2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
38 #include <asm/tlbflush.h>
43 * migrate_prep() needs to be called before we start compiling a list of pages
44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45 * undesirable, use migrate_prep_local()
47 int migrate_prep(void)
50 * Clear the LRU lists so pages can be isolated.
51 * Note that pages may be moved off the LRU after we have
52 * drained them. Those pages will fail to migrate like other
53 * pages that may be busy.
60 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
61 int migrate_prep_local(void)
69 * Add isolated pages on the list back to the LRU under page lock
70 * to avoid leaking evictable pages back onto unevictable list.
72 void putback_lru_pages(struct list_head
*l
)
77 list_for_each_entry_safe(page
, page2
, l
, lru
) {
79 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
80 page_is_file_cache(page
));
81 putback_lru_page(page
);
86 * Restore a potential migration pte to a working pte entry
88 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
89 unsigned long addr
, void *old
)
91 struct mm_struct
*mm
= vma
->vm_mm
;
99 if (unlikely(PageHuge(new))) {
100 ptep
= huge_pte_offset(mm
, addr
);
103 ptl
= &mm
->page_table_lock
;
105 pgd
= pgd_offset(mm
, addr
);
106 if (!pgd_present(*pgd
))
109 pud
= pud_offset(pgd
, addr
);
110 if (!pud_present(*pud
))
113 pmd
= pmd_offset(pud
, addr
);
114 if (pmd_trans_huge(*pmd
))
116 if (!pmd_present(*pmd
))
119 ptep
= pte_offset_map(pmd
, addr
);
122 * Peek to check is_swap_pte() before taking ptlock? No, we
123 * can race mremap's move_ptes(), which skips anon_vma lock.
126 ptl
= pte_lockptr(mm
, pmd
);
131 if (!is_swap_pte(pte
))
134 entry
= pte_to_swp_entry(pte
);
136 if (!is_migration_entry(entry
) ||
137 migration_entry_to_page(entry
) != old
)
141 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
142 if (is_write_migration_entry(entry
))
143 pte
= pte_mkwrite(pte
);
144 #ifdef CONFIG_HUGETLB_PAGE
146 pte
= pte_mkhuge(pte
);
148 flush_dcache_page(new);
149 set_pte_at(mm
, addr
, ptep
, pte
);
153 hugepage_add_anon_rmap(new, vma
, addr
);
156 } else if (PageAnon(new))
157 page_add_anon_rmap(new, vma
, addr
);
159 page_add_file_rmap(new);
161 /* No need to invalidate - it was non-present before */
162 update_mmu_cache(vma
, addr
, ptep
);
164 pte_unmap_unlock(ptep
, ptl
);
170 * Get rid of all migration entries and replace them by
171 * references to the indicated page.
173 static void remove_migration_ptes(struct page
*old
, struct page
*new)
175 rmap_walk(new, remove_migration_pte
, old
);
179 * Something used the pte of a page under migration. We need to
180 * get to the page and wait until migration is finished.
181 * When we return from this function the fault will be retried.
183 static void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
192 if (!is_swap_pte(pte
))
195 entry
= pte_to_swp_entry(pte
);
196 if (!is_migration_entry(entry
))
199 page
= migration_entry_to_page(entry
);
202 * Once radix-tree replacement of page migration started, page_count
203 * *must* be zero. And, we don't want to call wait_on_page_locked()
204 * against a page without get_page().
205 * So, we use get_page_unless_zero(), here. Even failed, page fault
208 if (!get_page_unless_zero(page
))
210 pte_unmap_unlock(ptep
, ptl
);
211 wait_on_page_locked(page
);
215 pte_unmap_unlock(ptep
, ptl
);
218 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
219 unsigned long address
)
221 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
222 pte_t
*ptep
= pte_offset_map(pmd
, address
);
223 __migration_entry_wait(mm
, ptep
, ptl
);
226 void migration_entry_wait_huge(struct mm_struct
*mm
, pte_t
*pte
)
228 spinlock_t
*ptl
= &(mm
)->page_table_lock
;
229 __migration_entry_wait(mm
, pte
, ptl
);
233 /* Returns true if all buffers are successfully locked */
234 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
235 enum migrate_mode mode
)
237 struct buffer_head
*bh
= head
;
239 /* Simple case, sync compaction */
240 if (mode
!= MIGRATE_ASYNC
) {
244 bh
= bh
->b_this_page
;
246 } while (bh
!= head
);
251 /* async case, we cannot block on lock_buffer so use trylock_buffer */
254 if (!trylock_buffer(bh
)) {
256 * We failed to lock the buffer and cannot stall in
257 * async migration. Release the taken locks
259 struct buffer_head
*failed_bh
= bh
;
262 while (bh
!= failed_bh
) {
265 bh
= bh
->b_this_page
;
270 bh
= bh
->b_this_page
;
271 } while (bh
!= head
);
275 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
276 enum migrate_mode mode
)
280 #endif /* CONFIG_BLOCK */
283 * Replace the page in the mapping.
285 * The number of remaining references must be:
286 * 1 for anonymous pages without a mapping
287 * 2 for pages with a mapping
288 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
290 static int migrate_page_move_mapping(struct address_space
*mapping
,
291 struct page
*newpage
, struct page
*page
,
292 struct buffer_head
*head
, enum migrate_mode mode
)
298 /* Anonymous page without mapping */
299 if (page_count(page
) != 1)
304 spin_lock_irq(&mapping
->tree_lock
);
306 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
309 expected_count
= 2 + page_has_private(page
);
310 if (page_count(page
) != expected_count
||
311 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
312 spin_unlock_irq(&mapping
->tree_lock
);
316 if (!page_freeze_refs(page
, expected_count
)) {
317 spin_unlock_irq(&mapping
->tree_lock
);
322 * In the async migration case of moving a page with buffers, lock the
323 * buffers using trylock before the mapping is moved. If the mapping
324 * was moved, we later failed to lock the buffers and could not move
325 * the mapping back due to an elevated page count, we would have to
326 * block waiting on other references to be dropped.
328 if (mode
== MIGRATE_ASYNC
&& head
&&
329 !buffer_migrate_lock_buffers(head
, mode
)) {
330 page_unfreeze_refs(page
, expected_count
);
331 spin_unlock_irq(&mapping
->tree_lock
);
336 * Now we know that no one else is looking at the page.
338 get_page(newpage
); /* add cache reference */
339 if (PageSwapCache(page
)) {
340 SetPageSwapCache(newpage
);
341 set_page_private(newpage
, page_private(page
));
344 radix_tree_replace_slot(pslot
, newpage
);
347 * Drop cache reference from old page by unfreezing
348 * to one less reference.
349 * We know this isn't the last reference.
351 page_unfreeze_refs(page
, expected_count
- 1);
354 * If moved to a different zone then also account
355 * the page for that zone. Other VM counters will be
356 * taken care of when we establish references to the
357 * new page and drop references to the old page.
359 * Note that anonymous pages are accounted for
360 * via NR_FILE_PAGES and NR_ANON_PAGES if they
361 * are mapped to swap space.
363 __dec_zone_page_state(page
, NR_FILE_PAGES
);
364 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
365 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
366 __dec_zone_page_state(page
, NR_SHMEM
);
367 __inc_zone_page_state(newpage
, NR_SHMEM
);
369 spin_unlock_irq(&mapping
->tree_lock
);
375 * The expected number of remaining references is the same as that
376 * of migrate_page_move_mapping().
378 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
379 struct page
*newpage
, struct page
*page
)
385 if (page_count(page
) != 1)
390 spin_lock_irq(&mapping
->tree_lock
);
392 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
395 expected_count
= 2 + page_has_private(page
);
396 if (page_count(page
) != expected_count
||
397 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
398 spin_unlock_irq(&mapping
->tree_lock
);
402 if (!page_freeze_refs(page
, expected_count
)) {
403 spin_unlock_irq(&mapping
->tree_lock
);
409 radix_tree_replace_slot(pslot
, newpage
);
411 page_unfreeze_refs(page
, expected_count
- 1);
413 spin_unlock_irq(&mapping
->tree_lock
);
418 * Copy the page to its new location
420 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
423 copy_huge_page(newpage
, page
);
425 copy_highpage(newpage
, page
);
428 SetPageError(newpage
);
429 if (PageReferenced(page
))
430 SetPageReferenced(newpage
);
431 if (PageUptodate(page
))
432 SetPageUptodate(newpage
);
433 if (TestClearPageActive(page
)) {
434 VM_BUG_ON(PageUnevictable(page
));
435 SetPageActive(newpage
);
436 } else if (TestClearPageUnevictable(page
))
437 SetPageUnevictable(newpage
);
438 if (PageChecked(page
))
439 SetPageChecked(newpage
);
440 if (PageMappedToDisk(page
))
441 SetPageMappedToDisk(newpage
);
443 if (PageDirty(page
)) {
444 clear_page_dirty_for_io(page
);
446 * Want to mark the page and the radix tree as dirty, and
447 * redo the accounting that clear_page_dirty_for_io undid,
448 * but we can't use set_page_dirty because that function
449 * is actually a signal that all of the page has become dirty.
450 * Whereas only part of our page may be dirty.
452 __set_page_dirty_nobuffers(newpage
);
455 mlock_migrate_page(newpage
, page
);
456 ksm_migrate_page(newpage
, page
);
458 ClearPageSwapCache(page
);
459 ClearPagePrivate(page
);
460 set_page_private(page
, 0);
463 * If any waiters have accumulated on the new page then
466 if (PageWriteback(newpage
))
467 end_page_writeback(newpage
);
470 /************************************************************
471 * Migration functions
472 ***********************************************************/
474 /* Always fail migration. Used for mappings that are not movable */
475 int fail_migrate_page(struct address_space
*mapping
,
476 struct page
*newpage
, struct page
*page
)
480 EXPORT_SYMBOL(fail_migrate_page
);
483 * Common logic to directly migrate a single page suitable for
484 * pages that do not use PagePrivate/PagePrivate2.
486 * Pages are locked upon entry and exit.
488 int migrate_page(struct address_space
*mapping
,
489 struct page
*newpage
, struct page
*page
,
490 enum migrate_mode mode
)
494 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
496 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
);
501 migrate_page_copy(newpage
, page
);
504 EXPORT_SYMBOL(migrate_page
);
508 * Migration function for pages with buffers. This function can only be used
509 * if the underlying filesystem guarantees that no other references to "page"
512 int buffer_migrate_page(struct address_space
*mapping
,
513 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
515 struct buffer_head
*bh
, *head
;
518 if (!page_has_buffers(page
))
519 return migrate_page(mapping
, newpage
, page
, mode
);
521 head
= page_buffers(page
);
523 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
);
529 * In the async case, migrate_page_move_mapping locked the buffers
530 * with an IRQ-safe spinlock held. In the sync case, the buffers
531 * need to be locked now
533 if (mode
!= MIGRATE_ASYNC
)
534 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
536 ClearPagePrivate(page
);
537 set_page_private(newpage
, page_private(page
));
538 set_page_private(page
, 0);
544 set_bh_page(bh
, newpage
, bh_offset(bh
));
545 bh
= bh
->b_this_page
;
547 } while (bh
!= head
);
549 SetPagePrivate(newpage
);
551 migrate_page_copy(newpage
, page
);
557 bh
= bh
->b_this_page
;
559 } while (bh
!= head
);
563 EXPORT_SYMBOL(buffer_migrate_page
);
567 * Writeback a page to clean the dirty state
569 static int writeout(struct address_space
*mapping
, struct page
*page
)
571 struct writeback_control wbc
= {
572 .sync_mode
= WB_SYNC_NONE
,
575 .range_end
= LLONG_MAX
,
580 if (!mapping
->a_ops
->writepage
)
581 /* No write method for the address space */
584 if (!clear_page_dirty_for_io(page
))
585 /* Someone else already triggered a write */
589 * A dirty page may imply that the underlying filesystem has
590 * the page on some queue. So the page must be clean for
591 * migration. Writeout may mean we loose the lock and the
592 * page state is no longer what we checked for earlier.
593 * At this point we know that the migration attempt cannot
596 remove_migration_ptes(page
, page
);
598 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
600 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
601 /* unlocked. Relock */
604 return (rc
< 0) ? -EIO
: -EAGAIN
;
608 * Default handling if a filesystem does not provide a migration function.
610 static int fallback_migrate_page(struct address_space
*mapping
,
611 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
613 if (PageDirty(page
)) {
614 /* Only writeback pages in full synchronous migration */
615 if (mode
!= MIGRATE_SYNC
)
617 return writeout(mapping
, page
);
621 * Buffers may be managed in a filesystem specific way.
622 * We must have no buffers or drop them.
624 if (page_has_private(page
) &&
625 !try_to_release_page(page
, GFP_KERNEL
))
628 return migrate_page(mapping
, newpage
, page
, mode
);
632 * Move a page to a newly allocated page
633 * The page is locked and all ptes have been successfully removed.
635 * The new page will have replaced the old page if this function
642 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
643 int remap_swapcache
, enum migrate_mode mode
)
645 struct address_space
*mapping
;
649 * Block others from accessing the page when we get around to
650 * establishing additional references. We are the only one
651 * holding a reference to the new page at this point.
653 if (!trylock_page(newpage
))
656 /* Prepare mapping for the new page.*/
657 newpage
->index
= page
->index
;
658 newpage
->mapping
= page
->mapping
;
659 if (PageSwapBacked(page
))
660 SetPageSwapBacked(newpage
);
662 mapping
= page_mapping(page
);
664 rc
= migrate_page(mapping
, newpage
, page
, mode
);
665 else if (mapping
->a_ops
->migratepage
)
667 * Most pages have a mapping and most filesystems provide a
668 * migratepage callback. Anonymous pages are part of swap
669 * space which also has its own migratepage callback. This
670 * is the most common path for page migration.
672 rc
= mapping
->a_ops
->migratepage(mapping
,
673 newpage
, page
, mode
);
675 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
678 newpage
->mapping
= NULL
;
681 remove_migration_ptes(page
, newpage
);
682 page
->mapping
= NULL
;
685 unlock_page(newpage
);
690 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
691 int force
, bool offlining
, enum migrate_mode mode
)
694 int remap_swapcache
= 1;
696 struct mem_cgroup
*mem
;
697 struct anon_vma
*anon_vma
= NULL
;
699 if (!trylock_page(page
)) {
700 if (!force
|| mode
== MIGRATE_ASYNC
)
704 * It's not safe for direct compaction to call lock_page.
705 * For example, during page readahead pages are added locked
706 * to the LRU. Later, when the IO completes the pages are
707 * marked uptodate and unlocked. However, the queueing
708 * could be merging multiple pages for one bio (e.g.
709 * mpage_readpages). If an allocation happens for the
710 * second or third page, the process can end up locking
711 * the same page twice and deadlocking. Rather than
712 * trying to be clever about what pages can be locked,
713 * avoid the use of lock_page for direct compaction
716 if (current
->flags
& PF_MEMALLOC
)
723 * Only memory hotplug's offline_pages() caller has locked out KSM,
724 * and can safely migrate a KSM page. The other cases have skipped
725 * PageKsm along with PageReserved - but it is only now when we have
726 * the page lock that we can be certain it will not go KSM beneath us
727 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
728 * its pagecount raised, but only here do we take the page lock which
731 if (PageKsm(page
) && !offlining
) {
736 /* charge against new page */
737 charge
= mem_cgroup_prepare_migration(page
, newpage
, &mem
, GFP_KERNEL
);
738 if (charge
== -ENOMEM
) {
744 if (PageWriteback(page
)) {
746 * Only in the case of a full syncronous migration is it
747 * necessary to wait for PageWriteback. In the async case,
748 * the retry loop is too short and in the sync-light case,
749 * the overhead of stalling is too much
751 if (mode
!= MIGRATE_SYNC
) {
757 wait_on_page_writeback(page
);
760 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
761 * we cannot notice that anon_vma is freed while we migrates a page.
762 * This get_anon_vma() delays freeing anon_vma pointer until the end
763 * of migration. File cache pages are no problem because of page_lock()
764 * File Caches may use write_page() or lock_page() in migration, then,
765 * just care Anon page here.
767 if (PageAnon(page
)) {
769 * Only page_lock_anon_vma() understands the subtleties of
770 * getting a hold on an anon_vma from outside one of its mms.
772 anon_vma
= page_get_anon_vma(page
);
777 } else if (PageSwapCache(page
)) {
779 * We cannot be sure that the anon_vma of an unmapped
780 * swapcache page is safe to use because we don't
781 * know in advance if the VMA that this page belonged
782 * to still exists. If the VMA and others sharing the
783 * data have been freed, then the anon_vma could
784 * already be invalid.
786 * To avoid this possibility, swapcache pages get
787 * migrated but are not remapped when migration
797 * Corner case handling:
798 * 1. When a new swap-cache page is read into, it is added to the LRU
799 * and treated as swapcache but it has no rmap yet.
800 * Calling try_to_unmap() against a page->mapping==NULL page will
801 * trigger a BUG. So handle it here.
802 * 2. An orphaned page (see truncate_complete_page) might have
803 * fs-private metadata. The page can be picked up due to memory
804 * offlining. Everywhere else except page reclaim, the page is
805 * invisible to the vm, so the page can not be migrated. So try to
806 * free the metadata, so the page can be freed.
808 if (!page
->mapping
) {
809 VM_BUG_ON(PageAnon(page
));
810 if (page_has_private(page
)) {
811 try_to_free_buffers(page
);
817 /* Establish migration ptes or remove ptes */
818 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
821 if (!page_mapped(page
))
822 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
824 if (rc
&& remap_swapcache
)
825 remove_migration_ptes(page
, page
);
827 /* Drop an anon_vma reference if we took one */
829 put_anon_vma(anon_vma
);
833 mem_cgroup_end_migration(mem
, page
, newpage
, rc
== 0);
841 * Obtain the lock on page, remove all ptes and migrate the page
842 * to the newly allocated page in newpage.
844 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
845 struct page
*page
, int force
, bool offlining
,
846 enum migrate_mode mode
)
850 struct page
*newpage
= get_new_page(page
, private, &result
);
855 if (page_count(page
) == 1) {
856 /* page was freed from under us. So we are done. */
860 if (unlikely(PageTransHuge(page
)))
861 if (unlikely(split_huge_page(page
)))
864 rc
= __unmap_and_move(page
, newpage
, force
, offlining
, mode
);
868 * A page that has been migrated has all references
869 * removed and will be freed. A page that has not been
870 * migrated will have kepts its references and be
873 list_del(&page
->lru
);
874 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
875 page_is_file_cache(page
));
876 putback_lru_page(page
);
879 * Move the new page to the LRU. If migration was not successful
880 * then this will free the page.
882 putback_lru_page(newpage
);
887 *result
= page_to_nid(newpage
);
893 * Counterpart of unmap_and_move_page() for hugepage migration.
895 * This function doesn't wait the completion of hugepage I/O
896 * because there is no race between I/O and migration for hugepage.
897 * Note that currently hugepage I/O occurs only in direct I/O
898 * where no lock is held and PG_writeback is irrelevant,
899 * and writeback status of all subpages are counted in the reference
900 * count of the head page (i.e. if all subpages of a 2MB hugepage are
901 * under direct I/O, the reference of the head page is 512 and a bit more.)
902 * This means that when we try to migrate hugepage whose subpages are
903 * doing direct I/O, some references remain after try_to_unmap() and
904 * hugepage migration fails without data corruption.
906 * There is also no race when direct I/O is issued on the page under migration,
907 * because then pte is replaced with migration swap entry and direct I/O code
908 * will wait in the page fault for migration to complete.
910 static int unmap_and_move_huge_page(new_page_t get_new_page
,
911 unsigned long private, struct page
*hpage
,
912 int force
, bool offlining
,
913 enum migrate_mode mode
)
917 struct page
*new_hpage
= get_new_page(hpage
, private, &result
);
918 struct anon_vma
*anon_vma
= NULL
;
925 if (!trylock_page(hpage
)) {
926 if (!force
|| mode
!= MIGRATE_SYNC
)
932 anon_vma
= page_get_anon_vma(hpage
);
934 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
936 if (!page_mapped(hpage
))
937 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
940 remove_migration_ptes(hpage
, hpage
);
943 put_anon_vma(anon_vma
);
948 list_del(&hpage
->lru
);
958 *result
= page_to_nid(new_hpage
);
966 * The function takes one list of pages to migrate and a function
967 * that determines from the page to be migrated and the private data
968 * the target of the move and allocates the page.
970 * The function returns after 10 attempts or if no pages
971 * are movable anymore because to has become empty
972 * or no retryable pages exist anymore.
973 * Caller should call putback_lru_pages to return pages to the LRU
974 * or free list only if ret != 0.
976 * Return: Number of pages not migrated or error code.
978 int migrate_pages(struct list_head
*from
,
979 new_page_t get_new_page
, unsigned long private, bool offlining
,
980 enum migrate_mode mode
)
987 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
991 current
->flags
|= PF_SWAPWRITE
;
993 for(pass
= 0; pass
< 10 && retry
; pass
++) {
996 list_for_each_entry_safe(page
, page2
, from
, lru
) {
999 rc
= unmap_and_move(get_new_page
, private,
1000 page
, pass
> 2, offlining
,
1012 /* Permanent failure */
1021 current
->flags
&= ~PF_SWAPWRITE
;
1026 return nr_failed
+ retry
;
1029 int migrate_huge_pages(struct list_head
*from
,
1030 new_page_t get_new_page
, unsigned long private, bool offlining
,
1031 enum migrate_mode mode
)
1040 for (pass
= 0; pass
< 10 && retry
; pass
++) {
1043 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1046 rc
= unmap_and_move_huge_page(get_new_page
,
1047 private, page
, pass
> 2, offlining
,
1059 /* Permanent failure */
1070 return nr_failed
+ retry
;
1075 * Move a list of individual pages
1077 struct page_to_node
{
1084 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1087 struct page_to_node
*pm
= (struct page_to_node
*)private;
1089 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1092 if (pm
->node
== MAX_NUMNODES
)
1095 *result
= &pm
->status
;
1097 return alloc_pages_exact_node(pm
->node
,
1098 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
1102 * Move a set of pages as indicated in the pm array. The addr
1103 * field must be set to the virtual address of the page to be moved
1104 * and the node number must contain a valid target node.
1105 * The pm array ends with node = MAX_NUMNODES.
1107 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1108 struct page_to_node
*pm
,
1112 struct page_to_node
*pp
;
1113 LIST_HEAD(pagelist
);
1115 down_read(&mm
->mmap_sem
);
1118 * Build a list of pages to migrate
1120 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1121 struct vm_area_struct
*vma
;
1125 vma
= find_vma(mm
, pp
->addr
);
1126 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1129 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1131 err
= PTR_ERR(page
);
1139 /* Use PageReserved to check for zero page */
1140 if (PageReserved(page
) || PageKsm(page
))
1144 err
= page_to_nid(page
);
1146 if (err
== pp
->node
)
1148 * Node already in the right place
1153 if (page_mapcount(page
) > 1 &&
1157 err
= isolate_lru_page(page
);
1159 list_add_tail(&page
->lru
, &pagelist
);
1160 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1161 page_is_file_cache(page
));
1165 * Either remove the duplicate refcount from
1166 * isolate_lru_page() or drop the page ref if it was
1175 if (!list_empty(&pagelist
)) {
1176 err
= migrate_pages(&pagelist
, new_page_node
,
1177 (unsigned long)pm
, 0, MIGRATE_SYNC
);
1179 putback_lru_pages(&pagelist
);
1182 up_read(&mm
->mmap_sem
);
1187 * Migrate an array of page address onto an array of nodes and fill
1188 * the corresponding array of status.
1190 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1191 unsigned long nr_pages
,
1192 const void __user
* __user
*pages
,
1193 const int __user
*nodes
,
1194 int __user
*status
, int flags
)
1196 struct page_to_node
*pm
;
1197 unsigned long chunk_nr_pages
;
1198 unsigned long chunk_start
;
1202 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1209 * Store a chunk of page_to_node array in a page,
1210 * but keep the last one as a marker
1212 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1214 for (chunk_start
= 0;
1215 chunk_start
< nr_pages
;
1216 chunk_start
+= chunk_nr_pages
) {
1219 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1220 chunk_nr_pages
= nr_pages
- chunk_start
;
1222 /* fill the chunk pm with addrs and nodes from user-space */
1223 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1224 const void __user
*p
;
1228 if (get_user(p
, pages
+ j
+ chunk_start
))
1230 pm
[j
].addr
= (unsigned long) p
;
1232 if (get_user(node
, nodes
+ j
+ chunk_start
))
1236 if (node
< 0 || node
>= MAX_NUMNODES
)
1239 if (!node_state(node
, N_HIGH_MEMORY
))
1243 if (!node_isset(node
, task_nodes
))
1249 /* End marker for this chunk */
1250 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1252 /* Migrate this chunk */
1253 err
= do_move_page_to_node_array(mm
, pm
,
1254 flags
& MPOL_MF_MOVE_ALL
);
1258 /* Return status information */
1259 for (j
= 0; j
< chunk_nr_pages
; j
++)
1260 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1268 free_page((unsigned long)pm
);
1274 * Determine the nodes of an array of pages and store it in an array of status.
1276 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1277 const void __user
**pages
, int *status
)
1281 down_read(&mm
->mmap_sem
);
1283 for (i
= 0; i
< nr_pages
; i
++) {
1284 unsigned long addr
= (unsigned long)(*pages
);
1285 struct vm_area_struct
*vma
;
1289 vma
= find_vma(mm
, addr
);
1290 if (!vma
|| addr
< vma
->vm_start
)
1293 page
= follow_page(vma
, addr
, 0);
1295 err
= PTR_ERR(page
);
1300 /* Use PageReserved to check for zero page */
1301 if (!page
|| PageReserved(page
) || PageKsm(page
))
1304 err
= page_to_nid(page
);
1312 up_read(&mm
->mmap_sem
);
1316 * Determine the nodes of a user array of pages and store it in
1317 * a user array of status.
1319 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1320 const void __user
* __user
*pages
,
1323 #define DO_PAGES_STAT_CHUNK_NR 16
1324 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1325 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1328 unsigned long chunk_nr
;
1330 chunk_nr
= nr_pages
;
1331 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1332 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1334 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1337 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1339 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1344 nr_pages
-= chunk_nr
;
1346 return nr_pages
? -EFAULT
: 0;
1350 * Move a list of pages in the address space of the currently executing
1353 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1354 const void __user
* __user
*, pages
,
1355 const int __user
*, nodes
,
1356 int __user
*, status
, int, flags
)
1358 const struct cred
*cred
= current_cred(), *tcred
;
1359 struct task_struct
*task
;
1360 struct mm_struct
*mm
;
1362 nodemask_t task_nodes
;
1365 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1368 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1371 /* Find the mm_struct */
1373 task
= pid
? find_task_by_vpid(pid
) : current
;
1378 get_task_struct(task
);
1381 * Check if this process has the right to modify the specified
1382 * process. The right exists if the process has administrative
1383 * capabilities, superuser privileges or the same
1384 * userid as the target process.
1386 tcred
= __task_cred(task
);
1387 if (cred
->euid
!= tcred
->suid
&& cred
->euid
!= tcred
->uid
&&
1388 cred
->uid
!= tcred
->suid
&& cred
->uid
!= tcred
->uid
&&
1389 !capable(CAP_SYS_NICE
)) {
1396 err
= security_task_movememory(task
);
1400 task_nodes
= cpuset_mems_allowed(task
);
1401 mm
= get_task_mm(task
);
1402 put_task_struct(task
);
1408 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1409 nodes
, status
, flags
);
1411 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1417 put_task_struct(task
);
1422 * Call migration functions in the vma_ops that may prepare
1423 * memory in a vm for migration. migration functions may perform
1424 * the migration for vmas that do not have an underlying page struct.
1426 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1427 const nodemask_t
*from
, unsigned long flags
)
1429 struct vm_area_struct
*vma
;
1432 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1433 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1434 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);