2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
82 void putback_movable_pages(struct list_head
*l
)
87 list_for_each_entry_safe(page
, page2
, l
, lru
) {
88 if (unlikely(PageHuge(page
))) {
89 putback_active_hugepage(page
);
93 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
94 page_is_file_cache(page
));
95 if (unlikely(isolated_balloon_page(page
)))
96 balloon_page_putback(page
);
98 putback_lru_page(page
);
103 * Restore a potential migration pte to a working pte entry
105 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
106 unsigned long addr
, void *old
)
108 struct mm_struct
*mm
= vma
->vm_mm
;
114 if (unlikely(PageHuge(new))) {
115 ptep
= huge_pte_offset(mm
, addr
);
118 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, ptep
);
120 pmd
= mm_find_pmd(mm
, addr
);
124 ptep
= pte_offset_map(pmd
, addr
);
127 * Peek to check is_swap_pte() before taking ptlock? No, we
128 * can race mremap's move_ptes(), which skips anon_vma lock.
131 ptl
= pte_lockptr(mm
, pmd
);
136 if (!is_swap_pte(pte
))
139 entry
= pte_to_swp_entry(pte
);
141 if (!is_migration_entry(entry
) ||
142 migration_entry_to_page(entry
) != old
)
146 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
147 if (pte_swp_soft_dirty(*ptep
))
148 pte
= pte_mksoft_dirty(pte
);
149 if (is_write_migration_entry(entry
))
150 pte
= pte_mkwrite(pte
);
151 #ifdef CONFIG_HUGETLB_PAGE
153 pte
= pte_mkhuge(pte
);
154 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
157 flush_dcache_page(new);
158 set_pte_at(mm
, addr
, ptep
, pte
);
162 hugepage_add_anon_rmap(new, vma
, addr
);
165 } else if (PageAnon(new))
166 page_add_anon_rmap(new, vma
, addr
);
168 page_add_file_rmap(new);
170 /* No need to invalidate - it was non-present before */
171 update_mmu_cache(vma
, addr
, ptep
);
173 pte_unmap_unlock(ptep
, ptl
);
179 * Congratulations to trinity for discovering this bug.
180 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
181 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
182 * replace the specified range by file ptes throughout (maybe populated after).
183 * If page migration finds a page within that range, while it's still located
184 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
185 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
186 * But if the migrating page is in a part of the vma outside the range to be
187 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
188 * deal with it. Fortunately, this part of the vma is of course still linear,
189 * so we just need to use linear location on the nonlinear list.
191 static int remove_linear_migration_ptes_from_nonlinear(struct page
*page
,
192 struct address_space
*mapping
, void *arg
)
194 struct vm_area_struct
*vma
;
195 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */
196 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
199 list_for_each_entry(vma
,
200 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
202 addr
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
203 if (addr
>= vma
->vm_start
&& addr
< vma
->vm_end
)
204 remove_migration_pte(page
, vma
, addr
, arg
);
210 * Get rid of all migration entries and replace them by
211 * references to the indicated page.
213 static void remove_migration_ptes(struct page
*old
, struct page
*new)
215 struct rmap_walk_control rwc
= {
216 .rmap_one
= remove_migration_pte
,
218 .file_nonlinear
= remove_linear_migration_ptes_from_nonlinear
,
221 rmap_walk(new, &rwc
);
225 * Something used the pte of a page under migration. We need to
226 * get to the page and wait until migration is finished.
227 * When we return from this function the fault will be retried.
229 static void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
238 if (!is_swap_pte(pte
))
241 entry
= pte_to_swp_entry(pte
);
242 if (!is_migration_entry(entry
))
245 page
= migration_entry_to_page(entry
);
248 * Once radix-tree replacement of page migration started, page_count
249 * *must* be zero. And, we don't want to call wait_on_page_locked()
250 * against a page without get_page().
251 * So, we use get_page_unless_zero(), here. Even failed, page fault
254 if (!get_page_unless_zero(page
))
256 pte_unmap_unlock(ptep
, ptl
);
257 wait_on_page_locked(page
);
261 pte_unmap_unlock(ptep
, ptl
);
264 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
265 unsigned long address
)
267 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
268 pte_t
*ptep
= pte_offset_map(pmd
, address
);
269 __migration_entry_wait(mm
, ptep
, ptl
);
272 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
273 struct mm_struct
*mm
, pte_t
*pte
)
275 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
276 __migration_entry_wait(mm
, pte
, ptl
);
280 /* Returns true if all buffers are successfully locked */
281 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
282 enum migrate_mode mode
)
284 struct buffer_head
*bh
= head
;
286 /* Simple case, sync compaction */
287 if (mode
!= MIGRATE_ASYNC
) {
291 bh
= bh
->b_this_page
;
293 } while (bh
!= head
);
298 /* async case, we cannot block on lock_buffer so use trylock_buffer */
301 if (!trylock_buffer(bh
)) {
303 * We failed to lock the buffer and cannot stall in
304 * async migration. Release the taken locks
306 struct buffer_head
*failed_bh
= bh
;
309 while (bh
!= failed_bh
) {
312 bh
= bh
->b_this_page
;
317 bh
= bh
->b_this_page
;
318 } while (bh
!= head
);
322 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
323 enum migrate_mode mode
)
327 #endif /* CONFIG_BLOCK */
330 * Replace the page in the mapping.
332 * The number of remaining references must be:
333 * 1 for anonymous pages without a mapping
334 * 2 for pages with a mapping
335 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
337 int migrate_page_move_mapping(struct address_space
*mapping
,
338 struct page
*newpage
, struct page
*page
,
339 struct buffer_head
*head
, enum migrate_mode mode
,
342 int expected_count
= 1 + extra_count
;
346 /* Anonymous page without mapping */
347 if (page_count(page
) != expected_count
)
349 return MIGRATEPAGE_SUCCESS
;
352 spin_lock_irq(&mapping
->tree_lock
);
354 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
357 expected_count
+= 1 + page_has_private(page
);
358 if (page_count(page
) != expected_count
||
359 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
360 spin_unlock_irq(&mapping
->tree_lock
);
364 if (!page_freeze_refs(page
, expected_count
)) {
365 spin_unlock_irq(&mapping
->tree_lock
);
370 * In the async migration case of moving a page with buffers, lock the
371 * buffers using trylock before the mapping is moved. If the mapping
372 * was moved, we later failed to lock the buffers and could not move
373 * the mapping back due to an elevated page count, we would have to
374 * block waiting on other references to be dropped.
376 if (mode
== MIGRATE_ASYNC
&& head
&&
377 !buffer_migrate_lock_buffers(head
, mode
)) {
378 page_unfreeze_refs(page
, expected_count
);
379 spin_unlock_irq(&mapping
->tree_lock
);
384 * Now we know that no one else is looking at the page.
386 get_page(newpage
); /* add cache reference */
387 if (PageSwapCache(page
)) {
388 SetPageSwapCache(newpage
);
389 set_page_private(newpage
, page_private(page
));
392 radix_tree_replace_slot(pslot
, newpage
);
395 * Drop cache reference from old page by unfreezing
396 * to one less reference.
397 * We know this isn't the last reference.
399 page_unfreeze_refs(page
, expected_count
- 1);
402 * If moved to a different zone then also account
403 * the page for that zone. Other VM counters will be
404 * taken care of when we establish references to the
405 * new page and drop references to the old page.
407 * Note that anonymous pages are accounted for
408 * via NR_FILE_PAGES and NR_ANON_PAGES if they
409 * are mapped to swap space.
411 __dec_zone_page_state(page
, NR_FILE_PAGES
);
412 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
413 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
414 __dec_zone_page_state(page
, NR_SHMEM
);
415 __inc_zone_page_state(newpage
, NR_SHMEM
);
417 spin_unlock_irq(&mapping
->tree_lock
);
419 return MIGRATEPAGE_SUCCESS
;
423 * The expected number of remaining references is the same as that
424 * of migrate_page_move_mapping().
426 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
427 struct page
*newpage
, struct page
*page
)
433 if (page_count(page
) != 1)
435 return MIGRATEPAGE_SUCCESS
;
438 spin_lock_irq(&mapping
->tree_lock
);
440 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
443 expected_count
= 2 + page_has_private(page
);
444 if (page_count(page
) != expected_count
||
445 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
446 spin_unlock_irq(&mapping
->tree_lock
);
450 if (!page_freeze_refs(page
, expected_count
)) {
451 spin_unlock_irq(&mapping
->tree_lock
);
457 radix_tree_replace_slot(pslot
, newpage
);
459 page_unfreeze_refs(page
, expected_count
- 1);
461 spin_unlock_irq(&mapping
->tree_lock
);
462 return MIGRATEPAGE_SUCCESS
;
466 * Gigantic pages are so large that we do not guarantee that page++ pointer
467 * arithmetic will work across the entire page. We need something more
470 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
474 struct page
*dst_base
= dst
;
475 struct page
*src_base
= src
;
477 for (i
= 0; i
< nr_pages
; ) {
479 copy_highpage(dst
, src
);
482 dst
= mem_map_next(dst
, dst_base
, i
);
483 src
= mem_map_next(src
, src_base
, i
);
487 static void copy_huge_page(struct page
*dst
, struct page
*src
)
494 struct hstate
*h
= page_hstate(src
);
495 nr_pages
= pages_per_huge_page(h
);
497 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
498 __copy_gigantic_page(dst
, src
, nr_pages
);
503 BUG_ON(!PageTransHuge(src
));
504 nr_pages
= hpage_nr_pages(src
);
507 for (i
= 0; i
< nr_pages
; i
++) {
509 copy_highpage(dst
+ i
, src
+ i
);
514 * Copy the page to its new location
516 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
520 if (PageHuge(page
) || PageTransHuge(page
))
521 copy_huge_page(newpage
, page
);
523 copy_highpage(newpage
, page
);
526 SetPageError(newpage
);
527 if (PageReferenced(page
))
528 SetPageReferenced(newpage
);
529 if (PageUptodate(page
))
530 SetPageUptodate(newpage
);
531 if (TestClearPageActive(page
)) {
532 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
533 SetPageActive(newpage
);
534 } else if (TestClearPageUnevictable(page
))
535 SetPageUnevictable(newpage
);
536 if (PageChecked(page
))
537 SetPageChecked(newpage
);
538 if (PageMappedToDisk(page
))
539 SetPageMappedToDisk(newpage
);
541 if (PageDirty(page
)) {
542 clear_page_dirty_for_io(page
);
544 * Want to mark the page and the radix tree as dirty, and
545 * redo the accounting that clear_page_dirty_for_io undid,
546 * but we can't use set_page_dirty because that function
547 * is actually a signal that all of the page has become dirty.
548 * Whereas only part of our page may be dirty.
550 if (PageSwapBacked(page
))
551 SetPageDirty(newpage
);
553 __set_page_dirty_nobuffers(newpage
);
557 * Copy NUMA information to the new page, to prevent over-eager
558 * future migrations of this same page.
560 cpupid
= page_cpupid_xchg_last(page
, -1);
561 page_cpupid_xchg_last(newpage
, cpupid
);
563 mlock_migrate_page(newpage
, page
);
564 ksm_migrate_page(newpage
, page
);
566 * Please do not reorder this without considering how mm/ksm.c's
567 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
569 ClearPageSwapCache(page
);
570 ClearPagePrivate(page
);
571 set_page_private(page
, 0);
574 * If any waiters have accumulated on the new page then
577 if (PageWriteback(newpage
))
578 end_page_writeback(newpage
);
581 /************************************************************
582 * Migration functions
583 ***********************************************************/
586 * Common logic to directly migrate a single page suitable for
587 * pages that do not use PagePrivate/PagePrivate2.
589 * Pages are locked upon entry and exit.
591 int migrate_page(struct address_space
*mapping
,
592 struct page
*newpage
, struct page
*page
,
593 enum migrate_mode mode
)
597 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
599 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
601 if (rc
!= MIGRATEPAGE_SUCCESS
)
604 migrate_page_copy(newpage
, page
);
605 return MIGRATEPAGE_SUCCESS
;
607 EXPORT_SYMBOL(migrate_page
);
611 * Migration function for pages with buffers. This function can only be used
612 * if the underlying filesystem guarantees that no other references to "page"
615 int buffer_migrate_page(struct address_space
*mapping
,
616 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
618 struct buffer_head
*bh
, *head
;
621 if (!page_has_buffers(page
))
622 return migrate_page(mapping
, newpage
, page
, mode
);
624 head
= page_buffers(page
);
626 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
628 if (rc
!= MIGRATEPAGE_SUCCESS
)
632 * In the async case, migrate_page_move_mapping locked the buffers
633 * with an IRQ-safe spinlock held. In the sync case, the buffers
634 * need to be locked now
636 if (mode
!= MIGRATE_ASYNC
)
637 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
639 ClearPagePrivate(page
);
640 set_page_private(newpage
, page_private(page
));
641 set_page_private(page
, 0);
647 set_bh_page(bh
, newpage
, bh_offset(bh
));
648 bh
= bh
->b_this_page
;
650 } while (bh
!= head
);
652 SetPagePrivate(newpage
);
654 migrate_page_copy(newpage
, page
);
660 bh
= bh
->b_this_page
;
662 } while (bh
!= head
);
664 return MIGRATEPAGE_SUCCESS
;
666 EXPORT_SYMBOL(buffer_migrate_page
);
670 * Writeback a page to clean the dirty state
672 static int writeout(struct address_space
*mapping
, struct page
*page
)
674 struct writeback_control wbc
= {
675 .sync_mode
= WB_SYNC_NONE
,
678 .range_end
= LLONG_MAX
,
683 if (!mapping
->a_ops
->writepage
)
684 /* No write method for the address space */
687 if (!clear_page_dirty_for_io(page
))
688 /* Someone else already triggered a write */
692 * A dirty page may imply that the underlying filesystem has
693 * the page on some queue. So the page must be clean for
694 * migration. Writeout may mean we loose the lock and the
695 * page state is no longer what we checked for earlier.
696 * At this point we know that the migration attempt cannot
699 remove_migration_ptes(page
, page
);
701 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
703 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
704 /* unlocked. Relock */
707 return (rc
< 0) ? -EIO
: -EAGAIN
;
711 * Default handling if a filesystem does not provide a migration function.
713 static int fallback_migrate_page(struct address_space
*mapping
,
714 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
716 if (PageDirty(page
)) {
717 /* Only writeback pages in full synchronous migration */
718 if (mode
!= MIGRATE_SYNC
)
720 return writeout(mapping
, page
);
724 * Buffers may be managed in a filesystem specific way.
725 * We must have no buffers or drop them.
727 if (page_has_private(page
) &&
728 !try_to_release_page(page
, GFP_KERNEL
))
731 return migrate_page(mapping
, newpage
, page
, mode
);
735 * Move a page to a newly allocated page
736 * The page is locked and all ptes have been successfully removed.
738 * The new page will have replaced the old page if this function
743 * MIGRATEPAGE_SUCCESS - success
745 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
746 int remap_swapcache
, enum migrate_mode mode
)
748 struct address_space
*mapping
;
752 * Block others from accessing the page when we get around to
753 * establishing additional references. We are the only one
754 * holding a reference to the new page at this point.
756 if (!trylock_page(newpage
))
759 /* Prepare mapping for the new page.*/
760 newpage
->index
= page
->index
;
761 newpage
->mapping
= page
->mapping
;
762 if (PageSwapBacked(page
))
763 SetPageSwapBacked(newpage
);
765 mapping
= page_mapping(page
);
767 rc
= migrate_page(mapping
, newpage
, page
, mode
);
768 else if (mapping
->a_ops
->migratepage
)
770 * Most pages have a mapping and most filesystems provide a
771 * migratepage callback. Anonymous pages are part of swap
772 * space which also has its own migratepage callback. This
773 * is the most common path for page migration.
775 rc
= mapping
->a_ops
->migratepage(mapping
,
776 newpage
, page
, mode
);
778 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
780 if (rc
!= MIGRATEPAGE_SUCCESS
) {
781 newpage
->mapping
= NULL
;
784 remove_migration_ptes(page
, newpage
);
785 page
->mapping
= NULL
;
788 unlock_page(newpage
);
793 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
794 int force
, enum migrate_mode mode
)
797 int remap_swapcache
= 1;
798 struct mem_cgroup
*mem
;
799 struct anon_vma
*anon_vma
= NULL
;
801 if (!trylock_page(page
)) {
802 if (!force
|| mode
== MIGRATE_ASYNC
)
806 * It's not safe for direct compaction to call lock_page.
807 * For example, during page readahead pages are added locked
808 * to the LRU. Later, when the IO completes the pages are
809 * marked uptodate and unlocked. However, the queueing
810 * could be merging multiple pages for one bio (e.g.
811 * mpage_readpages). If an allocation happens for the
812 * second or third page, the process can end up locking
813 * the same page twice and deadlocking. Rather than
814 * trying to be clever about what pages can be locked,
815 * avoid the use of lock_page for direct compaction
818 if (current
->flags
& PF_MEMALLOC
)
824 /* charge against new page */
825 mem_cgroup_prepare_migration(page
, newpage
, &mem
);
827 if (PageWriteback(page
)) {
829 * Only in the case of a full synchronous migration is it
830 * necessary to wait for PageWriteback. In the async case,
831 * the retry loop is too short and in the sync-light case,
832 * the overhead of stalling is too much
834 if (mode
!= MIGRATE_SYNC
) {
840 wait_on_page_writeback(page
);
843 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
844 * we cannot notice that anon_vma is freed while we migrates a page.
845 * This get_anon_vma() delays freeing anon_vma pointer until the end
846 * of migration. File cache pages are no problem because of page_lock()
847 * File Caches may use write_page() or lock_page() in migration, then,
848 * just care Anon page here.
850 if (PageAnon(page
) && !PageKsm(page
)) {
852 * Only page_lock_anon_vma_read() understands the subtleties of
853 * getting a hold on an anon_vma from outside one of its mms.
855 anon_vma
= page_get_anon_vma(page
);
860 } else if (PageSwapCache(page
)) {
862 * We cannot be sure that the anon_vma of an unmapped
863 * swapcache page is safe to use because we don't
864 * know in advance if the VMA that this page belonged
865 * to still exists. If the VMA and others sharing the
866 * data have been freed, then the anon_vma could
867 * already be invalid.
869 * To avoid this possibility, swapcache pages get
870 * migrated but are not remapped when migration
879 if (unlikely(balloon_page_movable(page
))) {
881 * A ballooned page does not need any special attention from
882 * physical to virtual reverse mapping procedures.
883 * Skip any attempt to unmap PTEs or to remap swap cache,
884 * in order to avoid burning cycles at rmap level, and perform
885 * the page migration right away (proteced by page lock).
887 rc
= balloon_page_migrate(newpage
, page
, mode
);
892 * Corner case handling:
893 * 1. When a new swap-cache page is read into, it is added to the LRU
894 * and treated as swapcache but it has no rmap yet.
895 * Calling try_to_unmap() against a page->mapping==NULL page will
896 * trigger a BUG. So handle it here.
897 * 2. An orphaned page (see truncate_complete_page) might have
898 * fs-private metadata. The page can be picked up due to memory
899 * offlining. Everywhere else except page reclaim, the page is
900 * invisible to the vm, so the page can not be migrated. So try to
901 * free the metadata, so the page can be freed.
903 if (!page
->mapping
) {
904 VM_BUG_ON_PAGE(PageAnon(page
), page
);
905 if (page_has_private(page
)) {
906 try_to_free_buffers(page
);
912 /* Establish migration ptes or remove ptes */
913 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
916 if (!page_mapped(page
))
917 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
919 if (rc
&& remap_swapcache
)
920 remove_migration_ptes(page
, page
);
922 /* Drop an anon_vma reference if we took one */
924 put_anon_vma(anon_vma
);
927 mem_cgroup_end_migration(mem
, page
, newpage
,
928 (rc
== MIGRATEPAGE_SUCCESS
||
929 rc
== MIGRATEPAGE_BALLOON_SUCCESS
));
936 * Obtain the lock on page, remove all ptes and migrate the page
937 * to the newly allocated page in newpage.
939 static int unmap_and_move(new_page_t get_new_page
, free_page_t put_new_page
,
940 unsigned long private, struct page
*page
, int force
,
941 enum migrate_mode mode
)
945 struct page
*newpage
= get_new_page(page
, private, &result
);
950 if (page_count(page
) == 1) {
951 /* page was freed from under us. So we are done. */
955 if (unlikely(PageTransHuge(page
)))
956 if (unlikely(split_huge_page(page
)))
959 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
961 if (unlikely(rc
== MIGRATEPAGE_BALLOON_SUCCESS
)) {
963 * A ballooned page has been migrated already.
964 * Now, it's the time to wrap-up counters,
965 * handle the page back to Buddy and return.
967 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
968 page_is_file_cache(page
));
969 balloon_page_free(page
);
970 return MIGRATEPAGE_SUCCESS
;
975 * A page that has been migrated has all references
976 * removed and will be freed. A page that has not been
977 * migrated will have kepts its references and be
980 list_del(&page
->lru
);
981 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
982 page_is_file_cache(page
));
983 putback_lru_page(page
);
987 * If migration was not successful and there's a freeing callback, use
988 * it. Otherwise, putback_lru_page() will drop the reference grabbed
991 if (rc
!= MIGRATEPAGE_SUCCESS
&& put_new_page
) {
992 ClearPageSwapBacked(newpage
);
993 put_new_page(newpage
, private);
995 putback_lru_page(newpage
);
1001 *result
= page_to_nid(newpage
);
1007 * Counterpart of unmap_and_move_page() for hugepage migration.
1009 * This function doesn't wait the completion of hugepage I/O
1010 * because there is no race between I/O and migration for hugepage.
1011 * Note that currently hugepage I/O occurs only in direct I/O
1012 * where no lock is held and PG_writeback is irrelevant,
1013 * and writeback status of all subpages are counted in the reference
1014 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1015 * under direct I/O, the reference of the head page is 512 and a bit more.)
1016 * This means that when we try to migrate hugepage whose subpages are
1017 * doing direct I/O, some references remain after try_to_unmap() and
1018 * hugepage migration fails without data corruption.
1020 * There is also no race when direct I/O is issued on the page under migration,
1021 * because then pte is replaced with migration swap entry and direct I/O code
1022 * will wait in the page fault for migration to complete.
1024 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1025 free_page_t put_new_page
, unsigned long private,
1026 struct page
*hpage
, int force
,
1027 enum migrate_mode mode
)
1031 struct page
*new_hpage
;
1032 struct anon_vma
*anon_vma
= NULL
;
1035 * Movability of hugepages depends on architectures and hugepage size.
1036 * This check is necessary because some callers of hugepage migration
1037 * like soft offline and memory hotremove don't walk through page
1038 * tables or check whether the hugepage is pmd-based or not before
1039 * kicking migration.
1041 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1042 putback_active_hugepage(hpage
);
1046 new_hpage
= get_new_page(hpage
, private, &result
);
1052 if (!trylock_page(hpage
)) {
1053 if (!force
|| mode
!= MIGRATE_SYNC
)
1058 if (PageAnon(hpage
))
1059 anon_vma
= page_get_anon_vma(hpage
);
1061 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1063 if (!page_mapped(hpage
))
1064 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
1066 if (rc
!= MIGRATEPAGE_SUCCESS
)
1067 remove_migration_ptes(hpage
, hpage
);
1070 put_anon_vma(anon_vma
);
1072 if (rc
== MIGRATEPAGE_SUCCESS
)
1073 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1078 putback_active_hugepage(hpage
);
1081 * If migration was not successful and there's a freeing callback, use
1082 * it. Otherwise, put_page() will drop the reference grabbed during
1085 if (rc
!= MIGRATEPAGE_SUCCESS
&& put_new_page
)
1086 put_new_page(new_hpage
, private);
1088 put_page(new_hpage
);
1094 *result
= page_to_nid(new_hpage
);
1100 * migrate_pages - migrate the pages specified in a list, to the free pages
1101 * supplied as the target for the page migration
1103 * @from: The list of pages to be migrated.
1104 * @get_new_page: The function used to allocate free pages to be used
1105 * as the target of the page migration.
1106 * @put_new_page: The function used to free target pages if migration
1107 * fails, or NULL if no special handling is necessary.
1108 * @private: Private data to be passed on to get_new_page()
1109 * @mode: The migration mode that specifies the constraints for
1110 * page migration, if any.
1111 * @reason: The reason for page migration.
1113 * The function returns after 10 attempts or if no pages are movable any more
1114 * because the list has become empty or no retryable pages exist any more.
1115 * The caller should call putback_lru_pages() to return pages to the LRU
1116 * or free list only if ret != 0.
1118 * Returns the number of pages that were not migrated, or an error code.
1120 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1121 free_page_t put_new_page
, unsigned long private,
1122 enum migrate_mode mode
, int reason
)
1126 int nr_succeeded
= 0;
1130 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1134 current
->flags
|= PF_SWAPWRITE
;
1136 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1139 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1143 rc
= unmap_and_move_huge_page(get_new_page
,
1144 put_new_page
, private, page
,
1147 rc
= unmap_and_move(get_new_page
, put_new_page
,
1148 private, page
, pass
> 2, mode
);
1156 case MIGRATEPAGE_SUCCESS
:
1161 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1162 * unlike -EAGAIN case, the failed page is
1163 * removed from migration page list and not
1164 * retried in the next outer loop.
1171 rc
= nr_failed
+ retry
;
1174 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1176 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1177 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1180 current
->flags
&= ~PF_SWAPWRITE
;
1187 * Move a list of individual pages
1189 struct page_to_node
{
1196 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1199 struct page_to_node
*pm
= (struct page_to_node
*)private;
1201 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1204 if (pm
->node
== MAX_NUMNODES
)
1207 *result
= &pm
->status
;
1210 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1213 return alloc_pages_exact_node(pm
->node
,
1214 GFP_HIGHUSER_MOVABLE
| __GFP_THISNODE
, 0);
1218 * Move a set of pages as indicated in the pm array. The addr
1219 * field must be set to the virtual address of the page to be moved
1220 * and the node number must contain a valid target node.
1221 * The pm array ends with node = MAX_NUMNODES.
1223 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1224 struct page_to_node
*pm
,
1228 struct page_to_node
*pp
;
1229 LIST_HEAD(pagelist
);
1231 down_read(&mm
->mmap_sem
);
1234 * Build a list of pages to migrate
1236 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1237 struct vm_area_struct
*vma
;
1241 vma
= find_vma(mm
, pp
->addr
);
1242 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1245 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1247 err
= PTR_ERR(page
);
1255 /* Use PageReserved to check for zero page */
1256 if (PageReserved(page
))
1260 err
= page_to_nid(page
);
1262 if (err
== pp
->node
)
1264 * Node already in the right place
1269 if (page_mapcount(page
) > 1 &&
1273 if (PageHuge(page
)) {
1274 isolate_huge_page(page
, &pagelist
);
1278 err
= isolate_lru_page(page
);
1280 list_add_tail(&page
->lru
, &pagelist
);
1281 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1282 page_is_file_cache(page
));
1286 * Either remove the duplicate refcount from
1287 * isolate_lru_page() or drop the page ref if it was
1296 if (!list_empty(&pagelist
)) {
1297 err
= migrate_pages(&pagelist
, new_page_node
, NULL
,
1298 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1300 putback_movable_pages(&pagelist
);
1303 up_read(&mm
->mmap_sem
);
1308 * Migrate an array of page address onto an array of nodes and fill
1309 * the corresponding array of status.
1311 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1312 unsigned long nr_pages
,
1313 const void __user
* __user
*pages
,
1314 const int __user
*nodes
,
1315 int __user
*status
, int flags
)
1317 struct page_to_node
*pm
;
1318 unsigned long chunk_nr_pages
;
1319 unsigned long chunk_start
;
1323 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1330 * Store a chunk of page_to_node array in a page,
1331 * but keep the last one as a marker
1333 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1335 for (chunk_start
= 0;
1336 chunk_start
< nr_pages
;
1337 chunk_start
+= chunk_nr_pages
) {
1340 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1341 chunk_nr_pages
= nr_pages
- chunk_start
;
1343 /* fill the chunk pm with addrs and nodes from user-space */
1344 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1345 const void __user
*p
;
1349 if (get_user(p
, pages
+ j
+ chunk_start
))
1351 pm
[j
].addr
= (unsigned long) p
;
1353 if (get_user(node
, nodes
+ j
+ chunk_start
))
1357 if (node
< 0 || node
>= MAX_NUMNODES
)
1360 if (!node_state(node
, N_MEMORY
))
1364 if (!node_isset(node
, task_nodes
))
1370 /* End marker for this chunk */
1371 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1373 /* Migrate this chunk */
1374 err
= do_move_page_to_node_array(mm
, pm
,
1375 flags
& MPOL_MF_MOVE_ALL
);
1379 /* Return status information */
1380 for (j
= 0; j
< chunk_nr_pages
; j
++)
1381 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1389 free_page((unsigned long)pm
);
1395 * Determine the nodes of an array of pages and store it in an array of status.
1397 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1398 const void __user
**pages
, int *status
)
1402 down_read(&mm
->mmap_sem
);
1404 for (i
= 0; i
< nr_pages
; i
++) {
1405 unsigned long addr
= (unsigned long)(*pages
);
1406 struct vm_area_struct
*vma
;
1410 vma
= find_vma(mm
, addr
);
1411 if (!vma
|| addr
< vma
->vm_start
)
1414 page
= follow_page(vma
, addr
, 0);
1416 err
= PTR_ERR(page
);
1421 /* Use PageReserved to check for zero page */
1422 if (!page
|| PageReserved(page
))
1425 err
= page_to_nid(page
);
1433 up_read(&mm
->mmap_sem
);
1437 * Determine the nodes of a user array of pages and store it in
1438 * a user array of status.
1440 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1441 const void __user
* __user
*pages
,
1444 #define DO_PAGES_STAT_CHUNK_NR 16
1445 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1446 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1449 unsigned long chunk_nr
;
1451 chunk_nr
= nr_pages
;
1452 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1453 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1455 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1458 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1460 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1465 nr_pages
-= chunk_nr
;
1467 return nr_pages
? -EFAULT
: 0;
1471 * Move a list of pages in the address space of the currently executing
1474 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1475 const void __user
* __user
*, pages
,
1476 const int __user
*, nodes
,
1477 int __user
*, status
, int, flags
)
1479 const struct cred
*cred
= current_cred(), *tcred
;
1480 struct task_struct
*task
;
1481 struct mm_struct
*mm
;
1483 nodemask_t task_nodes
;
1486 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1489 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1492 /* Find the mm_struct */
1494 task
= pid
? find_task_by_vpid(pid
) : current
;
1499 get_task_struct(task
);
1502 * Check if this process has the right to modify the specified
1503 * process. The right exists if the process has administrative
1504 * capabilities, superuser privileges or the same
1505 * userid as the target process.
1507 tcred
= __task_cred(task
);
1508 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1509 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1510 !capable(CAP_SYS_NICE
)) {
1517 err
= security_task_movememory(task
);
1521 task_nodes
= cpuset_mems_allowed(task
);
1522 mm
= get_task_mm(task
);
1523 put_task_struct(task
);
1529 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1530 nodes
, status
, flags
);
1532 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1538 put_task_struct(task
);
1543 * Call migration functions in the vma_ops that may prepare
1544 * memory in a vm for migration. migration functions may perform
1545 * the migration for vmas that do not have an underlying page struct.
1547 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1548 const nodemask_t
*from
, unsigned long flags
)
1550 struct vm_area_struct
*vma
;
1553 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1554 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1555 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);
1563 #ifdef CONFIG_NUMA_BALANCING
1565 * Returns true if this is a safe migration target node for misplaced NUMA
1566 * pages. Currently it only checks the watermarks which crude
1568 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1569 unsigned long nr_migrate_pages
)
1572 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1573 struct zone
*zone
= pgdat
->node_zones
+ z
;
1575 if (!populated_zone(zone
))
1578 if (!zone_reclaimable(zone
))
1581 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1582 if (!zone_watermark_ok(zone
, 0,
1583 high_wmark_pages(zone
) +
1592 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1596 int nid
= (int) data
;
1597 struct page
*newpage
;
1599 newpage
= alloc_pages_exact_node(nid
,
1600 (GFP_HIGHUSER_MOVABLE
|
1601 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1602 __GFP_NORETRY
| __GFP_NOWARN
) &
1609 * page migration rate limiting control.
1610 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1611 * window of time. Default here says do not migrate more than 1280M per second.
1612 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1613 * as it is faults that reset the window, pte updates will happen unconditionally
1614 * if there has not been a fault since @pteupdate_interval_millisecs after the
1615 * throttle window closed.
1617 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1618 static unsigned int pteupdate_interval_millisecs __read_mostly
= 1000;
1619 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1621 /* Returns true if NUMA migration is currently rate limited */
1622 bool migrate_ratelimited(int node
)
1624 pg_data_t
*pgdat
= NODE_DATA(node
);
1626 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
+
1627 msecs_to_jiffies(pteupdate_interval_millisecs
)))
1630 if (pgdat
->numabalancing_migrate_nr_pages
< ratelimit_pages
)
1636 /* Returns true if the node is migrate rate-limited after the update */
1637 static bool numamigrate_update_ratelimit(pg_data_t
*pgdat
,
1638 unsigned long nr_pages
)
1641 * Rate-limit the amount of data that is being migrated to a node.
1642 * Optimal placement is no good if the memory bus is saturated and
1643 * all the time is being spent migrating!
1645 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1646 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1647 pgdat
->numabalancing_migrate_nr_pages
= 0;
1648 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1649 msecs_to_jiffies(migrate_interval_millisecs
);
1650 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1652 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
) {
1653 trace_mm_numa_migrate_ratelimit(current
, pgdat
->node_id
,
1659 * This is an unlocked non-atomic update so errors are possible.
1660 * The consequences are failing to migrate when we potentiall should
1661 * have which is not severe enough to warrant locking. If it is ever
1662 * a problem, it can be converted to a per-cpu counter.
1664 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1668 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1672 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1674 /* Avoid migrating to a node that is nearly full */
1675 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1678 if (isolate_lru_page(page
))
1682 * migrate_misplaced_transhuge_page() skips page migration's usual
1683 * check on page_count(), so we must do it here, now that the page
1684 * has been isolated: a GUP pin, or any other pin, prevents migration.
1685 * The expected page count is 3: 1 for page's mapcount and 1 for the
1686 * caller's pin and 1 for the reference taken by isolate_lru_page().
1688 if (PageTransHuge(page
) && page_count(page
) != 3) {
1689 putback_lru_page(page
);
1693 page_lru
= page_is_file_cache(page
);
1694 mod_zone_page_state(page_zone(page
), NR_ISOLATED_ANON
+ page_lru
,
1695 hpage_nr_pages(page
));
1698 * Isolating the page has taken another reference, so the
1699 * caller's reference can be safely dropped without the page
1700 * disappearing underneath us during migration.
1706 bool pmd_trans_migrating(pmd_t pmd
)
1708 struct page
*page
= pmd_page(pmd
);
1709 return PageLocked(page
);
1712 void wait_migrate_huge_page(struct anon_vma
*anon_vma
, pmd_t
*pmd
)
1714 struct page
*page
= pmd_page(*pmd
);
1715 wait_on_page_locked(page
);
1719 * Attempt to migrate a misplaced page to the specified destination
1720 * node. Caller is expected to have an elevated reference count on
1721 * the page that will be dropped by this function before returning.
1723 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1726 pg_data_t
*pgdat
= NODE_DATA(node
);
1729 LIST_HEAD(migratepages
);
1732 * Don't migrate file pages that are mapped in multiple processes
1733 * with execute permissions as they are probably shared libraries.
1735 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1736 (vma
->vm_flags
& VM_EXEC
))
1740 * Rate-limit the amount of data that is being migrated to a node.
1741 * Optimal placement is no good if the memory bus is saturated and
1742 * all the time is being spent migrating!
1744 if (numamigrate_update_ratelimit(pgdat
, 1))
1747 isolated
= numamigrate_isolate_page(pgdat
, page
);
1751 list_add(&page
->lru
, &migratepages
);
1752 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1753 NULL
, node
, MIGRATE_ASYNC
,
1756 if (!list_empty(&migratepages
)) {
1757 list_del(&page
->lru
);
1758 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
1759 page_is_file_cache(page
));
1760 putback_lru_page(page
);
1764 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1765 BUG_ON(!list_empty(&migratepages
));
1772 #endif /* CONFIG_NUMA_BALANCING */
1774 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1776 * Migrates a THP to a given target node. page must be locked and is unlocked
1779 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1780 struct vm_area_struct
*vma
,
1781 pmd_t
*pmd
, pmd_t entry
,
1782 unsigned long address
,
1783 struct page
*page
, int node
)
1786 pg_data_t
*pgdat
= NODE_DATA(node
);
1788 struct page
*new_page
= NULL
;
1789 struct mem_cgroup
*memcg
= NULL
;
1790 int page_lru
= page_is_file_cache(page
);
1791 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
1792 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
1796 * Rate-limit the amount of data that is being migrated to a node.
1797 * Optimal placement is no good if the memory bus is saturated and
1798 * all the time is being spent migrating!
1800 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
1803 new_page
= alloc_pages_node(node
,
1804 (GFP_TRANSHUGE
| __GFP_THISNODE
) & ~__GFP_WAIT
,
1809 isolated
= numamigrate_isolate_page(pgdat
, page
);
1815 if (mm_tlb_flush_pending(mm
))
1816 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1818 /* Prepare a page as a migration target */
1819 __set_page_locked(new_page
);
1820 SetPageSwapBacked(new_page
);
1822 /* anon mapping, we can simply copy page->mapping to the new page: */
1823 new_page
->mapping
= page
->mapping
;
1824 new_page
->index
= page
->index
;
1825 migrate_page_copy(new_page
, page
);
1826 WARN_ON(PageLRU(new_page
));
1828 /* Recheck the target PMD */
1829 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1830 ptl
= pmd_lock(mm
, pmd
);
1831 if (unlikely(!pmd_same(*pmd
, entry
) || page_count(page
) != 2)) {
1834 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1836 /* Reverse changes made by migrate_page_copy() */
1837 if (TestClearPageActive(new_page
))
1838 SetPageActive(page
);
1839 if (TestClearPageUnevictable(new_page
))
1840 SetPageUnevictable(page
);
1841 mlock_migrate_page(page
, new_page
);
1843 unlock_page(new_page
);
1844 put_page(new_page
); /* Free it */
1846 /* Retake the callers reference and putback on LRU */
1848 putback_lru_page(page
);
1849 mod_zone_page_state(page_zone(page
),
1850 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
1856 * Traditional migration needs to prepare the memcg charge
1857 * transaction early to prevent the old page from being
1858 * uncharged when installing migration entries. Here we can
1859 * save the potential rollback and start the charge transfer
1860 * only when migration is already known to end successfully.
1862 mem_cgroup_prepare_migration(page
, new_page
, &memcg
);
1865 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
1866 entry
= pmd_mkhuge(entry
);
1867 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1870 * Clear the old entry under pagetable lock and establish the new PTE.
1871 * Any parallel GUP will either observe the old page blocking on the
1872 * page lock, block on the page table lock or observe the new page.
1873 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1874 * guarantee the copy is visible before the pagetable update.
1876 flush_cache_range(vma
, mmun_start
, mmun_end
);
1877 page_add_anon_rmap(new_page
, vma
, mmun_start
);
1878 pmdp_clear_flush(vma
, mmun_start
, pmd
);
1879 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1880 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1881 update_mmu_cache_pmd(vma
, address
, &entry
);
1883 if (page_count(page
) != 2) {
1884 set_pmd_at(mm
, mmun_start
, pmd
, orig_entry
);
1885 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1886 update_mmu_cache_pmd(vma
, address
, &entry
);
1887 page_remove_rmap(new_page
);
1891 page_remove_rmap(page
);
1894 * Finish the charge transaction under the page table lock to
1895 * prevent split_huge_page() from dividing up the charge
1896 * before it's fully transferred to the new page.
1898 mem_cgroup_end_migration(memcg
, page
, new_page
, true);
1900 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1902 /* Take an "isolate" reference and put new page on the LRU. */
1904 putback_lru_page(new_page
);
1906 unlock_page(new_page
);
1908 put_page(page
); /* Drop the rmap reference */
1909 put_page(page
); /* Drop the LRU isolation reference */
1911 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
1912 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
1914 mod_zone_page_state(page_zone(page
),
1915 NR_ISOLATED_ANON
+ page_lru
,
1920 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1922 ptl
= pmd_lock(mm
, pmd
);
1923 if (pmd_same(*pmd
, entry
)) {
1924 entry
= pmd_mknonnuma(entry
);
1925 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1926 update_mmu_cache_pmd(vma
, address
, &entry
);
1935 #endif /* CONFIG_NUMA_BALANCING */
1937 #endif /* CONFIG_NUMA */