ipv6: reallocate addrconf router for ipv6 address when lo device up
[linux/fpc-iii.git] / mm / migrate.c
blob5f588b1f2f6d983ed6deec7ec07b381399ad60e6
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
38 #include <asm/tlbflush.h>
40 #include "internal.h"
43 * migrate_prep() needs to be called before we start compiling a list of pages
44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45 * undesirable, use migrate_prep_local()
47 int migrate_prep(void)
50 * Clear the LRU lists so pages can be isolated.
51 * Note that pages may be moved off the LRU after we have
52 * drained them. Those pages will fail to migrate like other
53 * pages that may be busy.
55 lru_add_drain_all();
57 return 0;
60 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
61 int migrate_prep_local(void)
63 lru_add_drain();
65 return 0;
69 * Add isolated pages on the list back to the LRU under page lock
70 * to avoid leaking evictable pages back onto unevictable list.
72 void putback_lru_pages(struct list_head *l)
74 struct page *page;
75 struct page *page2;
77 list_for_each_entry_safe(page, page2, l, lru) {
78 list_del(&page->lru);
79 dec_zone_page_state(page, NR_ISOLATED_ANON +
80 page_is_file_cache(page));
81 putback_lru_page(page);
86 * Restore a potential migration pte to a working pte entry
88 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89 unsigned long addr, void *old)
91 struct mm_struct *mm = vma->vm_mm;
92 swp_entry_t entry;
93 pgd_t *pgd;
94 pud_t *pud;
95 pmd_t *pmd;
96 pte_t *ptep, pte;
97 spinlock_t *ptl;
99 if (unlikely(PageHuge(new))) {
100 ptep = huge_pte_offset(mm, addr);
101 if (!ptep)
102 goto out;
103 ptl = &mm->page_table_lock;
104 } else {
105 pgd = pgd_offset(mm, addr);
106 if (!pgd_present(*pgd))
107 goto out;
109 pud = pud_offset(pgd, addr);
110 if (!pud_present(*pud))
111 goto out;
113 pmd = pmd_offset(pud, addr);
114 if (pmd_trans_huge(*pmd))
115 goto out;
116 if (!pmd_present(*pmd))
117 goto out;
119 ptep = pte_offset_map(pmd, addr);
122 * Peek to check is_swap_pte() before taking ptlock? No, we
123 * can race mremap's move_ptes(), which skips anon_vma lock.
126 ptl = pte_lockptr(mm, pmd);
129 spin_lock(ptl);
130 pte = *ptep;
131 if (!is_swap_pte(pte))
132 goto unlock;
134 entry = pte_to_swp_entry(pte);
136 if (!is_migration_entry(entry) ||
137 migration_entry_to_page(entry) != old)
138 goto unlock;
140 get_page(new);
141 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
142 if (is_write_migration_entry(entry))
143 pte = pte_mkwrite(pte);
144 #ifdef CONFIG_HUGETLB_PAGE
145 if (PageHuge(new))
146 pte = pte_mkhuge(pte);
147 #endif
148 flush_dcache_page(new);
149 set_pte_at(mm, addr, ptep, pte);
151 if (PageHuge(new)) {
152 if (PageAnon(new))
153 hugepage_add_anon_rmap(new, vma, addr);
154 else
155 page_dup_rmap(new);
156 } else if (PageAnon(new))
157 page_add_anon_rmap(new, vma, addr);
158 else
159 page_add_file_rmap(new);
161 /* No need to invalidate - it was non-present before */
162 update_mmu_cache(vma, addr, ptep);
163 unlock:
164 pte_unmap_unlock(ptep, ptl);
165 out:
166 return SWAP_AGAIN;
170 * Get rid of all migration entries and replace them by
171 * references to the indicated page.
173 static void remove_migration_ptes(struct page *old, struct page *new)
175 rmap_walk(new, remove_migration_pte, old);
179 * Something used the pte of a page under migration. We need to
180 * get to the page and wait until migration is finished.
181 * When we return from this function the fault will be retried.
183 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
184 spinlock_t *ptl)
186 pte_t pte;
187 swp_entry_t entry;
188 struct page *page;
190 spin_lock(ptl);
191 pte = *ptep;
192 if (!is_swap_pte(pte))
193 goto out;
195 entry = pte_to_swp_entry(pte);
196 if (!is_migration_entry(entry))
197 goto out;
199 page = migration_entry_to_page(entry);
202 * Once radix-tree replacement of page migration started, page_count
203 * *must* be zero. And, we don't want to call wait_on_page_locked()
204 * against a page without get_page().
205 * So, we use get_page_unless_zero(), here. Even failed, page fault
206 * will occur again.
208 if (!get_page_unless_zero(page))
209 goto out;
210 pte_unmap_unlock(ptep, ptl);
211 wait_on_page_locked(page);
212 put_page(page);
213 return;
214 out:
215 pte_unmap_unlock(ptep, ptl);
218 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
219 unsigned long address)
221 spinlock_t *ptl = pte_lockptr(mm, pmd);
222 pte_t *ptep = pte_offset_map(pmd, address);
223 __migration_entry_wait(mm, ptep, ptl);
226 void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
228 spinlock_t *ptl = &(mm)->page_table_lock;
229 __migration_entry_wait(mm, pte, ptl);
232 #ifdef CONFIG_BLOCK
233 /* Returns true if all buffers are successfully locked */
234 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
235 enum migrate_mode mode)
237 struct buffer_head *bh = head;
239 /* Simple case, sync compaction */
240 if (mode != MIGRATE_ASYNC) {
241 do {
242 get_bh(bh);
243 lock_buffer(bh);
244 bh = bh->b_this_page;
246 } while (bh != head);
248 return true;
251 /* async case, we cannot block on lock_buffer so use trylock_buffer */
252 do {
253 get_bh(bh);
254 if (!trylock_buffer(bh)) {
256 * We failed to lock the buffer and cannot stall in
257 * async migration. Release the taken locks
259 struct buffer_head *failed_bh = bh;
260 put_bh(failed_bh);
261 bh = head;
262 while (bh != failed_bh) {
263 unlock_buffer(bh);
264 put_bh(bh);
265 bh = bh->b_this_page;
267 return false;
270 bh = bh->b_this_page;
271 } while (bh != head);
272 return true;
274 #else
275 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
276 enum migrate_mode mode)
278 return true;
280 #endif /* CONFIG_BLOCK */
283 * Replace the page in the mapping.
285 * The number of remaining references must be:
286 * 1 for anonymous pages without a mapping
287 * 2 for pages with a mapping
288 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
290 static int migrate_page_move_mapping(struct address_space *mapping,
291 struct page *newpage, struct page *page,
292 struct buffer_head *head, enum migrate_mode mode)
294 int expected_count;
295 void **pslot;
297 if (!mapping) {
298 /* Anonymous page without mapping */
299 if (page_count(page) != 1)
300 return -EAGAIN;
301 return 0;
304 spin_lock_irq(&mapping->tree_lock);
306 pslot = radix_tree_lookup_slot(&mapping->page_tree,
307 page_index(page));
309 expected_count = 2 + page_has_private(page);
310 if (page_count(page) != expected_count ||
311 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
312 spin_unlock_irq(&mapping->tree_lock);
313 return -EAGAIN;
316 if (!page_freeze_refs(page, expected_count)) {
317 spin_unlock_irq(&mapping->tree_lock);
318 return -EAGAIN;
322 * In the async migration case of moving a page with buffers, lock the
323 * buffers using trylock before the mapping is moved. If the mapping
324 * was moved, we later failed to lock the buffers and could not move
325 * the mapping back due to an elevated page count, we would have to
326 * block waiting on other references to be dropped.
328 if (mode == MIGRATE_ASYNC && head &&
329 !buffer_migrate_lock_buffers(head, mode)) {
330 page_unfreeze_refs(page, expected_count);
331 spin_unlock_irq(&mapping->tree_lock);
332 return -EAGAIN;
336 * Now we know that no one else is looking at the page.
338 get_page(newpage); /* add cache reference */
339 if (PageSwapCache(page)) {
340 SetPageSwapCache(newpage);
341 set_page_private(newpage, page_private(page));
344 radix_tree_replace_slot(pslot, newpage);
347 * Drop cache reference from old page by unfreezing
348 * to one less reference.
349 * We know this isn't the last reference.
351 page_unfreeze_refs(page, expected_count - 1);
354 * If moved to a different zone then also account
355 * the page for that zone. Other VM counters will be
356 * taken care of when we establish references to the
357 * new page and drop references to the old page.
359 * Note that anonymous pages are accounted for
360 * via NR_FILE_PAGES and NR_ANON_PAGES if they
361 * are mapped to swap space.
363 __dec_zone_page_state(page, NR_FILE_PAGES);
364 __inc_zone_page_state(newpage, NR_FILE_PAGES);
365 if (!PageSwapCache(page) && PageSwapBacked(page)) {
366 __dec_zone_page_state(page, NR_SHMEM);
367 __inc_zone_page_state(newpage, NR_SHMEM);
369 spin_unlock_irq(&mapping->tree_lock);
371 return 0;
375 * The expected number of remaining references is the same as that
376 * of migrate_page_move_mapping().
378 int migrate_huge_page_move_mapping(struct address_space *mapping,
379 struct page *newpage, struct page *page)
381 int expected_count;
382 void **pslot;
384 if (!mapping) {
385 if (page_count(page) != 1)
386 return -EAGAIN;
387 return 0;
390 spin_lock_irq(&mapping->tree_lock);
392 pslot = radix_tree_lookup_slot(&mapping->page_tree,
393 page_index(page));
395 expected_count = 2 + page_has_private(page);
396 if (page_count(page) != expected_count ||
397 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
398 spin_unlock_irq(&mapping->tree_lock);
399 return -EAGAIN;
402 if (!page_freeze_refs(page, expected_count)) {
403 spin_unlock_irq(&mapping->tree_lock);
404 return -EAGAIN;
407 get_page(newpage);
409 radix_tree_replace_slot(pslot, newpage);
411 page_unfreeze_refs(page, expected_count - 1);
413 spin_unlock_irq(&mapping->tree_lock);
414 return 0;
418 * Copy the page to its new location
420 void migrate_page_copy(struct page *newpage, struct page *page)
422 if (PageHuge(page))
423 copy_huge_page(newpage, page);
424 else
425 copy_highpage(newpage, page);
427 if (PageError(page))
428 SetPageError(newpage);
429 if (PageReferenced(page))
430 SetPageReferenced(newpage);
431 if (PageUptodate(page))
432 SetPageUptodate(newpage);
433 if (TestClearPageActive(page)) {
434 VM_BUG_ON(PageUnevictable(page));
435 SetPageActive(newpage);
436 } else if (TestClearPageUnevictable(page))
437 SetPageUnevictable(newpage);
438 if (PageChecked(page))
439 SetPageChecked(newpage);
440 if (PageMappedToDisk(page))
441 SetPageMappedToDisk(newpage);
443 if (PageDirty(page)) {
444 clear_page_dirty_for_io(page);
446 * Want to mark the page and the radix tree as dirty, and
447 * redo the accounting that clear_page_dirty_for_io undid,
448 * but we can't use set_page_dirty because that function
449 * is actually a signal that all of the page has become dirty.
450 * Whereas only part of our page may be dirty.
452 __set_page_dirty_nobuffers(newpage);
455 mlock_migrate_page(newpage, page);
456 ksm_migrate_page(newpage, page);
458 ClearPageSwapCache(page);
459 ClearPagePrivate(page);
460 set_page_private(page, 0);
463 * If any waiters have accumulated on the new page then
464 * wake them up.
466 if (PageWriteback(newpage))
467 end_page_writeback(newpage);
470 /************************************************************
471 * Migration functions
472 ***********************************************************/
474 /* Always fail migration. Used for mappings that are not movable */
475 int fail_migrate_page(struct address_space *mapping,
476 struct page *newpage, struct page *page)
478 return -EIO;
480 EXPORT_SYMBOL(fail_migrate_page);
483 * Common logic to directly migrate a single page suitable for
484 * pages that do not use PagePrivate/PagePrivate2.
486 * Pages are locked upon entry and exit.
488 int migrate_page(struct address_space *mapping,
489 struct page *newpage, struct page *page,
490 enum migrate_mode mode)
492 int rc;
494 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
496 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
498 if (rc)
499 return rc;
501 migrate_page_copy(newpage, page);
502 return 0;
504 EXPORT_SYMBOL(migrate_page);
506 #ifdef CONFIG_BLOCK
508 * Migration function for pages with buffers. This function can only be used
509 * if the underlying filesystem guarantees that no other references to "page"
510 * exist.
512 int buffer_migrate_page(struct address_space *mapping,
513 struct page *newpage, struct page *page, enum migrate_mode mode)
515 struct buffer_head *bh, *head;
516 int rc;
518 if (!page_has_buffers(page))
519 return migrate_page(mapping, newpage, page, mode);
521 head = page_buffers(page);
523 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
525 if (rc)
526 return rc;
529 * In the async case, migrate_page_move_mapping locked the buffers
530 * with an IRQ-safe spinlock held. In the sync case, the buffers
531 * need to be locked now
533 if (mode != MIGRATE_ASYNC)
534 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
536 ClearPagePrivate(page);
537 set_page_private(newpage, page_private(page));
538 set_page_private(page, 0);
539 put_page(page);
540 get_page(newpage);
542 bh = head;
543 do {
544 set_bh_page(bh, newpage, bh_offset(bh));
545 bh = bh->b_this_page;
547 } while (bh != head);
549 SetPagePrivate(newpage);
551 migrate_page_copy(newpage, page);
553 bh = head;
554 do {
555 unlock_buffer(bh);
556 put_bh(bh);
557 bh = bh->b_this_page;
559 } while (bh != head);
561 return 0;
563 EXPORT_SYMBOL(buffer_migrate_page);
564 #endif
567 * Writeback a page to clean the dirty state
569 static int writeout(struct address_space *mapping, struct page *page)
571 struct writeback_control wbc = {
572 .sync_mode = WB_SYNC_NONE,
573 .nr_to_write = 1,
574 .range_start = 0,
575 .range_end = LLONG_MAX,
576 .for_reclaim = 1
578 int rc;
580 if (!mapping->a_ops->writepage)
581 /* No write method for the address space */
582 return -EINVAL;
584 if (!clear_page_dirty_for_io(page))
585 /* Someone else already triggered a write */
586 return -EAGAIN;
589 * A dirty page may imply that the underlying filesystem has
590 * the page on some queue. So the page must be clean for
591 * migration. Writeout may mean we loose the lock and the
592 * page state is no longer what we checked for earlier.
593 * At this point we know that the migration attempt cannot
594 * be successful.
596 remove_migration_ptes(page, page);
598 rc = mapping->a_ops->writepage(page, &wbc);
600 if (rc != AOP_WRITEPAGE_ACTIVATE)
601 /* unlocked. Relock */
602 lock_page(page);
604 return (rc < 0) ? -EIO : -EAGAIN;
608 * Default handling if a filesystem does not provide a migration function.
610 static int fallback_migrate_page(struct address_space *mapping,
611 struct page *newpage, struct page *page, enum migrate_mode mode)
613 if (PageDirty(page)) {
614 /* Only writeback pages in full synchronous migration */
615 if (mode != MIGRATE_SYNC)
616 return -EBUSY;
617 return writeout(mapping, page);
621 * Buffers may be managed in a filesystem specific way.
622 * We must have no buffers or drop them.
624 if (page_has_private(page) &&
625 !try_to_release_page(page, GFP_KERNEL))
626 return -EAGAIN;
628 return migrate_page(mapping, newpage, page, mode);
632 * Move a page to a newly allocated page
633 * The page is locked and all ptes have been successfully removed.
635 * The new page will have replaced the old page if this function
636 * is successful.
638 * Return value:
639 * < 0 - error code
640 * == 0 - success
642 static int move_to_new_page(struct page *newpage, struct page *page,
643 int remap_swapcache, enum migrate_mode mode)
645 struct address_space *mapping;
646 int rc;
649 * Block others from accessing the page when we get around to
650 * establishing additional references. We are the only one
651 * holding a reference to the new page at this point.
653 if (!trylock_page(newpage))
654 BUG();
656 /* Prepare mapping for the new page.*/
657 newpage->index = page->index;
658 newpage->mapping = page->mapping;
659 if (PageSwapBacked(page))
660 SetPageSwapBacked(newpage);
662 mapping = page_mapping(page);
663 if (!mapping)
664 rc = migrate_page(mapping, newpage, page, mode);
665 else if (mapping->a_ops->migratepage)
667 * Most pages have a mapping and most filesystems provide a
668 * migratepage callback. Anonymous pages are part of swap
669 * space which also has its own migratepage callback. This
670 * is the most common path for page migration.
672 rc = mapping->a_ops->migratepage(mapping,
673 newpage, page, mode);
674 else
675 rc = fallback_migrate_page(mapping, newpage, page, mode);
677 if (rc) {
678 newpage->mapping = NULL;
679 } else {
680 if (remap_swapcache)
681 remove_migration_ptes(page, newpage);
682 page->mapping = NULL;
685 unlock_page(newpage);
687 return rc;
690 static int __unmap_and_move(struct page *page, struct page *newpage,
691 int force, bool offlining, enum migrate_mode mode)
693 int rc = -EAGAIN;
694 int remap_swapcache = 1;
695 int charge = 0;
696 struct mem_cgroup *mem;
697 struct anon_vma *anon_vma = NULL;
699 if (!trylock_page(page)) {
700 if (!force || mode == MIGRATE_ASYNC)
701 goto out;
704 * It's not safe for direct compaction to call lock_page.
705 * For example, during page readahead pages are added locked
706 * to the LRU. Later, when the IO completes the pages are
707 * marked uptodate and unlocked. However, the queueing
708 * could be merging multiple pages for one bio (e.g.
709 * mpage_readpages). If an allocation happens for the
710 * second or third page, the process can end up locking
711 * the same page twice and deadlocking. Rather than
712 * trying to be clever about what pages can be locked,
713 * avoid the use of lock_page for direct compaction
714 * altogether.
716 if (current->flags & PF_MEMALLOC)
717 goto out;
719 lock_page(page);
723 * Only memory hotplug's offline_pages() caller has locked out KSM,
724 * and can safely migrate a KSM page. The other cases have skipped
725 * PageKsm along with PageReserved - but it is only now when we have
726 * the page lock that we can be certain it will not go KSM beneath us
727 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
728 * its pagecount raised, but only here do we take the page lock which
729 * serializes that).
731 if (PageKsm(page) && !offlining) {
732 rc = -EBUSY;
733 goto unlock;
736 /* charge against new page */
737 charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
738 if (charge == -ENOMEM) {
739 rc = -ENOMEM;
740 goto unlock;
742 BUG_ON(charge);
744 if (PageWriteback(page)) {
746 * Only in the case of a full syncronous migration is it
747 * necessary to wait for PageWriteback. In the async case,
748 * the retry loop is too short and in the sync-light case,
749 * the overhead of stalling is too much
751 if (mode != MIGRATE_SYNC) {
752 rc = -EBUSY;
753 goto uncharge;
755 if (!force)
756 goto uncharge;
757 wait_on_page_writeback(page);
760 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
761 * we cannot notice that anon_vma is freed while we migrates a page.
762 * This get_anon_vma() delays freeing anon_vma pointer until the end
763 * of migration. File cache pages are no problem because of page_lock()
764 * File Caches may use write_page() or lock_page() in migration, then,
765 * just care Anon page here.
767 if (PageAnon(page)) {
769 * Only page_lock_anon_vma() understands the subtleties of
770 * getting a hold on an anon_vma from outside one of its mms.
772 anon_vma = page_get_anon_vma(page);
773 if (anon_vma) {
775 * Anon page
777 } else if (PageSwapCache(page)) {
779 * We cannot be sure that the anon_vma of an unmapped
780 * swapcache page is safe to use because we don't
781 * know in advance if the VMA that this page belonged
782 * to still exists. If the VMA and others sharing the
783 * data have been freed, then the anon_vma could
784 * already be invalid.
786 * To avoid this possibility, swapcache pages get
787 * migrated but are not remapped when migration
788 * completes
790 remap_swapcache = 0;
791 } else {
792 goto uncharge;
797 * Corner case handling:
798 * 1. When a new swap-cache page is read into, it is added to the LRU
799 * and treated as swapcache but it has no rmap yet.
800 * Calling try_to_unmap() against a page->mapping==NULL page will
801 * trigger a BUG. So handle it here.
802 * 2. An orphaned page (see truncate_complete_page) might have
803 * fs-private metadata. The page can be picked up due to memory
804 * offlining. Everywhere else except page reclaim, the page is
805 * invisible to the vm, so the page can not be migrated. So try to
806 * free the metadata, so the page can be freed.
808 if (!page->mapping) {
809 VM_BUG_ON(PageAnon(page));
810 if (page_has_private(page)) {
811 try_to_free_buffers(page);
812 goto uncharge;
814 goto skip_unmap;
817 /* Establish migration ptes or remove ptes */
818 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
820 skip_unmap:
821 if (!page_mapped(page))
822 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
824 if (rc && remap_swapcache)
825 remove_migration_ptes(page, page);
827 /* Drop an anon_vma reference if we took one */
828 if (anon_vma)
829 put_anon_vma(anon_vma);
831 uncharge:
832 if (!charge)
833 mem_cgroup_end_migration(mem, page, newpage, rc == 0);
834 unlock:
835 unlock_page(page);
836 out:
837 return rc;
841 * Obtain the lock on page, remove all ptes and migrate the page
842 * to the newly allocated page in newpage.
844 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
845 struct page *page, int force, bool offlining,
846 enum migrate_mode mode)
848 int rc = 0;
849 int *result = NULL;
850 struct page *newpage = get_new_page(page, private, &result);
852 if (!newpage)
853 return -ENOMEM;
855 if (page_count(page) == 1) {
856 /* page was freed from under us. So we are done. */
857 goto out;
860 if (unlikely(PageTransHuge(page)))
861 if (unlikely(split_huge_page(page)))
862 goto out;
864 rc = __unmap_and_move(page, newpage, force, offlining, mode);
865 out:
866 if (rc != -EAGAIN) {
868 * A page that has been migrated has all references
869 * removed and will be freed. A page that has not been
870 * migrated will have kepts its references and be
871 * restored.
873 list_del(&page->lru);
874 dec_zone_page_state(page, NR_ISOLATED_ANON +
875 page_is_file_cache(page));
876 putback_lru_page(page);
879 * Move the new page to the LRU. If migration was not successful
880 * then this will free the page.
882 putback_lru_page(newpage);
883 if (result) {
884 if (rc)
885 *result = rc;
886 else
887 *result = page_to_nid(newpage);
889 return rc;
893 * Counterpart of unmap_and_move_page() for hugepage migration.
895 * This function doesn't wait the completion of hugepage I/O
896 * because there is no race between I/O and migration for hugepage.
897 * Note that currently hugepage I/O occurs only in direct I/O
898 * where no lock is held and PG_writeback is irrelevant,
899 * and writeback status of all subpages are counted in the reference
900 * count of the head page (i.e. if all subpages of a 2MB hugepage are
901 * under direct I/O, the reference of the head page is 512 and a bit more.)
902 * This means that when we try to migrate hugepage whose subpages are
903 * doing direct I/O, some references remain after try_to_unmap() and
904 * hugepage migration fails without data corruption.
906 * There is also no race when direct I/O is issued on the page under migration,
907 * because then pte is replaced with migration swap entry and direct I/O code
908 * will wait in the page fault for migration to complete.
910 static int unmap_and_move_huge_page(new_page_t get_new_page,
911 unsigned long private, struct page *hpage,
912 int force, bool offlining,
913 enum migrate_mode mode)
915 int rc = 0;
916 int *result = NULL;
917 struct page *new_hpage = get_new_page(hpage, private, &result);
918 struct anon_vma *anon_vma = NULL;
920 if (!new_hpage)
921 return -ENOMEM;
923 rc = -EAGAIN;
925 if (!trylock_page(hpage)) {
926 if (!force || mode != MIGRATE_SYNC)
927 goto out;
928 lock_page(hpage);
931 if (PageAnon(hpage))
932 anon_vma = page_get_anon_vma(hpage);
934 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
936 if (!page_mapped(hpage))
937 rc = move_to_new_page(new_hpage, hpage, 1, mode);
939 if (rc)
940 remove_migration_ptes(hpage, hpage);
942 if (anon_vma)
943 put_anon_vma(anon_vma);
944 unlock_page(hpage);
946 out:
947 if (rc != -EAGAIN) {
948 list_del(&hpage->lru);
949 put_page(hpage);
952 put_page(new_hpage);
954 if (result) {
955 if (rc)
956 *result = rc;
957 else
958 *result = page_to_nid(new_hpage);
960 return rc;
964 * migrate_pages
966 * The function takes one list of pages to migrate and a function
967 * that determines from the page to be migrated and the private data
968 * the target of the move and allocates the page.
970 * The function returns after 10 attempts or if no pages
971 * are movable anymore because to has become empty
972 * or no retryable pages exist anymore.
973 * Caller should call putback_lru_pages to return pages to the LRU
974 * or free list only if ret != 0.
976 * Return: Number of pages not migrated or error code.
978 int migrate_pages(struct list_head *from,
979 new_page_t get_new_page, unsigned long private, bool offlining,
980 enum migrate_mode mode)
982 int retry = 1;
983 int nr_failed = 0;
984 int pass = 0;
985 struct page *page;
986 struct page *page2;
987 int swapwrite = current->flags & PF_SWAPWRITE;
988 int rc;
990 if (!swapwrite)
991 current->flags |= PF_SWAPWRITE;
993 for(pass = 0; pass < 10 && retry; pass++) {
994 retry = 0;
996 list_for_each_entry_safe(page, page2, from, lru) {
997 cond_resched();
999 rc = unmap_and_move(get_new_page, private,
1000 page, pass > 2, offlining,
1001 mode);
1003 switch(rc) {
1004 case -ENOMEM:
1005 goto out;
1006 case -EAGAIN:
1007 retry++;
1008 break;
1009 case 0:
1010 break;
1011 default:
1012 /* Permanent failure */
1013 nr_failed++;
1014 break;
1018 rc = 0;
1019 out:
1020 if (!swapwrite)
1021 current->flags &= ~PF_SWAPWRITE;
1023 if (rc)
1024 return rc;
1026 return nr_failed + retry;
1029 int migrate_huge_pages(struct list_head *from,
1030 new_page_t get_new_page, unsigned long private, bool offlining,
1031 enum migrate_mode mode)
1033 int retry = 1;
1034 int nr_failed = 0;
1035 int pass = 0;
1036 struct page *page;
1037 struct page *page2;
1038 int rc;
1040 for (pass = 0; pass < 10 && retry; pass++) {
1041 retry = 0;
1043 list_for_each_entry_safe(page, page2, from, lru) {
1044 cond_resched();
1046 rc = unmap_and_move_huge_page(get_new_page,
1047 private, page, pass > 2, offlining,
1048 mode);
1050 switch(rc) {
1051 case -ENOMEM:
1052 goto out;
1053 case -EAGAIN:
1054 retry++;
1055 break;
1056 case 0:
1057 break;
1058 default:
1059 /* Permanent failure */
1060 nr_failed++;
1061 break;
1065 rc = 0;
1066 out:
1067 if (rc)
1068 return rc;
1070 return nr_failed + retry;
1073 #ifdef CONFIG_NUMA
1075 * Move a list of individual pages
1077 struct page_to_node {
1078 unsigned long addr;
1079 struct page *page;
1080 int node;
1081 int status;
1084 static struct page *new_page_node(struct page *p, unsigned long private,
1085 int **result)
1087 struct page_to_node *pm = (struct page_to_node *)private;
1089 while (pm->node != MAX_NUMNODES && pm->page != p)
1090 pm++;
1092 if (pm->node == MAX_NUMNODES)
1093 return NULL;
1095 *result = &pm->status;
1097 return alloc_pages_exact_node(pm->node,
1098 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1102 * Move a set of pages as indicated in the pm array. The addr
1103 * field must be set to the virtual address of the page to be moved
1104 * and the node number must contain a valid target node.
1105 * The pm array ends with node = MAX_NUMNODES.
1107 static int do_move_page_to_node_array(struct mm_struct *mm,
1108 struct page_to_node *pm,
1109 int migrate_all)
1111 int err;
1112 struct page_to_node *pp;
1113 LIST_HEAD(pagelist);
1115 down_read(&mm->mmap_sem);
1118 * Build a list of pages to migrate
1120 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1121 struct vm_area_struct *vma;
1122 struct page *page;
1124 err = -EFAULT;
1125 vma = find_vma(mm, pp->addr);
1126 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1127 goto set_status;
1129 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1131 err = PTR_ERR(page);
1132 if (IS_ERR(page))
1133 goto set_status;
1135 err = -ENOENT;
1136 if (!page)
1137 goto set_status;
1139 /* Use PageReserved to check for zero page */
1140 if (PageReserved(page) || PageKsm(page))
1141 goto put_and_set;
1143 pp->page = page;
1144 err = page_to_nid(page);
1146 if (err == pp->node)
1148 * Node already in the right place
1150 goto put_and_set;
1152 err = -EACCES;
1153 if (page_mapcount(page) > 1 &&
1154 !migrate_all)
1155 goto put_and_set;
1157 err = isolate_lru_page(page);
1158 if (!err) {
1159 list_add_tail(&page->lru, &pagelist);
1160 inc_zone_page_state(page, NR_ISOLATED_ANON +
1161 page_is_file_cache(page));
1163 put_and_set:
1165 * Either remove the duplicate refcount from
1166 * isolate_lru_page() or drop the page ref if it was
1167 * not isolated.
1169 put_page(page);
1170 set_status:
1171 pp->status = err;
1174 err = 0;
1175 if (!list_empty(&pagelist)) {
1176 err = migrate_pages(&pagelist, new_page_node,
1177 (unsigned long)pm, 0, MIGRATE_SYNC);
1178 if (err)
1179 putback_lru_pages(&pagelist);
1182 up_read(&mm->mmap_sem);
1183 return err;
1187 * Migrate an array of page address onto an array of nodes and fill
1188 * the corresponding array of status.
1190 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1191 unsigned long nr_pages,
1192 const void __user * __user *pages,
1193 const int __user *nodes,
1194 int __user *status, int flags)
1196 struct page_to_node *pm;
1197 unsigned long chunk_nr_pages;
1198 unsigned long chunk_start;
1199 int err;
1201 err = -ENOMEM;
1202 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1203 if (!pm)
1204 goto out;
1206 migrate_prep();
1209 * Store a chunk of page_to_node array in a page,
1210 * but keep the last one as a marker
1212 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1214 for (chunk_start = 0;
1215 chunk_start < nr_pages;
1216 chunk_start += chunk_nr_pages) {
1217 int j;
1219 if (chunk_start + chunk_nr_pages > nr_pages)
1220 chunk_nr_pages = nr_pages - chunk_start;
1222 /* fill the chunk pm with addrs and nodes from user-space */
1223 for (j = 0; j < chunk_nr_pages; j++) {
1224 const void __user *p;
1225 int node;
1227 err = -EFAULT;
1228 if (get_user(p, pages + j + chunk_start))
1229 goto out_pm;
1230 pm[j].addr = (unsigned long) p;
1232 if (get_user(node, nodes + j + chunk_start))
1233 goto out_pm;
1235 err = -ENODEV;
1236 if (node < 0 || node >= MAX_NUMNODES)
1237 goto out_pm;
1239 if (!node_state(node, N_HIGH_MEMORY))
1240 goto out_pm;
1242 err = -EACCES;
1243 if (!node_isset(node, task_nodes))
1244 goto out_pm;
1246 pm[j].node = node;
1249 /* End marker for this chunk */
1250 pm[chunk_nr_pages].node = MAX_NUMNODES;
1252 /* Migrate this chunk */
1253 err = do_move_page_to_node_array(mm, pm,
1254 flags & MPOL_MF_MOVE_ALL);
1255 if (err < 0)
1256 goto out_pm;
1258 /* Return status information */
1259 for (j = 0; j < chunk_nr_pages; j++)
1260 if (put_user(pm[j].status, status + j + chunk_start)) {
1261 err = -EFAULT;
1262 goto out_pm;
1265 err = 0;
1267 out_pm:
1268 free_page((unsigned long)pm);
1269 out:
1270 return err;
1274 * Determine the nodes of an array of pages and store it in an array of status.
1276 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1277 const void __user **pages, int *status)
1279 unsigned long i;
1281 down_read(&mm->mmap_sem);
1283 for (i = 0; i < nr_pages; i++) {
1284 unsigned long addr = (unsigned long)(*pages);
1285 struct vm_area_struct *vma;
1286 struct page *page;
1287 int err = -EFAULT;
1289 vma = find_vma(mm, addr);
1290 if (!vma || addr < vma->vm_start)
1291 goto set_status;
1293 page = follow_page(vma, addr, 0);
1295 err = PTR_ERR(page);
1296 if (IS_ERR(page))
1297 goto set_status;
1299 err = -ENOENT;
1300 /* Use PageReserved to check for zero page */
1301 if (!page || PageReserved(page) || PageKsm(page))
1302 goto set_status;
1304 err = page_to_nid(page);
1305 set_status:
1306 *status = err;
1308 pages++;
1309 status++;
1312 up_read(&mm->mmap_sem);
1316 * Determine the nodes of a user array of pages and store it in
1317 * a user array of status.
1319 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1320 const void __user * __user *pages,
1321 int __user *status)
1323 #define DO_PAGES_STAT_CHUNK_NR 16
1324 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1325 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1327 while (nr_pages) {
1328 unsigned long chunk_nr;
1330 chunk_nr = nr_pages;
1331 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1332 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1334 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1335 break;
1337 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1339 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1340 break;
1342 pages += chunk_nr;
1343 status += chunk_nr;
1344 nr_pages -= chunk_nr;
1346 return nr_pages ? -EFAULT : 0;
1350 * Move a list of pages in the address space of the currently executing
1351 * process.
1353 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1354 const void __user * __user *, pages,
1355 const int __user *, nodes,
1356 int __user *, status, int, flags)
1358 const struct cred *cred = current_cred(), *tcred;
1359 struct task_struct *task;
1360 struct mm_struct *mm;
1361 int err;
1362 nodemask_t task_nodes;
1364 /* Check flags */
1365 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1366 return -EINVAL;
1368 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1369 return -EPERM;
1371 /* Find the mm_struct */
1372 rcu_read_lock();
1373 task = pid ? find_task_by_vpid(pid) : current;
1374 if (!task) {
1375 rcu_read_unlock();
1376 return -ESRCH;
1378 get_task_struct(task);
1381 * Check if this process has the right to modify the specified
1382 * process. The right exists if the process has administrative
1383 * capabilities, superuser privileges or the same
1384 * userid as the target process.
1386 tcred = __task_cred(task);
1387 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1388 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1389 !capable(CAP_SYS_NICE)) {
1390 rcu_read_unlock();
1391 err = -EPERM;
1392 goto out;
1394 rcu_read_unlock();
1396 err = security_task_movememory(task);
1397 if (err)
1398 goto out;
1400 task_nodes = cpuset_mems_allowed(task);
1401 mm = get_task_mm(task);
1402 put_task_struct(task);
1404 if (!mm)
1405 return -EINVAL;
1407 if (nodes)
1408 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1409 nodes, status, flags);
1410 else
1411 err = do_pages_stat(mm, nr_pages, pages, status);
1413 mmput(mm);
1414 return err;
1416 out:
1417 put_task_struct(task);
1418 return err;
1422 * Call migration functions in the vma_ops that may prepare
1423 * memory in a vm for migration. migration functions may perform
1424 * the migration for vmas that do not have an underlying page struct.
1426 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1427 const nodemask_t *from, unsigned long flags)
1429 struct vm_area_struct *vma;
1430 int err = 0;
1432 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1433 if (vma->vm_ops && vma->vm_ops->migrate) {
1434 err = vma->vm_ops->migrate(vma, to, from, flags);
1435 if (err)
1436 break;
1439 return err;
1441 #endif