regulator: s2mps11: Adjust supported buck voltages to real values
[linux/fpc-iii.git] / drivers / rtc / rtc-cmos.c
bloba5a19ff10535463d91d39d69ced1f13110ff139d
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #include <asm/processor.h>
47 #include <linux/dmi.h>
48 #endif
50 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
51 #include <linux/mc146818rtc.h>
53 #ifdef CONFIG_ACPI
55 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
57 * If cleared, ACPI SCI is only used to wake up the system from suspend
59 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
62 static bool use_acpi_alarm;
63 module_param(use_acpi_alarm, bool, 0444);
65 static inline int cmos_use_acpi_alarm(void)
67 return use_acpi_alarm;
69 #else /* !CONFIG_ACPI */
71 static inline int cmos_use_acpi_alarm(void)
73 return 0;
75 #endif
77 struct cmos_rtc {
78 struct rtc_device *rtc;
79 struct device *dev;
80 int irq;
81 struct resource *iomem;
82 time64_t alarm_expires;
84 void (*wake_on)(struct device *);
85 void (*wake_off)(struct device *);
87 u8 enabled_wake;
88 u8 suspend_ctrl;
90 /* newer hardware extends the original register set */
91 u8 day_alrm;
92 u8 mon_alrm;
93 u8 century;
95 struct rtc_wkalrm saved_wkalrm;
98 /* both platform and pnp busses use negative numbers for invalid irqs */
99 #define is_valid_irq(n) ((n) > 0)
101 static const char driver_name[] = "rtc_cmos";
103 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
104 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
105 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
107 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
109 static inline int is_intr(u8 rtc_intr)
111 if (!(rtc_intr & RTC_IRQF))
112 return 0;
113 return rtc_intr & RTC_IRQMASK;
116 /*----------------------------------------------------------------*/
118 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
119 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
120 * used in a broken "legacy replacement" mode. The breakage includes
121 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
122 * other (better) use.
124 * When that broken mode is in use, platform glue provides a partial
125 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
126 * want to use HPET for anything except those IRQs though...
128 #ifdef CONFIG_HPET_EMULATE_RTC
129 #include <asm/hpet.h>
130 #else
132 static inline int is_hpet_enabled(void)
134 return 0;
137 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
139 return 0;
142 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
144 return 0;
147 static inline int
148 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
150 return 0;
153 static inline int hpet_set_periodic_freq(unsigned long freq)
155 return 0;
158 static inline int hpet_rtc_dropped_irq(void)
160 return 0;
163 static inline int hpet_rtc_timer_init(void)
165 return 0;
168 extern irq_handler_t hpet_rtc_interrupt;
170 static inline int hpet_register_irq_handler(irq_handler_t handler)
172 return 0;
175 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
177 return 0;
180 #endif
182 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
183 static inline int use_hpet_alarm(void)
185 return is_hpet_enabled() && !cmos_use_acpi_alarm();
188 /*----------------------------------------------------------------*/
190 #ifdef RTC_PORT
192 /* Most newer x86 systems have two register banks, the first used
193 * for RTC and NVRAM and the second only for NVRAM. Caller must
194 * own rtc_lock ... and we won't worry about access during NMI.
196 #define can_bank2 true
198 static inline unsigned char cmos_read_bank2(unsigned char addr)
200 outb(addr, RTC_PORT(2));
201 return inb(RTC_PORT(3));
204 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
206 outb(addr, RTC_PORT(2));
207 outb(val, RTC_PORT(3));
210 #else
212 #define can_bank2 false
214 static inline unsigned char cmos_read_bank2(unsigned char addr)
216 return 0;
219 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
223 #endif
225 /*----------------------------------------------------------------*/
227 static int cmos_read_time(struct device *dev, struct rtc_time *t)
230 * If pm_trace abused the RTC for storage, set the timespec to 0,
231 * which tells the caller that this RTC value is unusable.
233 if (!pm_trace_rtc_valid())
234 return -EIO;
236 /* REVISIT: if the clock has a "century" register, use
237 * that instead of the heuristic in mc146818_get_time().
238 * That'll make Y3K compatility (year > 2070) easy!
240 mc146818_get_time(t);
241 return 0;
244 static int cmos_set_time(struct device *dev, struct rtc_time *t)
246 /* REVISIT: set the "century" register if available
248 * NOTE: this ignores the issue whereby updating the seconds
249 * takes effect exactly 500ms after we write the register.
250 * (Also queueing and other delays before we get this far.)
252 return mc146818_set_time(t);
255 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
257 struct cmos_rtc *cmos = dev_get_drvdata(dev);
258 unsigned char rtc_control;
260 /* This not only a rtc_op, but also called directly */
261 if (!is_valid_irq(cmos->irq))
262 return -EIO;
264 /* Basic alarms only support hour, minute, and seconds fields.
265 * Some also support day and month, for alarms up to a year in
266 * the future.
269 spin_lock_irq(&rtc_lock);
270 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
271 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
272 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
274 if (cmos->day_alrm) {
275 /* ignore upper bits on readback per ACPI spec */
276 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
277 if (!t->time.tm_mday)
278 t->time.tm_mday = -1;
280 if (cmos->mon_alrm) {
281 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
282 if (!t->time.tm_mon)
283 t->time.tm_mon = -1;
287 rtc_control = CMOS_READ(RTC_CONTROL);
288 spin_unlock_irq(&rtc_lock);
290 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
291 if (((unsigned)t->time.tm_sec) < 0x60)
292 t->time.tm_sec = bcd2bin(t->time.tm_sec);
293 else
294 t->time.tm_sec = -1;
295 if (((unsigned)t->time.tm_min) < 0x60)
296 t->time.tm_min = bcd2bin(t->time.tm_min);
297 else
298 t->time.tm_min = -1;
299 if (((unsigned)t->time.tm_hour) < 0x24)
300 t->time.tm_hour = bcd2bin(t->time.tm_hour);
301 else
302 t->time.tm_hour = -1;
304 if (cmos->day_alrm) {
305 if (((unsigned)t->time.tm_mday) <= 0x31)
306 t->time.tm_mday = bcd2bin(t->time.tm_mday);
307 else
308 t->time.tm_mday = -1;
310 if (cmos->mon_alrm) {
311 if (((unsigned)t->time.tm_mon) <= 0x12)
312 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
313 else
314 t->time.tm_mon = -1;
319 t->enabled = !!(rtc_control & RTC_AIE);
320 t->pending = 0;
322 return 0;
325 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
327 unsigned char rtc_intr;
329 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
330 * allegedly some older rtcs need that to handle irqs properly
332 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
334 if (use_hpet_alarm())
335 return;
337 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
338 if (is_intr(rtc_intr))
339 rtc_update_irq(cmos->rtc, 1, rtc_intr);
342 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
344 unsigned char rtc_control;
346 /* flush any pending IRQ status, notably for update irqs,
347 * before we enable new IRQs
349 rtc_control = CMOS_READ(RTC_CONTROL);
350 cmos_checkintr(cmos, rtc_control);
352 rtc_control |= mask;
353 CMOS_WRITE(rtc_control, RTC_CONTROL);
354 if (use_hpet_alarm())
355 hpet_set_rtc_irq_bit(mask);
357 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
358 if (cmos->wake_on)
359 cmos->wake_on(cmos->dev);
362 cmos_checkintr(cmos, rtc_control);
365 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
367 unsigned char rtc_control;
369 rtc_control = CMOS_READ(RTC_CONTROL);
370 rtc_control &= ~mask;
371 CMOS_WRITE(rtc_control, RTC_CONTROL);
372 if (use_hpet_alarm())
373 hpet_mask_rtc_irq_bit(mask);
375 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
376 if (cmos->wake_off)
377 cmos->wake_off(cmos->dev);
380 cmos_checkintr(cmos, rtc_control);
383 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
385 struct cmos_rtc *cmos = dev_get_drvdata(dev);
386 struct rtc_time now;
388 cmos_read_time(dev, &now);
390 if (!cmos->day_alrm) {
391 time64_t t_max_date;
392 time64_t t_alrm;
394 t_max_date = rtc_tm_to_time64(&now);
395 t_max_date += 24 * 60 * 60 - 1;
396 t_alrm = rtc_tm_to_time64(&t->time);
397 if (t_alrm > t_max_date) {
398 dev_err(dev,
399 "Alarms can be up to one day in the future\n");
400 return -EINVAL;
402 } else if (!cmos->mon_alrm) {
403 struct rtc_time max_date = now;
404 time64_t t_max_date;
405 time64_t t_alrm;
406 int max_mday;
408 if (max_date.tm_mon == 11) {
409 max_date.tm_mon = 0;
410 max_date.tm_year += 1;
411 } else {
412 max_date.tm_mon += 1;
414 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
415 if (max_date.tm_mday > max_mday)
416 max_date.tm_mday = max_mday;
418 t_max_date = rtc_tm_to_time64(&max_date);
419 t_max_date -= 1;
420 t_alrm = rtc_tm_to_time64(&t->time);
421 if (t_alrm > t_max_date) {
422 dev_err(dev,
423 "Alarms can be up to one month in the future\n");
424 return -EINVAL;
426 } else {
427 struct rtc_time max_date = now;
428 time64_t t_max_date;
429 time64_t t_alrm;
430 int max_mday;
432 max_date.tm_year += 1;
433 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
434 if (max_date.tm_mday > max_mday)
435 max_date.tm_mday = max_mday;
437 t_max_date = rtc_tm_to_time64(&max_date);
438 t_max_date -= 1;
439 t_alrm = rtc_tm_to_time64(&t->time);
440 if (t_alrm > t_max_date) {
441 dev_err(dev,
442 "Alarms can be up to one year in the future\n");
443 return -EINVAL;
447 return 0;
450 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
452 struct cmos_rtc *cmos = dev_get_drvdata(dev);
453 unsigned char mon, mday, hrs, min, sec, rtc_control;
454 int ret;
456 /* This not only a rtc_op, but also called directly */
457 if (!is_valid_irq(cmos->irq))
458 return -EIO;
460 ret = cmos_validate_alarm(dev, t);
461 if (ret < 0)
462 return ret;
464 mon = t->time.tm_mon + 1;
465 mday = t->time.tm_mday;
466 hrs = t->time.tm_hour;
467 min = t->time.tm_min;
468 sec = t->time.tm_sec;
470 rtc_control = CMOS_READ(RTC_CONTROL);
471 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
472 /* Writing 0xff means "don't care" or "match all". */
473 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
474 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
475 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
476 min = (min < 60) ? bin2bcd(min) : 0xff;
477 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
480 spin_lock_irq(&rtc_lock);
482 /* next rtc irq must not be from previous alarm setting */
483 cmos_irq_disable(cmos, RTC_AIE);
485 /* update alarm */
486 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
487 CMOS_WRITE(min, RTC_MINUTES_ALARM);
488 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
490 /* the system may support an "enhanced" alarm */
491 if (cmos->day_alrm) {
492 CMOS_WRITE(mday, cmos->day_alrm);
493 if (cmos->mon_alrm)
494 CMOS_WRITE(mon, cmos->mon_alrm);
497 if (use_hpet_alarm()) {
499 * FIXME the HPET alarm glue currently ignores day_alrm
500 * and mon_alrm ...
502 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
503 t->time.tm_sec);
506 if (t->enabled)
507 cmos_irq_enable(cmos, RTC_AIE);
509 spin_unlock_irq(&rtc_lock);
511 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
513 return 0;
516 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
518 struct cmos_rtc *cmos = dev_get_drvdata(dev);
519 unsigned long flags;
521 spin_lock_irqsave(&rtc_lock, flags);
523 if (enabled)
524 cmos_irq_enable(cmos, RTC_AIE);
525 else
526 cmos_irq_disable(cmos, RTC_AIE);
528 spin_unlock_irqrestore(&rtc_lock, flags);
529 return 0;
532 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
534 static int cmos_procfs(struct device *dev, struct seq_file *seq)
536 struct cmos_rtc *cmos = dev_get_drvdata(dev);
537 unsigned char rtc_control, valid;
539 spin_lock_irq(&rtc_lock);
540 rtc_control = CMOS_READ(RTC_CONTROL);
541 valid = CMOS_READ(RTC_VALID);
542 spin_unlock_irq(&rtc_lock);
544 /* NOTE: at least ICH6 reports battery status using a different
545 * (non-RTC) bit; and SQWE is ignored on many current systems.
547 seq_printf(seq,
548 "periodic_IRQ\t: %s\n"
549 "update_IRQ\t: %s\n"
550 "HPET_emulated\t: %s\n"
551 // "square_wave\t: %s\n"
552 "BCD\t\t: %s\n"
553 "DST_enable\t: %s\n"
554 "periodic_freq\t: %d\n"
555 "batt_status\t: %s\n",
556 (rtc_control & RTC_PIE) ? "yes" : "no",
557 (rtc_control & RTC_UIE) ? "yes" : "no",
558 use_hpet_alarm() ? "yes" : "no",
559 // (rtc_control & RTC_SQWE) ? "yes" : "no",
560 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
561 (rtc_control & RTC_DST_EN) ? "yes" : "no",
562 cmos->rtc->irq_freq,
563 (valid & RTC_VRT) ? "okay" : "dead");
565 return 0;
568 #else
569 #define cmos_procfs NULL
570 #endif
572 static const struct rtc_class_ops cmos_rtc_ops = {
573 .read_time = cmos_read_time,
574 .set_time = cmos_set_time,
575 .read_alarm = cmos_read_alarm,
576 .set_alarm = cmos_set_alarm,
577 .proc = cmos_procfs,
578 .alarm_irq_enable = cmos_alarm_irq_enable,
581 static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
582 .read_time = cmos_read_time,
583 .set_time = cmos_set_time,
584 .proc = cmos_procfs,
587 /*----------------------------------------------------------------*/
590 * All these chips have at least 64 bytes of address space, shared by
591 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
592 * by boot firmware. Modern chips have 128 or 256 bytes.
595 #define NVRAM_OFFSET (RTC_REG_D + 1)
597 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
598 size_t count)
600 unsigned char *buf = val;
601 int retval;
603 off += NVRAM_OFFSET;
604 spin_lock_irq(&rtc_lock);
605 for (retval = 0; count; count--, off++, retval++) {
606 if (off < 128)
607 *buf++ = CMOS_READ(off);
608 else if (can_bank2)
609 *buf++ = cmos_read_bank2(off);
610 else
611 break;
613 spin_unlock_irq(&rtc_lock);
615 return retval;
618 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
619 size_t count)
621 struct cmos_rtc *cmos = priv;
622 unsigned char *buf = val;
623 int retval;
625 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
626 * checksum on part of the NVRAM data. That's currently ignored
627 * here. If userspace is smart enough to know what fields of
628 * NVRAM to update, updating checksums is also part of its job.
630 off += NVRAM_OFFSET;
631 spin_lock_irq(&rtc_lock);
632 for (retval = 0; count; count--, off++, retval++) {
633 /* don't trash RTC registers */
634 if (off == cmos->day_alrm
635 || off == cmos->mon_alrm
636 || off == cmos->century)
637 buf++;
638 else if (off < 128)
639 CMOS_WRITE(*buf++, off);
640 else if (can_bank2)
641 cmos_write_bank2(*buf++, off);
642 else
643 break;
645 spin_unlock_irq(&rtc_lock);
647 return retval;
650 /*----------------------------------------------------------------*/
652 static struct cmos_rtc cmos_rtc;
654 static irqreturn_t cmos_interrupt(int irq, void *p)
656 u8 irqstat;
657 u8 rtc_control;
659 spin_lock(&rtc_lock);
661 /* When the HPET interrupt handler calls us, the interrupt
662 * status is passed as arg1 instead of the irq number. But
663 * always clear irq status, even when HPET is in the way.
665 * Note that HPET and RTC are almost certainly out of phase,
666 * giving different IRQ status ...
668 irqstat = CMOS_READ(RTC_INTR_FLAGS);
669 rtc_control = CMOS_READ(RTC_CONTROL);
670 if (use_hpet_alarm())
671 irqstat = (unsigned long)irq & 0xF0;
673 /* If we were suspended, RTC_CONTROL may not be accurate since the
674 * bios may have cleared it.
676 if (!cmos_rtc.suspend_ctrl)
677 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
678 else
679 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
681 /* All Linux RTC alarms should be treated as if they were oneshot.
682 * Similar code may be needed in system wakeup paths, in case the
683 * alarm woke the system.
685 if (irqstat & RTC_AIE) {
686 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
687 rtc_control &= ~RTC_AIE;
688 CMOS_WRITE(rtc_control, RTC_CONTROL);
689 if (use_hpet_alarm())
690 hpet_mask_rtc_irq_bit(RTC_AIE);
691 CMOS_READ(RTC_INTR_FLAGS);
693 spin_unlock(&rtc_lock);
695 if (is_intr(irqstat)) {
696 rtc_update_irq(p, 1, irqstat);
697 return IRQ_HANDLED;
698 } else
699 return IRQ_NONE;
702 #ifdef CONFIG_PNP
703 #define INITSECTION
705 #else
706 #define INITSECTION __init
707 #endif
709 static int INITSECTION
710 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
712 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
713 int retval = 0;
714 unsigned char rtc_control;
715 unsigned address_space;
716 u32 flags = 0;
717 struct nvmem_config nvmem_cfg = {
718 .name = "cmos_nvram",
719 .word_size = 1,
720 .stride = 1,
721 .reg_read = cmos_nvram_read,
722 .reg_write = cmos_nvram_write,
723 .priv = &cmos_rtc,
726 /* there can be only one ... */
727 if (cmos_rtc.dev)
728 return -EBUSY;
730 if (!ports)
731 return -ENODEV;
733 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
735 * REVISIT non-x86 systems may instead use memory space resources
736 * (needing ioremap etc), not i/o space resources like this ...
738 if (RTC_IOMAPPED)
739 ports = request_region(ports->start, resource_size(ports),
740 driver_name);
741 else
742 ports = request_mem_region(ports->start, resource_size(ports),
743 driver_name);
744 if (!ports) {
745 dev_dbg(dev, "i/o registers already in use\n");
746 return -EBUSY;
749 cmos_rtc.irq = rtc_irq;
750 cmos_rtc.iomem = ports;
752 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
753 * driver did, but don't reject unknown configs. Old hardware
754 * won't address 128 bytes. Newer chips have multiple banks,
755 * though they may not be listed in one I/O resource.
757 #if defined(CONFIG_ATARI)
758 address_space = 64;
759 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
760 || defined(__sparc__) || defined(__mips__) \
761 || defined(__powerpc__)
762 address_space = 128;
763 #else
764 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
765 address_space = 128;
766 #endif
767 if (can_bank2 && ports->end > (ports->start + 1))
768 address_space = 256;
770 /* For ACPI systems extension info comes from the FADT. On others,
771 * board specific setup provides it as appropriate. Systems where
772 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
773 * some almost-clones) can provide hooks to make that behave.
775 * Note that ACPI doesn't preclude putting these registers into
776 * "extended" areas of the chip, including some that we won't yet
777 * expect CMOS_READ and friends to handle.
779 if (info) {
780 if (info->flags)
781 flags = info->flags;
782 if (info->address_space)
783 address_space = info->address_space;
785 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
786 cmos_rtc.day_alrm = info->rtc_day_alarm;
787 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
788 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
789 if (info->rtc_century && info->rtc_century < 128)
790 cmos_rtc.century = info->rtc_century;
792 if (info->wake_on && info->wake_off) {
793 cmos_rtc.wake_on = info->wake_on;
794 cmos_rtc.wake_off = info->wake_off;
798 cmos_rtc.dev = dev;
799 dev_set_drvdata(dev, &cmos_rtc);
801 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
802 if (IS_ERR(cmos_rtc.rtc)) {
803 retval = PTR_ERR(cmos_rtc.rtc);
804 goto cleanup0;
807 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
809 spin_lock_irq(&rtc_lock);
811 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
812 /* force periodic irq to CMOS reset default of 1024Hz;
814 * REVISIT it's been reported that at least one x86_64 ALI
815 * mobo doesn't use 32KHz here ... for portability we might
816 * need to do something about other clock frequencies.
818 cmos_rtc.rtc->irq_freq = 1024;
819 if (use_hpet_alarm())
820 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
821 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
824 /* disable irqs */
825 if (is_valid_irq(rtc_irq))
826 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
828 rtc_control = CMOS_READ(RTC_CONTROL);
830 spin_unlock_irq(&rtc_lock);
832 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
833 dev_warn(dev, "only 24-hr supported\n");
834 retval = -ENXIO;
835 goto cleanup1;
838 if (use_hpet_alarm())
839 hpet_rtc_timer_init();
841 if (is_valid_irq(rtc_irq)) {
842 irq_handler_t rtc_cmos_int_handler;
844 if (use_hpet_alarm()) {
845 rtc_cmos_int_handler = hpet_rtc_interrupt;
846 retval = hpet_register_irq_handler(cmos_interrupt);
847 if (retval) {
848 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
849 dev_warn(dev, "hpet_register_irq_handler "
850 " failed in rtc_init().");
851 goto cleanup1;
853 } else
854 rtc_cmos_int_handler = cmos_interrupt;
856 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
857 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
858 cmos_rtc.rtc);
859 if (retval < 0) {
860 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
861 goto cleanup1;
864 cmos_rtc.rtc->ops = &cmos_rtc_ops;
865 } else {
866 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
869 cmos_rtc.rtc->nvram_old_abi = true;
870 retval = rtc_register_device(cmos_rtc.rtc);
871 if (retval)
872 goto cleanup2;
874 /* export at least the first block of NVRAM */
875 nvmem_cfg.size = address_space - NVRAM_OFFSET;
876 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
877 dev_err(dev, "nvmem registration failed\n");
879 dev_info(dev, "%s%s, %d bytes nvram%s\n",
880 !is_valid_irq(rtc_irq) ? "no alarms" :
881 cmos_rtc.mon_alrm ? "alarms up to one year" :
882 cmos_rtc.day_alrm ? "alarms up to one month" :
883 "alarms up to one day",
884 cmos_rtc.century ? ", y3k" : "",
885 nvmem_cfg.size,
886 use_hpet_alarm() ? ", hpet irqs" : "");
888 return 0;
890 cleanup2:
891 if (is_valid_irq(rtc_irq))
892 free_irq(rtc_irq, cmos_rtc.rtc);
893 cleanup1:
894 cmos_rtc.dev = NULL;
895 cleanup0:
896 if (RTC_IOMAPPED)
897 release_region(ports->start, resource_size(ports));
898 else
899 release_mem_region(ports->start, resource_size(ports));
900 return retval;
903 static void cmos_do_shutdown(int rtc_irq)
905 spin_lock_irq(&rtc_lock);
906 if (is_valid_irq(rtc_irq))
907 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
908 spin_unlock_irq(&rtc_lock);
911 static void cmos_do_remove(struct device *dev)
913 struct cmos_rtc *cmos = dev_get_drvdata(dev);
914 struct resource *ports;
916 cmos_do_shutdown(cmos->irq);
918 if (is_valid_irq(cmos->irq)) {
919 free_irq(cmos->irq, cmos->rtc);
920 if (use_hpet_alarm())
921 hpet_unregister_irq_handler(cmos_interrupt);
924 cmos->rtc = NULL;
926 ports = cmos->iomem;
927 if (RTC_IOMAPPED)
928 release_region(ports->start, resource_size(ports));
929 else
930 release_mem_region(ports->start, resource_size(ports));
931 cmos->iomem = NULL;
933 cmos->dev = NULL;
936 static int cmos_aie_poweroff(struct device *dev)
938 struct cmos_rtc *cmos = dev_get_drvdata(dev);
939 struct rtc_time now;
940 time64_t t_now;
941 int retval = 0;
942 unsigned char rtc_control;
944 if (!cmos->alarm_expires)
945 return -EINVAL;
947 spin_lock_irq(&rtc_lock);
948 rtc_control = CMOS_READ(RTC_CONTROL);
949 spin_unlock_irq(&rtc_lock);
951 /* We only care about the situation where AIE is disabled. */
952 if (rtc_control & RTC_AIE)
953 return -EBUSY;
955 cmos_read_time(dev, &now);
956 t_now = rtc_tm_to_time64(&now);
959 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
960 * automatically right after shutdown on some buggy boxes.
961 * This automatic rebooting issue won't happen when the alarm
962 * time is larger than now+1 seconds.
964 * If the alarm time is equal to now+1 seconds, the issue can be
965 * prevented by cancelling the alarm.
967 if (cmos->alarm_expires == t_now + 1) {
968 struct rtc_wkalrm alarm;
970 /* Cancel the AIE timer by configuring the past time. */
971 rtc_time64_to_tm(t_now - 1, &alarm.time);
972 alarm.enabled = 0;
973 retval = cmos_set_alarm(dev, &alarm);
974 } else if (cmos->alarm_expires > t_now + 1) {
975 retval = -EBUSY;
978 return retval;
981 static int cmos_suspend(struct device *dev)
983 struct cmos_rtc *cmos = dev_get_drvdata(dev);
984 unsigned char tmp;
986 /* only the alarm might be a wakeup event source */
987 spin_lock_irq(&rtc_lock);
988 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
989 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
990 unsigned char mask;
992 if (device_may_wakeup(dev))
993 mask = RTC_IRQMASK & ~RTC_AIE;
994 else
995 mask = RTC_IRQMASK;
996 tmp &= ~mask;
997 CMOS_WRITE(tmp, RTC_CONTROL);
998 if (use_hpet_alarm())
999 hpet_mask_rtc_irq_bit(mask);
1000 cmos_checkintr(cmos, tmp);
1002 spin_unlock_irq(&rtc_lock);
1004 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1005 cmos->enabled_wake = 1;
1006 if (cmos->wake_on)
1007 cmos->wake_on(dev);
1008 else
1009 enable_irq_wake(cmos->irq);
1012 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1014 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1015 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1016 tmp);
1018 return 0;
1021 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1022 * after a detour through G3 "mechanical off", although the ACPI spec
1023 * says wakeup should only work from G1/S4 "hibernate". To most users,
1024 * distinctions between S4 and S5 are pointless. So when the hardware
1025 * allows, don't draw that distinction.
1027 static inline int cmos_poweroff(struct device *dev)
1029 if (!IS_ENABLED(CONFIG_PM))
1030 return -ENOSYS;
1032 return cmos_suspend(dev);
1035 static void cmos_check_wkalrm(struct device *dev)
1037 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1038 struct rtc_wkalrm current_alarm;
1039 time64_t t_now;
1040 time64_t t_current_expires;
1041 time64_t t_saved_expires;
1042 struct rtc_time now;
1044 /* Check if we have RTC Alarm armed */
1045 if (!(cmos->suspend_ctrl & RTC_AIE))
1046 return;
1048 cmos_read_time(dev, &now);
1049 t_now = rtc_tm_to_time64(&now);
1052 * ACPI RTC wake event is cleared after resume from STR,
1053 * ACK the rtc irq here
1055 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1056 cmos_interrupt(0, (void *)cmos->rtc);
1057 return;
1060 cmos_read_alarm(dev, &current_alarm);
1061 t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1062 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1063 if (t_current_expires != t_saved_expires ||
1064 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1065 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1069 static void cmos_check_acpi_rtc_status(struct device *dev,
1070 unsigned char *rtc_control);
1072 static int __maybe_unused cmos_resume(struct device *dev)
1074 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1075 unsigned char tmp;
1077 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1078 if (cmos->wake_off)
1079 cmos->wake_off(dev);
1080 else
1081 disable_irq_wake(cmos->irq);
1082 cmos->enabled_wake = 0;
1085 /* The BIOS might have changed the alarm, restore it */
1086 cmos_check_wkalrm(dev);
1088 spin_lock_irq(&rtc_lock);
1089 tmp = cmos->suspend_ctrl;
1090 cmos->suspend_ctrl = 0;
1091 /* re-enable any irqs previously active */
1092 if (tmp & RTC_IRQMASK) {
1093 unsigned char mask;
1095 if (device_may_wakeup(dev) && use_hpet_alarm())
1096 hpet_rtc_timer_init();
1098 do {
1099 CMOS_WRITE(tmp, RTC_CONTROL);
1100 if (use_hpet_alarm())
1101 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1103 mask = CMOS_READ(RTC_INTR_FLAGS);
1104 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1105 if (!use_hpet_alarm() || !is_intr(mask))
1106 break;
1108 /* force one-shot behavior if HPET blocked
1109 * the wake alarm's irq
1111 rtc_update_irq(cmos->rtc, 1, mask);
1112 tmp &= ~RTC_AIE;
1113 hpet_mask_rtc_irq_bit(RTC_AIE);
1114 } while (mask & RTC_AIE);
1116 if (tmp & RTC_AIE)
1117 cmos_check_acpi_rtc_status(dev, &tmp);
1119 spin_unlock_irq(&rtc_lock);
1121 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1123 return 0;
1126 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1128 /*----------------------------------------------------------------*/
1130 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1131 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1132 * probably list them in similar PNPBIOS tables; so PNP is more common.
1134 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1135 * predate even PNPBIOS should set up platform_bus devices.
1138 #ifdef CONFIG_ACPI
1140 #include <linux/acpi.h>
1142 static u32 rtc_handler(void *context)
1144 struct device *dev = context;
1145 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1146 unsigned char rtc_control = 0;
1147 unsigned char rtc_intr;
1148 unsigned long flags;
1152 * Always update rtc irq when ACPI is used as RTC Alarm.
1153 * Or else, ACPI SCI is enabled during suspend/resume only,
1154 * update rtc irq in that case.
1156 if (cmos_use_acpi_alarm())
1157 cmos_interrupt(0, (void *)cmos->rtc);
1158 else {
1159 /* Fix me: can we use cmos_interrupt() here as well? */
1160 spin_lock_irqsave(&rtc_lock, flags);
1161 if (cmos_rtc.suspend_ctrl)
1162 rtc_control = CMOS_READ(RTC_CONTROL);
1163 if (rtc_control & RTC_AIE) {
1164 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1165 CMOS_WRITE(rtc_control, RTC_CONTROL);
1166 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1167 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1169 spin_unlock_irqrestore(&rtc_lock, flags);
1172 pm_wakeup_hard_event(dev);
1173 acpi_clear_event(ACPI_EVENT_RTC);
1174 acpi_disable_event(ACPI_EVENT_RTC, 0);
1175 return ACPI_INTERRUPT_HANDLED;
1178 static inline void rtc_wake_setup(struct device *dev)
1180 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1182 * After the RTC handler is installed, the Fixed_RTC event should
1183 * be disabled. Only when the RTC alarm is set will it be enabled.
1185 acpi_clear_event(ACPI_EVENT_RTC);
1186 acpi_disable_event(ACPI_EVENT_RTC, 0);
1189 static void rtc_wake_on(struct device *dev)
1191 acpi_clear_event(ACPI_EVENT_RTC);
1192 acpi_enable_event(ACPI_EVENT_RTC, 0);
1195 static void rtc_wake_off(struct device *dev)
1197 acpi_disable_event(ACPI_EVENT_RTC, 0);
1200 #ifdef CONFIG_X86
1201 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1202 static void use_acpi_alarm_quirks(void)
1204 int year;
1206 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1207 return;
1209 if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1210 return;
1212 if (!is_hpet_enabled())
1213 return;
1215 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1216 use_acpi_alarm = true;
1218 #else
1219 static inline void use_acpi_alarm_quirks(void) { }
1220 #endif
1222 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1223 * its device node and pass extra config data. This helps its driver use
1224 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1225 * that this board's RTC is wakeup-capable (per ACPI spec).
1227 static struct cmos_rtc_board_info acpi_rtc_info;
1229 static void cmos_wake_setup(struct device *dev)
1231 if (acpi_disabled)
1232 return;
1234 use_acpi_alarm_quirks();
1236 rtc_wake_setup(dev);
1237 acpi_rtc_info.wake_on = rtc_wake_on;
1238 acpi_rtc_info.wake_off = rtc_wake_off;
1240 /* workaround bug in some ACPI tables */
1241 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1242 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1243 acpi_gbl_FADT.month_alarm);
1244 acpi_gbl_FADT.month_alarm = 0;
1247 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1248 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1249 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1251 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1252 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1253 dev_info(dev, "RTC can wake from S4\n");
1255 dev->platform_data = &acpi_rtc_info;
1257 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1258 device_init_wakeup(dev, 1);
1261 static void cmos_check_acpi_rtc_status(struct device *dev,
1262 unsigned char *rtc_control)
1264 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1265 acpi_event_status rtc_status;
1266 acpi_status status;
1268 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1269 return;
1271 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1272 if (ACPI_FAILURE(status)) {
1273 dev_err(dev, "Could not get RTC status\n");
1274 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1275 unsigned char mask;
1276 *rtc_control &= ~RTC_AIE;
1277 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1278 mask = CMOS_READ(RTC_INTR_FLAGS);
1279 rtc_update_irq(cmos->rtc, 1, mask);
1283 #else
1285 static void cmos_wake_setup(struct device *dev)
1289 static void cmos_check_acpi_rtc_status(struct device *dev,
1290 unsigned char *rtc_control)
1294 #endif
1296 #ifdef CONFIG_PNP
1298 #include <linux/pnp.h>
1300 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1302 cmos_wake_setup(&pnp->dev);
1304 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1305 unsigned int irq = 0;
1306 #ifdef CONFIG_X86
1307 /* Some machines contain a PNP entry for the RTC, but
1308 * don't define the IRQ. It should always be safe to
1309 * hardcode it on systems with a legacy PIC.
1311 if (nr_legacy_irqs())
1312 irq = 8;
1313 #endif
1314 return cmos_do_probe(&pnp->dev,
1315 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1316 } else {
1317 return cmos_do_probe(&pnp->dev,
1318 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1319 pnp_irq(pnp, 0));
1323 static void cmos_pnp_remove(struct pnp_dev *pnp)
1325 cmos_do_remove(&pnp->dev);
1328 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1330 struct device *dev = &pnp->dev;
1331 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1333 if (system_state == SYSTEM_POWER_OFF) {
1334 int retval = cmos_poweroff(dev);
1336 if (cmos_aie_poweroff(dev) < 0 && !retval)
1337 return;
1340 cmos_do_shutdown(cmos->irq);
1343 static const struct pnp_device_id rtc_ids[] = {
1344 { .id = "PNP0b00", },
1345 { .id = "PNP0b01", },
1346 { .id = "PNP0b02", },
1347 { },
1349 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1351 static struct pnp_driver cmos_pnp_driver = {
1352 .name = (char *) driver_name,
1353 .id_table = rtc_ids,
1354 .probe = cmos_pnp_probe,
1355 .remove = cmos_pnp_remove,
1356 .shutdown = cmos_pnp_shutdown,
1358 /* flag ensures resume() gets called, and stops syslog spam */
1359 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1360 .driver = {
1361 .pm = &cmos_pm_ops,
1365 #endif /* CONFIG_PNP */
1367 #ifdef CONFIG_OF
1368 static const struct of_device_id of_cmos_match[] = {
1370 .compatible = "motorola,mc146818",
1372 { },
1374 MODULE_DEVICE_TABLE(of, of_cmos_match);
1376 static __init void cmos_of_init(struct platform_device *pdev)
1378 struct device_node *node = pdev->dev.of_node;
1379 const __be32 *val;
1381 if (!node)
1382 return;
1384 val = of_get_property(node, "ctrl-reg", NULL);
1385 if (val)
1386 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1388 val = of_get_property(node, "freq-reg", NULL);
1389 if (val)
1390 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1392 #else
1393 static inline void cmos_of_init(struct platform_device *pdev) {}
1394 #endif
1395 /*----------------------------------------------------------------*/
1397 /* Platform setup should have set up an RTC device, when PNP is
1398 * unavailable ... this could happen even on (older) PCs.
1401 static int __init cmos_platform_probe(struct platform_device *pdev)
1403 struct resource *resource;
1404 int irq;
1406 cmos_of_init(pdev);
1407 cmos_wake_setup(&pdev->dev);
1409 if (RTC_IOMAPPED)
1410 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1411 else
1412 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1413 irq = platform_get_irq(pdev, 0);
1414 if (irq < 0)
1415 irq = -1;
1417 return cmos_do_probe(&pdev->dev, resource, irq);
1420 static int cmos_platform_remove(struct platform_device *pdev)
1422 cmos_do_remove(&pdev->dev);
1423 return 0;
1426 static void cmos_platform_shutdown(struct platform_device *pdev)
1428 struct device *dev = &pdev->dev;
1429 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1431 if (system_state == SYSTEM_POWER_OFF) {
1432 int retval = cmos_poweroff(dev);
1434 if (cmos_aie_poweroff(dev) < 0 && !retval)
1435 return;
1438 cmos_do_shutdown(cmos->irq);
1441 /* work with hotplug and coldplug */
1442 MODULE_ALIAS("platform:rtc_cmos");
1444 static struct platform_driver cmos_platform_driver = {
1445 .remove = cmos_platform_remove,
1446 .shutdown = cmos_platform_shutdown,
1447 .driver = {
1448 .name = driver_name,
1449 .pm = &cmos_pm_ops,
1450 .of_match_table = of_match_ptr(of_cmos_match),
1454 #ifdef CONFIG_PNP
1455 static bool pnp_driver_registered;
1456 #endif
1457 static bool platform_driver_registered;
1459 static int __init cmos_init(void)
1461 int retval = 0;
1463 #ifdef CONFIG_PNP
1464 retval = pnp_register_driver(&cmos_pnp_driver);
1465 if (retval == 0)
1466 pnp_driver_registered = true;
1467 #endif
1469 if (!cmos_rtc.dev) {
1470 retval = platform_driver_probe(&cmos_platform_driver,
1471 cmos_platform_probe);
1472 if (retval == 0)
1473 platform_driver_registered = true;
1476 if (retval == 0)
1477 return 0;
1479 #ifdef CONFIG_PNP
1480 if (pnp_driver_registered)
1481 pnp_unregister_driver(&cmos_pnp_driver);
1482 #endif
1483 return retval;
1485 module_init(cmos_init);
1487 static void __exit cmos_exit(void)
1489 #ifdef CONFIG_PNP
1490 if (pnp_driver_registered)
1491 pnp_unregister_driver(&cmos_pnp_driver);
1492 #endif
1493 if (platform_driver_registered)
1494 platform_driver_unregister(&cmos_platform_driver);
1496 module_exit(cmos_exit);
1499 MODULE_AUTHOR("David Brownell");
1500 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1501 MODULE_LICENSE("GPL");