1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
51 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
63 int migrate_prep(void)
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
84 int isolate_movable_page(struct page
*page
, isolate_mode_t mode
)
86 struct address_space
*mapping
;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page
)))
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grabbing the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page
)))
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page
)))
121 if (!PageMovable(page
) || PageIsolated(page
))
122 goto out_no_isolated
;
124 mapping
= page_mapping(page
);
125 VM_BUG_ON_PAGE(!mapping
, page
);
127 if (!mapping
->a_ops
->isolate_page(page
, mode
))
128 goto out_no_isolated
;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page
));
132 __SetPageIsolated(page
);
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page
*page
)
148 struct address_space
*mapping
;
150 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
151 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
152 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
154 mapping
= page_mapping(page
);
155 mapping
->a_ops
->putback_page(page
);
156 __ClearPageIsolated(page
);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head
*l
)
172 list_for_each_entry_safe(page
, page2
, l
, lru
) {
173 if (unlikely(PageHuge(page
))) {
174 putback_active_hugepage(page
);
177 list_del(&page
->lru
);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page
))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
186 if (PageMovable(page
))
187 putback_movable_page(page
);
189 __ClearPageIsolated(page
);
193 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
194 page_is_file_cache(page
), -hpage_nr_pages(page
));
195 putback_lru_page(page
);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page
*page
, struct vm_area_struct
*vma
,
204 unsigned long addr
, void *old
)
206 struct page_vma_mapped_walk pvmw
= {
210 .flags
= PVMW_SYNC
| PVMW_MIGRATION
,
216 VM_BUG_ON_PAGE(PageTail(page
), page
);
217 while (page_vma_mapped_walk(&pvmw
)) {
221 new = page
- pvmw
.page
->index
+
222 linear_page_index(vma
, pvmw
.address
);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
227 VM_BUG_ON_PAGE(PageHuge(page
) || !PageTransCompound(page
), page
);
228 remove_migration_pmd(&pvmw
, new);
234 pte
= pte_mkold(mk_pte(new, READ_ONCE(vma
->vm_page_prot
)));
235 if (pte_swp_soft_dirty(*pvmw
.pte
))
236 pte
= pte_mksoft_dirty(pte
);
239 * Recheck VMA as permissions can change since migration started
241 entry
= pte_to_swp_entry(*pvmw
.pte
);
242 if (is_write_migration_entry(entry
))
243 pte
= maybe_mkwrite(pte
, vma
);
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry
= make_device_private_entry(new, pte_write(pte
));
248 pte
= swp_entry_to_pte(entry
);
249 } else if (is_device_public_page(new)) {
250 pte
= pte_mkdevmap(pte
);
254 #ifdef CONFIG_HUGETLB_PAGE
256 pte
= pte_mkhuge(pte
);
257 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
258 set_huge_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
260 hugepage_add_anon_rmap(new, vma
, pvmw
.address
);
262 page_dup_rmap(new, true);
266 set_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
269 page_add_anon_rmap(new, vma
, pvmw
.address
, false);
271 page_add_file_rmap(new, false);
273 if (vma
->vm_flags
& VM_LOCKED
&& !PageTransCompound(new))
276 if (PageTransHuge(page
) && PageMlocked(page
))
277 clear_page_mlock(page
);
279 /* No need to invalidate - it was non-present before */
280 update_mmu_cache(vma
, pvmw
.address
, pvmw
.pte
);
287 * Get rid of all migration entries and replace them by
288 * references to the indicated page.
290 void remove_migration_ptes(struct page
*old
, struct page
*new, bool locked
)
292 struct rmap_walk_control rwc
= {
293 .rmap_one
= remove_migration_pte
,
298 rmap_walk_locked(new, &rwc
);
300 rmap_walk(new, &rwc
);
304 * Something used the pte of a page under migration. We need to
305 * get to the page and wait until migration is finished.
306 * When we return from this function the fault will be retried.
308 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
317 if (!is_swap_pte(pte
))
320 entry
= pte_to_swp_entry(pte
);
321 if (!is_migration_entry(entry
))
324 page
= migration_entry_to_page(entry
);
327 * Once page cache replacement of page migration started, page_count
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
331 if (!get_page_unless_zero(page
))
333 pte_unmap_unlock(ptep
, ptl
);
334 put_and_wait_on_page_locked(page
);
337 pte_unmap_unlock(ptep
, ptl
);
340 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
341 unsigned long address
)
343 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
344 pte_t
*ptep
= pte_offset_map(pmd
, address
);
345 __migration_entry_wait(mm
, ptep
, ptl
);
348 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
349 struct mm_struct
*mm
, pte_t
*pte
)
351 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
352 __migration_entry_wait(mm
, pte
, ptl
);
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
)
361 ptl
= pmd_lock(mm
, pmd
);
362 if (!is_pmd_migration_entry(*pmd
))
364 page
= migration_entry_to_page(pmd_to_swp_entry(*pmd
));
365 if (!get_page_unless_zero(page
))
368 put_and_wait_on_page_locked(page
);
375 static int expected_page_refs(struct address_space
*mapping
, struct page
*page
)
377 int expected_count
= 1;
380 * Device public or private pages have an extra refcount as they are
383 expected_count
+= is_device_private_page(page
);
384 expected_count
+= is_device_public_page(page
);
386 expected_count
+= hpage_nr_pages(page
) + page_has_private(page
);
388 return expected_count
;
392 * Replace the page in the mapping.
394 * The number of remaining references must be:
395 * 1 for anonymous pages without a mapping
396 * 2 for pages with a mapping
397 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
399 int migrate_page_move_mapping(struct address_space
*mapping
,
400 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
,
403 XA_STATE(xas
, &mapping
->i_pages
, page_index(page
));
404 struct zone
*oldzone
, *newzone
;
406 int expected_count
= expected_page_refs(mapping
, page
) + extra_count
;
409 /* Anonymous page without mapping */
410 if (page_count(page
) != expected_count
)
413 /* No turning back from here */
414 newpage
->index
= page
->index
;
415 newpage
->mapping
= page
->mapping
;
416 if (PageSwapBacked(page
))
417 __SetPageSwapBacked(newpage
);
419 return MIGRATEPAGE_SUCCESS
;
422 oldzone
= page_zone(page
);
423 newzone
= page_zone(newpage
);
426 if (page_count(page
) != expected_count
|| xas_load(&xas
) != page
) {
427 xas_unlock_irq(&xas
);
431 if (!page_ref_freeze(page
, expected_count
)) {
432 xas_unlock_irq(&xas
);
437 * Now we know that no one else is looking at the page:
438 * no turning back from here.
440 newpage
->index
= page
->index
;
441 newpage
->mapping
= page
->mapping
;
442 page_ref_add(newpage
, hpage_nr_pages(page
)); /* add cache reference */
443 if (PageSwapBacked(page
)) {
444 __SetPageSwapBacked(newpage
);
445 if (PageSwapCache(page
)) {
446 SetPageSwapCache(newpage
);
447 set_page_private(newpage
, page_private(page
));
450 VM_BUG_ON_PAGE(PageSwapCache(page
), page
);
453 /* Move dirty while page refs frozen and newpage not yet exposed */
454 dirty
= PageDirty(page
);
456 ClearPageDirty(page
);
457 SetPageDirty(newpage
);
460 xas_store(&xas
, newpage
);
461 if (PageTransHuge(page
)) {
464 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
466 xas_store(&xas
, newpage
);
471 * Drop cache reference from old page by unfreezing
472 * to one less reference.
473 * We know this isn't the last reference.
475 page_ref_unfreeze(page
, expected_count
- hpage_nr_pages(page
));
478 /* Leave irq disabled to prevent preemption while updating stats */
481 * If moved to a different zone then also account
482 * the page for that zone. Other VM counters will be
483 * taken care of when we establish references to the
484 * new page and drop references to the old page.
486 * Note that anonymous pages are accounted for
487 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
488 * are mapped to swap space.
490 if (newzone
!= oldzone
) {
491 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_PAGES
);
492 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_PAGES
);
493 if (PageSwapBacked(page
) && !PageSwapCache(page
)) {
494 __dec_node_state(oldzone
->zone_pgdat
, NR_SHMEM
);
495 __inc_node_state(newzone
->zone_pgdat
, NR_SHMEM
);
497 if (dirty
&& mapping_cap_account_dirty(mapping
)) {
498 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_DIRTY
);
499 __dec_zone_state(oldzone
, NR_ZONE_WRITE_PENDING
);
500 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_DIRTY
);
501 __inc_zone_state(newzone
, NR_ZONE_WRITE_PENDING
);
506 return MIGRATEPAGE_SUCCESS
;
508 EXPORT_SYMBOL(migrate_page_move_mapping
);
511 * The expected number of remaining references is the same as that
512 * of migrate_page_move_mapping().
514 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
515 struct page
*newpage
, struct page
*page
)
517 XA_STATE(xas
, &mapping
->i_pages
, page_index(page
));
521 expected_count
= 2 + page_has_private(page
);
522 if (page_count(page
) != expected_count
|| xas_load(&xas
) != page
) {
523 xas_unlock_irq(&xas
);
527 if (!page_ref_freeze(page
, expected_count
)) {
528 xas_unlock_irq(&xas
);
532 newpage
->index
= page
->index
;
533 newpage
->mapping
= page
->mapping
;
537 xas_store(&xas
, newpage
);
539 page_ref_unfreeze(page
, expected_count
- 1);
541 xas_unlock_irq(&xas
);
543 return MIGRATEPAGE_SUCCESS
;
547 * Gigantic pages are so large that we do not guarantee that page++ pointer
548 * arithmetic will work across the entire page. We need something more
551 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
555 struct page
*dst_base
= dst
;
556 struct page
*src_base
= src
;
558 for (i
= 0; i
< nr_pages
; ) {
560 copy_highpage(dst
, src
);
563 dst
= mem_map_next(dst
, dst_base
, i
);
564 src
= mem_map_next(src
, src_base
, i
);
568 static void copy_huge_page(struct page
*dst
, struct page
*src
)
575 struct hstate
*h
= page_hstate(src
);
576 nr_pages
= pages_per_huge_page(h
);
578 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
579 __copy_gigantic_page(dst
, src
, nr_pages
);
584 BUG_ON(!PageTransHuge(src
));
585 nr_pages
= hpage_nr_pages(src
);
588 for (i
= 0; i
< nr_pages
; i
++) {
590 copy_highpage(dst
+ i
, src
+ i
);
595 * Copy the page to its new location
597 void migrate_page_states(struct page
*newpage
, struct page
*page
)
602 SetPageError(newpage
);
603 if (PageReferenced(page
))
604 SetPageReferenced(newpage
);
605 if (PageUptodate(page
))
606 SetPageUptodate(newpage
);
607 if (TestClearPageActive(page
)) {
608 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
609 SetPageActive(newpage
);
610 } else if (TestClearPageUnevictable(page
))
611 SetPageUnevictable(newpage
);
612 if (PageWorkingset(page
))
613 SetPageWorkingset(newpage
);
614 if (PageChecked(page
))
615 SetPageChecked(newpage
);
616 if (PageMappedToDisk(page
))
617 SetPageMappedToDisk(newpage
);
619 /* Move dirty on pages not done by migrate_page_move_mapping() */
621 SetPageDirty(newpage
);
623 if (page_is_young(page
))
624 set_page_young(newpage
);
625 if (page_is_idle(page
))
626 set_page_idle(newpage
);
629 * Copy NUMA information to the new page, to prevent over-eager
630 * future migrations of this same page.
632 cpupid
= page_cpupid_xchg_last(page
, -1);
633 page_cpupid_xchg_last(newpage
, cpupid
);
635 ksm_migrate_page(newpage
, page
);
637 * Please do not reorder this without considering how mm/ksm.c's
638 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
640 if (PageSwapCache(page
))
641 ClearPageSwapCache(page
);
642 ClearPagePrivate(page
);
643 set_page_private(page
, 0);
646 * If any waiters have accumulated on the new page then
649 if (PageWriteback(newpage
))
650 end_page_writeback(newpage
);
652 copy_page_owner(page
, newpage
);
654 mem_cgroup_migrate(page
, newpage
);
656 EXPORT_SYMBOL(migrate_page_states
);
658 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
660 if (PageHuge(page
) || PageTransHuge(page
))
661 copy_huge_page(newpage
, page
);
663 copy_highpage(newpage
, page
);
665 migrate_page_states(newpage
, page
);
667 EXPORT_SYMBOL(migrate_page_copy
);
669 /************************************************************
670 * Migration functions
671 ***********************************************************/
674 * Common logic to directly migrate a single LRU page suitable for
675 * pages that do not use PagePrivate/PagePrivate2.
677 * Pages are locked upon entry and exit.
679 int migrate_page(struct address_space
*mapping
,
680 struct page
*newpage
, struct page
*page
,
681 enum migrate_mode mode
)
685 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
687 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, mode
, 0);
689 if (rc
!= MIGRATEPAGE_SUCCESS
)
692 if (mode
!= MIGRATE_SYNC_NO_COPY
)
693 migrate_page_copy(newpage
, page
);
695 migrate_page_states(newpage
, page
);
696 return MIGRATEPAGE_SUCCESS
;
698 EXPORT_SYMBOL(migrate_page
);
701 /* Returns true if all buffers are successfully locked */
702 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
703 enum migrate_mode mode
)
705 struct buffer_head
*bh
= head
;
707 /* Simple case, sync compaction */
708 if (mode
!= MIGRATE_ASYNC
) {
711 bh
= bh
->b_this_page
;
713 } while (bh
!= head
);
718 /* async case, we cannot block on lock_buffer so use trylock_buffer */
720 if (!trylock_buffer(bh
)) {
722 * We failed to lock the buffer and cannot stall in
723 * async migration. Release the taken locks
725 struct buffer_head
*failed_bh
= bh
;
727 while (bh
!= failed_bh
) {
729 bh
= bh
->b_this_page
;
734 bh
= bh
->b_this_page
;
735 } while (bh
!= head
);
739 static int __buffer_migrate_page(struct address_space
*mapping
,
740 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
,
743 struct buffer_head
*bh
, *head
;
747 if (!page_has_buffers(page
))
748 return migrate_page(mapping
, newpage
, page
, mode
);
750 /* Check whether page does not have extra refs before we do more work */
751 expected_count
= expected_page_refs(mapping
, page
);
752 if (page_count(page
) != expected_count
)
755 head
= page_buffers(page
);
756 if (!buffer_migrate_lock_buffers(head
, mode
))
761 bool invalidated
= false;
765 spin_lock(&mapping
->private_lock
);
768 if (atomic_read(&bh
->b_count
)) {
772 bh
= bh
->b_this_page
;
773 } while (bh
!= head
);
774 spin_unlock(&mapping
->private_lock
);
780 invalidate_bh_lrus();
782 goto recheck_buffers
;
786 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, mode
, 0);
787 if (rc
!= MIGRATEPAGE_SUCCESS
)
790 ClearPagePrivate(page
);
791 set_page_private(newpage
, page_private(page
));
792 set_page_private(page
, 0);
798 set_bh_page(bh
, newpage
, bh_offset(bh
));
799 bh
= bh
->b_this_page
;
801 } while (bh
!= head
);
803 SetPagePrivate(newpage
);
805 if (mode
!= MIGRATE_SYNC_NO_COPY
)
806 migrate_page_copy(newpage
, page
);
808 migrate_page_states(newpage
, page
);
810 rc
= MIGRATEPAGE_SUCCESS
;
815 bh
= bh
->b_this_page
;
817 } while (bh
!= head
);
823 * Migration function for pages with buffers. This function can only be used
824 * if the underlying filesystem guarantees that no other references to "page"
825 * exist. For example attached buffer heads are accessed only under page lock.
827 int buffer_migrate_page(struct address_space
*mapping
,
828 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
830 return __buffer_migrate_page(mapping
, newpage
, page
, mode
, false);
832 EXPORT_SYMBOL(buffer_migrate_page
);
835 * Same as above except that this variant is more careful and checks that there
836 * are also no buffer head references. This function is the right one for
837 * mappings where buffer heads are directly looked up and referenced (such as
838 * block device mappings).
840 int buffer_migrate_page_norefs(struct address_space
*mapping
,
841 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
843 return __buffer_migrate_page(mapping
, newpage
, page
, mode
, true);
848 * Writeback a page to clean the dirty state
850 static int writeout(struct address_space
*mapping
, struct page
*page
)
852 struct writeback_control wbc
= {
853 .sync_mode
= WB_SYNC_NONE
,
856 .range_end
= LLONG_MAX
,
861 if (!mapping
->a_ops
->writepage
)
862 /* No write method for the address space */
865 if (!clear_page_dirty_for_io(page
))
866 /* Someone else already triggered a write */
870 * A dirty page may imply that the underlying filesystem has
871 * the page on some queue. So the page must be clean for
872 * migration. Writeout may mean we loose the lock and the
873 * page state is no longer what we checked for earlier.
874 * At this point we know that the migration attempt cannot
877 remove_migration_ptes(page
, page
, false);
879 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
881 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
882 /* unlocked. Relock */
885 return (rc
< 0) ? -EIO
: -EAGAIN
;
889 * Default handling if a filesystem does not provide a migration function.
891 static int fallback_migrate_page(struct address_space
*mapping
,
892 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
894 if (PageDirty(page
)) {
895 /* Only writeback pages in full synchronous migration */
898 case MIGRATE_SYNC_NO_COPY
:
903 return writeout(mapping
, page
);
907 * Buffers may be managed in a filesystem specific way.
908 * We must have no buffers or drop them.
910 if (page_has_private(page
) &&
911 !try_to_release_page(page
, GFP_KERNEL
))
912 return mode
== MIGRATE_SYNC
? -EAGAIN
: -EBUSY
;
914 return migrate_page(mapping
, newpage
, page
, mode
);
918 * Move a page to a newly allocated page
919 * The page is locked and all ptes have been successfully removed.
921 * The new page will have replaced the old page if this function
926 * MIGRATEPAGE_SUCCESS - success
928 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
929 enum migrate_mode mode
)
931 struct address_space
*mapping
;
933 bool is_lru
= !__PageMovable(page
);
935 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
936 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
938 mapping
= page_mapping(page
);
940 if (likely(is_lru
)) {
942 rc
= migrate_page(mapping
, newpage
, page
, mode
);
943 else if (mapping
->a_ops
->migratepage
)
945 * Most pages have a mapping and most filesystems
946 * provide a migratepage callback. Anonymous pages
947 * are part of swap space which also has its own
948 * migratepage callback. This is the most common path
949 * for page migration.
951 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
954 rc
= fallback_migrate_page(mapping
, newpage
,
958 * In case of non-lru page, it could be released after
959 * isolation step. In that case, we shouldn't try migration.
961 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
962 if (!PageMovable(page
)) {
963 rc
= MIGRATEPAGE_SUCCESS
;
964 __ClearPageIsolated(page
);
968 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
970 WARN_ON_ONCE(rc
== MIGRATEPAGE_SUCCESS
&&
971 !PageIsolated(page
));
975 * When successful, old pagecache page->mapping must be cleared before
976 * page is freed; but stats require that PageAnon be left as PageAnon.
978 if (rc
== MIGRATEPAGE_SUCCESS
) {
979 if (__PageMovable(page
)) {
980 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
983 * We clear PG_movable under page_lock so any compactor
984 * cannot try to migrate this page.
986 __ClearPageIsolated(page
);
990 * Anonymous and movable page->mapping will be cleard by
991 * free_pages_prepare so don't reset it here for keeping
992 * the type to work PageAnon, for example.
994 if (!PageMappingFlags(page
))
995 page
->mapping
= NULL
;
997 if (unlikely(is_zone_device_page(newpage
))) {
998 if (is_device_public_page(newpage
))
999 flush_dcache_page(newpage
);
1001 flush_dcache_page(newpage
);
1008 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
1009 int force
, enum migrate_mode mode
)
1012 int page_was_mapped
= 0;
1013 struct anon_vma
*anon_vma
= NULL
;
1014 bool is_lru
= !__PageMovable(page
);
1016 if (!trylock_page(page
)) {
1017 if (!force
|| mode
== MIGRATE_ASYNC
)
1021 * It's not safe for direct compaction to call lock_page.
1022 * For example, during page readahead pages are added locked
1023 * to the LRU. Later, when the IO completes the pages are
1024 * marked uptodate and unlocked. However, the queueing
1025 * could be merging multiple pages for one bio (e.g.
1026 * mpage_readpages). If an allocation happens for the
1027 * second or third page, the process can end up locking
1028 * the same page twice and deadlocking. Rather than
1029 * trying to be clever about what pages can be locked,
1030 * avoid the use of lock_page for direct compaction
1033 if (current
->flags
& PF_MEMALLOC
)
1039 if (PageWriteback(page
)) {
1041 * Only in the case of a full synchronous migration is it
1042 * necessary to wait for PageWriteback. In the async case,
1043 * the retry loop is too short and in the sync-light case,
1044 * the overhead of stalling is too much
1048 case MIGRATE_SYNC_NO_COPY
:
1056 wait_on_page_writeback(page
);
1060 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1061 * we cannot notice that anon_vma is freed while we migrates a page.
1062 * This get_anon_vma() delays freeing anon_vma pointer until the end
1063 * of migration. File cache pages are no problem because of page_lock()
1064 * File Caches may use write_page() or lock_page() in migration, then,
1065 * just care Anon page here.
1067 * Only page_get_anon_vma() understands the subtleties of
1068 * getting a hold on an anon_vma from outside one of its mms.
1069 * But if we cannot get anon_vma, then we won't need it anyway,
1070 * because that implies that the anon page is no longer mapped
1071 * (and cannot be remapped so long as we hold the page lock).
1073 if (PageAnon(page
) && !PageKsm(page
))
1074 anon_vma
= page_get_anon_vma(page
);
1077 * Block others from accessing the new page when we get around to
1078 * establishing additional references. We are usually the only one
1079 * holding a reference to newpage at this point. We used to have a BUG
1080 * here if trylock_page(newpage) fails, but would like to allow for
1081 * cases where there might be a race with the previous use of newpage.
1082 * This is much like races on refcount of oldpage: just don't BUG().
1084 if (unlikely(!trylock_page(newpage
)))
1087 if (unlikely(!is_lru
)) {
1088 rc
= move_to_new_page(newpage
, page
, mode
);
1089 goto out_unlock_both
;
1093 * Corner case handling:
1094 * 1. When a new swap-cache page is read into, it is added to the LRU
1095 * and treated as swapcache but it has no rmap yet.
1096 * Calling try_to_unmap() against a page->mapping==NULL page will
1097 * trigger a BUG. So handle it here.
1098 * 2. An orphaned page (see truncate_complete_page) might have
1099 * fs-private metadata. The page can be picked up due to memory
1100 * offlining. Everywhere else except page reclaim, the page is
1101 * invisible to the vm, so the page can not be migrated. So try to
1102 * free the metadata, so the page can be freed.
1104 if (!page
->mapping
) {
1105 VM_BUG_ON_PAGE(PageAnon(page
), page
);
1106 if (page_has_private(page
)) {
1107 try_to_free_buffers(page
);
1108 goto out_unlock_both
;
1110 } else if (page_mapped(page
)) {
1111 /* Establish migration ptes */
1112 VM_BUG_ON_PAGE(PageAnon(page
) && !PageKsm(page
) && !anon_vma
,
1115 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1116 page_was_mapped
= 1;
1119 if (!page_mapped(page
))
1120 rc
= move_to_new_page(newpage
, page
, mode
);
1122 if (page_was_mapped
)
1123 remove_migration_ptes(page
,
1124 rc
== MIGRATEPAGE_SUCCESS
? newpage
: page
, false);
1127 unlock_page(newpage
);
1129 /* Drop an anon_vma reference if we took one */
1131 put_anon_vma(anon_vma
);
1135 * If migration is successful, decrease refcount of the newpage
1136 * which will not free the page because new page owner increased
1137 * refcounter. As well, if it is LRU page, add the page to LRU
1138 * list in here. Use the old state of the isolated source page to
1139 * determine if we migrated a LRU page. newpage was already unlocked
1140 * and possibly modified by its owner - don't rely on the page
1143 if (rc
== MIGRATEPAGE_SUCCESS
) {
1144 if (unlikely(!is_lru
))
1147 putback_lru_page(newpage
);
1154 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1157 #if defined(CONFIG_ARM) && \
1158 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1159 #define ICE_noinline noinline
1161 #define ICE_noinline
1165 * Obtain the lock on page, remove all ptes and migrate the page
1166 * to the newly allocated page in newpage.
1168 static ICE_noinline
int unmap_and_move(new_page_t get_new_page
,
1169 free_page_t put_new_page
,
1170 unsigned long private, struct page
*page
,
1171 int force
, enum migrate_mode mode
,
1172 enum migrate_reason reason
)
1174 int rc
= MIGRATEPAGE_SUCCESS
;
1175 struct page
*newpage
;
1177 if (!thp_migration_supported() && PageTransHuge(page
))
1180 newpage
= get_new_page(page
, private);
1184 if (page_count(page
) == 1) {
1185 /* page was freed from under us. So we are done. */
1186 ClearPageActive(page
);
1187 ClearPageUnevictable(page
);
1188 if (unlikely(__PageMovable(page
))) {
1190 if (!PageMovable(page
))
1191 __ClearPageIsolated(page
);
1195 put_new_page(newpage
, private);
1201 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
1202 if (rc
== MIGRATEPAGE_SUCCESS
)
1203 set_page_owner_migrate_reason(newpage
, reason
);
1206 if (rc
!= -EAGAIN
) {
1208 * A page that has been migrated has all references
1209 * removed and will be freed. A page that has not been
1210 * migrated will have kepts its references and be
1213 list_del(&page
->lru
);
1216 * Compaction can migrate also non-LRU pages which are
1217 * not accounted to NR_ISOLATED_*. They can be recognized
1220 if (likely(!__PageMovable(page
)))
1221 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
1222 page_is_file_cache(page
), -hpage_nr_pages(page
));
1226 * If migration is successful, releases reference grabbed during
1227 * isolation. Otherwise, restore the page to right list unless
1230 if (rc
== MIGRATEPAGE_SUCCESS
) {
1232 if (reason
== MR_MEMORY_FAILURE
) {
1234 * Set PG_HWPoison on just freed page
1235 * intentionally. Although it's rather weird,
1236 * it's how HWPoison flag works at the moment.
1238 if (set_hwpoison_free_buddy_page(page
))
1239 num_poisoned_pages_inc();
1242 if (rc
!= -EAGAIN
) {
1243 if (likely(!__PageMovable(page
))) {
1244 putback_lru_page(page
);
1249 if (PageMovable(page
))
1250 putback_movable_page(page
);
1252 __ClearPageIsolated(page
);
1258 put_new_page(newpage
, private);
1267 * Counterpart of unmap_and_move_page() for hugepage migration.
1269 * This function doesn't wait the completion of hugepage I/O
1270 * because there is no race between I/O and migration for hugepage.
1271 * Note that currently hugepage I/O occurs only in direct I/O
1272 * where no lock is held and PG_writeback is irrelevant,
1273 * and writeback status of all subpages are counted in the reference
1274 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1275 * under direct I/O, the reference of the head page is 512 and a bit more.)
1276 * This means that when we try to migrate hugepage whose subpages are
1277 * doing direct I/O, some references remain after try_to_unmap() and
1278 * hugepage migration fails without data corruption.
1280 * There is also no race when direct I/O is issued on the page under migration,
1281 * because then pte is replaced with migration swap entry and direct I/O code
1282 * will wait in the page fault for migration to complete.
1284 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1285 free_page_t put_new_page
, unsigned long private,
1286 struct page
*hpage
, int force
,
1287 enum migrate_mode mode
, int reason
)
1290 int page_was_mapped
= 0;
1291 struct page
*new_hpage
;
1292 struct anon_vma
*anon_vma
= NULL
;
1295 * Migratability of hugepages depends on architectures and their size.
1296 * This check is necessary because some callers of hugepage migration
1297 * like soft offline and memory hotremove don't walk through page
1298 * tables or check whether the hugepage is pmd-based or not before
1299 * kicking migration.
1301 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1302 putback_active_hugepage(hpage
);
1306 new_hpage
= get_new_page(hpage
, private);
1310 if (!trylock_page(hpage
)) {
1315 case MIGRATE_SYNC_NO_COPY
:
1324 * Check for pages which are in the process of being freed. Without
1325 * page_mapping() set, hugetlbfs specific move page routine will not
1326 * be called and we could leak usage counts for subpools.
1328 if (page_private(hpage
) && !page_mapping(hpage
)) {
1333 if (PageAnon(hpage
))
1334 anon_vma
= page_get_anon_vma(hpage
);
1336 if (unlikely(!trylock_page(new_hpage
)))
1339 if (page_mapped(hpage
)) {
1341 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1342 page_was_mapped
= 1;
1345 if (!page_mapped(hpage
))
1346 rc
= move_to_new_page(new_hpage
, hpage
, mode
);
1348 if (page_was_mapped
)
1349 remove_migration_ptes(hpage
,
1350 rc
== MIGRATEPAGE_SUCCESS
? new_hpage
: hpage
, false);
1352 unlock_page(new_hpage
);
1356 put_anon_vma(anon_vma
);
1358 if (rc
== MIGRATEPAGE_SUCCESS
) {
1359 move_hugetlb_state(hpage
, new_hpage
, reason
);
1360 put_new_page
= NULL
;
1367 putback_active_hugepage(hpage
);
1370 * If migration was not successful and there's a freeing callback, use
1371 * it. Otherwise, put_page() will drop the reference grabbed during
1375 put_new_page(new_hpage
, private);
1377 putback_active_hugepage(new_hpage
);
1383 * migrate_pages - migrate the pages specified in a list, to the free pages
1384 * supplied as the target for the page migration
1386 * @from: The list of pages to be migrated.
1387 * @get_new_page: The function used to allocate free pages to be used
1388 * as the target of the page migration.
1389 * @put_new_page: The function used to free target pages if migration
1390 * fails, or NULL if no special handling is necessary.
1391 * @private: Private data to be passed on to get_new_page()
1392 * @mode: The migration mode that specifies the constraints for
1393 * page migration, if any.
1394 * @reason: The reason for page migration.
1396 * The function returns after 10 attempts or if no pages are movable any more
1397 * because the list has become empty or no retryable pages exist any more.
1398 * The caller should call putback_movable_pages() to return pages to the LRU
1399 * or free list only if ret != 0.
1401 * Returns the number of pages that were not migrated, or an error code.
1403 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1404 free_page_t put_new_page
, unsigned long private,
1405 enum migrate_mode mode
, int reason
)
1409 int nr_succeeded
= 0;
1413 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1417 current
->flags
|= PF_SWAPWRITE
;
1419 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1422 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1427 rc
= unmap_and_move_huge_page(get_new_page
,
1428 put_new_page
, private, page
,
1429 pass
> 2, mode
, reason
);
1431 rc
= unmap_and_move(get_new_page
, put_new_page
,
1432 private, page
, pass
> 2, mode
,
1438 * THP migration might be unsupported or the
1439 * allocation could've failed so we should
1440 * retry on the same page with the THP split
1443 * Head page is retried immediately and tail
1444 * pages are added to the tail of the list so
1445 * we encounter them after the rest of the list
1448 if (PageTransHuge(page
) && !PageHuge(page
)) {
1450 rc
= split_huge_page_to_list(page
, from
);
1453 list_safe_reset_next(page
, page2
, lru
);
1462 case MIGRATEPAGE_SUCCESS
:
1467 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1468 * unlike -EAGAIN case, the failed page is
1469 * removed from migration page list and not
1470 * retried in the next outer loop.
1481 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1483 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1484 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1487 current
->flags
&= ~PF_SWAPWRITE
;
1494 static int store_status(int __user
*status
, int start
, int value
, int nr
)
1497 if (put_user(value
, status
+ start
))
1505 static int do_move_pages_to_node(struct mm_struct
*mm
,
1506 struct list_head
*pagelist
, int node
)
1510 if (list_empty(pagelist
))
1513 err
= migrate_pages(pagelist
, alloc_new_node_page
, NULL
, node
,
1514 MIGRATE_SYNC
, MR_SYSCALL
);
1516 putback_movable_pages(pagelist
);
1521 * Resolves the given address to a struct page, isolates it from the LRU and
1522 * puts it to the given pagelist.
1523 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1524 * queued or the page doesn't need to be migrated because it is already on
1527 static int add_page_for_migration(struct mm_struct
*mm
, unsigned long addr
,
1528 int node
, struct list_head
*pagelist
, bool migrate_all
)
1530 struct vm_area_struct
*vma
;
1532 unsigned int follflags
;
1535 down_read(&mm
->mmap_sem
);
1537 vma
= find_vma(mm
, addr
);
1538 if (!vma
|| addr
< vma
->vm_start
|| !vma_migratable(vma
))
1541 /* FOLL_DUMP to ignore special (like zero) pages */
1542 follflags
= FOLL_GET
| FOLL_DUMP
;
1543 page
= follow_page(vma
, addr
, follflags
);
1545 err
= PTR_ERR(page
);
1554 if (page_to_nid(page
) == node
)
1558 if (page_mapcount(page
) > 1 && !migrate_all
)
1561 if (PageHuge(page
)) {
1562 if (PageHead(page
)) {
1563 isolate_huge_page(page
, pagelist
);
1569 head
= compound_head(page
);
1570 err
= isolate_lru_page(head
);
1575 list_add_tail(&head
->lru
, pagelist
);
1576 mod_node_page_state(page_pgdat(head
),
1577 NR_ISOLATED_ANON
+ page_is_file_cache(head
),
1578 hpage_nr_pages(head
));
1582 * Either remove the duplicate refcount from
1583 * isolate_lru_page() or drop the page ref if it was
1588 up_read(&mm
->mmap_sem
);
1593 * Migrate an array of page address onto an array of nodes and fill
1594 * the corresponding array of status.
1596 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1597 unsigned long nr_pages
,
1598 const void __user
* __user
*pages
,
1599 const int __user
*nodes
,
1600 int __user
*status
, int flags
)
1602 int current_node
= NUMA_NO_NODE
;
1603 LIST_HEAD(pagelist
);
1609 for (i
= start
= 0; i
< nr_pages
; i
++) {
1610 const void __user
*p
;
1615 if (get_user(p
, pages
+ i
))
1617 if (get_user(node
, nodes
+ i
))
1619 addr
= (unsigned long)p
;
1622 if (node
< 0 || node
>= MAX_NUMNODES
)
1624 if (!node_state(node
, N_MEMORY
))
1628 if (!node_isset(node
, task_nodes
))
1631 if (current_node
== NUMA_NO_NODE
) {
1632 current_node
= node
;
1634 } else if (node
!= current_node
) {
1635 err
= do_move_pages_to_node(mm
, &pagelist
, current_node
);
1638 err
= store_status(status
, start
, current_node
, i
- start
);
1642 current_node
= node
;
1646 * Errors in the page lookup or isolation are not fatal and we simply
1647 * report them via status
1649 err
= add_page_for_migration(mm
, addr
, current_node
,
1650 &pagelist
, flags
& MPOL_MF_MOVE_ALL
);
1654 err
= store_status(status
, i
, err
, 1);
1658 err
= do_move_pages_to_node(mm
, &pagelist
, current_node
);
1662 err
= store_status(status
, start
, current_node
, i
- start
);
1666 current_node
= NUMA_NO_NODE
;
1669 if (list_empty(&pagelist
))
1672 /* Make sure we do not overwrite the existing error */
1673 err1
= do_move_pages_to_node(mm
, &pagelist
, current_node
);
1675 err1
= store_status(status
, start
, current_node
, i
- start
);
1683 * Determine the nodes of an array of pages and store it in an array of status.
1685 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1686 const void __user
**pages
, int *status
)
1690 down_read(&mm
->mmap_sem
);
1692 for (i
= 0; i
< nr_pages
; i
++) {
1693 unsigned long addr
= (unsigned long)(*pages
);
1694 struct vm_area_struct
*vma
;
1698 vma
= find_vma(mm
, addr
);
1699 if (!vma
|| addr
< vma
->vm_start
)
1702 /* FOLL_DUMP to ignore special (like zero) pages */
1703 page
= follow_page(vma
, addr
, FOLL_DUMP
);
1705 err
= PTR_ERR(page
);
1709 err
= page
? page_to_nid(page
) : -ENOENT
;
1717 up_read(&mm
->mmap_sem
);
1721 * Determine the nodes of a user array of pages and store it in
1722 * a user array of status.
1724 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1725 const void __user
* __user
*pages
,
1728 #define DO_PAGES_STAT_CHUNK_NR 16
1729 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1730 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1733 unsigned long chunk_nr
;
1735 chunk_nr
= nr_pages
;
1736 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1737 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1739 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1742 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1744 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1749 nr_pages
-= chunk_nr
;
1751 return nr_pages
? -EFAULT
: 0;
1755 * Move a list of pages in the address space of the currently executing
1758 static int kernel_move_pages(pid_t pid
, unsigned long nr_pages
,
1759 const void __user
* __user
*pages
,
1760 const int __user
*nodes
,
1761 int __user
*status
, int flags
)
1763 struct task_struct
*task
;
1764 struct mm_struct
*mm
;
1766 nodemask_t task_nodes
;
1769 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1772 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1775 /* Find the mm_struct */
1777 task
= pid
? find_task_by_vpid(pid
) : current
;
1782 get_task_struct(task
);
1785 * Check if this process has the right to modify the specified
1786 * process. Use the regular "ptrace_may_access()" checks.
1788 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1795 err
= security_task_movememory(task
);
1799 task_nodes
= cpuset_mems_allowed(task
);
1800 mm
= get_task_mm(task
);
1801 put_task_struct(task
);
1807 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1808 nodes
, status
, flags
);
1810 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1816 put_task_struct(task
);
1820 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1821 const void __user
* __user
*, pages
,
1822 const int __user
*, nodes
,
1823 int __user
*, status
, int, flags
)
1825 return kernel_move_pages(pid
, nr_pages
, pages
, nodes
, status
, flags
);
1828 #ifdef CONFIG_COMPAT
1829 COMPAT_SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, compat_ulong_t
, nr_pages
,
1830 compat_uptr_t __user
*, pages32
,
1831 const int __user
*, nodes
,
1832 int __user
*, status
,
1835 const void __user
* __user
*pages
;
1838 pages
= compat_alloc_user_space(nr_pages
* sizeof(void *));
1839 for (i
= 0; i
< nr_pages
; i
++) {
1842 if (get_user(p
, pages32
+ i
) ||
1843 put_user(compat_ptr(p
), pages
+ i
))
1846 return kernel_move_pages(pid
, nr_pages
, pages
, nodes
, status
, flags
);
1848 #endif /* CONFIG_COMPAT */
1850 #ifdef CONFIG_NUMA_BALANCING
1852 * Returns true if this is a safe migration target node for misplaced NUMA
1853 * pages. Currently it only checks the watermarks which crude
1855 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1856 unsigned long nr_migrate_pages
)
1860 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1861 struct zone
*zone
= pgdat
->node_zones
+ z
;
1863 if (!populated_zone(zone
))
1866 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1867 if (!zone_watermark_ok(zone
, 0,
1868 high_wmark_pages(zone
) +
1877 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1880 int nid
= (int) data
;
1881 struct page
*newpage
;
1883 newpage
= __alloc_pages_node(nid
,
1884 (GFP_HIGHUSER_MOVABLE
|
1885 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1886 __GFP_NORETRY
| __GFP_NOWARN
) &
1892 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1896 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1898 /* Avoid migrating to a node that is nearly full */
1899 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1902 if (isolate_lru_page(page
))
1906 * migrate_misplaced_transhuge_page() skips page migration's usual
1907 * check on page_count(), so we must do it here, now that the page
1908 * has been isolated: a GUP pin, or any other pin, prevents migration.
1909 * The expected page count is 3: 1 for page's mapcount and 1 for the
1910 * caller's pin and 1 for the reference taken by isolate_lru_page().
1912 if (PageTransHuge(page
) && page_count(page
) != 3) {
1913 putback_lru_page(page
);
1917 page_lru
= page_is_file_cache(page
);
1918 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+ page_lru
,
1919 hpage_nr_pages(page
));
1922 * Isolating the page has taken another reference, so the
1923 * caller's reference can be safely dropped without the page
1924 * disappearing underneath us during migration.
1930 bool pmd_trans_migrating(pmd_t pmd
)
1932 struct page
*page
= pmd_page(pmd
);
1933 return PageLocked(page
);
1937 * Attempt to migrate a misplaced page to the specified destination
1938 * node. Caller is expected to have an elevated reference count on
1939 * the page that will be dropped by this function before returning.
1941 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1944 pg_data_t
*pgdat
= NODE_DATA(node
);
1947 LIST_HEAD(migratepages
);
1950 * Don't migrate file pages that are mapped in multiple processes
1951 * with execute permissions as they are probably shared libraries.
1953 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1954 (vma
->vm_flags
& VM_EXEC
))
1958 * Also do not migrate dirty pages as not all filesystems can move
1959 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1961 if (page_is_file_cache(page
) && PageDirty(page
))
1964 isolated
= numamigrate_isolate_page(pgdat
, page
);
1968 list_add(&page
->lru
, &migratepages
);
1969 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1970 NULL
, node
, MIGRATE_ASYNC
,
1973 if (!list_empty(&migratepages
)) {
1974 list_del(&page
->lru
);
1975 dec_node_page_state(page
, NR_ISOLATED_ANON
+
1976 page_is_file_cache(page
));
1977 putback_lru_page(page
);
1981 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1982 BUG_ON(!list_empty(&migratepages
));
1989 #endif /* CONFIG_NUMA_BALANCING */
1991 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1993 * Migrates a THP to a given target node. page must be locked and is unlocked
1996 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1997 struct vm_area_struct
*vma
,
1998 pmd_t
*pmd
, pmd_t entry
,
1999 unsigned long address
,
2000 struct page
*page
, int node
)
2003 pg_data_t
*pgdat
= NODE_DATA(node
);
2005 struct page
*new_page
= NULL
;
2006 int page_lru
= page_is_file_cache(page
);
2007 unsigned long start
= address
& HPAGE_PMD_MASK
;
2009 new_page
= alloc_pages_node(node
,
2010 (GFP_TRANSHUGE_LIGHT
| __GFP_THISNODE
),
2014 prep_transhuge_page(new_page
);
2016 isolated
= numamigrate_isolate_page(pgdat
, page
);
2022 /* Prepare a page as a migration target */
2023 __SetPageLocked(new_page
);
2024 if (PageSwapBacked(page
))
2025 __SetPageSwapBacked(new_page
);
2027 /* anon mapping, we can simply copy page->mapping to the new page: */
2028 new_page
->mapping
= page
->mapping
;
2029 new_page
->index
= page
->index
;
2030 /* flush the cache before copying using the kernel virtual address */
2031 flush_cache_range(vma
, start
, start
+ HPAGE_PMD_SIZE
);
2032 migrate_page_copy(new_page
, page
);
2033 WARN_ON(PageLRU(new_page
));
2035 /* Recheck the target PMD */
2036 ptl
= pmd_lock(mm
, pmd
);
2037 if (unlikely(!pmd_same(*pmd
, entry
) || !page_ref_freeze(page
, 2))) {
2040 /* Reverse changes made by migrate_page_copy() */
2041 if (TestClearPageActive(new_page
))
2042 SetPageActive(page
);
2043 if (TestClearPageUnevictable(new_page
))
2044 SetPageUnevictable(page
);
2046 unlock_page(new_page
);
2047 put_page(new_page
); /* Free it */
2049 /* Retake the callers reference and putback on LRU */
2051 putback_lru_page(page
);
2052 mod_node_page_state(page_pgdat(page
),
2053 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
2058 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2059 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
2062 * Overwrite the old entry under pagetable lock and establish
2063 * the new PTE. Any parallel GUP will either observe the old
2064 * page blocking on the page lock, block on the page table
2065 * lock or observe the new page. The SetPageUptodate on the
2066 * new page and page_add_new_anon_rmap guarantee the copy is
2067 * visible before the pagetable update.
2069 page_add_anon_rmap(new_page
, vma
, start
, true);
2071 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2072 * has already been flushed globally. So no TLB can be currently
2073 * caching this non present pmd mapping. There's no need to clear the
2074 * pmd before doing set_pmd_at(), nor to flush the TLB after
2075 * set_pmd_at(). Clearing the pmd here would introduce a race
2076 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2077 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2078 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2081 set_pmd_at(mm
, start
, pmd
, entry
);
2082 update_mmu_cache_pmd(vma
, address
, &entry
);
2084 page_ref_unfreeze(page
, 2);
2085 mlock_migrate_page(new_page
, page
);
2086 page_remove_rmap(page
, true);
2087 set_page_owner_migrate_reason(new_page
, MR_NUMA_MISPLACED
);
2091 /* Take an "isolate" reference and put new page on the LRU. */
2093 putback_lru_page(new_page
);
2095 unlock_page(new_page
);
2097 put_page(page
); /* Drop the rmap reference */
2098 put_page(page
); /* Drop the LRU isolation reference */
2100 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
2101 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
2103 mod_node_page_state(page_pgdat(page
),
2104 NR_ISOLATED_ANON
+ page_lru
,
2109 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
2110 ptl
= pmd_lock(mm
, pmd
);
2111 if (pmd_same(*pmd
, entry
)) {
2112 entry
= pmd_modify(entry
, vma
->vm_page_prot
);
2113 set_pmd_at(mm
, start
, pmd
, entry
);
2114 update_mmu_cache_pmd(vma
, address
, &entry
);
2123 #endif /* CONFIG_NUMA_BALANCING */
2125 #endif /* CONFIG_NUMA */
2127 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2128 struct migrate_vma
{
2129 struct vm_area_struct
*vma
;
2132 unsigned long cpages
;
2133 unsigned long npages
;
2134 unsigned long start
;
2138 static int migrate_vma_collect_hole(unsigned long start
,
2140 struct mm_walk
*walk
)
2142 struct migrate_vma
*migrate
= walk
->private;
2145 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2146 migrate
->src
[migrate
->npages
] = MIGRATE_PFN_MIGRATE
;
2147 migrate
->dst
[migrate
->npages
] = 0;
2155 static int migrate_vma_collect_skip(unsigned long start
,
2157 struct mm_walk
*walk
)
2159 struct migrate_vma
*migrate
= walk
->private;
2162 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2163 migrate
->dst
[migrate
->npages
] = 0;
2164 migrate
->src
[migrate
->npages
++] = 0;
2170 static int migrate_vma_collect_pmd(pmd_t
*pmdp
,
2171 unsigned long start
,
2173 struct mm_walk
*walk
)
2175 struct migrate_vma
*migrate
= walk
->private;
2176 struct vm_area_struct
*vma
= walk
->vma
;
2177 struct mm_struct
*mm
= vma
->vm_mm
;
2178 unsigned long addr
= start
, unmapped
= 0;
2183 if (pmd_none(*pmdp
))
2184 return migrate_vma_collect_hole(start
, end
, walk
);
2186 if (pmd_trans_huge(*pmdp
)) {
2189 ptl
= pmd_lock(mm
, pmdp
);
2190 if (unlikely(!pmd_trans_huge(*pmdp
))) {
2195 page
= pmd_page(*pmdp
);
2196 if (is_huge_zero_page(page
)) {
2198 split_huge_pmd(vma
, pmdp
, addr
);
2199 if (pmd_trans_unstable(pmdp
))
2200 return migrate_vma_collect_skip(start
, end
,
2207 if (unlikely(!trylock_page(page
)))
2208 return migrate_vma_collect_skip(start
, end
,
2210 ret
= split_huge_page(page
);
2214 return migrate_vma_collect_skip(start
, end
,
2216 if (pmd_none(*pmdp
))
2217 return migrate_vma_collect_hole(start
, end
,
2222 if (unlikely(pmd_bad(*pmdp
)))
2223 return migrate_vma_collect_skip(start
, end
, walk
);
2225 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2226 arch_enter_lazy_mmu_mode();
2228 for (; addr
< end
; addr
+= PAGE_SIZE
, ptep
++) {
2229 unsigned long mpfn
, pfn
;
2237 if (pte_none(pte
)) {
2238 mpfn
= MIGRATE_PFN_MIGRATE
;
2244 if (!pte_present(pte
)) {
2248 * Only care about unaddressable device page special
2249 * page table entry. Other special swap entries are not
2250 * migratable, and we ignore regular swapped page.
2252 entry
= pte_to_swp_entry(pte
);
2253 if (!is_device_private_entry(entry
))
2256 page
= device_private_entry_to_page(entry
);
2257 mpfn
= migrate_pfn(page_to_pfn(page
))|
2258 MIGRATE_PFN_DEVICE
| MIGRATE_PFN_MIGRATE
;
2259 if (is_write_device_private_entry(entry
))
2260 mpfn
|= MIGRATE_PFN_WRITE
;
2262 if (is_zero_pfn(pfn
)) {
2263 mpfn
= MIGRATE_PFN_MIGRATE
;
2268 page
= _vm_normal_page(migrate
->vma
, addr
, pte
, true);
2269 mpfn
= migrate_pfn(pfn
) | MIGRATE_PFN_MIGRATE
;
2270 mpfn
|= pte_write(pte
) ? MIGRATE_PFN_WRITE
: 0;
2273 /* FIXME support THP */
2274 if (!page
|| !page
->mapping
|| PageTransCompound(page
)) {
2278 pfn
= page_to_pfn(page
);
2281 * By getting a reference on the page we pin it and that blocks
2282 * any kind of migration. Side effect is that it "freezes" the
2285 * We drop this reference after isolating the page from the lru
2286 * for non device page (device page are not on the lru and thus
2287 * can't be dropped from it).
2293 * Optimize for the common case where page is only mapped once
2294 * in one process. If we can lock the page, then we can safely
2295 * set up a special migration page table entry now.
2297 if (trylock_page(page
)) {
2300 mpfn
|= MIGRATE_PFN_LOCKED
;
2301 ptep_get_and_clear(mm
, addr
, ptep
);
2303 /* Setup special migration page table entry */
2304 entry
= make_migration_entry(page
, mpfn
&
2306 swp_pte
= swp_entry_to_pte(entry
);
2307 if (pte_soft_dirty(pte
))
2308 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
2309 set_pte_at(mm
, addr
, ptep
, swp_pte
);
2312 * This is like regular unmap: we remove the rmap and
2313 * drop page refcount. Page won't be freed, as we took
2314 * a reference just above.
2316 page_remove_rmap(page
, false);
2319 if (pte_present(pte
))
2324 migrate
->dst
[migrate
->npages
] = 0;
2325 migrate
->src
[migrate
->npages
++] = mpfn
;
2327 arch_leave_lazy_mmu_mode();
2328 pte_unmap_unlock(ptep
- 1, ptl
);
2330 /* Only flush the TLB if we actually modified any entries */
2332 flush_tlb_range(walk
->vma
, start
, end
);
2338 * migrate_vma_collect() - collect pages over a range of virtual addresses
2339 * @migrate: migrate struct containing all migration information
2341 * This will walk the CPU page table. For each virtual address backed by a
2342 * valid page, it updates the src array and takes a reference on the page, in
2343 * order to pin the page until we lock it and unmap it.
2345 static void migrate_vma_collect(struct migrate_vma
*migrate
)
2347 struct mmu_notifier_range range
;
2348 struct mm_walk mm_walk
;
2350 mm_walk
.pmd_entry
= migrate_vma_collect_pmd
;
2351 mm_walk
.pte_entry
= NULL
;
2352 mm_walk
.pte_hole
= migrate_vma_collect_hole
;
2353 mm_walk
.hugetlb_entry
= NULL
;
2354 mm_walk
.test_walk
= NULL
;
2355 mm_walk
.vma
= migrate
->vma
;
2356 mm_walk
.mm
= migrate
->vma
->vm_mm
;
2357 mm_walk
.private = migrate
;
2359 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, NULL
, mm_walk
.mm
,
2362 mmu_notifier_invalidate_range_start(&range
);
2363 walk_page_range(migrate
->start
, migrate
->end
, &mm_walk
);
2364 mmu_notifier_invalidate_range_end(&range
);
2366 migrate
->end
= migrate
->start
+ (migrate
->npages
<< PAGE_SHIFT
);
2370 * migrate_vma_check_page() - check if page is pinned or not
2371 * @page: struct page to check
2373 * Pinned pages cannot be migrated. This is the same test as in
2374 * migrate_page_move_mapping(), except that here we allow migration of a
2377 static bool migrate_vma_check_page(struct page
*page
)
2380 * One extra ref because caller holds an extra reference, either from
2381 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2387 * FIXME support THP (transparent huge page), it is bit more complex to
2388 * check them than regular pages, because they can be mapped with a pmd
2389 * or with a pte (split pte mapping).
2391 if (PageCompound(page
))
2394 /* Page from ZONE_DEVICE have one extra reference */
2395 if (is_zone_device_page(page
)) {
2397 * Private page can never be pin as they have no valid pte and
2398 * GUP will fail for those. Yet if there is a pending migration
2399 * a thread might try to wait on the pte migration entry and
2400 * will bump the page reference count. Sadly there is no way to
2401 * differentiate a regular pin from migration wait. Hence to
2402 * avoid 2 racing thread trying to migrate back to CPU to enter
2403 * infinite loop (one stoping migration because the other is
2404 * waiting on pte migration entry). We always return true here.
2406 * FIXME proper solution is to rework migration_entry_wait() so
2407 * it does not need to take a reference on page.
2409 if (is_device_private_page(page
))
2413 * Only allow device public page to be migrated and account for
2414 * the extra reference count imply by ZONE_DEVICE pages.
2416 if (!is_device_public_page(page
))
2421 /* For file back page */
2422 if (page_mapping(page
))
2423 extra
+= 1 + page_has_private(page
);
2425 if ((page_count(page
) - extra
) > page_mapcount(page
))
2432 * migrate_vma_prepare() - lock pages and isolate them from the lru
2433 * @migrate: migrate struct containing all migration information
2435 * This locks pages that have been collected by migrate_vma_collect(). Once each
2436 * page is locked it is isolated from the lru (for non-device pages). Finally,
2437 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2438 * migrated by concurrent kernel threads.
2440 static void migrate_vma_prepare(struct migrate_vma
*migrate
)
2442 const unsigned long npages
= migrate
->npages
;
2443 const unsigned long start
= migrate
->start
;
2444 unsigned long addr
, i
, restore
= 0;
2445 bool allow_drain
= true;
2449 for (i
= 0; (i
< npages
) && migrate
->cpages
; i
++) {
2450 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2456 if (!(migrate
->src
[i
] & MIGRATE_PFN_LOCKED
)) {
2458 * Because we are migrating several pages there can be
2459 * a deadlock between 2 concurrent migration where each
2460 * are waiting on each other page lock.
2462 * Make migrate_vma() a best effort thing and backoff
2463 * for any page we can not lock right away.
2465 if (!trylock_page(page
)) {
2466 migrate
->src
[i
] = 0;
2472 migrate
->src
[i
] |= MIGRATE_PFN_LOCKED
;
2475 /* ZONE_DEVICE pages are not on LRU */
2476 if (!is_zone_device_page(page
)) {
2477 if (!PageLRU(page
) && allow_drain
) {
2478 /* Drain CPU's pagevec */
2479 lru_add_drain_all();
2480 allow_drain
= false;
2483 if (isolate_lru_page(page
)) {
2485 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2489 migrate
->src
[i
] = 0;
2497 /* Drop the reference we took in collect */
2501 if (!migrate_vma_check_page(page
)) {
2503 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2507 if (!is_zone_device_page(page
)) {
2509 putback_lru_page(page
);
2512 migrate
->src
[i
] = 0;
2516 if (!is_zone_device_page(page
))
2517 putback_lru_page(page
);
2524 for (i
= 0, addr
= start
; i
< npages
&& restore
; i
++, addr
+= PAGE_SIZE
) {
2525 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2527 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2530 remove_migration_pte(page
, migrate
->vma
, addr
, page
);
2532 migrate
->src
[i
] = 0;
2540 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2541 * @migrate: migrate struct containing all migration information
2543 * Replace page mapping (CPU page table pte) with a special migration pte entry
2544 * and check again if it has been pinned. Pinned pages are restored because we
2545 * cannot migrate them.
2547 * This is the last step before we call the device driver callback to allocate
2548 * destination memory and copy contents of original page over to new page.
2550 static void migrate_vma_unmap(struct migrate_vma
*migrate
)
2552 int flags
= TTU_MIGRATION
| TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
;
2553 const unsigned long npages
= migrate
->npages
;
2554 const unsigned long start
= migrate
->start
;
2555 unsigned long addr
, i
, restore
= 0;
2557 for (i
= 0; i
< npages
; i
++) {
2558 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2560 if (!page
|| !(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2563 if (page_mapped(page
)) {
2564 try_to_unmap(page
, flags
);
2565 if (page_mapped(page
))
2569 if (migrate_vma_check_page(page
))
2573 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2578 for (addr
= start
, i
= 0; i
< npages
&& restore
; addr
+= PAGE_SIZE
, i
++) {
2579 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2581 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2584 remove_migration_ptes(page
, page
, false);
2586 migrate
->src
[i
] = 0;
2590 if (is_zone_device_page(page
))
2593 putback_lru_page(page
);
2597 static void migrate_vma_insert_page(struct migrate_vma
*migrate
,
2603 struct vm_area_struct
*vma
= migrate
->vma
;
2604 struct mm_struct
*mm
= vma
->vm_mm
;
2605 struct mem_cgroup
*memcg
;
2615 /* Only allow populating anonymous memory */
2616 if (!vma_is_anonymous(vma
))
2619 pgdp
= pgd_offset(mm
, addr
);
2620 p4dp
= p4d_alloc(mm
, pgdp
, addr
);
2623 pudp
= pud_alloc(mm
, p4dp
, addr
);
2626 pmdp
= pmd_alloc(mm
, pudp
, addr
);
2630 if (pmd_trans_huge(*pmdp
) || pmd_devmap(*pmdp
))
2634 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2635 * pte_offset_map() on pmds where a huge pmd might be created
2636 * from a different thread.
2638 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2639 * parallel threads are excluded by other means.
2641 * Here we only have down_read(mmap_sem).
2643 if (pte_alloc(mm
, pmdp
))
2646 /* See the comment in pte_alloc_one_map() */
2647 if (unlikely(pmd_trans_unstable(pmdp
)))
2650 if (unlikely(anon_vma_prepare(vma
)))
2652 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2656 * The memory barrier inside __SetPageUptodate makes sure that
2657 * preceding stores to the page contents become visible before
2658 * the set_pte_at() write.
2660 __SetPageUptodate(page
);
2662 if (is_zone_device_page(page
)) {
2663 if (is_device_private_page(page
)) {
2664 swp_entry_t swp_entry
;
2666 swp_entry
= make_device_private_entry(page
, vma
->vm_flags
& VM_WRITE
);
2667 entry
= swp_entry_to_pte(swp_entry
);
2668 } else if (is_device_public_page(page
)) {
2669 entry
= pte_mkold(mk_pte(page
, READ_ONCE(vma
->vm_page_prot
)));
2670 if (vma
->vm_flags
& VM_WRITE
)
2671 entry
= pte_mkwrite(pte_mkdirty(entry
));
2672 entry
= pte_mkdevmap(entry
);
2675 entry
= mk_pte(page
, vma
->vm_page_prot
);
2676 if (vma
->vm_flags
& VM_WRITE
)
2677 entry
= pte_mkwrite(pte_mkdirty(entry
));
2680 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2682 if (pte_present(*ptep
)) {
2683 unsigned long pfn
= pte_pfn(*ptep
);
2685 if (!is_zero_pfn(pfn
)) {
2686 pte_unmap_unlock(ptep
, ptl
);
2687 mem_cgroup_cancel_charge(page
, memcg
, false);
2691 } else if (!pte_none(*ptep
)) {
2692 pte_unmap_unlock(ptep
, ptl
);
2693 mem_cgroup_cancel_charge(page
, memcg
, false);
2698 * Check for usefaultfd but do not deliver the fault. Instead,
2701 if (userfaultfd_missing(vma
)) {
2702 pte_unmap_unlock(ptep
, ptl
);
2703 mem_cgroup_cancel_charge(page
, memcg
, false);
2707 inc_mm_counter(mm
, MM_ANONPAGES
);
2708 page_add_new_anon_rmap(page
, vma
, addr
, false);
2709 mem_cgroup_commit_charge(page
, memcg
, false, false);
2710 if (!is_zone_device_page(page
))
2711 lru_cache_add_active_or_unevictable(page
, vma
);
2715 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
2716 ptep_clear_flush_notify(vma
, addr
, ptep
);
2717 set_pte_at_notify(mm
, addr
, ptep
, entry
);
2718 update_mmu_cache(vma
, addr
, ptep
);
2720 /* No need to invalidate - it was non-present before */
2721 set_pte_at(mm
, addr
, ptep
, entry
);
2722 update_mmu_cache(vma
, addr
, ptep
);
2725 pte_unmap_unlock(ptep
, ptl
);
2726 *src
= MIGRATE_PFN_MIGRATE
;
2730 *src
&= ~MIGRATE_PFN_MIGRATE
;
2734 * migrate_vma_pages() - migrate meta-data from src page to dst page
2735 * @migrate: migrate struct containing all migration information
2737 * This migrates struct page meta-data from source struct page to destination
2738 * struct page. This effectively finishes the migration from source page to the
2741 static void migrate_vma_pages(struct migrate_vma
*migrate
)
2743 const unsigned long npages
= migrate
->npages
;
2744 const unsigned long start
= migrate
->start
;
2745 struct mmu_notifier_range range
;
2746 unsigned long addr
, i
;
2747 bool notified
= false;
2749 for (i
= 0, addr
= start
; i
< npages
; addr
+= PAGE_SIZE
, i
++) {
2750 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2751 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2752 struct address_space
*mapping
;
2756 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2761 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
)) {
2767 mmu_notifier_range_init(&range
,
2768 MMU_NOTIFY_CLEAR
, 0,
2770 migrate
->vma
->vm_mm
,
2771 addr
, migrate
->end
);
2772 mmu_notifier_invalidate_range_start(&range
);
2774 migrate_vma_insert_page(migrate
, addr
, newpage
,
2780 mapping
= page_mapping(page
);
2782 if (is_zone_device_page(newpage
)) {
2783 if (is_device_private_page(newpage
)) {
2785 * For now only support private anonymous when
2786 * migrating to un-addressable device memory.
2789 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2792 } else if (!is_device_public_page(newpage
)) {
2794 * Other types of ZONE_DEVICE page are not
2797 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2802 r
= migrate_page(mapping
, newpage
, page
, MIGRATE_SYNC_NO_COPY
);
2803 if (r
!= MIGRATEPAGE_SUCCESS
)
2804 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2808 * No need to double call mmu_notifier->invalidate_range() callback as
2809 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2810 * did already call it.
2813 mmu_notifier_invalidate_range_only_end(&range
);
2817 * migrate_vma_finalize() - restore CPU page table entry
2818 * @migrate: migrate struct containing all migration information
2820 * This replaces the special migration pte entry with either a mapping to the
2821 * new page if migration was successful for that page, or to the original page
2824 * This also unlocks the pages and puts them back on the lru, or drops the extra
2825 * refcount, for device pages.
2827 static void migrate_vma_finalize(struct migrate_vma
*migrate
)
2829 const unsigned long npages
= migrate
->npages
;
2832 for (i
= 0; i
< npages
; i
++) {
2833 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2834 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2838 unlock_page(newpage
);
2844 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
) || !newpage
) {
2846 unlock_page(newpage
);
2852 remove_migration_ptes(page
, newpage
, false);
2856 if (is_zone_device_page(page
))
2859 putback_lru_page(page
);
2861 if (newpage
!= page
) {
2862 unlock_page(newpage
);
2863 if (is_zone_device_page(newpage
))
2866 putback_lru_page(newpage
);
2872 * migrate_vma() - migrate a range of memory inside vma
2874 * @ops: migration callback for allocating destination memory and copying
2875 * @vma: virtual memory area containing the range to be migrated
2876 * @start: start address of the range to migrate (inclusive)
2877 * @end: end address of the range to migrate (exclusive)
2878 * @src: array of hmm_pfn_t containing source pfns
2879 * @dst: array of hmm_pfn_t containing destination pfns
2880 * @private: pointer passed back to each of the callback
2881 * Returns: 0 on success, error code otherwise
2883 * This function tries to migrate a range of memory virtual address range, using
2884 * callbacks to allocate and copy memory from source to destination. First it
2885 * collects all the pages backing each virtual address in the range, saving this
2886 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2887 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2888 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2889 * in the corresponding src array entry. It then restores any pages that are
2890 * pinned, by remapping and unlocking those pages.
2892 * At this point it calls the alloc_and_copy() callback. For documentation on
2893 * what is expected from that callback, see struct migrate_vma_ops comments in
2894 * include/linux/migrate.h
2896 * After the alloc_and_copy() callback, this function goes over each entry in
2897 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2898 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2899 * then the function tries to migrate struct page information from the source
2900 * struct page to the destination struct page. If it fails to migrate the struct
2901 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2904 * At this point all successfully migrated pages have an entry in the src
2905 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2906 * array entry with MIGRATE_PFN_VALID flag set.
2908 * It then calls the finalize_and_map() callback. See comments for "struct
2909 * migrate_vma_ops", in include/linux/migrate.h for details about
2910 * finalize_and_map() behavior.
2912 * After the finalize_and_map() callback, for successfully migrated pages, this
2913 * function updates the CPU page table to point to new pages, otherwise it
2914 * restores the CPU page table to point to the original source pages.
2916 * Function returns 0 after the above steps, even if no pages were migrated
2917 * (The function only returns an error if any of the arguments are invalid.)
2919 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2920 * unsigned long entries.
2922 int migrate_vma(const struct migrate_vma_ops
*ops
,
2923 struct vm_area_struct
*vma
,
2924 unsigned long start
,
2930 struct migrate_vma migrate
;
2932 /* Sanity check the arguments */
2935 if (!vma
|| is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_SPECIAL
) ||
2938 if (start
< vma
->vm_start
|| start
>= vma
->vm_end
)
2940 if (end
<= vma
->vm_start
|| end
> vma
->vm_end
)
2942 if (!ops
|| !src
|| !dst
|| start
>= end
)
2945 memset(src
, 0, sizeof(*src
) * ((end
- start
) >> PAGE_SHIFT
));
2948 migrate
.start
= start
;
2954 /* Collect, and try to unmap source pages */
2955 migrate_vma_collect(&migrate
);
2956 if (!migrate
.cpages
)
2959 /* Lock and isolate page */
2960 migrate_vma_prepare(&migrate
);
2961 if (!migrate
.cpages
)
2965 migrate_vma_unmap(&migrate
);
2966 if (!migrate
.cpages
)
2970 * At this point pages are locked and unmapped, and thus they have
2971 * stable content and can safely be copied to destination memory that
2972 * is allocated by the callback.
2974 * Note that migration can fail in migrate_vma_struct_page() for each
2977 ops
->alloc_and_copy(vma
, src
, dst
, start
, end
, private);
2979 /* This does the real migration of struct page */
2980 migrate_vma_pages(&migrate
);
2982 ops
->finalize_and_map(vma
, src
, dst
, start
, end
, private);
2984 /* Unlock and remap pages */
2985 migrate_vma_finalize(&migrate
);
2989 EXPORT_SYMBOL(migrate_vma
);
2990 #endif /* defined(MIGRATE_VMA_HELPER) */