unsupported
;
3641 for (i
= 1; i
<= pages
; i
++)
3642 if (buf
[3 + i
] == page
)
3643 goto exit_supported
;
3653 * Called during a scan operation.
3654 * Sets ioaccel status on the new device list, not the existing device list
3656 * The device list used during I/O will be updated later in
3657 * adjust_hpsa_scsi_table.
3659 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3660 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3666 this_device
->offload_config
= 0;
3667 this_device
->offload_enabled
= 0;
3668 this_device
->offload_to_be_enabled
= 0;
3670 buf
= kzalloc(64, GFP_KERNEL
);
3673 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3675 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3676 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3680 #define IOACCEL_STATUS_BYTE 4
3681 #define OFFLOAD_CONFIGURED_BIT 0x01
3682 #define OFFLOAD_ENABLED_BIT 0x02
3683 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3684 this_device
->offload_config
=
3685 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3686 if (this_device
->offload_config
) {
3687 this_device
->offload_to_be_enabled
=
3688 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3689 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3690 this_device
->offload_to_be_enabled
= 0;
3698 /* Get the device id from inquiry page 0x83 */
3699 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3700 unsigned char *device_id
, int index
, int buflen
)
3705 /* Does controller have VPD for device id? */
3706 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_DEVICE_ID
))
3707 return 1; /* not supported */
3709 buf
= kzalloc(64, GFP_KERNEL
);
3713 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3714 HPSA_VPD_LV_DEVICE_ID
, buf
, 64);
3718 memcpy(device_id
, &buf
[8], buflen
);
3723 return rc
; /*0 - got id, otherwise, didn't */
3726 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3727 void *buf
, int bufsize
,
3728 int extended_response
)
3731 struct CommandList
*c
;
3732 unsigned char scsi3addr
[8];
3733 struct ErrorInfo
*ei
;
3737 /* address the controller */
3738 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3739 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3740 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3744 if (extended_response
)
3745 c
->Request
.CDB
[1] = extended_response
;
3746 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3751 if (ei
->CommandStatus
!= 0 &&
3752 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3753 hpsa_scsi_interpret_error(h
, c
);
3756 struct ReportLUNdata
*rld
= buf
;
3758 if (rld
->extended_response_flag
!= extended_response
) {
3759 if (!h
->legacy_board
) {
3760 dev_err(&h
->pdev
->dev
,
3761 "report luns requested format %u, got %u\n",
3763 rld
->extended_response_flag
);
3774 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3775 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3778 struct ReportLUNdata
*lbuf
;
3780 rc
= hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3781 HPSA_REPORT_PHYS_EXTENDED
);
3782 if (!rc
|| rc
!= -EOPNOTSUPP
)
3785 /* REPORT PHYS EXTENDED is not supported */
3786 lbuf
= kzalloc(sizeof(*lbuf
), GFP_KERNEL
);
3790 rc
= hpsa_scsi_do_report_luns(h
, 0, lbuf
, sizeof(*lbuf
), 0);
3795 /* Copy ReportLUNdata header */
3796 memcpy(buf
, lbuf
, 8);
3797 nphys
= be32_to_cpu(*((__be32
*)lbuf
->LUNListLength
)) / 8;
3798 for (i
= 0; i
< nphys
; i
++)
3799 memcpy(buf
->LUN
[i
].lunid
, lbuf
->LUN
[i
], 8);
3805 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3806 struct ReportLUNdata
*buf
, int bufsize
)
3808 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3811 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3812 int bus
, int target
, int lun
)
3815 device
->target
= target
;
3819 /* Use VPD inquiry to get details of volume status */
3820 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3821 unsigned char scsi3addr
[])
3828 buf
= kzalloc(64, GFP_KERNEL
);
3830 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3832 /* Does controller have VPD for logical volume status? */
3833 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3836 /* Get the size of the VPD return buffer */
3837 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3838 buf
, HPSA_VPD_HEADER_SZ
);
3843 /* Now get the whole VPD buffer */
3844 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3845 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3848 status
= buf
[4]; /* status byte */
3854 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3857 /* Determine offline status of a volume.
3860 * 0xff (offline for unknown reasons)
3861 * # (integer code indicating one of several NOT READY states
3862 * describing why a volume is to be kept offline)
3864 static unsigned char hpsa_volume_offline(struct ctlr_info
*h
,
3865 unsigned char scsi3addr
[])
3867 struct CommandList
*c
;
3868 unsigned char *sense
;
3869 u8 sense_key
, asc
, ascq
;
3874 #define ASC_LUN_NOT_READY 0x04
3875 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3876 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3880 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3881 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3885 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3887 sense
= c
->err_info
->SenseInfo
;
3888 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3889 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3891 sense_len
= c
->err_info
->SenseLen
;
3892 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3893 cmd_status
= c
->err_info
->CommandStatus
;
3894 scsi_status
= c
->err_info
->ScsiStatus
;
3897 /* Determine the reason for not ready state */
3898 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3900 /* Keep volume offline in certain cases: */
3902 case HPSA_LV_FAILED
:
3903 case HPSA_LV_UNDERGOING_ERASE
:
3904 case HPSA_LV_NOT_AVAILABLE
:
3905 case HPSA_LV_UNDERGOING_RPI
:
3906 case HPSA_LV_PENDING_RPI
:
3907 case HPSA_LV_ENCRYPTED_NO_KEY
:
3908 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3909 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3910 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3911 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3913 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3914 /* If VPD status page isn't available,
3915 * use ASC/ASCQ to determine state
3917 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3918 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3927 static int hpsa_update_device_info(struct ctlr_info
*h
,
3928 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3929 unsigned char *is_OBDR_device
)
3932 #define OBDR_SIG_OFFSET 43
3933 #define OBDR_TAPE_SIG "$DR-10"
3934 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3935 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3937 unsigned char *inq_buff
;
3938 unsigned char *obdr_sig
;
3941 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3947 /* Do an inquiry to the device to see what it is. */
3948 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3949 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3950 dev_err(&h
->pdev
->dev
,
3951 "%s: inquiry failed, device will be skipped.\n",
3953 rc
= HPSA_INQUIRY_FAILED
;
3957 scsi_sanitize_inquiry_string(&inq_buff
[8], 8);
3958 scsi_sanitize_inquiry_string(&inq_buff
[16], 16);
3960 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3961 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3962 memcpy(this_device
->vendor
, &inq_buff
[8],
3963 sizeof(this_device
->vendor
));
3964 memcpy(this_device
->model
, &inq_buff
[16],
3965 sizeof(this_device
->model
));
3966 this_device
->rev
= inq_buff
[2];
3967 memset(this_device
->device_id
, 0,
3968 sizeof(this_device
->device_id
));
3969 if (hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3970 sizeof(this_device
->device_id
)) < 0) {
3971 dev_err(&h
->pdev
->dev
,
3972 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3974 h
->scsi_host
->host_no
,
3975 this_device
->bus
, this_device
->target
,
3977 scsi_device_type(this_device
->devtype
),
3978 this_device
->model
);
3979 rc
= HPSA_LV_FAILED
;
3983 if ((this_device
->devtype
== TYPE_DISK
||
3984 this_device
->devtype
== TYPE_ZBC
) &&
3985 is_logical_dev_addr_mode(scsi3addr
)) {
3986 unsigned char volume_offline
;
3988 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3989 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3990 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3991 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3992 if (volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
&&
3995 * Legacy boards might not support volume status
3997 dev_info(&h
->pdev
->dev
,
3998 "C0:T%d:L%d Volume status not available, assuming online.\n",
3999 this_device
->target
, this_device
->lun
);
4002 this_device
->volume_offline
= volume_offline
;
4003 if (volume_offline
== HPSA_LV_FAILED
) {
4004 rc
= HPSA_LV_FAILED
;
4005 dev_err(&h
->pdev
->dev
,
4006 "%s: LV failed, device will be skipped.\n",
4011 this_device
->raid_level
= RAID_UNKNOWN
;
4012 this_device
->offload_config
= 0;
4013 this_device
->offload_enabled
= 0;
4014 this_device
->offload_to_be_enabled
= 0;
4015 this_device
->hba_ioaccel_enabled
= 0;
4016 this_device
->volume_offline
= 0;
4017 this_device
->queue_depth
= h
->nr_cmds
;
4020 if (this_device
->external
)
4021 this_device
->queue_depth
= EXTERNAL_QD
;
4023 if (is_OBDR_device
) {
4024 /* See if this is a One-Button-Disaster-Recovery device
4025 * by looking for "$DR-10" at offset 43 in inquiry data.
4027 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
4028 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
4029 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
4030 OBDR_SIG_LEN
) == 0);
4041 * Helper function to assign bus, target, lun mapping of devices.
4042 * Logical drive target and lun are assigned at this time, but
4043 * physical device lun and target assignment are deferred (assigned
4044 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4046 static void figure_bus_target_lun(struct ctlr_info
*h
,
4047 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
4049 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
4051 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
4052 /* physical device, target and lun filled in later */
4053 if (is_hba_lunid(lunaddrbytes
)) {
4054 int bus
= HPSA_HBA_BUS
;
4057 bus
= HPSA_LEGACY_HBA_BUS
;
4058 hpsa_set_bus_target_lun(device
,
4059 bus
, 0, lunid
& 0x3fff);
4061 /* defer target, lun assignment for physical devices */
4062 hpsa_set_bus_target_lun(device
,
4063 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
4066 /* It's a logical device */
4067 if (device
->external
) {
4068 hpsa_set_bus_target_lun(device
,
4069 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
4073 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
4077 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
4078 int i
, int nphysicals
, int nlocal_logicals
)
4080 /* In report logicals, local logicals are listed first,
4081 * then any externals.
4083 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4085 if (i
== raid_ctlr_position
)
4088 if (i
< logicals_start
)
4091 /* i is in logicals range, but still within local logicals */
4092 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
4095 return 1; /* it's an external lun */
4099 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4100 * logdev. The number of luns in physdev and logdev are returned in
4101 * *nphysicals and *nlogicals, respectively.
4102 * Returns 0 on success, -1 otherwise.
4104 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
4105 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
4106 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
4108 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
4109 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
4112 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
4113 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
4114 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4115 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
4116 *nphysicals
= HPSA_MAX_PHYS_LUN
;
4118 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
4119 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
4122 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
4123 /* Reject Logicals in excess of our max capability. */
4124 if (*nlogicals
> HPSA_MAX_LUN
) {
4125 dev_warn(&h
->pdev
->dev
,
4126 "maximum logical LUNs (%d) exceeded. "
4127 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
4128 *nlogicals
- HPSA_MAX_LUN
);
4129 *nlogicals
= HPSA_MAX_LUN
;
4131 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
4132 dev_warn(&h
->pdev
->dev
,
4133 "maximum logical + physical LUNs (%d) exceeded. "
4134 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
4135 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
4136 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
4141 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
4142 int i
, int nphysicals
, int nlogicals
,
4143 struct ReportExtendedLUNdata
*physdev_list
,
4144 struct ReportLUNdata
*logdev_list
)
4146 /* Helper function, figure out where the LUN ID info is coming from
4147 * given index i, lists of physical and logical devices, where in
4148 * the list the raid controller is supposed to appear (first or last)
4151 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4152 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
4154 if (i
== raid_ctlr_position
)
4155 return RAID_CTLR_LUNID
;
4157 if (i
< logicals_start
)
4158 return &physdev_list
->LUN
[i
-
4159 (raid_ctlr_position
== 0)].lunid
[0];
4161 if (i
< last_device
)
4162 return &logdev_list
->LUN
[i
- nphysicals
-
4163 (raid_ctlr_position
== 0)][0];
4168 /* get physical drive ioaccel handle and queue depth */
4169 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
4170 struct hpsa_scsi_dev_t
*dev
,
4171 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4172 struct bmic_identify_physical_device
*id_phys
)
4175 struct ext_report_lun_entry
*rle
;
4177 rle
= &rlep
->LUN
[rle_index
];
4179 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
4180 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
4181 dev
->hba_ioaccel_enabled
= 1;
4182 memset(id_phys
, 0, sizeof(*id_phys
));
4183 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
4184 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
4187 /* Reserve space for FW operations */
4188 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4189 #define DRIVE_QUEUE_DEPTH 7
4191 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
4192 DRIVE_CMDS_RESERVED_FOR_FW
;
4194 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
4197 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
4198 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4199 struct bmic_identify_physical_device
*id_phys
)
4201 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
4203 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
4204 this_device
->hba_ioaccel_enabled
= 1;
4206 memcpy(&this_device
->active_path_index
,
4207 &id_phys
->active_path_number
,
4208 sizeof(this_device
->active_path_index
));
4209 memcpy(&this_device
->path_map
,
4210 &id_phys
->redundant_path_present_map
,
4211 sizeof(this_device
->path_map
));
4212 memcpy(&this_device
->box
,
4213 &id_phys
->alternate_paths_phys_box_on_port
,
4214 sizeof(this_device
->box
));
4215 memcpy(&this_device
->phys_connector
,
4216 &id_phys
->alternate_paths_phys_connector
,
4217 sizeof(this_device
->phys_connector
));
4218 memcpy(&this_device
->bay
,
4219 &id_phys
->phys_bay_in_box
,
4220 sizeof(this_device
->bay
));
4223 /* get number of local logical disks. */
4224 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
4225 struct bmic_identify_controller
*id_ctlr
,
4231 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
4235 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
4236 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
4238 if (id_ctlr
->configured_logical_drive_count
< 255)
4239 *nlocals
= id_ctlr
->configured_logical_drive_count
;
4241 *nlocals
= le16_to_cpu(
4242 id_ctlr
->extended_logical_unit_count
);
4248 static bool hpsa_is_disk_spare(struct ctlr_info
*h
, u8
*lunaddrbytes
)
4250 struct bmic_identify_physical_device
*id_phys
;
4251 bool is_spare
= false;
4254 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4258 rc
= hpsa_bmic_id_physical_device(h
,
4260 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
),
4261 id_phys
, sizeof(*id_phys
));
4263 is_spare
= (id_phys
->more_flags
>> 6) & 0x01;
4269 #define RPL_DEV_FLAG_NON_DISK 0x1
4270 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4271 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4273 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4275 static bool hpsa_skip_device(struct ctlr_info
*h
, u8
*lunaddrbytes
,
4276 struct ext_report_lun_entry
*rle
)
4281 if (!MASKED_DEVICE(lunaddrbytes
))
4284 device_flags
= rle
->device_flags
;
4285 device_type
= rle
->device_type
;
4287 if (device_flags
& RPL_DEV_FLAG_NON_DISK
) {
4288 if (device_type
== BMIC_DEVICE_TYPE_ENCLOSURE
)
4293 if (!(device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED
))
4296 if (device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK
)
4300 * Spares may be spun down, we do not want to
4301 * do an Inquiry to a RAID set spare drive as
4302 * that would have them spun up, that is a
4303 * performance hit because I/O to the RAID device
4304 * stops while the spin up occurs which can take
4307 if (hpsa_is_disk_spare(h
, lunaddrbytes
))
4313 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4315 /* the idea here is we could get notified
4316 * that some devices have changed, so we do a report
4317 * physical luns and report logical luns cmd, and adjust
4318 * our list of devices accordingly.
4320 * The scsi3addr's of devices won't change so long as the
4321 * adapter is not reset. That means we can rescan and
4322 * tell which devices we already know about, vs. new
4323 * devices, vs. disappearing devices.
4325 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4326 struct ReportLUNdata
*logdev_list
= NULL
;
4327 struct bmic_identify_physical_device
*id_phys
= NULL
;
4328 struct bmic_identify_controller
*id_ctlr
= NULL
;
4331 u32 nlocal_logicals
= 0;
4332 u32 ndev_allocated
= 0;
4333 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4335 int i
, n_ext_target_devs
, ndevs_to_allocate
;
4336 int raid_ctlr_position
;
4337 bool physical_device
;
4338 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
4340 currentsd
= kcalloc(HPSA_MAX_DEVICES
, sizeof(*currentsd
), GFP_KERNEL
);
4341 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4342 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4343 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4344 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4345 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4347 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4348 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4349 dev_err(&h
->pdev
->dev
, "out of memory\n");
4352 memset(lunzerobits
, 0, sizeof(lunzerobits
));
4354 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4356 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4357 logdev_list
, &nlogicals
)) {
4358 h
->drv_req_rescan
= 1;
4362 /* Set number of local logicals (non PTRAID) */
4363 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4364 dev_warn(&h
->pdev
->dev
,
4365 "%s: Can't determine number of local logical devices.\n",
4369 /* We might see up to the maximum number of logical and physical disks
4370 * plus external target devices, and a device for the local RAID
4373 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4375 hpsa_ext_ctrl_present(h
, physdev_list
);
4377 /* Allocate the per device structures */
4378 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4379 if (i
>= HPSA_MAX_DEVICES
) {
4380 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4381 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4382 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4386 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4387 if (!currentsd
[i
]) {
4388 h
->drv_req_rescan
= 1;
4394 if (is_scsi_rev_5(h
))
4395 raid_ctlr_position
= 0;
4397 raid_ctlr_position
= nphysicals
+ nlogicals
;
4399 /* adjust our table of devices */
4400 n_ext_target_devs
= 0;
4401 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4402 u8
*lunaddrbytes
, is_OBDR
= 0;
4404 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4405 bool skip_device
= false;
4407 memset(tmpdevice
, 0, sizeof(*tmpdevice
));
4409 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4411 /* Figure out where the LUN ID info is coming from */
4412 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4413 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4415 /* Determine if this is a lun from an external target array */
4416 tmpdevice
->external
=
4417 figure_external_status(h
, raid_ctlr_position
, i
,
4418 nphysicals
, nlocal_logicals
);
4421 * Skip over some devices such as a spare.
4423 if (!tmpdevice
->external
&& physical_device
) {
4424 skip_device
= hpsa_skip_device(h
, lunaddrbytes
,
4425 &physdev_list
->LUN
[phys_dev_index
]);
4430 /* Get device type, vendor, model, device id, raid_map */
4431 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4433 if (rc
== -ENOMEM
) {
4434 dev_warn(&h
->pdev
->dev
,
4435 "Out of memory, rescan deferred.\n");
4436 h
->drv_req_rescan
= 1;
4440 h
->drv_req_rescan
= 1;
4444 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4445 this_device
= currentsd
[ncurrent
];
4447 *this_device
= *tmpdevice
;
4448 this_device
->physical_device
= physical_device
;
4451 * Expose all devices except for physical devices that
4454 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4455 this_device
->expose_device
= 0;
4457 this_device
->expose_device
= 1;
4461 * Get the SAS address for physical devices that are exposed.
4463 if (this_device
->physical_device
&& this_device
->expose_device
)
4464 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4466 switch (this_device
->devtype
) {
4468 /* We don't *really* support actual CD-ROM devices,
4469 * just "One Button Disaster Recovery" tape drive
4470 * which temporarily pretends to be a CD-ROM drive.
4471 * So we check that the device is really an OBDR tape
4472 * device by checking for "$DR-10" in bytes 43-48 of
4480 if (this_device
->physical_device
) {
4481 /* The disk is in HBA mode. */
4482 /* Never use RAID mapper in HBA mode. */
4483 this_device
->offload_enabled
= 0;
4484 hpsa_get_ioaccel_drive_info(h
, this_device
,
4485 physdev_list
, phys_dev_index
, id_phys
);
4486 hpsa_get_path_info(this_device
,
4487 physdev_list
, phys_dev_index
, id_phys
);
4492 case TYPE_MEDIUM_CHANGER
:
4495 case TYPE_ENCLOSURE
:
4496 if (!this_device
->external
)
4497 hpsa_get_enclosure_info(h
, lunaddrbytes
,
4498 physdev_list
, phys_dev_index
,
4503 /* Only present the Smartarray HBA as a RAID controller.
4504 * If it's a RAID controller other than the HBA itself
4505 * (an external RAID controller, MSA500 or similar)
4508 if (!is_hba_lunid(lunaddrbytes
))
4515 if (ncurrent
>= HPSA_MAX_DEVICES
)
4519 if (h
->sas_host
== NULL
) {
4522 rc
= hpsa_add_sas_host(h
);
4524 dev_warn(&h
->pdev
->dev
,
4525 "Could not add sas host %d\n", rc
);
4530 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4533 for (i
= 0; i
< ndev_allocated
; i
++)
4534 kfree(currentsd
[i
]);
4536 kfree(physdev_list
);
4542 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4543 struct scatterlist
*sg
)
4545 u64 addr64
= (u64
) sg_dma_address(sg
);
4546 unsigned int len
= sg_dma_len(sg
);
4548 desc
->Addr
= cpu_to_le64(addr64
);
4549 desc
->Len
= cpu_to_le32(len
);
4554 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4555 * dma mapping and fills in the scatter gather entries of the
4558 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4559 struct CommandList
*cp
,
4560 struct scsi_cmnd
*cmd
)
4562 struct scatterlist
*sg
;
4563 int use_sg
, i
, sg_limit
, chained
, last_sg
;
4564 struct SGDescriptor
*curr_sg
;
4566 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4568 use_sg
= scsi_dma_map(cmd
);
4573 goto sglist_finished
;
4576 * If the number of entries is greater than the max for a single list,
4577 * then we have a chained list; we will set up all but one entry in the
4578 * first list (the last entry is saved for link information);
4579 * otherwise, we don't have a chained list and we'll set up at each of
4580 * the entries in the one list.
4583 chained
= use_sg
> h
->max_cmd_sg_entries
;
4584 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4585 last_sg
= scsi_sg_count(cmd
) - 1;
4586 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4587 hpsa_set_sg_descriptor(curr_sg
, sg
);
4593 * Continue with the chained list. Set curr_sg to the chained
4594 * list. Modify the limit to the total count less the entries
4595 * we've already set up. Resume the scan at the list entry
4596 * where the previous loop left off.
4598 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4599 sg_limit
= use_sg
- sg_limit
;
4600 for_each_sg(sg
, sg
, sg_limit
, i
) {
4601 hpsa_set_sg_descriptor(curr_sg
, sg
);
4606 /* Back the pointer up to the last entry and mark it as "last". */
4607 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4609 if (use_sg
+ chained
> h
->maxSG
)
4610 h
->maxSG
= use_sg
+ chained
;
4613 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4614 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4615 if (hpsa_map_sg_chain_block(h
, cp
)) {
4616 scsi_dma_unmap(cmd
);
4624 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4625 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4629 static inline void warn_zero_length_transfer(struct ctlr_info
*h
,
4630 u8
*cdb
, int cdb_len
,
4633 dev_warn(&h
->pdev
->dev
,
4634 "%s: Blocking zero-length request: CDB:%*phN\n",
4635 func
, cdb_len
, cdb
);
4638 #define IO_ACCEL_INELIGIBLE 1
4639 /* zero-length transfers trigger hardware errors. */
4640 static bool is_zero_length_transfer(u8
*cdb
)
4644 /* Block zero-length transfer sizes on certain commands. */
4648 case VERIFY
: /* 0x2F */
4649 case WRITE_VERIFY
: /* 0x2E */
4650 block_cnt
= get_unaligned_be16(&cdb
[7]);
4654 case VERIFY_12
: /* 0xAF */
4655 case WRITE_VERIFY_12
: /* 0xAE */
4656 block_cnt
= get_unaligned_be32(&cdb
[6]);
4660 case VERIFY_16
: /* 0x8F */
4661 block_cnt
= get_unaligned_be32(&cdb
[10]);
4667 return block_cnt
== 0;
4670 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4676 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4684 if (*cdb_len
== 6) {
4685 block
= (((cdb
[1] & 0x1F) << 16) |
4692 BUG_ON(*cdb_len
!= 12);
4693 block
= get_unaligned_be32(&cdb
[2]);
4694 block_cnt
= get_unaligned_be32(&cdb
[6]);
4696 if (block_cnt
> 0xffff)
4697 return IO_ACCEL_INELIGIBLE
;
4699 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4701 cdb
[2] = (u8
) (block
>> 24);
4702 cdb
[3] = (u8
) (block
>> 16);
4703 cdb
[4] = (u8
) (block
>> 8);
4704 cdb
[5] = (u8
) (block
);
4706 cdb
[7] = (u8
) (block_cnt
>> 8);
4707 cdb
[8] = (u8
) (block_cnt
);
4715 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4716 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4717 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4719 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4720 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4722 unsigned int total_len
= 0;
4723 struct scatterlist
*sg
;
4726 struct SGDescriptor
*curr_sg
;
4727 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4729 /* TODO: implement chaining support */
4730 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4731 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4732 return IO_ACCEL_INELIGIBLE
;
4735 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4737 if (is_zero_length_transfer(cdb
)) {
4738 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4739 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4740 return IO_ACCEL_INELIGIBLE
;
4743 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4744 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4745 return IO_ACCEL_INELIGIBLE
;
4748 c
->cmd_type
= CMD_IOACCEL1
;
4750 /* Adjust the DMA address to point to the accelerated command buffer */
4751 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4752 (c
->cmdindex
* sizeof(*cp
));
4753 BUG_ON(c
->busaddr
& 0x0000007F);
4755 use_sg
= scsi_dma_map(cmd
);
4757 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4763 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4764 addr64
= (u64
) sg_dma_address(sg
);
4765 len
= sg_dma_len(sg
);
4767 curr_sg
->Addr
= cpu_to_le64(addr64
);
4768 curr_sg
->Len
= cpu_to_le32(len
);
4769 curr_sg
->Ext
= cpu_to_le32(0);
4772 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4774 switch (cmd
->sc_data_direction
) {
4776 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4778 case DMA_FROM_DEVICE
:
4779 control
|= IOACCEL1_CONTROL_DATA_IN
;
4782 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4785 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4786 cmd
->sc_data_direction
);
4791 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4794 c
->Header
.SGList
= use_sg
;
4795 /* Fill out the command structure to submit */
4796 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4797 cp
->transfer_len
= cpu_to_le32(total_len
);
4798 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4799 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4800 cp
->control
= cpu_to_le32(control
);
4801 memcpy(cp
->CDB
, cdb
, cdb_len
);
4802 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4803 /* Tag was already set at init time. */
4804 enqueue_cmd_and_start_io(h
, c
);
4809 * Queue a command directly to a device behind the controller using the
4810 * I/O accelerator path.
4812 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4813 struct CommandList
*c
)
4815 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4816 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4823 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4824 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4828 * Set encryption parameters for the ioaccel2 request
4830 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4831 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4833 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4834 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4835 struct raid_map_data
*map
= &dev
->raid_map
;
4838 /* Are we doing encryption on this device */
4839 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4841 /* Set the data encryption key index. */
4842 cp
->dekindex
= map
->dekindex
;
4844 /* Set the encryption enable flag, encoded into direction field. */
4845 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4847 /* Set encryption tweak values based on logical block address
4848 * If block size is 512, tweak value is LBA.
4849 * For other block sizes, tweak is (LBA * block size)/ 512)
4851 switch (cmd
->cmnd
[0]) {
4852 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4855 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
4856 (cmd
->cmnd
[2] << 8) |
4861 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4864 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4868 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4871 dev_err(&h
->pdev
->dev
,
4872 "ERROR: %s: size (0x%x) not supported for encryption\n",
4873 __func__
, cmd
->cmnd
[0]);
4878 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4879 first_block
= first_block
*
4880 le32_to_cpu(map
->volume_blk_size
)/512;
4882 cp
->tweak_lower
= cpu_to_le32(first_block
);
4883 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4886 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4887 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4888 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4890 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4891 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4892 struct ioaccel2_sg_element
*curr_sg
;
4894 struct scatterlist
*sg
;
4902 if (!cmd
->device
->hostdata
)
4905 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4907 if (is_zero_length_transfer(cdb
)) {
4908 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4909 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4910 return IO_ACCEL_INELIGIBLE
;
4913 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4914 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4915 return IO_ACCEL_INELIGIBLE
;
4918 c
->cmd_type
= CMD_IOACCEL2
;
4919 /* Adjust the DMA address to point to the accelerated command buffer */
4920 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4921 (c
->cmdindex
* sizeof(*cp
));
4922 BUG_ON(c
->busaddr
& 0x0000007F);
4924 memset(cp
, 0, sizeof(*cp
));
4925 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4927 use_sg
= scsi_dma_map(cmd
);
4929 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4935 if (use_sg
> h
->ioaccel_maxsg
) {
4936 addr64
= le64_to_cpu(
4937 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4938 curr_sg
->address
= cpu_to_le64(addr64
);
4939 curr_sg
->length
= 0;
4940 curr_sg
->reserved
[0] = 0;
4941 curr_sg
->reserved
[1] = 0;
4942 curr_sg
->reserved
[2] = 0;
4943 curr_sg
->chain_indicator
= 0x80;
4945 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4947 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4948 addr64
= (u64
) sg_dma_address(sg
);
4949 len
= sg_dma_len(sg
);
4951 curr_sg
->address
= cpu_to_le64(addr64
);
4952 curr_sg
->length
= cpu_to_le32(len
);
4953 curr_sg
->reserved
[0] = 0;
4954 curr_sg
->reserved
[1] = 0;
4955 curr_sg
->reserved
[2] = 0;
4956 curr_sg
->chain_indicator
= 0;
4960 switch (cmd
->sc_data_direction
) {
4962 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4963 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4965 case DMA_FROM_DEVICE
:
4966 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4967 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4970 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4971 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4974 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4975 cmd
->sc_data_direction
);
4980 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4981 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4984 /* Set encryption parameters, if necessary */
4985 set_encrypt_ioaccel2(h
, c
, cp
);
4987 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4988 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4989 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4991 cp
->data_len
= cpu_to_le32(total_len
);
4992 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4993 offsetof(struct io_accel2_cmd
, error_data
));
4994 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4996 /* fill in sg elements */
4997 if (use_sg
> h
->ioaccel_maxsg
) {
4999 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
5000 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
5001 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
5002 scsi_dma_unmap(cmd
);
5006 cp
->sg_count
= (u8
) use_sg
;
5008 enqueue_cmd_and_start_io(h
, c
);
5013 * Queue a command to the correct I/O accelerator path.
5015 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
5016 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
5017 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
5019 if (!c
->scsi_cmd
->device
)
5022 if (!c
->scsi_cmd
->device
->hostdata
)
5025 /* Try to honor the device's queue depth */
5026 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
5027 phys_disk
->queue_depth
) {
5028 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
5029 return IO_ACCEL_INELIGIBLE
;
5031 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
5032 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
5033 cdb
, cdb_len
, scsi3addr
,
5036 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
5037 cdb
, cdb_len
, scsi3addr
,
5041 static void raid_map_helper(struct raid_map_data
*map
,
5042 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
5044 if (offload_to_mirror
== 0) {
5045 /* use physical disk in the first mirrored group. */
5046 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
5050 /* determine mirror group that *map_index indicates */
5051 *current_group
= *map_index
/
5052 le16_to_cpu(map
->data_disks_per_row
);
5053 if (offload_to_mirror
== *current_group
)
5055 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
5056 /* select map index from next group */
5057 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5060 /* select map index from first group */
5061 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
5064 } while (offload_to_mirror
!= *current_group
);
5068 * Attempt to perform offload RAID mapping for a logical volume I/O.
5070 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
5071 struct CommandList
*c
)
5073 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
5074 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5075 struct raid_map_data
*map
= &dev
->raid_map
;
5076 struct raid_map_disk_data
*dd
= &map
->data
[0];
5079 u64 first_block
, last_block
;
5082 u64 first_row
, last_row
;
5083 u32 first_row_offset
, last_row_offset
;
5084 u32 first_column
, last_column
;
5085 u64 r0_first_row
, r0_last_row
;
5086 u32 r5or6_blocks_per_row
;
5087 u64 r5or6_first_row
, r5or6_last_row
;
5088 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
5089 u32 r5or6_first_column
, r5or6_last_column
;
5090 u32 total_disks_per_row
;
5092 u32 first_group
, last_group
, current_group
;
5100 #if BITS_PER_LONG == 32
5103 int offload_to_mirror
;
5108 /* check for valid opcode, get LBA and block count */
5109 switch (cmd
->cmnd
[0]) {
5114 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
5115 (cmd
->cmnd
[2] << 8) |
5117 block_cnt
= cmd
->cmnd
[4];
5126 (((u64
) cmd
->cmnd
[2]) << 24) |
5127 (((u64
) cmd
->cmnd
[3]) << 16) |
5128 (((u64
) cmd
->cmnd
[4]) << 8) |
5131 (((u32
) cmd
->cmnd
[7]) << 8) |
5139 (((u64
) cmd
->cmnd
[2]) << 24) |
5140 (((u64
) cmd
->cmnd
[3]) << 16) |
5141 (((u64
) cmd
->cmnd
[4]) << 8) |
5144 (((u32
) cmd
->cmnd
[6]) << 24) |
5145 (((u32
) cmd
->cmnd
[7]) << 16) |
5146 (((u32
) cmd
->cmnd
[8]) << 8) |
5154 (((u64
) cmd
->cmnd
[2]) << 56) |
5155 (((u64
) cmd
->cmnd
[3]) << 48) |
5156 (((u64
) cmd
->cmnd
[4]) << 40) |
5157 (((u64
) cmd
->cmnd
[5]) << 32) |
5158 (((u64
) cmd
->cmnd
[6]) << 24) |
5159 (((u64
) cmd
->cmnd
[7]) << 16) |
5160 (((u64
) cmd
->cmnd
[8]) << 8) |
5163 (((u32
) cmd
->cmnd
[10]) << 24) |
5164 (((u32
) cmd
->cmnd
[11]) << 16) |
5165 (((u32
) cmd
->cmnd
[12]) << 8) |
5169 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
5171 last_block
= first_block
+ block_cnt
- 1;
5173 /* check for write to non-RAID-0 */
5174 if (is_write
&& dev
->raid_level
!= 0)
5175 return IO_ACCEL_INELIGIBLE
;
5177 /* check for invalid block or wraparound */
5178 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
5179 last_block
< first_block
)
5180 return IO_ACCEL_INELIGIBLE
;
5182 /* calculate stripe information for the request */
5183 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
5184 le16_to_cpu(map
->strip_size
);
5185 strip_size
= le16_to_cpu(map
->strip_size
);
5186 #if BITS_PER_LONG == 32
5187 tmpdiv
= first_block
;
5188 (void) do_div(tmpdiv
, blocks_per_row
);
5190 tmpdiv
= last_block
;
5191 (void) do_div(tmpdiv
, blocks_per_row
);
5193 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5194 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5195 tmpdiv
= first_row_offset
;
5196 (void) do_div(tmpdiv
, strip_size
);
5197 first_column
= tmpdiv
;
5198 tmpdiv
= last_row_offset
;
5199 (void) do_div(tmpdiv
, strip_size
);
5200 last_column
= tmpdiv
;
5202 first_row
= first_block
/ blocks_per_row
;
5203 last_row
= last_block
/ blocks_per_row
;
5204 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5205 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5206 first_column
= first_row_offset
/ strip_size
;
5207 last_column
= last_row_offset
/ strip_size
;
5210 /* if this isn't a single row/column then give to the controller */
5211 if ((first_row
!= last_row
) || (first_column
!= last_column
))
5212 return IO_ACCEL_INELIGIBLE
;
5214 /* proceeding with driver mapping */
5215 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
5216 le16_to_cpu(map
->metadata_disks_per_row
);
5217 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5218 le16_to_cpu(map
->row_cnt
);
5219 map_index
= (map_row
* total_disks_per_row
) + first_column
;
5221 switch (dev
->raid_level
) {
5223 break; /* nothing special to do */
5225 /* Handles load balance across RAID 1 members.
5226 * (2-drive R1 and R10 with even # of drives.)
5227 * Appropriate for SSDs, not optimal for HDDs
5229 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
5230 if (dev
->offload_to_mirror
)
5231 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5232 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
5235 /* Handles N-way mirrors (R1-ADM)
5236 * and R10 with # of drives divisible by 3.)
5238 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
5240 offload_to_mirror
= dev
->offload_to_mirror
;
5241 raid_map_helper(map
, offload_to_mirror
,
5242 &map_index
, ¤t_group
);
5243 /* set mirror group to use next time */
5245 (offload_to_mirror
>=
5246 le16_to_cpu(map
->layout_map_count
) - 1)
5247 ? 0 : offload_to_mirror
+ 1;
5248 dev
->offload_to_mirror
= offload_to_mirror
;
5249 /* Avoid direct use of dev->offload_to_mirror within this
5250 * function since multiple threads might simultaneously
5251 * increment it beyond the range of dev->layout_map_count -1.
5256 if (le16_to_cpu(map
->layout_map_count
) <= 1)
5259 /* Verify first and last block are in same RAID group */
5260 r5or6_blocks_per_row
=
5261 le16_to_cpu(map
->strip_size
) *
5262 le16_to_cpu(map
->data_disks_per_row
);
5263 BUG_ON(r5or6_blocks_per_row
== 0);
5264 stripesize
= r5or6_blocks_per_row
*
5265 le16_to_cpu(map
->layout_map_count
);
5266 #if BITS_PER_LONG == 32
5267 tmpdiv
= first_block
;
5268 first_group
= do_div(tmpdiv
, stripesize
);
5269 tmpdiv
= first_group
;
5270 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5271 first_group
= tmpdiv
;
5272 tmpdiv
= last_block
;
5273 last_group
= do_div(tmpdiv
, stripesize
);
5274 tmpdiv
= last_group
;
5275 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5276 last_group
= tmpdiv
;
5278 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
5279 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
5281 if (first_group
!= last_group
)
5282 return IO_ACCEL_INELIGIBLE
;
5284 /* Verify request is in a single row of RAID 5/6 */
5285 #if BITS_PER_LONG == 32
5286 tmpdiv
= first_block
;
5287 (void) do_div(tmpdiv
, stripesize
);
5288 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
5289 tmpdiv
= last_block
;
5290 (void) do_div(tmpdiv
, stripesize
);
5291 r5or6_last_row
= r0_last_row
= tmpdiv
;
5293 first_row
= r5or6_first_row
= r0_first_row
=
5294 first_block
/ stripesize
;
5295 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
5297 if (r5or6_first_row
!= r5or6_last_row
)
5298 return IO_ACCEL_INELIGIBLE
;
5301 /* Verify request is in a single column */
5302 #if BITS_PER_LONG == 32
5303 tmpdiv
= first_block
;
5304 first_row_offset
= do_div(tmpdiv
, stripesize
);
5305 tmpdiv
= first_row_offset
;
5306 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
5307 r5or6_first_row_offset
= first_row_offset
;
5308 tmpdiv
= last_block
;
5309 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
5310 tmpdiv
= r5or6_last_row_offset
;
5311 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
5312 tmpdiv
= r5or6_first_row_offset
;
5313 (void) do_div(tmpdiv
, map
->strip_size
);
5314 first_column
= r5or6_first_column
= tmpdiv
;
5315 tmpdiv
= r5or6_last_row_offset
;
5316 (void) do_div(tmpdiv
, map
->strip_size
);
5317 r5or6_last_column
= tmpdiv
;
5319 first_row_offset
= r5or6_first_row_offset
=
5320 (u32
)((first_block
% stripesize
) %
5321 r5or6_blocks_per_row
);
5323 r5or6_last_row_offset
=
5324 (u32
)((last_block
% stripesize
) %
5325 r5or6_blocks_per_row
);
5327 first_column
= r5or6_first_column
=
5328 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
5330 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
5332 if (r5or6_first_column
!= r5or6_last_column
)
5333 return IO_ACCEL_INELIGIBLE
;
5335 /* Request is eligible */
5336 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5337 le16_to_cpu(map
->row_cnt
);
5339 map_index
= (first_group
*
5340 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
5341 (map_row
* total_disks_per_row
) + first_column
;
5344 return IO_ACCEL_INELIGIBLE
;
5347 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
5348 return IO_ACCEL_INELIGIBLE
;
5350 c
->phys_disk
= dev
->phys_disk
[map_index
];
5352 return IO_ACCEL_INELIGIBLE
;
5354 disk_handle
= dd
[map_index
].ioaccel_handle
;
5355 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
5356 first_row
* le16_to_cpu(map
->strip_size
) +
5357 (first_row_offset
- first_column
*
5358 le16_to_cpu(map
->strip_size
));
5359 disk_block_cnt
= block_cnt
;
5361 /* handle differing logical/physical block sizes */
5362 if (map
->phys_blk_shift
) {
5363 disk_block
<<= map
->phys_blk_shift
;
5364 disk_block_cnt
<<= map
->phys_blk_shift
;
5366 BUG_ON(disk_block_cnt
> 0xffff);
5368 /* build the new CDB for the physical disk I/O */
5369 if (disk_block
> 0xffffffff) {
5370 cdb
[0] = is_write
? WRITE_16
: READ_16
;
5372 cdb
[2] = (u8
) (disk_block
>> 56);
5373 cdb
[3] = (u8
) (disk_block
>> 48);
5374 cdb
[4] = (u8
) (disk_block
>> 40);
5375 cdb
[5] = (u8
) (disk_block
>> 32);
5376 cdb
[6] = (u8
) (disk_block
>> 24);
5377 cdb
[7] = (u8
) (disk_block
>> 16);
5378 cdb
[8] = (u8
) (disk_block
>> 8);
5379 cdb
[9] = (u8
) (disk_block
);
5380 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
5381 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
5382 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
5383 cdb
[13] = (u8
) (disk_block_cnt
);
5388 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5390 cdb
[2] = (u8
) (disk_block
>> 24);
5391 cdb
[3] = (u8
) (disk_block
>> 16);
5392 cdb
[4] = (u8
) (disk_block
>> 8);
5393 cdb
[5] = (u8
) (disk_block
);
5395 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5396 cdb
[8] = (u8
) (disk_block_cnt
);
5400 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5402 dev
->phys_disk
[map_index
]);
5406 * Submit commands down the "normal" RAID stack path
5407 * All callers to hpsa_ciss_submit must check lockup_detected
5408 * beforehand, before (opt.) and after calling cmd_alloc
5410 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5411 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5412 unsigned char scsi3addr
[])
5414 cmd
->host_scribble
= (unsigned char *) c
;
5415 c
->cmd_type
= CMD_SCSI
;
5417 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5418 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
5419 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5421 /* Fill in the request block... */
5423 c
->Request
.Timeout
= 0;
5424 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5425 c
->Request
.CDBLen
= cmd
->cmd_len
;
5426 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5427 switch (cmd
->sc_data_direction
) {
5429 c
->Request
.type_attr_dir
=
5430 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5432 case DMA_FROM_DEVICE
:
5433 c
->Request
.type_attr_dir
=
5434 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5437 c
->Request
.type_attr_dir
=
5438 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5440 case DMA_BIDIRECTIONAL
:
5441 /* This can happen if a buggy application does a scsi passthru
5442 * and sets both inlen and outlen to non-zero. ( see
5443 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5446 c
->Request
.type_attr_dir
=
5447 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5448 /* This is technically wrong, and hpsa controllers should
5449 * reject it with CMD_INVALID, which is the most correct
5450 * response, but non-fibre backends appear to let it
5451 * slide by, and give the same results as if this field
5452 * were set correctly. Either way is acceptable for
5453 * our purposes here.
5459 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5460 cmd
->sc_data_direction
);
5465 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5466 hpsa_cmd_resolve_and_free(h
, c
);
5467 return SCSI_MLQUEUE_HOST_BUSY
;
5469 enqueue_cmd_and_start_io(h
, c
);
5470 /* the cmd'll come back via intr handler in complete_scsi_command() */
5474 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5475 struct CommandList
*c
)
5477 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5479 /* Zero out all of commandlist except the last field, refcount */
5480 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5481 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5482 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5483 c
->err_info
= h
->errinfo_pool
+ index
;
5484 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5485 err_dma_handle
= h
->errinfo_pool_dhandle
5486 + index
* sizeof(*c
->err_info
);
5487 c
->cmdindex
= index
;
5488 c
->busaddr
= (u32
) cmd_dma_handle
;
5489 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5490 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5492 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5495 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5499 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5500 struct CommandList
*c
= h
->cmd_pool
+ i
;
5502 hpsa_cmd_init(h
, i
, c
);
5503 atomic_set(&c
->refcount
, 0);
5507 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5508 struct CommandList
*c
)
5510 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5512 BUG_ON(c
->cmdindex
!= index
);
5514 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5515 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5516 c
->busaddr
= (u32
) cmd_dma_handle
;
5519 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5520 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5521 unsigned char *scsi3addr
)
5523 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5524 int rc
= IO_ACCEL_INELIGIBLE
;
5527 return SCSI_MLQUEUE_HOST_BUSY
;
5529 cmd
->host_scribble
= (unsigned char *) c
;
5531 if (dev
->offload_enabled
) {
5532 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5533 c
->cmd_type
= CMD_SCSI
;
5535 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5536 if (rc
< 0) /* scsi_dma_map failed. */
5537 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5538 } else if (dev
->hba_ioaccel_enabled
) {
5539 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5540 c
->cmd_type
= CMD_SCSI
;
5542 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5543 if (rc
< 0) /* scsi_dma_map failed. */
5544 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5549 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5551 struct scsi_cmnd
*cmd
;
5552 struct hpsa_scsi_dev_t
*dev
;
5553 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5556 dev
= cmd
->device
->hostdata
;
5558 cmd
->result
= DID_NO_CONNECT
<< 16;
5559 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5561 if (c
->reset_pending
)
5562 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5563 if (c
->cmd_type
== CMD_IOACCEL2
) {
5564 struct ctlr_info
*h
= c
->h
;
5565 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5568 if (c2
->error_data
.serv_response
==
5569 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5570 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
5573 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5575 * If we get here, it means dma mapping failed.
5576 * Try again via scsi mid layer, which will
5577 * then get SCSI_MLQUEUE_HOST_BUSY.
5579 cmd
->result
= DID_IMM_RETRY
<< 16;
5580 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5582 /* else, fall thru and resubmit down CISS path */
5585 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5586 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
5588 * If we get here, it means dma mapping failed. Try
5589 * again via scsi mid layer, which will then get
5590 * SCSI_MLQUEUE_HOST_BUSY.
5592 * hpsa_ciss_submit will have already freed c
5593 * if it encountered a dma mapping failure.
5595 cmd
->result
= DID_IMM_RETRY
<< 16;
5596 cmd
->scsi_done(cmd
);
5600 /* Running in struct Scsi_Host->host_lock less mode */
5601 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5603 struct ctlr_info
*h
;
5604 struct hpsa_scsi_dev_t
*dev
;
5605 unsigned char scsi3addr
[8];
5606 struct CommandList
*c
;
5609 /* Get the ptr to our adapter structure out of cmd->host. */
5610 h
= sdev_to_hba(cmd
->device
);
5612 BUG_ON(cmd
->request
->tag
< 0);
5614 dev
= cmd
->device
->hostdata
;
5616 cmd
->result
= DID_NO_CONNECT
<< 16;
5617 cmd
->scsi_done(cmd
);
5622 cmd
->result
= DID_NO_CONNECT
<< 16;
5623 cmd
->scsi_done(cmd
);
5627 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
5629 if (unlikely(lockup_detected(h
))) {
5630 cmd
->result
= DID_NO_CONNECT
<< 16;
5631 cmd
->scsi_done(cmd
);
5634 c
= cmd_tagged_alloc(h
, cmd
);
5637 * Call alternate submit routine for I/O accelerated commands.
5638 * Retries always go down the normal I/O path.
5640 if (likely(cmd
->retries
== 0 &&
5641 !blk_rq_is_passthrough(cmd
->request
) &&
5642 h
->acciopath_status
)) {
5643 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
5646 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5647 hpsa_cmd_resolve_and_free(h
, c
);
5648 return SCSI_MLQUEUE_HOST_BUSY
;
5651 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
5654 static void hpsa_scan_complete(struct ctlr_info
*h
)
5656 unsigned long flags
;
5658 spin_lock_irqsave(&h
->scan_lock
, flags
);
5659 h
->scan_finished
= 1;
5660 wake_up(&h
->scan_wait_queue
);
5661 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5664 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5666 struct ctlr_info
*h
= shost_to_hba(sh
);
5667 unsigned long flags
;
5670 * Don't let rescans be initiated on a controller known to be locked
5671 * up. If the controller locks up *during* a rescan, that thread is
5672 * probably hosed, but at least we can prevent new rescan threads from
5673 * piling up on a locked up controller.
5675 if (unlikely(lockup_detected(h
)))
5676 return hpsa_scan_complete(h
);
5679 * If a scan is already waiting to run, no need to add another
5681 spin_lock_irqsave(&h
->scan_lock
, flags
);
5682 if (h
->scan_waiting
) {
5683 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5687 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5689 /* wait until any scan already in progress is finished. */
5691 spin_lock_irqsave(&h
->scan_lock
, flags
);
5692 if (h
->scan_finished
)
5694 h
->scan_waiting
= 1;
5695 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5696 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5697 /* Note: We don't need to worry about a race between this
5698 * thread and driver unload because the midlayer will
5699 * have incremented the reference count, so unload won't
5700 * happen if we're in here.
5703 h
->scan_finished
= 0; /* mark scan as in progress */
5704 h
->scan_waiting
= 0;
5705 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5707 if (unlikely(lockup_detected(h
)))
5708 return hpsa_scan_complete(h
);
5711 * Do the scan after a reset completion
5713 spin_lock_irqsave(&h
->reset_lock
, flags
);
5714 if (h
->reset_in_progress
) {
5715 h
->drv_req_rescan
= 1;
5716 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5717 hpsa_scan_complete(h
);
5720 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5722 hpsa_update_scsi_devices(h
);
5724 hpsa_scan_complete(h
);
5727 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5729 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5736 else if (qdepth
> logical_drive
->queue_depth
)
5737 qdepth
= logical_drive
->queue_depth
;
5739 return scsi_change_queue_depth(sdev
, qdepth
);
5742 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5743 unsigned long elapsed_time
)
5745 struct ctlr_info
*h
= shost_to_hba(sh
);
5746 unsigned long flags
;
5749 spin_lock_irqsave(&h
->scan_lock
, flags
);
5750 finished
= h
->scan_finished
;
5751 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5755 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5757 struct Scsi_Host
*sh
;
5759 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5761 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5768 sh
->max_channel
= 3;
5769 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5770 sh
->max_lun
= HPSA_MAX_LUN
;
5771 sh
->max_id
= HPSA_MAX_LUN
;
5772 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5773 sh
->cmd_per_lun
= sh
->can_queue
;
5774 sh
->sg_tablesize
= h
->maxsgentries
;
5775 sh
->transportt
= hpsa_sas_transport_template
;
5776 sh
->hostdata
[0] = (unsigned long) h
;
5777 sh
->irq
= pci_irq_vector(h
->pdev
, 0);
5778 sh
->unique_id
= sh
->irq
;
5784 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5788 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5790 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5793 scsi_scan_host(h
->scsi_host
);
5798 * The block layer has already gone to the trouble of picking out a unique,
5799 * small-integer tag for this request. We use an offset from that value as
5800 * an index to select our command block. (The offset allows us to reserve the
5801 * low-numbered entries for our own uses.)
5803 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5805 int idx
= scmd
->request
->tag
;
5810 /* Offset to leave space for internal cmds. */
5811 return idx
+= HPSA_NRESERVED_CMDS
;
5815 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5816 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5818 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5819 struct CommandList
*c
, unsigned char lunaddr
[],
5824 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5825 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5826 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5827 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5830 /* no unmap needed here because no data xfer. */
5832 /* Check if the unit is already ready. */
5833 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5837 * The first command sent after reset will receive "unit attention" to
5838 * indicate that the LUN has been reset...this is actually what we're
5839 * looking for (but, success is good too).
5841 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5842 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5843 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5844 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5851 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5852 * returns zero when the unit is ready, and non-zero when giving up.
5854 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5855 struct CommandList
*c
,
5856 unsigned char lunaddr
[], int reply_queue
)
5860 int waittime
= 1; /* seconds */
5862 /* Send test unit ready until device ready, or give up. */
5863 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5866 * Wait for a bit. do this first, because if we send
5867 * the TUR right away, the reset will just abort it.
5869 msleep(1000 * waittime
);
5871 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5875 /* Increase wait time with each try, up to a point. */
5876 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5879 dev_warn(&h
->pdev
->dev
,
5880 "waiting %d secs for device to become ready.\n",
5887 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5888 unsigned char lunaddr
[],
5895 struct CommandList
*c
;
5900 * If no specific reply queue was requested, then send the TUR
5901 * repeatedly, requesting a reply on each reply queue; otherwise execute
5902 * the loop exactly once using only the specified queue.
5904 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5906 last_queue
= h
->nreply_queues
- 1;
5908 first_queue
= reply_queue
;
5909 last_queue
= reply_queue
;
5912 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5913 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5919 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5921 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5927 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5928 * complaining. Doing a host- or bus-reset can't do anything good here.
5930 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5933 struct ctlr_info
*h
;
5934 struct hpsa_scsi_dev_t
*dev
;
5937 unsigned long flags
;
5939 /* find the controller to which the command to be aborted was sent */
5940 h
= sdev_to_hba(scsicmd
->device
);
5941 if (h
== NULL
) /* paranoia */
5944 spin_lock_irqsave(&h
->reset_lock
, flags
);
5945 h
->reset_in_progress
= 1;
5946 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5948 if (lockup_detected(h
)) {
5950 goto return_reset_status
;
5953 dev
= scsicmd
->device
->hostdata
;
5955 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5957 goto return_reset_status
;
5960 if (dev
->devtype
== TYPE_ENCLOSURE
) {
5962 goto return_reset_status
;
5965 /* if controller locked up, we can guarantee command won't complete */
5966 if (lockup_detected(h
)) {
5967 snprintf(msg
, sizeof(msg
),
5968 "cmd %d RESET FAILED, lockup detected",
5969 hpsa_get_cmd_index(scsicmd
));
5970 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5972 goto return_reset_status
;
5975 /* this reset request might be the result of a lockup; check */
5976 if (detect_controller_lockup(h
)) {
5977 snprintf(msg
, sizeof(msg
),
5978 "cmd %d RESET FAILED, new lockup detected",
5979 hpsa_get_cmd_index(scsicmd
));
5980 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5982 goto return_reset_status
;
5985 /* Do not attempt on controller */
5986 if (is_hba_lunid(dev
->scsi3addr
)) {
5988 goto return_reset_status
;
5991 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
5992 reset_type
= HPSA_DEVICE_RESET_MSG
;
5994 reset_type
= HPSA_PHYS_TARGET_RESET
;
5996 sprintf(msg
, "resetting %s",
5997 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
5998 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6000 /* send a reset to the SCSI LUN which the command was sent to */
6001 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, reset_type
,
6002 DEFAULT_REPLY_QUEUE
);
6008 sprintf(msg
, "reset %s %s",
6009 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
6010 rc
== SUCCESS
? "completed successfully" : "failed");
6011 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6013 return_reset_status
:
6014 spin_lock_irqsave(&h
->reset_lock
, flags
);
6015 h
->reset_in_progress
= 0;
6016 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
6021 * For operations with an associated SCSI command, a command block is allocated
6022 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6023 * block request tag as an index into a table of entries. cmd_tagged_free() is
6024 * the complement, although cmd_free() may be called instead.
6026 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
6027 struct scsi_cmnd
*scmd
)
6029 int idx
= hpsa_get_cmd_index(scmd
);
6030 struct CommandList
*c
= h
->cmd_pool
+ idx
;
6032 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
6033 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
6034 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
6035 /* The index value comes from the block layer, so if it's out of
6036 * bounds, it's probably not our bug.
6041 atomic_inc(&c
->refcount
);
6042 if (unlikely(!hpsa_is_cmd_idle(c
))) {
6044 * We expect that the SCSI layer will hand us a unique tag
6045 * value. Thus, there should never be a collision here between
6046 * two requests...because if the selected command isn't idle
6047 * then someone is going to be very disappointed.
6049 dev_err(&h
->pdev
->dev
,
6050 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6052 if (c
->scsi_cmd
!= NULL
)
6053 scsi_print_command(c
->scsi_cmd
);
6054 scsi_print_command(scmd
);
6057 hpsa_cmd_partial_init(h
, idx
, c
);
6061 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
6064 * Release our reference to the block. We don't need to do anything
6065 * else to free it, because it is accessed by index.
6067 (void)atomic_dec(&c
->refcount
);
6071 * For operations that cannot sleep, a command block is allocated at init,
6072 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6073 * which ones are free or in use. Lock must be held when calling this.
6074 * cmd_free() is the complement.
6075 * This function never gives up and returns NULL. If it hangs,
6076 * another thread must call cmd_free() to free some tags.
6079 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
6081 struct CommandList
*c
;
6086 * There is some *extremely* small but non-zero chance that that
6087 * multiple threads could get in here, and one thread could
6088 * be scanning through the list of bits looking for a free
6089 * one, but the free ones are always behind him, and other
6090 * threads sneak in behind him and eat them before he can
6091 * get to them, so that while there is always a free one, a
6092 * very unlucky thread might be starved anyway, never able to
6093 * beat the other threads. In reality, this happens so
6094 * infrequently as to be indistinguishable from never.
6096 * Note that we start allocating commands before the SCSI host structure
6097 * is initialized. Since the search starts at bit zero, this
6098 * all works, since we have at least one command structure available;
6099 * however, it means that the structures with the low indexes have to be
6100 * reserved for driver-initiated requests, while requests from the block
6101 * layer will use the higher indexes.
6105 i
= find_next_zero_bit(h
->cmd_pool_bits
,
6106 HPSA_NRESERVED_CMDS
,
6108 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
6112 c
= h
->cmd_pool
+ i
;
6113 refcount
= atomic_inc_return(&c
->refcount
);
6114 if (unlikely(refcount
> 1)) {
6115 cmd_free(h
, c
); /* already in use */
6116 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
6119 set_bit(i
& (BITS_PER_LONG
- 1),
6120 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6121 break; /* it's ours now. */
6123 hpsa_cmd_partial_init(h
, i
, c
);
6128 * This is the complementary operation to cmd_alloc(). Note, however, in some
6129 * corner cases it may also be used to free blocks allocated by
6130 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6131 * the clear-bit is harmless.
6133 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6135 if (atomic_dec_and_test(&c
->refcount
)) {
6138 i
= c
- h
->cmd_pool
;
6139 clear_bit(i
& (BITS_PER_LONG
- 1),
6140 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6144 #ifdef CONFIG_COMPAT
6146 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, unsigned int cmd
,
6149 IOCTL32_Command_struct __user
*arg32
=
6150 (IOCTL32_Command_struct __user
*) arg
;
6151 IOCTL_Command_struct arg64
;
6152 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
6156 memset(&arg64
, 0, sizeof(arg64
));
6158 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6159 sizeof(arg64
.LUN_info
));
6160 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6161 sizeof(arg64
.Request
));
6162 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6163 sizeof(arg64
.error_info
));
6164 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6165 err
|= get_user(cp
, &arg32
->buf
);
6166 arg64
.buf
= compat_ptr(cp
);
6167 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6172 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
6175 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6176 sizeof(arg32
->error_info
));
6182 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6183 unsigned int cmd
, void __user
*arg
)
6185 BIG_IOCTL32_Command_struct __user
*arg32
=
6186 (BIG_IOCTL32_Command_struct __user
*) arg
;
6187 BIG_IOCTL_Command_struct arg64
;
6188 BIG_IOCTL_Command_struct __user
*p
=
6189 compat_alloc_user_space(sizeof(arg64
));
6193 memset(&arg64
, 0, sizeof(arg64
));
6195 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6196 sizeof(arg64
.LUN_info
));
6197 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6198 sizeof(arg64
.Request
));
6199 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6200 sizeof(arg64
.error_info
));
6201 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6202 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
6203 err
|= get_user(cp
, &arg32
->buf
);
6204 arg64
.buf
= compat_ptr(cp
);
6205 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6210 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
6213 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6214 sizeof(arg32
->error_info
));
6220 static int hpsa_compat_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
6224 case CCISS_GETPCIINFO
:
6225 case CCISS_GETINTINFO
:
6226 case CCISS_SETINTINFO
:
6227 case CCISS_GETNODENAME
:
6228 case CCISS_SETNODENAME
:
6229 case CCISS_GETHEARTBEAT
:
6230 case CCISS_GETBUSTYPES
:
6231 case CCISS_GETFIRMVER
:
6232 case CCISS_GETDRIVVER
:
6233 case CCISS_REVALIDVOLS
:
6234 case CCISS_DEREGDISK
:
6235 case CCISS_REGNEWDISK
:
6237 case CCISS_RESCANDISK
:
6238 case CCISS_GETLUNINFO
:
6239 return hpsa_ioctl(dev
, cmd
, arg
);
6241 case CCISS_PASSTHRU32
:
6242 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6243 case CCISS_BIG_PASSTHRU32
:
6244 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6247 return -ENOIOCTLCMD
;
6252 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6254 struct hpsa_pci_info pciinfo
;
6258 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6259 pciinfo
.bus
= h
->pdev
->bus
->number
;
6260 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6261 pciinfo
.board_id
= h
->board_id
;
6262 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6267 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6269 DriverVer_type DriverVer
;
6270 unsigned char vmaj
, vmin
, vsubmin
;
6273 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6274 &vmaj
, &vmin
, &vsubmin
);
6276 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6277 "unrecognized.", HPSA_DRIVER_VERSION
);
6282 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6285 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6290 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6292 IOCTL_Command_struct iocommand
;
6293 struct CommandList
*c
;
6300 if (!capable(CAP_SYS_RAWIO
))
6302 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6304 if ((iocommand
.buf_size
< 1) &&
6305 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
6308 if (iocommand
.buf_size
> 0) {
6309 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
6312 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
6313 /* Copy the data into the buffer we created */
6314 if (copy_from_user(buff
, iocommand
.buf
,
6315 iocommand
.buf_size
)) {
6320 memset(buff
, 0, iocommand
.buf_size
);
6325 /* Fill in the command type */
6326 c
->cmd_type
= CMD_IOCTL_PEND
;
6327 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6328 /* Fill in Command Header */
6329 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6330 if (iocommand
.buf_size
> 0) { /* buffer to fill */
6331 c
->Header
.SGList
= 1;
6332 c
->Header
.SGTotal
= cpu_to_le16(1);
6333 } else { /* no buffers to fill */
6334 c
->Header
.SGList
= 0;
6335 c
->Header
.SGTotal
= cpu_to_le16(0);
6337 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6339 /* Fill in Request block */
6340 memcpy(&c
->Request
, &iocommand
.Request
,
6341 sizeof(c
->Request
));
6343 /* Fill in the scatter gather information */
6344 if (iocommand
.buf_size
> 0) {
6345 temp64
= dma_map_single(&h
->pdev
->dev
, buff
,
6346 iocommand
.buf_size
, DMA_BIDIRECTIONAL
);
6347 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6348 c
->SG
[0].Addr
= cpu_to_le64(0);
6349 c
->SG
[0].Len
= cpu_to_le32(0);
6353 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6354 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6355 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6357 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6359 if (iocommand
.buf_size
> 0)
6360 hpsa_pci_unmap(h
->pdev
, c
, 1, DMA_BIDIRECTIONAL
);
6361 check_ioctl_unit_attention(h
, c
);
6367 /* Copy the error information out */
6368 memcpy(&iocommand
.error_info
, c
->err_info
,
6369 sizeof(iocommand
.error_info
));
6370 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6374 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6375 iocommand
.buf_size
> 0) {
6376 /* Copy the data out of the buffer we created */
6377 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6389 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6391 BIG_IOCTL_Command_struct
*ioc
;
6392 struct CommandList
*c
;
6393 unsigned char **buff
= NULL
;
6394 int *buff_size
= NULL
;
6400 BYTE __user
*data_ptr
;
6404 if (!capable(CAP_SYS_RAWIO
))
6406 ioc
= vmemdup_user(argp
, sizeof(*ioc
));
6408 status
= PTR_ERR(ioc
);
6411 if ((ioc
->buf_size
< 1) &&
6412 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6416 /* Check kmalloc limits using all SGs */
6417 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6421 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6425 buff
= kcalloc(SG_ENTRIES_IN_CMD
, sizeof(char *), GFP_KERNEL
);
6430 buff_size
= kmalloc_array(SG_ENTRIES_IN_CMD
, sizeof(int), GFP_KERNEL
);
6435 left
= ioc
->buf_size
;
6436 data_ptr
= ioc
->buf
;
6438 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6439 buff_size
[sg_used
] = sz
;
6440 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6441 if (buff
[sg_used
] == NULL
) {
6445 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6446 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6451 memset(buff
[sg_used
], 0, sz
);
6458 c
->cmd_type
= CMD_IOCTL_PEND
;
6459 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6460 c
->Header
.ReplyQueue
= 0;
6461 c
->Header
.SGList
= (u8
) sg_used
;
6462 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6463 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6464 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6465 if (ioc
->buf_size
> 0) {
6467 for (i
= 0; i
< sg_used
; i
++) {
6468 temp64
= dma_map_single(&h
->pdev
->dev
, buff
[i
],
6469 buff_size
[i
], DMA_BIDIRECTIONAL
);
6470 if (dma_mapping_error(&h
->pdev
->dev
,
6471 (dma_addr_t
) temp64
)) {
6472 c
->SG
[i
].Addr
= cpu_to_le64(0);
6473 c
->SG
[i
].Len
= cpu_to_le32(0);
6474 hpsa_pci_unmap(h
->pdev
, c
, i
,
6479 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6480 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6481 c
->SG
[i
].Ext
= cpu_to_le32(0);
6483 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6485 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6488 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, DMA_BIDIRECTIONAL
);
6489 check_ioctl_unit_attention(h
, c
);
6495 /* Copy the error information out */
6496 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6497 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6501 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6504 /* Copy the data out of the buffer we created */
6505 BYTE __user
*ptr
= ioc
->buf
;
6506 for (i
= 0; i
< sg_used
; i
++) {
6507 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6511 ptr
+= buff_size
[i
];
6521 for (i
= 0; i
< sg_used
; i
++)
6530 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6531 struct CommandList
*c
)
6533 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6534 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6535 (void) check_for_unit_attention(h
, c
);
6541 static int hpsa_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
6544 struct ctlr_info
*h
;
6545 void __user
*argp
= (void __user
*)arg
;
6548 h
= sdev_to_hba(dev
);
6551 case CCISS_DEREGDISK
:
6552 case CCISS_REGNEWDISK
:
6554 hpsa_scan_start(h
->scsi_host
);
6556 case CCISS_GETPCIINFO
:
6557 return hpsa_getpciinfo_ioctl(h
, argp
);
6558 case CCISS_GETDRIVVER
:
6559 return hpsa_getdrivver_ioctl(h
, argp
);
6560 case CCISS_PASSTHRU
:
6561 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6563 rc
= hpsa_passthru_ioctl(h
, argp
);
6564 atomic_inc(&h
->passthru_cmds_avail
);
6566 case CCISS_BIG_PASSTHRU
:
6567 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6569 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6570 atomic_inc(&h
->passthru_cmds_avail
);
6577 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6580 struct CommandList
*c
;
6584 /* fill_cmd can't fail here, no data buffer to map */
6585 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6586 RAID_CTLR_LUNID
, TYPE_MSG
);
6587 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6589 enqueue_cmd_and_start_io(h
, c
);
6590 /* Don't wait for completion, the reset won't complete. Don't free
6591 * the command either. This is the last command we will send before
6592 * re-initializing everything, so it doesn't matter and won't leak.
6597 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6598 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6601 enum dma_data_direction dir
= DMA_NONE
;
6603 c
->cmd_type
= CMD_IOCTL_PEND
;
6604 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6605 c
->Header
.ReplyQueue
= 0;
6606 if (buff
!= NULL
&& size
> 0) {
6607 c
->Header
.SGList
= 1;
6608 c
->Header
.SGTotal
= cpu_to_le16(1);
6610 c
->Header
.SGList
= 0;
6611 c
->Header
.SGTotal
= cpu_to_le16(0);
6613 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6615 if (cmd_type
== TYPE_CMD
) {
6618 /* are we trying to read a vital product page */
6619 if (page_code
& VPD_PAGE
) {
6620 c
->Request
.CDB
[1] = 0x01;
6621 c
->Request
.CDB
[2] = (page_code
& 0xff);
6623 c
->Request
.CDBLen
= 6;
6624 c
->Request
.type_attr_dir
=
6625 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6626 c
->Request
.Timeout
= 0;
6627 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6628 c
->Request
.CDB
[4] = size
& 0xFF;
6630 case RECEIVE_DIAGNOSTIC
:
6631 c
->Request
.CDBLen
= 6;
6632 c
->Request
.type_attr_dir
=
6633 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6634 c
->Request
.Timeout
= 0;
6635 c
->Request
.CDB
[0] = cmd
;
6636 c
->Request
.CDB
[1] = 1;
6637 c
->Request
.CDB
[2] = 1;
6638 c
->Request
.CDB
[3] = (size
>> 8) & 0xFF;
6639 c
->Request
.CDB
[4] = size
& 0xFF;
6641 case HPSA_REPORT_LOG
:
6642 case HPSA_REPORT_PHYS
:
6643 /* Talking to controller so It's a physical command
6644 mode = 00 target = 0. Nothing to write.
6646 c
->Request
.CDBLen
= 12;
6647 c
->Request
.type_attr_dir
=
6648 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6649 c
->Request
.Timeout
= 0;
6650 c
->Request
.CDB
[0] = cmd
;
6651 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6652 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6653 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6654 c
->Request
.CDB
[9] = size
& 0xFF;
6656 case BMIC_SENSE_DIAG_OPTIONS
:
6657 c
->Request
.CDBLen
= 16;
6658 c
->Request
.type_attr_dir
=
6659 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6660 c
->Request
.Timeout
= 0;
6661 /* Spec says this should be BMIC_WRITE */
6662 c
->Request
.CDB
[0] = BMIC_READ
;
6663 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6665 case BMIC_SET_DIAG_OPTIONS
:
6666 c
->Request
.CDBLen
= 16;
6667 c
->Request
.type_attr_dir
=
6668 TYPE_ATTR_DIR(cmd_type
,
6669 ATTR_SIMPLE
, XFER_WRITE
);
6670 c
->Request
.Timeout
= 0;
6671 c
->Request
.CDB
[0] = BMIC_WRITE
;
6672 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6674 case HPSA_CACHE_FLUSH
:
6675 c
->Request
.CDBLen
= 12;
6676 c
->Request
.type_attr_dir
=
6677 TYPE_ATTR_DIR(cmd_type
,
6678 ATTR_SIMPLE
, XFER_WRITE
);
6679 c
->Request
.Timeout
= 0;
6680 c
->Request
.CDB
[0] = BMIC_WRITE
;
6681 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6682 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6683 c
->Request
.CDB
[8] = size
& 0xFF;
6685 case TEST_UNIT_READY
:
6686 c
->Request
.CDBLen
= 6;
6687 c
->Request
.type_attr_dir
=
6688 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6689 c
->Request
.Timeout
= 0;
6691 case HPSA_GET_RAID_MAP
:
6692 c
->Request
.CDBLen
= 12;
6693 c
->Request
.type_attr_dir
=
6694 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6695 c
->Request
.Timeout
= 0;
6696 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6697 c
->Request
.CDB
[1] = cmd
;
6698 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6699 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6700 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6701 c
->Request
.CDB
[9] = size
& 0xFF;
6703 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6704 c
->Request
.CDBLen
= 10;
6705 c
->Request
.type_attr_dir
=
6706 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6707 c
->Request
.Timeout
= 0;
6708 c
->Request
.CDB
[0] = BMIC_READ
;
6709 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6710 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6711 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6713 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6714 c
->Request
.CDBLen
= 10;
6715 c
->Request
.type_attr_dir
=
6716 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6717 c
->Request
.Timeout
= 0;
6718 c
->Request
.CDB
[0] = BMIC_READ
;
6719 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6720 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6721 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6723 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
6724 c
->Request
.CDBLen
= 10;
6725 c
->Request
.type_attr_dir
=
6726 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6727 c
->Request
.Timeout
= 0;
6728 c
->Request
.CDB
[0] = BMIC_READ
;
6729 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
6730 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6731 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6733 case BMIC_SENSE_STORAGE_BOX_PARAMS
:
6734 c
->Request
.CDBLen
= 10;
6735 c
->Request
.type_attr_dir
=
6736 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6737 c
->Request
.Timeout
= 0;
6738 c
->Request
.CDB
[0] = BMIC_READ
;
6739 c
->Request
.CDB
[6] = BMIC_SENSE_STORAGE_BOX_PARAMS
;
6740 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6741 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6743 case BMIC_IDENTIFY_CONTROLLER
:
6744 c
->Request
.CDBLen
= 10;
6745 c
->Request
.type_attr_dir
=
6746 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6747 c
->Request
.Timeout
= 0;
6748 c
->Request
.CDB
[0] = BMIC_READ
;
6749 c
->Request
.CDB
[1] = 0;
6750 c
->Request
.CDB
[2] = 0;
6751 c
->Request
.CDB
[3] = 0;
6752 c
->Request
.CDB
[4] = 0;
6753 c
->Request
.CDB
[5] = 0;
6754 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
6755 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6756 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6757 c
->Request
.CDB
[9] = 0;
6760 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6763 } else if (cmd_type
== TYPE_MSG
) {
6766 case HPSA_PHYS_TARGET_RESET
:
6767 c
->Request
.CDBLen
= 16;
6768 c
->Request
.type_attr_dir
=
6769 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6770 c
->Request
.Timeout
= 0; /* Don't time out */
6771 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6772 c
->Request
.CDB
[0] = HPSA_RESET
;
6773 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
6774 /* Physical target reset needs no control bytes 4-7*/
6775 c
->Request
.CDB
[4] = 0x00;
6776 c
->Request
.CDB
[5] = 0x00;
6777 c
->Request
.CDB
[6] = 0x00;
6778 c
->Request
.CDB
[7] = 0x00;
6780 case HPSA_DEVICE_RESET_MSG
:
6781 c
->Request
.CDBLen
= 16;
6782 c
->Request
.type_attr_dir
=
6783 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6784 c
->Request
.Timeout
= 0; /* Don't time out */
6785 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6786 c
->Request
.CDB
[0] = cmd
;
6787 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6788 /* If bytes 4-7 are zero, it means reset the */
6790 c
->Request
.CDB
[4] = 0x00;
6791 c
->Request
.CDB
[5] = 0x00;
6792 c
->Request
.CDB
[6] = 0x00;
6793 c
->Request
.CDB
[7] = 0x00;
6796 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6801 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6805 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6807 dir
= DMA_FROM_DEVICE
;
6810 dir
= DMA_TO_DEVICE
;
6816 dir
= DMA_BIDIRECTIONAL
;
6818 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, dir
))
6824 * Map (physical) PCI mem into (virtual) kernel space
6826 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6828 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6829 ulong page_offs
= ((ulong
) base
) - page_base
;
6830 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
6833 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6836 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6838 return h
->access
.command_completed(h
, q
);
6841 static inline bool interrupt_pending(struct ctlr_info
*h
)
6843 return h
->access
.intr_pending(h
);
6846 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6848 return (h
->access
.intr_pending(h
) == 0) ||
6849 (h
->interrupts_enabled
== 0);
6852 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6855 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6856 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6862 static inline void finish_cmd(struct CommandList
*c
)
6864 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6865 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6866 || c
->cmd_type
== CMD_IOACCEL2
))
6867 complete_scsi_command(c
);
6868 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6869 complete(c
->waiting
);
6872 /* process completion of an indexed ("direct lookup") command */
6873 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6877 struct CommandList
*c
;
6879 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6880 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6881 c
= h
->cmd_pool
+ tag_index
;
6886 /* Some controllers, like p400, will give us one interrupt
6887 * after a soft reset, even if we turned interrupts off.
6888 * Only need to check for this in the hpsa_xxx_discard_completions
6891 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6893 if (likely(!reset_devices
))
6896 if (likely(h
->interrupts_enabled
))
6899 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6900 "(known firmware bug.) Ignoring.\n");
6906 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6907 * Relies on (h-q[x] == x) being true for x such that
6908 * 0 <= x < MAX_REPLY_QUEUES.
6910 static struct ctlr_info
*queue_to_hba(u8
*queue
)
6912 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
6915 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
6917 struct ctlr_info
*h
= queue_to_hba(queue
);
6918 u8 q
= *(u8
*) queue
;
6921 if (ignore_bogus_interrupt(h
))
6924 if (interrupt_not_for_us(h
))
6926 h
->last_intr_timestamp
= get_jiffies_64();
6927 while (interrupt_pending(h
)) {
6928 raw_tag
= get_next_completion(h
, q
);
6929 while (raw_tag
!= FIFO_EMPTY
)
6930 raw_tag
= next_command(h
, q
);
6935 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
6937 struct ctlr_info
*h
= queue_to_hba(queue
);
6939 u8 q
= *(u8
*) queue
;
6941 if (ignore_bogus_interrupt(h
))
6944 h
->last_intr_timestamp
= get_jiffies_64();
6945 raw_tag
= get_next_completion(h
, q
);
6946 while (raw_tag
!= FIFO_EMPTY
)
6947 raw_tag
= next_command(h
, q
);
6951 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
6953 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
6955 u8 q
= *(u8
*) queue
;
6957 if (interrupt_not_for_us(h
))
6959 h
->last_intr_timestamp
= get_jiffies_64();
6960 while (interrupt_pending(h
)) {
6961 raw_tag
= get_next_completion(h
, q
);
6962 while (raw_tag
!= FIFO_EMPTY
) {
6963 process_indexed_cmd(h
, raw_tag
);
6964 raw_tag
= next_command(h
, q
);
6970 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
6972 struct ctlr_info
*h
= queue_to_hba(queue
);
6974 u8 q
= *(u8
*) queue
;
6976 h
->last_intr_timestamp
= get_jiffies_64();
6977 raw_tag
= get_next_completion(h
, q
);
6978 while (raw_tag
!= FIFO_EMPTY
) {
6979 process_indexed_cmd(h
, raw_tag
);
6980 raw_tag
= next_command(h
, q
);
6985 /* Send a message CDB to the firmware. Careful, this only works
6986 * in simple mode, not performant mode due to the tag lookup.
6987 * We only ever use this immediately after a controller reset.
6989 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
6993 struct CommandListHeader CommandHeader
;
6994 struct RequestBlock Request
;
6995 struct ErrDescriptor ErrorDescriptor
;
6997 struct Command
*cmd
;
6998 static const size_t cmd_sz
= sizeof(*cmd
) +
6999 sizeof(cmd
->ErrorDescriptor
);
7003 void __iomem
*vaddr
;
7006 vaddr
= pci_ioremap_bar(pdev
, 0);
7010 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7011 * CCISS commands, so they must be allocated from the lower 4GiB of
7014 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
7020 cmd
= dma_alloc_coherent(&pdev
->dev
, cmd_sz
, &paddr64
, GFP_KERNEL
);
7026 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7027 * although there's no guarantee, we assume that the address is at
7028 * least 4-byte aligned (most likely, it's page-aligned).
7030 paddr32
= cpu_to_le32(paddr64
);
7032 cmd
->CommandHeader
.ReplyQueue
= 0;
7033 cmd
->CommandHeader
.SGList
= 0;
7034 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
7035 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
7036 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
7038 cmd
->Request
.CDBLen
= 16;
7039 cmd
->Request
.type_attr_dir
=
7040 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
7041 cmd
->Request
.Timeout
= 0; /* Don't time out */
7042 cmd
->Request
.CDB
[0] = opcode
;
7043 cmd
->Request
.CDB
[1] = type
;
7044 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
7045 cmd
->ErrorDescriptor
.Addr
=
7046 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
7047 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
7049 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
7051 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
7052 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
7053 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
7055 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
7060 /* we leak the DMA buffer here ... no choice since the controller could
7061 * still complete the command.
7063 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
7064 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
7069 dma_free_coherent(&pdev
->dev
, cmd_sz
, cmd
, paddr64
);
7071 if (tag
& HPSA_ERROR_BIT
) {
7072 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
7077 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
7082 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7084 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
7085 void __iomem
*vaddr
, u32 use_doorbell
)
7089 /* For everything after the P600, the PCI power state method
7090 * of resetting the controller doesn't work, so we have this
7091 * other way using the doorbell register.
7093 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
7094 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
7096 /* PMC hardware guys tell us we need a 10 second delay after
7097 * doorbell reset and before any attempt to talk to the board
7098 * at all to ensure that this actually works and doesn't fall
7099 * over in some weird corner cases.
7102 } else { /* Try to do it the PCI power state way */
7104 /* Quoting from the Open CISS Specification: "The Power
7105 * Management Control/Status Register (CSR) controls the power
7106 * state of the device. The normal operating state is D0,
7107 * CSR=00h. The software off state is D3, CSR=03h. To reset
7108 * the controller, place the interface device in D3 then to D0,
7109 * this causes a secondary PCI reset which will reset the
7114 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
7116 /* enter the D3hot power management state */
7117 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
7123 /* enter the D0 power management state */
7124 rc
= pci_set_power_state(pdev
, PCI_D0
);
7129 * The P600 requires a small delay when changing states.
7130 * Otherwise we may think the board did not reset and we bail.
7131 * This for kdump only and is particular to the P600.
7138 static void init_driver_version(char *driver_version
, int len
)
7140 memset(driver_version
, 0, len
);
7141 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7144 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7146 char *driver_version
;
7147 int i
, size
= sizeof(cfgtable
->driver_version
);
7149 driver_version
= kmalloc(size
, GFP_KERNEL
);
7150 if (!driver_version
)
7153 init_driver_version(driver_version
, size
);
7154 for (i
= 0; i
< size
; i
++)
7155 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7156 kfree(driver_version
);
7160 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7161 unsigned char *driver_ver
)
7165 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7166 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7169 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7172 char *driver_ver
, *old_driver_ver
;
7173 int rc
, size
= sizeof(cfgtable
->driver_version
);
7175 old_driver_ver
= kmalloc_array(2, size
, GFP_KERNEL
);
7176 if (!old_driver_ver
)
7178 driver_ver
= old_driver_ver
+ size
;
7180 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7181 * should have been changed, otherwise we know the reset failed.
7183 init_driver_version(old_driver_ver
, size
);
7184 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7185 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7186 kfree(old_driver_ver
);
7189 /* This does a hard reset of the controller using PCI power management
7190 * states or the using the doorbell register.
7192 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7196 u64 cfg_base_addr_index
;
7197 void __iomem
*vaddr
;
7198 unsigned long paddr
;
7199 u32 misc_fw_support
;
7201 struct CfgTable __iomem
*cfgtable
;
7203 u16 command_register
;
7205 /* For controllers as old as the P600, this is very nearly
7208 * pci_save_state(pci_dev);
7209 * pci_set_power_state(pci_dev, PCI_D3hot);
7210 * pci_set_power_state(pci_dev, PCI_D0);
7211 * pci_restore_state(pci_dev);
7213 * For controllers newer than the P600, the pci power state
7214 * method of resetting doesn't work so we have another way
7215 * using the doorbell register.
7218 if (!ctlr_is_resettable(board_id
)) {
7219 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7223 /* if controller is soft- but not hard resettable... */
7224 if (!ctlr_is_hard_resettable(board_id
))
7225 return -ENOTSUPP
; /* try soft reset later. */
7227 /* Save the PCI command register */
7228 pci_read_config_word(pdev
, 4, &command_register
);
7229 pci_save_state(pdev
);
7231 /* find the first memory BAR, so we can find the cfg table */
7232 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7235 vaddr
= remap_pci_mem(paddr
, 0x250);
7239 /* find cfgtable in order to check if reset via doorbell is supported */
7240 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7241 &cfg_base_addr_index
, &cfg_offset
);
7244 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7245 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7250 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7252 goto unmap_cfgtable
;
7254 /* If reset via doorbell register is supported, use that.
7255 * There are two such methods. Favor the newest method.
7257 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7258 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7260 use_doorbell
= DOORBELL_CTLR_RESET2
;
7262 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7264 dev_warn(&pdev
->dev
,
7265 "Soft reset not supported. Firmware update is required.\n");
7266 rc
= -ENOTSUPP
; /* try soft reset */
7267 goto unmap_cfgtable
;
7271 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7273 goto unmap_cfgtable
;
7275 pci_restore_state(pdev
);
7276 pci_write_config_word(pdev
, 4, command_register
);
7278 /* Some devices (notably the HP Smart Array 5i Controller)
7279 need a little pause here */
7280 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7282 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7284 dev_warn(&pdev
->dev
,
7285 "Failed waiting for board to become ready after hard reset\n");
7286 goto unmap_cfgtable
;
7289 rc
= controller_reset_failed(vaddr
);
7291 goto unmap_cfgtable
;
7293 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7294 "controller. Will try soft reset.\n");
7297 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7309 * We cannot read the structure directly, for portability we must use
7311 * This is for debug only.
7313 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7319 dev_info(dev
, "Controller Configuration information\n");
7320 dev_info(dev
, "------------------------------------\n");
7321 for (i
= 0; i
< 4; i
++)
7322 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7323 temp_name
[4] = '\0';
7324 dev_info(dev
, " Signature = %s\n", temp_name
);
7325 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7326 dev_info(dev
, " Transport methods supported = 0x%x\n",
7327 readl(&(tb
->TransportSupport
)));
7328 dev_info(dev
, " Transport methods active = 0x%x\n",
7329 readl(&(tb
->TransportActive
)));
7330 dev_info(dev
, " Requested transport Method = 0x%x\n",
7331 readl(&(tb
->HostWrite
.TransportRequest
)));
7332 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7333 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7334 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7335 readl(&(tb
->HostWrite
.CoalIntCount
)));
7336 dev_info(dev
, " Max outstanding commands = %d\n",
7337 readl(&(tb
->CmdsOutMax
)));
7338 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7339 for (i
= 0; i
< 16; i
++)
7340 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7341 temp_name
[16] = '\0';
7342 dev_info(dev
, " Server Name = %s\n", temp_name
);
7343 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7344 readl(&(tb
->HeartBeat
)));
7345 #endif /* HPSA_DEBUG */
7348 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7350 int i
, offset
, mem_type
, bar_type
;
7352 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7355 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7356 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7357 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7360 mem_type
= pci_resource_flags(pdev
, i
) &
7361 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7363 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7364 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7365 offset
+= 4; /* 32 bit */
7367 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7370 default: /* reserved in PCI 2.2 */
7371 dev_warn(&pdev
->dev
,
7372 "base address is invalid\n");
7377 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7383 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7385 pci_free_irq_vectors(h
->pdev
);
7386 h
->msix_vectors
= 0;
7389 static void hpsa_setup_reply_map(struct ctlr_info
*h
)
7391 const struct cpumask
*mask
;
7392 unsigned int queue
, cpu
;
7394 for (queue
= 0; queue
< h
->msix_vectors
; queue
++) {
7395 mask
= pci_irq_get_affinity(h
->pdev
, queue
);
7399 for_each_cpu(cpu
, mask
)
7400 h
->reply_map
[cpu
] = queue
;
7405 for_each_possible_cpu(cpu
)
7406 h
->reply_map
[cpu
] = 0;
7409 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7410 * controllers that are capable. If not, we use legacy INTx mode.
7412 static int hpsa_interrupt_mode(struct ctlr_info
*h
)
7414 unsigned int flags
= PCI_IRQ_LEGACY
;
7417 /* Some boards advertise MSI but don't really support it */
7418 switch (h
->board_id
) {
7425 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, MAX_REPLY_QUEUES
,
7426 PCI_IRQ_MSIX
| PCI_IRQ_AFFINITY
);
7428 h
->msix_vectors
= ret
;
7432 flags
|= PCI_IRQ_MSI
;
7436 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, 1, flags
);
7442 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
7446 u32 subsystem_vendor_id
, subsystem_device_id
;
7448 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7449 subsystem_device_id
= pdev
->subsystem_device
;
7450 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7451 subsystem_vendor_id
;
7454 *legacy_board
= false;
7455 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7456 if (*board_id
== products
[i
].board_id
) {
7457 if (products
[i
].access
!= &SA5A_access
&&
7458 products
[i
].access
!= &SA5B_access
)
7460 dev_warn(&pdev
->dev
,
7461 "legacy board ID: 0x%08x\n",
7464 *legacy_board
= true;
7468 dev_warn(&pdev
->dev
, "unrecognized board ID: 0x%08x\n", *board_id
);
7470 *legacy_board
= true;
7471 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7474 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7475 unsigned long *memory_bar
)
7479 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7480 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7481 /* addressing mode bits already removed */
7482 *memory_bar
= pci_resource_start(pdev
, i
);
7483 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7487 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7491 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7497 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7499 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7501 for (i
= 0; i
< iterations
; i
++) {
7502 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7503 if (wait_for_ready
) {
7504 if (scratchpad
== HPSA_FIRMWARE_READY
)
7507 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7510 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7512 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7516 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7517 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7520 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7521 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7522 *cfg_base_addr
&= (u32
) 0x0000ffff;
7523 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7524 if (*cfg_base_addr_index
== -1) {
7525 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7531 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7533 if (h
->transtable
) {
7534 iounmap(h
->transtable
);
7535 h
->transtable
= NULL
;
7538 iounmap(h
->cfgtable
);
7543 /* Find and map CISS config table and transfer table
7544 + * several items must be unmapped (freed) later
7546 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7550 u64 cfg_base_addr_index
;
7554 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7555 &cfg_base_addr_index
, &cfg_offset
);
7558 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7559 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7561 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7564 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7567 /* Find performant mode table. */
7568 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7569 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7570 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7571 sizeof(*h
->transtable
));
7572 if (!h
->transtable
) {
7573 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7574 hpsa_free_cfgtables(h
);
7580 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7582 #define MIN_MAX_COMMANDS 16
7583 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7585 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7587 /* Limit commands in memory limited kdump scenario. */
7588 if (reset_devices
&& h
->max_commands
> 32)
7589 h
->max_commands
= 32;
7591 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7592 dev_warn(&h
->pdev
->dev
,
7593 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7596 h
->max_commands
= MIN_MAX_COMMANDS
;
7600 /* If the controller reports that the total max sg entries is greater than 512,
7601 * then we know that chained SG blocks work. (Original smart arrays did not
7602 * support chained SG blocks and would return zero for max sg entries.)
7604 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7606 return h
->maxsgentries
> 512;
7609 /* Interrogate the hardware for some limits:
7610 * max commands, max SG elements without chaining, and with chaining,
7611 * SG chain block size, etc.
7613 static void hpsa_find_board_params(struct ctlr_info
*h
)
7615 hpsa_get_max_perf_mode_cmds(h
);
7616 h
->nr_cmds
= h
->max_commands
;
7617 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7618 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7619 if (hpsa_supports_chained_sg_blocks(h
)) {
7620 /* Limit in-command s/g elements to 32 save dma'able memory. */
7621 h
->max_cmd_sg_entries
= 32;
7622 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7623 h
->maxsgentries
--; /* save one for chain pointer */
7626 * Original smart arrays supported at most 31 s/g entries
7627 * embedded inline in the command (trying to use more
7628 * would lock up the controller)
7630 h
->max_cmd_sg_entries
= 31;
7631 h
->maxsgentries
= 31; /* default to traditional values */
7635 /* Find out what task management functions are supported and cache */
7636 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7637 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7638 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7639 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7640 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7641 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7642 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7645 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7647 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7648 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7654 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7658 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7659 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7661 driver_support
|= ENABLE_SCSI_PREFETCH
;
7663 driver_support
|= ENABLE_UNIT_ATTN
;
7664 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7667 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7668 * in a prefetch beyond physical memory.
7670 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7674 if (h
->board_id
!= 0x3225103C)
7676 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7677 dma_prefetch
|= 0x8000;
7678 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7681 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7685 unsigned long flags
;
7686 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7687 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7688 spin_lock_irqsave(&h
->lock
, flags
);
7689 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7690 spin_unlock_irqrestore(&h
->lock
, flags
);
7691 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7693 /* delay and try again */
7694 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7701 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7705 unsigned long flags
;
7707 /* under certain very rare conditions, this can take awhile.
7708 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7709 * as we enter this code.)
7711 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7712 if (h
->remove_in_progress
)
7714 spin_lock_irqsave(&h
->lock
, flags
);
7715 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7716 spin_unlock_irqrestore(&h
->lock
, flags
);
7717 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7719 /* delay and try again */
7720 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7727 /* return -ENODEV or other reason on error, 0 on success */
7728 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7732 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7733 if (!(trans_support
& SIMPLE_MODE
))
7736 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7738 /* Update the field, and then ring the doorbell */
7739 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7740 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7741 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7742 if (hpsa_wait_for_mode_change_ack(h
))
7744 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7745 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7747 h
->transMethod
= CFGTBL_Trans_Simple
;
7750 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7754 /* free items allocated or mapped by hpsa_pci_init */
7755 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7757 hpsa_free_cfgtables(h
); /* pci_init 4 */
7758 iounmap(h
->vaddr
); /* pci_init 3 */
7760 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7762 * call pci_disable_device before pci_release_regions per
7763 * Documentation/PCI/pci.txt
7765 pci_disable_device(h
->pdev
); /* pci_init 1 */
7766 pci_release_regions(h
->pdev
); /* pci_init 2 */
7769 /* several items must be freed later */
7770 static int hpsa_pci_init(struct ctlr_info
*h
)
7772 int prod_index
, err
;
7775 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
, &legacy_board
);
7778 h
->product_name
= products
[prod_index
].product_name
;
7779 h
->access
= *(products
[prod_index
].access
);
7780 h
->legacy_board
= legacy_board
;
7781 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7782 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7784 err
= pci_enable_device(h
->pdev
);
7786 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7787 pci_disable_device(h
->pdev
);
7791 err
= pci_request_regions(h
->pdev
, HPSA
);
7793 dev_err(&h
->pdev
->dev
,
7794 "failed to obtain PCI resources\n");
7795 pci_disable_device(h
->pdev
);
7799 pci_set_master(h
->pdev
);
7801 err
= hpsa_interrupt_mode(h
);
7805 /* setup mapping between CPU and reply queue */
7806 hpsa_setup_reply_map(h
);
7808 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7810 goto clean2
; /* intmode+region, pci */
7811 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7813 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7815 goto clean2
; /* intmode+region, pci */
7817 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7819 goto clean3
; /* vaddr, intmode+region, pci */
7820 err
= hpsa_find_cfgtables(h
);
7822 goto clean3
; /* vaddr, intmode+region, pci */
7823 hpsa_find_board_params(h
);
7825 if (!hpsa_CISS_signature_present(h
)) {
7827 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7829 hpsa_set_driver_support_bits(h
);
7830 hpsa_p600_dma_prefetch_quirk(h
);
7831 err
= hpsa_enter_simple_mode(h
);
7833 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7836 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7837 hpsa_free_cfgtables(h
);
7838 clean3
: /* vaddr, intmode+region, pci */
7841 clean2
: /* intmode+region, pci */
7842 hpsa_disable_interrupt_mode(h
);
7845 * call pci_disable_device before pci_release_regions per
7846 * Documentation/PCI/pci.txt
7848 pci_disable_device(h
->pdev
);
7849 pci_release_regions(h
->pdev
);
7853 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7857 #define HBA_INQUIRY_BYTE_COUNT 64
7858 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7859 if (!h
->hba_inquiry_data
)
7861 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7862 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7864 kfree(h
->hba_inquiry_data
);
7865 h
->hba_inquiry_data
= NULL
;
7869 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7872 void __iomem
*vaddr
;
7877 /* kdump kernel is loading, we don't know in which state is
7878 * the pci interface. The dev->enable_cnt is equal zero
7879 * so we call enable+disable, wait a while and switch it on.
7881 rc
= pci_enable_device(pdev
);
7883 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7886 pci_disable_device(pdev
);
7887 msleep(260); /* a randomly chosen number */
7888 rc
= pci_enable_device(pdev
);
7890 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7894 pci_set_master(pdev
);
7896 vaddr
= pci_ioremap_bar(pdev
, 0);
7897 if (vaddr
== NULL
) {
7901 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
7904 /* Reset the controller with a PCI power-cycle or via doorbell */
7905 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
7907 /* -ENOTSUPP here means we cannot reset the controller
7908 * but it's already (and still) up and running in
7909 * "performant mode". Or, it might be 640x, which can't reset
7910 * due to concerns about shared bbwc between 6402/6404 pair.
7915 /* Now try to get the controller to respond to a no-op */
7916 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
7917 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
7918 if (hpsa_noop(pdev
) == 0)
7921 dev_warn(&pdev
->dev
, "no-op failed%s\n",
7922 (i
< 11 ? "; re-trying" : ""));
7927 pci_disable_device(pdev
);
7931 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
7933 kfree(h
->cmd_pool_bits
);
7934 h
->cmd_pool_bits
= NULL
;
7936 dma_free_coherent(&h
->pdev
->dev
,
7937 h
->nr_cmds
* sizeof(struct CommandList
),
7939 h
->cmd_pool_dhandle
);
7941 h
->cmd_pool_dhandle
= 0;
7943 if (h
->errinfo_pool
) {
7944 dma_free_coherent(&h
->pdev
->dev
,
7945 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7947 h
->errinfo_pool_dhandle
);
7948 h
->errinfo_pool
= NULL
;
7949 h
->errinfo_pool_dhandle
= 0;
7953 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
7955 h
->cmd_pool_bits
= kcalloc(DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
),
7956 sizeof(unsigned long),
7958 h
->cmd_pool
= dma_alloc_coherent(&h
->pdev
->dev
,
7959 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
7960 &h
->cmd_pool_dhandle
, GFP_KERNEL
);
7961 h
->errinfo_pool
= dma_alloc_coherent(&h
->pdev
->dev
,
7962 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
7963 &h
->errinfo_pool_dhandle
, GFP_KERNEL
);
7964 if ((h
->cmd_pool_bits
== NULL
)
7965 || (h
->cmd_pool
== NULL
)
7966 || (h
->errinfo_pool
== NULL
)) {
7967 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
7970 hpsa_preinitialize_commands(h
);
7973 hpsa_free_cmd_pool(h
);
7977 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7978 static void hpsa_free_irqs(struct ctlr_info
*h
)
7982 if (!h
->msix_vectors
|| h
->intr_mode
!= PERF_MODE_INT
) {
7983 /* Single reply queue, only one irq to free */
7984 free_irq(pci_irq_vector(h
->pdev
, 0), &h
->q
[h
->intr_mode
]);
7985 h
->q
[h
->intr_mode
] = 0;
7989 for (i
= 0; i
< h
->msix_vectors
; i
++) {
7990 free_irq(pci_irq_vector(h
->pdev
, i
), &h
->q
[i
]);
7993 for (; i
< MAX_REPLY_QUEUES
; i
++)
7997 /* returns 0 on success; cleans up and returns -Enn on error */
7998 static int hpsa_request_irqs(struct ctlr_info
*h
,
7999 irqreturn_t (*msixhandler
)(int, void *),
8000 irqreturn_t (*intxhandler
)(int, void *))
8005 * initialize h->q[x] = x so that interrupt handlers know which
8008 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
8011 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vectors
> 0) {
8012 /* If performant mode and MSI-X, use multiple reply queues */
8013 for (i
= 0; i
< h
->msix_vectors
; i
++) {
8014 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
8015 rc
= request_irq(pci_irq_vector(h
->pdev
, i
), msixhandler
,
8021 dev_err(&h
->pdev
->dev
,
8022 "failed to get irq %d for %s\n",
8023 pci_irq_vector(h
->pdev
, i
), h
->devname
);
8024 for (j
= 0; j
< i
; j
++) {
8025 free_irq(pci_irq_vector(h
->pdev
, j
), &h
->q
[j
]);
8028 for (; j
< MAX_REPLY_QUEUES
; j
++)
8034 /* Use single reply pool */
8035 if (h
->msix_vectors
> 0 || h
->pdev
->msi_enabled
) {
8036 sprintf(h
->intrname
[0], "%s-msi%s", h
->devname
,
8037 h
->msix_vectors
? "x" : "");
8038 rc
= request_irq(pci_irq_vector(h
->pdev
, 0),
8041 &h
->q
[h
->intr_mode
]);
8043 sprintf(h
->intrname
[h
->intr_mode
],
8044 "%s-intx", h
->devname
);
8045 rc
= request_irq(pci_irq_vector(h
->pdev
, 0),
8046 intxhandler
, IRQF_SHARED
,
8048 &h
->q
[h
->intr_mode
]);
8052 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
8053 pci_irq_vector(h
->pdev
, 0), h
->devname
);
8060 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
8063 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
8065 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
8066 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
8068 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
8072 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
8073 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8075 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
8076 "after soft reset.\n");
8083 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
8087 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8088 if (!h
->reply_queue
[i
].head
)
8090 dma_free_coherent(&h
->pdev
->dev
,
8091 h
->reply_queue_size
,
8092 h
->reply_queue
[i
].head
,
8093 h
->reply_queue
[i
].busaddr
);
8094 h
->reply_queue
[i
].head
= NULL
;
8095 h
->reply_queue
[i
].busaddr
= 0;
8097 h
->reply_queue_size
= 0;
8100 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
8102 hpsa_free_performant_mode(h
); /* init_one 7 */
8103 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8104 hpsa_free_cmd_pool(h
); /* init_one 5 */
8105 hpsa_free_irqs(h
); /* init_one 4 */
8106 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8107 h
->scsi_host
= NULL
; /* init_one 3 */
8108 hpsa_free_pci_init(h
); /* init_one 2_5 */
8109 free_percpu(h
->lockup_detected
); /* init_one 2 */
8110 h
->lockup_detected
= NULL
; /* init_one 2 */
8111 if (h
->resubmit_wq
) {
8112 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
8113 h
->resubmit_wq
= NULL
;
8115 if (h
->rescan_ctlr_wq
) {
8116 destroy_workqueue(h
->rescan_ctlr_wq
);
8117 h
->rescan_ctlr_wq
= NULL
;
8119 kfree(h
); /* init_one 1 */
8122 /* Called when controller lockup detected. */
8123 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
8126 struct CommandList
*c
;
8129 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
8130 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8131 c
= h
->cmd_pool
+ i
;
8132 refcount
= atomic_inc_return(&c
->refcount
);
8134 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
8136 atomic_dec(&h
->commands_outstanding
);
8141 dev_warn(&h
->pdev
->dev
,
8142 "failed %d commands in fail_all\n", failcount
);
8145 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
8149 for_each_online_cpu(cpu
) {
8150 u32
*lockup_detected
;
8151 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
8152 *lockup_detected
= value
;
8154 wmb(); /* be sure the per-cpu variables are out to memory */
8157 static void controller_lockup_detected(struct ctlr_info
*h
)
8159 unsigned long flags
;
8160 u32 lockup_detected
;
8162 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8163 spin_lock_irqsave(&h
->lock
, flags
);
8164 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
8165 if (!lockup_detected
) {
8166 /* no heartbeat, but controller gave us a zero. */
8167 dev_warn(&h
->pdev
->dev
,
8168 "lockup detected after %d but scratchpad register is zero\n",
8169 h
->heartbeat_sample_interval
/ HZ
);
8170 lockup_detected
= 0xffffffff;
8172 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8173 spin_unlock_irqrestore(&h
->lock
, flags
);
8174 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8175 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8176 if (lockup_detected
== 0xffff0000) {
8177 dev_warn(&h
->pdev
->dev
, "Telling controller to do a CHKPT\n");
8178 writel(DOORBELL_GENERATE_CHKPT
, h
->vaddr
+ SA5_DOORBELL
);
8180 pci_disable_device(h
->pdev
);
8181 fail_all_outstanding_cmds(h
);
8184 static int detect_controller_lockup(struct ctlr_info
*h
)
8188 unsigned long flags
;
8190 now
= get_jiffies_64();
8191 /* If we've received an interrupt recently, we're ok. */
8192 if (time_after64(h
->last_intr_timestamp
+
8193 (h
->heartbeat_sample_interval
), now
))
8197 * If we've already checked the heartbeat recently, we're ok.
8198 * This could happen if someone sends us a signal. We
8199 * otherwise don't care about signals in this thread.
8201 if (time_after64(h
->last_heartbeat_timestamp
+
8202 (h
->heartbeat_sample_interval
), now
))
8205 /* If heartbeat has not changed since we last looked, we're not ok. */
8206 spin_lock_irqsave(&h
->lock
, flags
);
8207 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8208 spin_unlock_irqrestore(&h
->lock
, flags
);
8209 if (h
->last_heartbeat
== heartbeat
) {
8210 controller_lockup_detected(h
);
8215 h
->last_heartbeat
= heartbeat
;
8216 h
->last_heartbeat_timestamp
= now
;
8221 * Set ioaccel status for all ioaccel volumes.
8223 * Called from monitor controller worker (hpsa_event_monitor_worker)
8225 * A Volume (or Volumes that comprise an Array set may be undergoing a
8226 * transformation, so we will be turning off ioaccel for all volumes that
8227 * make up the Array.
8229 static void hpsa_set_ioaccel_status(struct ctlr_info
*h
)
8235 struct hpsa_scsi_dev_t
*device
;
8240 buf
= kmalloc(64, GFP_KERNEL
);
8245 * Run through current device list used during I/O requests.
8247 for (i
= 0; i
< h
->ndevices
; i
++) {
8252 if (!hpsa_vpd_page_supported(h
, device
->scsi3addr
,
8253 HPSA_VPD_LV_IOACCEL_STATUS
))
8258 rc
= hpsa_scsi_do_inquiry(h
, device
->scsi3addr
,
8259 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
,
8264 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
8265 device
->offload_config
=
8266 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
8267 if (device
->offload_config
)
8268 device
->offload_to_be_enabled
=
8269 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
8272 * Immediately turn off ioaccel for any volume the
8273 * controller tells us to. Some of the reasons could be:
8274 * transformation - change to the LVs of an Array.
8275 * degraded volume - component failure
8277 * If ioaccel is to be re-enabled, re-enable later during the
8278 * scan operation so the driver can get a fresh raidmap
8279 * before turning ioaccel back on.
8282 if (!device
->offload_to_be_enabled
)
8283 device
->offload_enabled
= 0;
8289 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8293 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8296 /* Ask the controller to clear the events we're handling. */
8297 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8298 | CFGTBL_Trans_io_accel2
)) &&
8299 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8300 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8302 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8303 event_type
= "state change";
8304 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8305 event_type
= "configuration change";
8306 /* Stop sending new RAID offload reqs via the IO accelerator */
8307 scsi_block_requests(h
->scsi_host
);
8308 hpsa_set_ioaccel_status(h
);
8309 hpsa_drain_accel_commands(h
);
8310 /* Set 'accelerator path config change' bit */
8311 dev_warn(&h
->pdev
->dev
,
8312 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8313 h
->events
, event_type
);
8314 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8315 /* Set the "clear event notify field update" bit 6 */
8316 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8317 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8318 hpsa_wait_for_clear_event_notify_ack(h
);
8319 scsi_unblock_requests(h
->scsi_host
);
8321 /* Acknowledge controller notification events. */
8322 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8323 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8324 hpsa_wait_for_clear_event_notify_ack(h
);
8329 /* Check a register on the controller to see if there are configuration
8330 * changes (added/changed/removed logical drives, etc.) which mean that
8331 * we should rescan the controller for devices.
8332 * Also check flag for driver-initiated rescan.
8334 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8336 if (h
->drv_req_rescan
) {
8337 h
->drv_req_rescan
= 0;
8341 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8344 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8345 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8349 * Check if any of the offline devices have become ready
8351 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8353 unsigned long flags
;
8354 struct offline_device_entry
*d
;
8355 struct list_head
*this, *tmp
;
8357 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8358 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8359 d
= list_entry(this, struct offline_device_entry
,
8361 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8362 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8363 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8364 list_del(&d
->offline_list
);
8365 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8368 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8370 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8374 static int hpsa_luns_changed(struct ctlr_info
*h
)
8376 int rc
= 1; /* assume there are changes */
8377 struct ReportLUNdata
*logdev
= NULL
;
8379 /* if we can't find out if lun data has changed,
8380 * assume that it has.
8383 if (!h
->lastlogicals
)
8386 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8390 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8391 dev_warn(&h
->pdev
->dev
,
8392 "report luns failed, can't track lun changes.\n");
8395 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8396 dev_info(&h
->pdev
->dev
,
8397 "Lun changes detected.\n");
8398 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8401 rc
= 0; /* no changes detected. */
8407 static void hpsa_perform_rescan(struct ctlr_info
*h
)
8409 struct Scsi_Host
*sh
= NULL
;
8410 unsigned long flags
;
8413 * Do the scan after the reset
8415 spin_lock_irqsave(&h
->reset_lock
, flags
);
8416 if (h
->reset_in_progress
) {
8417 h
->drv_req_rescan
= 1;
8418 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8421 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8423 sh
= scsi_host_get(h
->scsi_host
);
8425 hpsa_scan_start(sh
);
8427 h
->drv_req_rescan
= 0;
8432 * watch for controller events
8434 static void hpsa_event_monitor_worker(struct work_struct
*work
)
8436 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8437 struct ctlr_info
, event_monitor_work
);
8438 unsigned long flags
;
8440 spin_lock_irqsave(&h
->lock
, flags
);
8441 if (h
->remove_in_progress
) {
8442 spin_unlock_irqrestore(&h
->lock
, flags
);
8445 spin_unlock_irqrestore(&h
->lock
, flags
);
8447 if (hpsa_ctlr_needs_rescan(h
)) {
8448 hpsa_ack_ctlr_events(h
);
8449 hpsa_perform_rescan(h
);
8452 spin_lock_irqsave(&h
->lock
, flags
);
8453 if (!h
->remove_in_progress
)
8454 schedule_delayed_work(&h
->event_monitor_work
,
8455 HPSA_EVENT_MONITOR_INTERVAL
);
8456 spin_unlock_irqrestore(&h
->lock
, flags
);
8459 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8461 unsigned long flags
;
8462 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8463 struct ctlr_info
, rescan_ctlr_work
);
8465 spin_lock_irqsave(&h
->lock
, flags
);
8466 if (h
->remove_in_progress
) {
8467 spin_unlock_irqrestore(&h
->lock
, flags
);
8470 spin_unlock_irqrestore(&h
->lock
, flags
);
8472 if (h
->drv_req_rescan
|| hpsa_offline_devices_ready(h
)) {
8473 hpsa_perform_rescan(h
);
8474 } else if (h
->discovery_polling
) {
8475 if (hpsa_luns_changed(h
)) {
8476 dev_info(&h
->pdev
->dev
,
8477 "driver discovery polling rescan.\n");
8478 hpsa_perform_rescan(h
);
8481 spin_lock_irqsave(&h
->lock
, flags
);
8482 if (!h
->remove_in_progress
)
8483 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8484 h
->heartbeat_sample_interval
);
8485 spin_unlock_irqrestore(&h
->lock
, flags
);
8488 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8490 unsigned long flags
;
8491 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8492 struct ctlr_info
, monitor_ctlr_work
);
8494 detect_controller_lockup(h
);
8495 if (lockup_detected(h
))
8498 spin_lock_irqsave(&h
->lock
, flags
);
8499 if (!h
->remove_in_progress
)
8500 schedule_delayed_work(&h
->monitor_ctlr_work
,
8501 h
->heartbeat_sample_interval
);
8502 spin_unlock_irqrestore(&h
->lock
, flags
);
8505 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8508 struct workqueue_struct
*wq
= NULL
;
8510 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8512 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8517 static void hpda_free_ctlr_info(struct ctlr_info
*h
)
8519 kfree(h
->reply_map
);
8523 static struct ctlr_info
*hpda_alloc_ctlr_info(void)
8525 struct ctlr_info
*h
;
8527 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8531 h
->reply_map
= kcalloc(nr_cpu_ids
, sizeof(*h
->reply_map
), GFP_KERNEL
);
8532 if (!h
->reply_map
) {
8539 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8542 struct ctlr_info
*h
;
8543 int try_soft_reset
= 0;
8544 unsigned long flags
;
8547 if (number_of_controllers
== 0)
8548 printk(KERN_INFO DRIVER_NAME
"\n");
8550 rc
= hpsa_lookup_board_id(pdev
, &board_id
, NULL
);
8552 dev_warn(&pdev
->dev
, "Board ID not found\n");
8556 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8558 if (rc
!= -ENOTSUPP
)
8560 /* If the reset fails in a particular way (it has no way to do
8561 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8562 * a soft reset once we get the controller configured up to the
8563 * point that it can accept a command.
8569 reinit_after_soft_reset
:
8571 /* Command structures must be aligned on a 32-byte boundary because
8572 * the 5 lower bits of the address are used by the hardware. and by
8573 * the driver. See comments in hpsa.h for more info.
8575 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8576 h
= hpda_alloc_ctlr_info();
8578 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8584 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8585 INIT_LIST_HEAD(&h
->offline_device_list
);
8586 spin_lock_init(&h
->lock
);
8587 spin_lock_init(&h
->offline_device_lock
);
8588 spin_lock_init(&h
->scan_lock
);
8589 spin_lock_init(&h
->reset_lock
);
8590 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8592 /* Allocate and clear per-cpu variable lockup_detected */
8593 h
->lockup_detected
= alloc_percpu(u32
);
8594 if (!h
->lockup_detected
) {
8595 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8597 goto clean1
; /* aer/h */
8599 set_lockup_detected_for_all_cpus(h
, 0);
8601 rc
= hpsa_pci_init(h
);
8603 goto clean2
; /* lu, aer/h */
8605 /* relies on h-> settings made by hpsa_pci_init, including
8606 * interrupt_mode h->intr */
8607 rc
= hpsa_scsi_host_alloc(h
);
8609 goto clean2_5
; /* pci, lu, aer/h */
8611 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8612 h
->ctlr
= number_of_controllers
;
8613 number_of_controllers
++;
8615 /* configure PCI DMA stuff */
8616 rc
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
8620 rc
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
8624 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8625 goto clean3
; /* shost, pci, lu, aer/h */
8629 /* make sure the board interrupts are off */
8630 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8632 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8634 goto clean3
; /* shost, pci, lu, aer/h */
8635 rc
= hpsa_alloc_cmd_pool(h
);
8637 goto clean4
; /* irq, shost, pci, lu, aer/h */
8638 rc
= hpsa_alloc_sg_chain_blocks(h
);
8640 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8641 init_waitqueue_head(&h
->scan_wait_queue
);
8642 init_waitqueue_head(&h
->event_sync_wait_queue
);
8643 mutex_init(&h
->reset_mutex
);
8644 h
->scan_finished
= 1; /* no scan currently in progress */
8645 h
->scan_waiting
= 0;
8647 pci_set_drvdata(pdev
, h
);
8650 spin_lock_init(&h
->devlock
);
8651 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8653 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8655 /* create the resubmit workqueue */
8656 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8657 if (!h
->rescan_ctlr_wq
) {
8662 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8663 if (!h
->resubmit_wq
) {
8665 goto clean7
; /* aer/h */
8669 * At this point, the controller is ready to take commands.
8670 * Now, if reset_devices and the hard reset didn't work, try
8671 * the soft reset and see if that works.
8673 if (try_soft_reset
) {
8675 /* This is kind of gross. We may or may not get a completion
8676 * from the soft reset command, and if we do, then the value
8677 * from the fifo may or may not be valid. So, we wait 10 secs
8678 * after the reset throwing away any completions we get during
8679 * that time. Unregister the interrupt handler and register
8680 * fake ones to scoop up any residual completions.
8682 spin_lock_irqsave(&h
->lock
, flags
);
8683 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8684 spin_unlock_irqrestore(&h
->lock
, flags
);
8686 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8687 hpsa_intx_discard_completions
);
8689 dev_warn(&h
->pdev
->dev
,
8690 "Failed to request_irq after soft reset.\n");
8692 * cannot goto clean7 or free_irqs will be called
8693 * again. Instead, do its work
8695 hpsa_free_performant_mode(h
); /* clean7 */
8696 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8697 hpsa_free_cmd_pool(h
); /* clean5 */
8699 * skip hpsa_free_irqs(h) clean4 since that
8700 * was just called before request_irqs failed
8705 rc
= hpsa_kdump_soft_reset(h
);
8707 /* Neither hard nor soft reset worked, we're hosed. */
8710 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8711 dev_info(&h
->pdev
->dev
,
8712 "Waiting for stale completions to drain.\n");
8713 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8715 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8717 rc
= controller_reset_failed(h
->cfgtable
);
8719 dev_info(&h
->pdev
->dev
,
8720 "Soft reset appears to have failed.\n");
8722 /* since the controller's reset, we have to go back and re-init
8723 * everything. Easiest to just forget what we've done and do it
8726 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8729 /* don't goto clean, we already unallocated */
8732 goto reinit_after_soft_reset
;
8735 /* Enable Accelerated IO path at driver layer */
8736 h
->acciopath_status
= 1;
8737 /* Disable discovery polling.*/
8738 h
->discovery_polling
= 0;
8741 /* Turn the interrupts on so we can service requests */
8742 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8744 hpsa_hba_inquiry(h
);
8746 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8747 if (!h
->lastlogicals
)
8748 dev_info(&h
->pdev
->dev
,
8749 "Can't track change to report lun data\n");
8751 /* hook into SCSI subsystem */
8752 rc
= hpsa_scsi_add_host(h
);
8754 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8756 /* Monitor the controller for firmware lockups */
8757 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8758 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8759 schedule_delayed_work(&h
->monitor_ctlr_work
,
8760 h
->heartbeat_sample_interval
);
8761 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8762 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8763 h
->heartbeat_sample_interval
);
8764 INIT_DELAYED_WORK(&h
->event_monitor_work
, hpsa_event_monitor_worker
);
8765 schedule_delayed_work(&h
->event_monitor_work
,
8766 HPSA_EVENT_MONITOR_INTERVAL
);
8769 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8770 hpsa_free_performant_mode(h
);
8771 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8772 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8773 hpsa_free_sg_chain_blocks(h
);
8774 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8775 hpsa_free_cmd_pool(h
);
8776 clean4
: /* irq, shost, pci, lu, aer/h */
8778 clean3
: /* shost, pci, lu, aer/h */
8779 scsi_host_put(h
->scsi_host
);
8780 h
->scsi_host
= NULL
;
8781 clean2_5
: /* pci, lu, aer/h */
8782 hpsa_free_pci_init(h
);
8783 clean2
: /* lu, aer/h */
8784 if (h
->lockup_detected
) {
8785 free_percpu(h
->lockup_detected
);
8786 h
->lockup_detected
= NULL
;
8788 clean1
: /* wq/aer/h */
8789 if (h
->resubmit_wq
) {
8790 destroy_workqueue(h
->resubmit_wq
);
8791 h
->resubmit_wq
= NULL
;
8793 if (h
->rescan_ctlr_wq
) {
8794 destroy_workqueue(h
->rescan_ctlr_wq
);
8795 h
->rescan_ctlr_wq
= NULL
;
8801 static void hpsa_flush_cache(struct ctlr_info
*h
)
8804 struct CommandList
*c
;
8807 if (unlikely(lockup_detected(h
)))
8809 flush_buf
= kzalloc(4, GFP_KERNEL
);
8815 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8816 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8819 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_TO_DEVICE
,
8823 if (c
->err_info
->CommandStatus
!= 0)
8825 dev_warn(&h
->pdev
->dev
,
8826 "error flushing cache on controller\n");
8831 /* Make controller gather fresh report lun data each time we
8832 * send down a report luns request
8834 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8837 struct CommandList
*c
;
8840 /* Don't bother trying to set diag options if locked up */
8841 if (unlikely(h
->lockup_detected
))
8844 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
8850 /* first, get the current diag options settings */
8851 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8852 RAID_CTLR_LUNID
, TYPE_CMD
))
8855 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
8857 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8860 /* Now, set the bit for disabling the RLD caching */
8861 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
8863 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
8864 RAID_CTLR_LUNID
, TYPE_CMD
))
8867 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_TO_DEVICE
,
8869 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8872 /* Now verify that it got set: */
8873 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8874 RAID_CTLR_LUNID
, TYPE_CMD
))
8877 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
8879 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8882 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
8886 dev_err(&h
->pdev
->dev
,
8887 "Error: failed to disable report lun data caching.\n");
8893 static void __hpsa_shutdown(struct pci_dev
*pdev
)
8895 struct ctlr_info
*h
;
8897 h
= pci_get_drvdata(pdev
);
8898 /* Turn board interrupts off and send the flush cache command
8899 * sendcmd will turn off interrupt, and send the flush...
8900 * To write all data in the battery backed cache to disks
8902 hpsa_flush_cache(h
);
8903 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8904 hpsa_free_irqs(h
); /* init_one 4 */
8905 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8908 static void hpsa_shutdown(struct pci_dev
*pdev
)
8910 __hpsa_shutdown(pdev
);
8911 pci_disable_device(pdev
);
8914 static void hpsa_free_device_info(struct ctlr_info
*h
)
8918 for (i
= 0; i
< h
->ndevices
; i
++) {
8924 static void hpsa_remove_one(struct pci_dev
*pdev
)
8926 struct ctlr_info
*h
;
8927 unsigned long flags
;
8929 if (pci_get_drvdata(pdev
) == NULL
) {
8930 dev_err(&pdev
->dev
, "unable to remove device\n");
8933 h
= pci_get_drvdata(pdev
);
8935 /* Get rid of any controller monitoring work items */
8936 spin_lock_irqsave(&h
->lock
, flags
);
8937 h
->remove_in_progress
= 1;
8938 spin_unlock_irqrestore(&h
->lock
, flags
);
8939 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
8940 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
8941 cancel_delayed_work_sync(&h
->event_monitor_work
);
8942 destroy_workqueue(h
->rescan_ctlr_wq
);
8943 destroy_workqueue(h
->resubmit_wq
);
8945 hpsa_delete_sas_host(h
);
8948 * Call before disabling interrupts.
8949 * scsi_remove_host can trigger I/O operations especially
8950 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8951 * operations which cannot complete and will hang the system.
8954 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
8955 /* includes hpsa_free_irqs - init_one 4 */
8956 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8957 __hpsa_shutdown(pdev
);
8959 hpsa_free_device_info(h
); /* scan */
8961 kfree(h
->hba_inquiry_data
); /* init_one 10 */
8962 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
8963 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8964 hpsa_free_performant_mode(h
); /* init_one 7 */
8965 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8966 hpsa_free_cmd_pool(h
); /* init_one 5 */
8967 kfree(h
->lastlogicals
);
8969 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8971 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8972 h
->scsi_host
= NULL
; /* init_one 3 */
8974 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8975 hpsa_free_pci_init(h
); /* init_one 2.5 */
8977 free_percpu(h
->lockup_detected
); /* init_one 2 */
8978 h
->lockup_detected
= NULL
; /* init_one 2 */
8979 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8981 hpda_free_ctlr_info(h
); /* init_one 1 */
8984 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
8985 __attribute__((unused
)) pm_message_t state
)
8990 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
8995 static struct pci_driver hpsa_pci_driver
= {
8997 .probe
= hpsa_init_one
,
8998 .remove
= hpsa_remove_one
,
8999 .id_table
= hpsa_pci_device_id
, /* id_table */
9000 .shutdown
= hpsa_shutdown
,
9001 .suspend
= hpsa_suspend
,
9002 .resume
= hpsa_resume
,
9005 /* Fill in bucket_map[], given nsgs (the max number of
9006 * scatter gather elements supported) and bucket[],
9007 * which is an array of 8 integers. The bucket[] array
9008 * contains 8 different DMA transfer sizes (in 16
9009 * byte increments) which the controller uses to fetch
9010 * commands. This function fills in bucket_map[], which
9011 * maps a given number of scatter gather elements to one of
9012 * the 8 DMA transfer sizes. The point of it is to allow the
9013 * controller to only do as much DMA as needed to fetch the
9014 * command, with the DMA transfer size encoded in the lower
9015 * bits of the command address.
9017 static void calc_bucket_map(int bucket
[], int num_buckets
,
9018 int nsgs
, int min_blocks
, u32
*bucket_map
)
9022 /* Note, bucket_map must have nsgs+1 entries. */
9023 for (i
= 0; i
<= nsgs
; i
++) {
9024 /* Compute size of a command with i SG entries */
9025 size
= i
+ min_blocks
;
9026 b
= num_buckets
; /* Assume the biggest bucket */
9027 /* Find the bucket that is just big enough */
9028 for (j
= 0; j
< num_buckets
; j
++) {
9029 if (bucket
[j
] >= size
) {
9034 /* for a command with i SG entries, use bucket b. */
9040 * return -ENODEV on err, 0 on success (or no action)
9041 * allocates numerous items that must be freed later
9043 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
9046 unsigned long register_value
;
9047 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9048 (trans_support
& CFGTBL_Trans_use_short_tags
) |
9049 CFGTBL_Trans_enable_directed_msix
|
9050 (trans_support
& (CFGTBL_Trans_io_accel1
|
9051 CFGTBL_Trans_io_accel2
));
9052 struct access_method access
= SA5_performant_access
;
9054 /* This is a bit complicated. There are 8 registers on
9055 * the controller which we write to to tell it 8 different
9056 * sizes of commands which there may be. It's a way of
9057 * reducing the DMA done to fetch each command. Encoded into
9058 * each command's tag are 3 bits which communicate to the controller
9059 * which of the eight sizes that command fits within. The size of
9060 * each command depends on how many scatter gather entries there are.
9061 * Each SG entry requires 16 bytes. The eight registers are programmed
9062 * with the number of 16-byte blocks a command of that size requires.
9063 * The smallest command possible requires 5 such 16 byte blocks.
9064 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9065 * blocks. Note, this only extends to the SG entries contained
9066 * within the command block, and does not extend to chained blocks
9067 * of SG elements. bft[] contains the eight values we write to
9068 * the registers. They are not evenly distributed, but have more
9069 * sizes for small commands, and fewer sizes for larger commands.
9071 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
9072 #define MIN_IOACCEL2_BFT_ENTRY 5
9073 #define HPSA_IOACCEL2_HEADER_SZ 4
9074 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
9075 13, 14, 15, 16, 17, 18, 19,
9076 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
9077 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
9078 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
9079 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
9080 16 * MIN_IOACCEL2_BFT_ENTRY
);
9081 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
9082 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
9083 /* 5 = 1 s/g entry or 4k
9084 * 6 = 2 s/g entry or 8k
9085 * 8 = 4 s/g entry or 16k
9086 * 10 = 6 s/g entry or 24k
9089 /* If the controller supports either ioaccel method then
9090 * we can also use the RAID stack submit path that does not
9091 * perform the superfluous readl() after each command submission.
9093 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
9094 access
= SA5_performant_access_no_read
;
9096 /* Controller spec: zero out this buffer. */
9097 for (i
= 0; i
< h
->nreply_queues
; i
++)
9098 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
9100 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
9101 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
9102 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
9103 for (i
= 0; i
< 8; i
++)
9104 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
9106 /* size of controller ring buffer */
9107 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
9108 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
9109 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
9110 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
9112 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9113 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
9114 writel(h
->reply_queue
[i
].busaddr
,
9115 &h
->transtable
->RepQAddr
[i
].lower
);
9118 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
9119 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
9121 * enable outbound interrupt coalescing in accelerator mode;
9123 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9124 access
= SA5_ioaccel_mode1_access
;
9125 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9126 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9128 if (trans_support
& CFGTBL_Trans_io_accel2
)
9129 access
= SA5_ioaccel_mode2_access
;
9130 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9131 if (hpsa_wait_for_mode_change_ack(h
)) {
9132 dev_err(&h
->pdev
->dev
,
9133 "performant mode problem - doorbell timeout\n");
9136 register_value
= readl(&(h
->cfgtable
->TransportActive
));
9137 if (!(register_value
& CFGTBL_Trans_Performant
)) {
9138 dev_err(&h
->pdev
->dev
,
9139 "performant mode problem - transport not active\n");
9142 /* Change the access methods to the performant access methods */
9144 h
->transMethod
= transMethod
;
9146 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
9147 (trans_support
& CFGTBL_Trans_io_accel2
)))
9150 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9151 /* Set up I/O accelerator mode */
9152 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9153 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
9154 h
->reply_queue
[i
].current_entry
=
9155 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
9157 bft
[7] = h
->ioaccel_maxsg
+ 8;
9158 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
9159 h
->ioaccel1_blockFetchTable
);
9161 /* initialize all reply queue entries to unused */
9162 for (i
= 0; i
< h
->nreply_queues
; i
++)
9163 memset(h
->reply_queue
[i
].head
,
9164 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
9165 h
->reply_queue_size
);
9167 /* set all the constant fields in the accelerator command
9168 * frames once at init time to save CPU cycles later.
9170 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9171 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
9173 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
9174 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
9175 (i
* sizeof(struct ErrorInfo
)));
9176 cp
->err_info_len
= sizeof(struct ErrorInfo
);
9177 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
9178 cp
->host_context_flags
=
9179 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
9180 cp
->timeout_sec
= 0;
9183 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
9185 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
9186 (i
* sizeof(struct io_accel1_cmd
)));
9188 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9189 u64 cfg_offset
, cfg_base_addr_index
;
9190 u32 bft2_offset
, cfg_base_addr
;
9193 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
9194 &cfg_base_addr_index
, &cfg_offset
);
9195 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
9196 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
9197 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
9198 4, h
->ioaccel2_blockFetchTable
);
9199 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
9200 BUILD_BUG_ON(offsetof(struct CfgTable
,
9201 io_accel_request_size_offset
) != 0xb8);
9202 h
->ioaccel2_bft2_regs
=
9203 remap_pci_mem(pci_resource_start(h
->pdev
,
9204 cfg_base_addr_index
) +
9205 cfg_offset
+ bft2_offset
,
9207 sizeof(*h
->ioaccel2_bft2_regs
));
9208 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
9209 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
9211 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9212 if (hpsa_wait_for_mode_change_ack(h
)) {
9213 dev_err(&h
->pdev
->dev
,
9214 "performant mode problem - enabling ioaccel mode\n");
9220 /* Free ioaccel1 mode command blocks and block fetch table */
9221 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9223 if (h
->ioaccel_cmd_pool
) {
9224 pci_free_consistent(h
->pdev
,
9225 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9226 h
->ioaccel_cmd_pool
,
9227 h
->ioaccel_cmd_pool_dhandle
);
9228 h
->ioaccel_cmd_pool
= NULL
;
9229 h
->ioaccel_cmd_pool_dhandle
= 0;
9231 kfree(h
->ioaccel1_blockFetchTable
);
9232 h
->ioaccel1_blockFetchTable
= NULL
;
9235 /* Allocate ioaccel1 mode command blocks and block fetch table */
9236 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9239 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9240 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
9241 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
9243 /* Command structures must be aligned on a 128-byte boundary
9244 * because the 7 lower bits of the address are used by the
9247 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
9248 IOACCEL1_COMMANDLIST_ALIGNMENT
);
9249 h
->ioaccel_cmd_pool
=
9250 dma_alloc_coherent(&h
->pdev
->dev
,
9251 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9252 &h
->ioaccel_cmd_pool_dhandle
, GFP_KERNEL
);
9254 h
->ioaccel1_blockFetchTable
=
9255 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9256 sizeof(u32
)), GFP_KERNEL
);
9258 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9259 (h
->ioaccel1_blockFetchTable
== NULL
))
9262 memset(h
->ioaccel_cmd_pool
, 0,
9263 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9267 hpsa_free_ioaccel1_cmd_and_bft(h
);
9271 /* Free ioaccel2 mode command blocks and block fetch table */
9272 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9274 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9276 if (h
->ioaccel2_cmd_pool
) {
9277 pci_free_consistent(h
->pdev
,
9278 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9279 h
->ioaccel2_cmd_pool
,
9280 h
->ioaccel2_cmd_pool_dhandle
);
9281 h
->ioaccel2_cmd_pool
= NULL
;
9282 h
->ioaccel2_cmd_pool_dhandle
= 0;
9284 kfree(h
->ioaccel2_blockFetchTable
);
9285 h
->ioaccel2_blockFetchTable
= NULL
;
9288 /* Allocate ioaccel2 mode command blocks and block fetch table */
9289 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9293 /* Allocate ioaccel2 mode command blocks and block fetch table */
9296 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9297 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9298 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9300 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9301 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9302 h
->ioaccel2_cmd_pool
=
9303 dma_alloc_coherent(&h
->pdev
->dev
,
9304 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9305 &h
->ioaccel2_cmd_pool_dhandle
, GFP_KERNEL
);
9307 h
->ioaccel2_blockFetchTable
=
9308 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9309 sizeof(u32
)), GFP_KERNEL
);
9311 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9312 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9317 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9321 memset(h
->ioaccel2_cmd_pool
, 0,
9322 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9326 hpsa_free_ioaccel2_cmd_and_bft(h
);
9330 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9331 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9333 kfree(h
->blockFetchTable
);
9334 h
->blockFetchTable
= NULL
;
9335 hpsa_free_reply_queues(h
);
9336 hpsa_free_ioaccel1_cmd_and_bft(h
);
9337 hpsa_free_ioaccel2_cmd_and_bft(h
);
9340 /* return -ENODEV on error, 0 on success (or no action)
9341 * allocates numerous items that must be freed later
9343 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9346 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9347 CFGTBL_Trans_use_short_tags
;
9350 if (hpsa_simple_mode
)
9353 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9354 if (!(trans_support
& PERFORMANT_MODE
))
9357 /* Check for I/O accelerator mode support */
9358 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9359 transMethod
|= CFGTBL_Trans_io_accel1
|
9360 CFGTBL_Trans_enable_directed_msix
;
9361 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9364 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9365 transMethod
|= CFGTBL_Trans_io_accel2
|
9366 CFGTBL_Trans_enable_directed_msix
;
9367 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9372 h
->nreply_queues
= h
->msix_vectors
> 0 ? h
->msix_vectors
: 1;
9373 hpsa_get_max_perf_mode_cmds(h
);
9374 /* Performant mode ring buffer and supporting data structures */
9375 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9377 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9378 h
->reply_queue
[i
].head
= dma_alloc_coherent(&h
->pdev
->dev
,
9379 h
->reply_queue_size
,
9380 &h
->reply_queue
[i
].busaddr
,
9382 if (!h
->reply_queue
[i
].head
) {
9384 goto clean1
; /* rq, ioaccel */
9386 h
->reply_queue
[i
].size
= h
->max_commands
;
9387 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9388 h
->reply_queue
[i
].current_entry
= 0;
9391 /* Need a block fetch table for performant mode */
9392 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9393 sizeof(u32
)), GFP_KERNEL
);
9394 if (!h
->blockFetchTable
) {
9396 goto clean1
; /* rq, ioaccel */
9399 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9401 goto clean2
; /* bft, rq, ioaccel */
9404 clean2
: /* bft, rq, ioaccel */
9405 kfree(h
->blockFetchTable
);
9406 h
->blockFetchTable
= NULL
;
9407 clean1
: /* rq, ioaccel */
9408 hpsa_free_reply_queues(h
);
9409 hpsa_free_ioaccel1_cmd_and_bft(h
);
9410 hpsa_free_ioaccel2_cmd_and_bft(h
);
9414 static int is_accelerated_cmd(struct CommandList
*c
)
9416 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9419 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9421 struct CommandList
*c
= NULL
;
9422 int i
, accel_cmds_out
;
9425 do { /* wait for all outstanding ioaccel commands to drain out */
9427 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9428 c
= h
->cmd_pool
+ i
;
9429 refcount
= atomic_inc_return(&c
->refcount
);
9430 if (refcount
> 1) /* Command is allocated */
9431 accel_cmds_out
+= is_accelerated_cmd(c
);
9434 if (accel_cmds_out
<= 0)
9440 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9441 struct hpsa_sas_port
*hpsa_sas_port
)
9443 struct hpsa_sas_phy
*hpsa_sas_phy
;
9444 struct sas_phy
*phy
;
9446 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9450 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9451 hpsa_sas_port
->next_phy_index
);
9453 kfree(hpsa_sas_phy
);
9457 hpsa_sas_port
->next_phy_index
++;
9458 hpsa_sas_phy
->phy
= phy
;
9459 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9461 return hpsa_sas_phy
;
9464 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9466 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9468 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9469 if (hpsa_sas_phy
->added_to_port
)
9470 list_del(&hpsa_sas_phy
->phy_list_entry
);
9471 sas_phy_delete(phy
);
9472 kfree(hpsa_sas_phy
);
9475 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9478 struct hpsa_sas_port
*hpsa_sas_port
;
9479 struct sas_phy
*phy
;
9480 struct sas_identify
*identify
;
9482 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9483 phy
= hpsa_sas_phy
->phy
;
9485 identify
= &phy
->identify
;
9486 memset(identify
, 0, sizeof(*identify
));
9487 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9488 identify
->device_type
= SAS_END_DEVICE
;
9489 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9490 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9491 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9492 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9493 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9494 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9495 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9497 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9501 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9502 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9503 &hpsa_sas_port
->phy_list_head
);
9504 hpsa_sas_phy
->added_to_port
= true;
9510 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9511 struct sas_rphy
*rphy
)
9513 struct sas_identify
*identify
;
9515 identify
= &rphy
->identify
;
9516 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9517 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9518 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9520 return sas_rphy_add(rphy
);
9523 static struct hpsa_sas_port
9524 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9528 struct hpsa_sas_port
*hpsa_sas_port
;
9529 struct sas_port
*port
;
9531 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9535 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9536 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9538 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9540 goto free_hpsa_port
;
9542 rc
= sas_port_add(port
);
9546 hpsa_sas_port
->port
= port
;
9547 hpsa_sas_port
->sas_address
= sas_address
;
9548 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9549 &hpsa_sas_node
->port_list_head
);
9551 return hpsa_sas_port
;
9554 sas_port_free(port
);
9556 kfree(hpsa_sas_port
);
9561 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9563 struct hpsa_sas_phy
*hpsa_sas_phy
;
9564 struct hpsa_sas_phy
*next
;
9566 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9567 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9568 hpsa_free_sas_phy(hpsa_sas_phy
);
9570 sas_port_delete(hpsa_sas_port
->port
);
9571 list_del(&hpsa_sas_port
->port_list_entry
);
9572 kfree(hpsa_sas_port
);
9575 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9577 struct hpsa_sas_node
*hpsa_sas_node
;
9579 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9580 if (hpsa_sas_node
) {
9581 hpsa_sas_node
->parent_dev
= parent_dev
;
9582 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9585 return hpsa_sas_node
;
9588 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9590 struct hpsa_sas_port
*hpsa_sas_port
;
9591 struct hpsa_sas_port
*next
;
9596 list_for_each_entry_safe(hpsa_sas_port
, next
,
9597 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9598 hpsa_free_sas_port(hpsa_sas_port
);
9600 kfree(hpsa_sas_node
);
9603 static struct hpsa_scsi_dev_t
9604 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9605 struct sas_rphy
*rphy
)
9608 struct hpsa_scsi_dev_t
*device
;
9610 for (i
= 0; i
< h
->ndevices
; i
++) {
9612 if (!device
->sas_port
)
9614 if (device
->sas_port
->rphy
== rphy
)
9621 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9624 struct device
*parent_dev
;
9625 struct hpsa_sas_node
*hpsa_sas_node
;
9626 struct hpsa_sas_port
*hpsa_sas_port
;
9627 struct hpsa_sas_phy
*hpsa_sas_phy
;
9629 parent_dev
= &h
->scsi_host
->shost_dev
;
9631 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9635 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9636 if (!hpsa_sas_port
) {
9641 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9642 if (!hpsa_sas_phy
) {
9647 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9651 h
->sas_host
= hpsa_sas_node
;
9656 hpsa_free_sas_phy(hpsa_sas_phy
);
9658 hpsa_free_sas_port(hpsa_sas_port
);
9660 hpsa_free_sas_node(hpsa_sas_node
);
9665 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9667 hpsa_free_sas_node(h
->sas_host
);
9670 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9671 struct hpsa_scsi_dev_t
*device
)
9674 struct hpsa_sas_port
*hpsa_sas_port
;
9675 struct sas_rphy
*rphy
;
9677 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9681 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9687 hpsa_sas_port
->rphy
= rphy
;
9688 device
->sas_port
= hpsa_sas_port
;
9690 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9697 hpsa_free_sas_port(hpsa_sas_port
);
9698 device
->sas_port
= NULL
;
9703 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9705 if (device
->sas_port
) {
9706 hpsa_free_sas_port(device
->sas_port
);
9707 device
->sas_port
= NULL
;
9712 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9718 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9720 struct Scsi_Host
*shost
= phy_to_shost(rphy
);
9721 struct ctlr_info
*h
;
9722 struct hpsa_scsi_dev_t
*sd
;
9727 h
= shost_to_hba(shost
);
9732 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
9736 *identifier
= sd
->eli
;
9742 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9748 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9754 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9760 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9766 hpsa_sas_phy_release(struct sas_phy
*phy
)
9771 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9776 static struct sas_function_template hpsa_sas_transport_functions
= {
9777 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9778 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9779 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9780 .phy_reset
= hpsa_sas_phy_reset
,
9781 .phy_enable
= hpsa_sas_phy_enable
,
9782 .phy_setup
= hpsa_sas_phy_setup
,
9783 .phy_release
= hpsa_sas_phy_release
,
9784 .set_phy_speed
= hpsa_sas_phy_speed
,
9788 * This is it. Register the PCI driver information for the cards we control
9789 * the OS will call our registered routines when it finds one of our cards.
9791 static int __init
hpsa_init(void)
9795 hpsa_sas_transport_template
=
9796 sas_attach_transport(&hpsa_sas_transport_functions
);
9797 if (!hpsa_sas_transport_template
)
9800 rc
= pci_register_driver(&hpsa_pci_driver
);
9803 sas_release_transport(hpsa_sas_transport_template
);
9808 static void __exit
hpsa_cleanup(void)
9810 pci_unregister_driver(&hpsa_pci_driver
);
9811 sas_release_transport(hpsa_sas_transport_template
);
9814 static void __attribute__((unused
)) verify_offsets(void)
9816 #define VERIFY_OFFSET(member, offset) \
9817 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9819 VERIFY_OFFSET(structure_size
, 0);
9820 VERIFY_OFFSET(volume_blk_size
, 4);
9821 VERIFY_OFFSET(volume_blk_cnt
, 8);
9822 VERIFY_OFFSET(phys_blk_shift
, 16);
9823 VERIFY_OFFSET(parity_rotation_shift
, 17);
9824 VERIFY_OFFSET(strip_size
, 18);
9825 VERIFY_OFFSET(disk_starting_blk
, 20);
9826 VERIFY_OFFSET(disk_blk_cnt
, 28);
9827 VERIFY_OFFSET(data_disks_per_row
, 36);
9828 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9829 VERIFY_OFFSET(row_cnt
, 40);
9830 VERIFY_OFFSET(layout_map_count
, 42);
9831 VERIFY_OFFSET(flags
, 44);
9832 VERIFY_OFFSET(dekindex
, 46);
9833 /* VERIFY_OFFSET(reserved, 48 */
9834 VERIFY_OFFSET(data
, 64);
9836 #undef VERIFY_OFFSET
9838 #define VERIFY_OFFSET(member, offset) \
9839 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9841 VERIFY_OFFSET(IU_type
, 0);
9842 VERIFY_OFFSET(direction
, 1);
9843 VERIFY_OFFSET(reply_queue
, 2);
9844 /* VERIFY_OFFSET(reserved1, 3); */
9845 VERIFY_OFFSET(scsi_nexus
, 4);
9846 VERIFY_OFFSET(Tag
, 8);
9847 VERIFY_OFFSET(cdb
, 16);
9848 VERIFY_OFFSET(cciss_lun
, 32);
9849 VERIFY_OFFSET(data_len
, 40);
9850 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9851 VERIFY_OFFSET(sg_count
, 45);
9852 /* VERIFY_OFFSET(reserved3 */
9853 VERIFY_OFFSET(err_ptr
, 48);
9854 VERIFY_OFFSET(err_len
, 56);
9855 /* VERIFY_OFFSET(reserved4 */
9856 VERIFY_OFFSET(sg
, 64);
9858 #undef VERIFY_OFFSET
9860 #define VERIFY_OFFSET(member, offset) \
9861 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9863 VERIFY_OFFSET(dev_handle
, 0x00);
9864 VERIFY_OFFSET(reserved1
, 0x02);
9865 VERIFY_OFFSET(function
, 0x03);
9866 VERIFY_OFFSET(reserved2
, 0x04);
9867 VERIFY_OFFSET(err_info
, 0x0C);
9868 VERIFY_OFFSET(reserved3
, 0x10);
9869 VERIFY_OFFSET(err_info_len
, 0x12);
9870 VERIFY_OFFSET(reserved4
, 0x13);
9871 VERIFY_OFFSET(sgl_offset
, 0x14);
9872 VERIFY_OFFSET(reserved5
, 0x15);
9873 VERIFY_OFFSET(transfer_len
, 0x1C);
9874 VERIFY_OFFSET(reserved6
, 0x20);
9875 VERIFY_OFFSET(io_flags
, 0x24);
9876 VERIFY_OFFSET(reserved7
, 0x26);
9877 VERIFY_OFFSET(LUN
, 0x34);
9878 VERIFY_OFFSET(control
, 0x3C);
9879 VERIFY_OFFSET(CDB
, 0x40);
9880 VERIFY_OFFSET(reserved8
, 0x50);
9881 VERIFY_OFFSET(host_context_flags
, 0x60);
9882 VERIFY_OFFSET(timeout_sec
, 0x62);
9883 VERIFY_OFFSET(ReplyQueue
, 0x64);
9884 VERIFY_OFFSET(reserved9
, 0x65);
9885 VERIFY_OFFSET(tag
, 0x68);
9886 VERIFY_OFFSET(host_addr
, 0x70);
9887 VERIFY_OFFSET(CISS_LUN
, 0x78);
9888 VERIFY_OFFSET(SG
, 0x78 + 8);
9889 #undef VERIFY_OFFSET
9892 module_init(hpsa_init
);
9893 module_exit(hpsa_cleanup
);