1 // SPDX-License-Identifier: GPL-2.0
3 * A power allocator to manage temperature
5 * Copyright (C) 2014 ARM Ltd.
9 #define pr_fmt(fmt) "Power allocator: " fmt
11 #include <linux/rculist.h>
12 #include <linux/slab.h>
13 #include <linux/thermal.h>
15 #define CREATE_TRACE_POINTS
16 #include <trace/events/thermal_power_allocator.h>
18 #include "thermal_core.h"
20 #define INVALID_TRIP -1
23 #define int_to_frac(x) ((x) << FRAC_BITS)
24 #define frac_to_int(x) ((x) >> FRAC_BITS)
27 * mul_frac() - multiply two fixed-point numbers
28 * @x: first multiplicand
29 * @y: second multiplicand
31 * Return: the result of multiplying two fixed-point numbers. The
32 * result is also a fixed-point number.
34 static inline s64
mul_frac(s64 x
, s64 y
)
36 return (x
* y
) >> FRAC_BITS
;
40 * div_frac() - divide two fixed-point numbers
44 * Return: the result of dividing two fixed-point numbers. The
45 * result is also a fixed-point number.
47 static inline s64
div_frac(s64 x
, s64 y
)
49 return div_s64(x
<< FRAC_BITS
, y
);
53 * struct power_allocator_params - parameters for the power allocator governor
54 * @allocated_tzp: whether we have allocated tzp for this thermal zone and
55 * it needs to be freed on unbind
56 * @err_integral: accumulated error in the PID controller.
57 * @prev_err: error in the previous iteration of the PID controller.
58 * Used to calculate the derivative term.
59 * @trip_switch_on: first passive trip point of the thermal zone. The
60 * governor switches on when this trip point is crossed.
61 * If the thermal zone only has one passive trip point,
62 * @trip_switch_on should be INVALID_TRIP.
63 * @trip_max_desired_temperature: last passive trip point of the thermal
64 * zone. The temperature we are
66 * @sustainable_power: Sustainable power (heat) that this thermal zone can
69 struct power_allocator_params
{
74 int trip_max_desired_temperature
;
75 u32 sustainable_power
;
79 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
80 * @tz: thermal zone we are operating in
82 * For thermal zones that don't provide a sustainable_power in their
83 * thermal_zone_params, estimate one. Calculate it using the minimum
84 * power of all the cooling devices as that gives a valid value that
85 * can give some degree of functionality. For optimal performance of
86 * this governor, provide a sustainable_power in the thermal zone's
87 * thermal_zone_params.
89 static u32
estimate_sustainable_power(struct thermal_zone_device
*tz
)
91 u32 sustainable_power
= 0;
92 struct thermal_instance
*instance
;
93 struct power_allocator_params
*params
= tz
->governor_data
;
95 list_for_each_entry(instance
, &tz
->thermal_instances
, tz_node
) {
96 struct thermal_cooling_device
*cdev
= instance
->cdev
;
99 if (instance
->trip
!= params
->trip_max_desired_temperature
)
102 if (!cdev_is_power_actor(cdev
))
105 if (cdev
->ops
->state2power(cdev
, instance
->upper
, &min_power
))
108 sustainable_power
+= min_power
;
111 return sustainable_power
;
115 * estimate_pid_constants() - Estimate the constants for the PID controller
116 * @tz: thermal zone for which to estimate the constants
117 * @sustainable_power: sustainable power for the thermal zone
118 * @trip_switch_on: trip point number for the switch on temperature
119 * @control_temp: target temperature for the power allocator governor
121 * This function is used to update the estimation of the PID
122 * controller constants in struct thermal_zone_parameters.
124 static void estimate_pid_constants(struct thermal_zone_device
*tz
,
125 u32 sustainable_power
, int trip_switch_on
,
130 u32 temperature_threshold
;
133 ret
= tz
->ops
->get_trip_temp(tz
, trip_switch_on
, &switch_on_temp
);
137 temperature_threshold
= control_temp
- switch_on_temp
;
139 * estimate_pid_constants() tries to find appropriate default
140 * values for thermal zones that don't provide them. If a
141 * system integrator has configured a thermal zone with two
142 * passive trip points at the same temperature, that person
143 * hasn't put any effort to set up the thermal zone properly
146 if (!temperature_threshold
)
149 tz
->tzp
->k_po
= int_to_frac(sustainable_power
) /
150 temperature_threshold
;
152 tz
->tzp
->k_pu
= int_to_frac(2 * sustainable_power
) /
153 temperature_threshold
;
155 k_i
= tz
->tzp
->k_pu
/ 10;
156 tz
->tzp
->k_i
= k_i
> 0 ? k_i
: 1;
159 * The default for k_d and integral_cutoff is 0, so we can
160 * leave them as they are.
165 * get_sustainable_power() - Get the right sustainable power
166 * @tz: thermal zone for which to estimate the constants
167 * @params: parameters for the power allocator governor
168 * @control_temp: target temperature for the power allocator governor
170 * This function is used for getting the proper sustainable power value based
171 * on variables which might be updated by the user sysfs interface. If that
172 * happen the new value is going to be estimated and updated. It is also used
173 * after thermal zone binding, where the initial values where set to 0.
175 static u32
get_sustainable_power(struct thermal_zone_device
*tz
,
176 struct power_allocator_params
*params
,
179 u32 sustainable_power
;
181 if (!tz
->tzp
->sustainable_power
)
182 sustainable_power
= estimate_sustainable_power(tz
);
184 sustainable_power
= tz
->tzp
->sustainable_power
;
186 /* Check if it's init value 0 or there was update via sysfs */
187 if (sustainable_power
!= params
->sustainable_power
) {
188 estimate_pid_constants(tz
, sustainable_power
,
189 params
->trip_switch_on
, control_temp
);
191 /* Do the estimation only once and make available in sysfs */
192 tz
->tzp
->sustainable_power
= sustainable_power
;
193 params
->sustainable_power
= sustainable_power
;
196 return sustainable_power
;
200 * pid_controller() - PID controller
201 * @tz: thermal zone we are operating in
202 * @control_temp: the target temperature in millicelsius
203 * @max_allocatable_power: maximum allocatable power for this thermal zone
205 * This PID controller increases the available power budget so that the
206 * temperature of the thermal zone gets as close as possible to
207 * @control_temp and limits the power if it exceeds it. k_po is the
208 * proportional term when we are overshooting, k_pu is the
209 * proportional term when we are undershooting. integral_cutoff is a
210 * threshold below which we stop accumulating the error. The
211 * accumulated error is only valid if the requested power will make
212 * the system warmer. If the system is mostly idle, there's no point
213 * in accumulating positive error.
215 * Return: The power budget for the next period.
217 static u32
pid_controller(struct thermal_zone_device
*tz
,
219 u32 max_allocatable_power
)
221 s64 p
, i
, d
, power_range
;
222 s32 err
, max_power_frac
;
223 u32 sustainable_power
;
224 struct power_allocator_params
*params
= tz
->governor_data
;
226 max_power_frac
= int_to_frac(max_allocatable_power
);
228 sustainable_power
= get_sustainable_power(tz
, params
, control_temp
);
230 err
= control_temp
- tz
->temperature
;
231 err
= int_to_frac(err
);
233 /* Calculate the proportional term */
234 p
= mul_frac(err
< 0 ? tz
->tzp
->k_po
: tz
->tzp
->k_pu
, err
);
237 * Calculate the integral term
239 * if the error is less than cut off allow integration (but
240 * the integral is limited to max power)
242 i
= mul_frac(tz
->tzp
->k_i
, params
->err_integral
);
244 if (err
< int_to_frac(tz
->tzp
->integral_cutoff
)) {
245 s64 i_next
= i
+ mul_frac(tz
->tzp
->k_i
, err
);
247 if (abs(i_next
) < max_power_frac
) {
249 params
->err_integral
+= err
;
254 * Calculate the derivative term
256 * We do err - prev_err, so with a positive k_d, a decreasing
257 * error (i.e. driving closer to the line) results in less
258 * power being applied, slowing down the controller)
260 d
= mul_frac(tz
->tzp
->k_d
, err
- params
->prev_err
);
261 d
= div_frac(d
, tz
->passive_delay
);
262 params
->prev_err
= err
;
264 power_range
= p
+ i
+ d
;
266 /* feed-forward the known sustainable dissipatable power */
267 power_range
= sustainable_power
+ frac_to_int(power_range
);
269 power_range
= clamp(power_range
, (s64
)0, (s64
)max_allocatable_power
);
271 trace_thermal_power_allocator_pid(tz
, frac_to_int(err
),
272 frac_to_int(params
->err_integral
),
273 frac_to_int(p
), frac_to_int(i
),
274 frac_to_int(d
), power_range
);
280 * power_actor_set_power() - limit the maximum power a cooling device consumes
281 * @cdev: pointer to &thermal_cooling_device
282 * @instance: thermal instance to update
283 * @power: the power in milliwatts
285 * Set the cooling device to consume at most @power milliwatts. The limit is
286 * expected to be a cap at the maximum power consumption.
288 * Return: 0 on success, -EINVAL if the cooling device does not
289 * implement the power actor API or -E* for other failures.
292 power_actor_set_power(struct thermal_cooling_device
*cdev
,
293 struct thermal_instance
*instance
, u32 power
)
298 ret
= cdev
->ops
->power2state(cdev
, power
, &state
);
302 instance
->target
= clamp_val(state
, instance
->lower
, instance
->upper
);
303 mutex_lock(&cdev
->lock
);
304 cdev
->updated
= false;
305 mutex_unlock(&cdev
->lock
);
306 thermal_cdev_update(cdev
);
312 * divvy_up_power() - divvy the allocated power between the actors
313 * @req_power: each actor's requested power
314 * @max_power: each actor's maximum available power
315 * @num_actors: size of the @req_power, @max_power and @granted_power's array
316 * @total_req_power: sum of @req_power
317 * @power_range: total allocated power
318 * @granted_power: output array: each actor's granted power
319 * @extra_actor_power: an appropriately sized array to be used in the
320 * function as temporary storage of the extra power given
323 * This function divides the total allocated power (@power_range)
324 * fairly between the actors. It first tries to give each actor a
325 * share of the @power_range according to how much power it requested
326 * compared to the rest of the actors. For example, if only one actor
327 * requests power, then it receives all the @power_range. If
328 * three actors each requests 1mW, each receives a third of the
331 * If any actor received more than their maximum power, then that
332 * surplus is re-divvied among the actors based on how far they are
333 * from their respective maximums.
335 * Granted power for each actor is written to @granted_power, which
336 * should've been allocated by the calling function.
338 static void divvy_up_power(u32
*req_power
, u32
*max_power
, int num_actors
,
339 u32 total_req_power
, u32 power_range
,
340 u32
*granted_power
, u32
*extra_actor_power
)
342 u32 extra_power
, capped_extra_power
;
346 * Prevent division by 0 if none of the actors request power.
348 if (!total_req_power
)
351 capped_extra_power
= 0;
353 for (i
= 0; i
< num_actors
; i
++) {
354 u64 req_range
= (u64
)req_power
[i
] * power_range
;
356 granted_power
[i
] = DIV_ROUND_CLOSEST_ULL(req_range
,
359 if (granted_power
[i
] > max_power
[i
]) {
360 extra_power
+= granted_power
[i
] - max_power
[i
];
361 granted_power
[i
] = max_power
[i
];
364 extra_actor_power
[i
] = max_power
[i
] - granted_power
[i
];
365 capped_extra_power
+= extra_actor_power
[i
];
372 * Re-divvy the reclaimed extra among actors based on
373 * how far they are from the max
375 extra_power
= min(extra_power
, capped_extra_power
);
376 if (capped_extra_power
> 0)
377 for (i
= 0; i
< num_actors
; i
++)
378 granted_power
[i
] += (extra_actor_power
[i
] *
379 extra_power
) / capped_extra_power
;
382 static int allocate_power(struct thermal_zone_device
*tz
,
385 struct thermal_instance
*instance
;
386 struct power_allocator_params
*params
= tz
->governor_data
;
387 u32
*req_power
, *max_power
, *granted_power
, *extra_actor_power
;
388 u32
*weighted_req_power
;
389 u32 total_req_power
, max_allocatable_power
, total_weighted_req_power
;
390 u32 total_granted_power
, power_range
;
391 int i
, num_actors
, total_weight
, ret
= 0;
392 int trip_max_desired_temperature
= params
->trip_max_desired_temperature
;
394 mutex_lock(&tz
->lock
);
398 list_for_each_entry(instance
, &tz
->thermal_instances
, tz_node
) {
399 if ((instance
->trip
== trip_max_desired_temperature
) &&
400 cdev_is_power_actor(instance
->cdev
)) {
402 total_weight
+= instance
->weight
;
412 * We need to allocate five arrays of the same size:
413 * req_power, max_power, granted_power, extra_actor_power and
414 * weighted_req_power. They are going to be needed until this
415 * function returns. Allocate them all in one go to simplify
416 * the allocation and deallocation logic.
418 BUILD_BUG_ON(sizeof(*req_power
) != sizeof(*max_power
));
419 BUILD_BUG_ON(sizeof(*req_power
) != sizeof(*granted_power
));
420 BUILD_BUG_ON(sizeof(*req_power
) != sizeof(*extra_actor_power
));
421 BUILD_BUG_ON(sizeof(*req_power
) != sizeof(*weighted_req_power
));
422 req_power
= kcalloc(num_actors
* 5, sizeof(*req_power
), GFP_KERNEL
);
428 max_power
= &req_power
[num_actors
];
429 granted_power
= &req_power
[2 * num_actors
];
430 extra_actor_power
= &req_power
[3 * num_actors
];
431 weighted_req_power
= &req_power
[4 * num_actors
];
434 total_weighted_req_power
= 0;
436 max_allocatable_power
= 0;
438 list_for_each_entry(instance
, &tz
->thermal_instances
, tz_node
) {
440 struct thermal_cooling_device
*cdev
= instance
->cdev
;
442 if (instance
->trip
!= trip_max_desired_temperature
)
445 if (!cdev_is_power_actor(cdev
))
448 if (cdev
->ops
->get_requested_power(cdev
, &req_power
[i
]))
452 weight
= 1 << FRAC_BITS
;
454 weight
= instance
->weight
;
456 weighted_req_power
[i
] = frac_to_int(weight
* req_power
[i
]);
458 if (cdev
->ops
->state2power(cdev
, instance
->lower
,
462 total_req_power
+= req_power
[i
];
463 max_allocatable_power
+= max_power
[i
];
464 total_weighted_req_power
+= weighted_req_power
[i
];
469 power_range
= pid_controller(tz
, control_temp
, max_allocatable_power
);
471 divvy_up_power(weighted_req_power
, max_power
, num_actors
,
472 total_weighted_req_power
, power_range
, granted_power
,
475 total_granted_power
= 0;
477 list_for_each_entry(instance
, &tz
->thermal_instances
, tz_node
) {
478 if (instance
->trip
!= trip_max_desired_temperature
)
481 if (!cdev_is_power_actor(instance
->cdev
))
484 power_actor_set_power(instance
->cdev
, instance
,
486 total_granted_power
+= granted_power
[i
];
491 trace_thermal_power_allocator(tz
, req_power
, total_req_power
,
492 granted_power
, total_granted_power
,
493 num_actors
, power_range
,
494 max_allocatable_power
, tz
->temperature
,
495 control_temp
- tz
->temperature
);
499 mutex_unlock(&tz
->lock
);
505 * get_governor_trips() - get the number of the two trip points that are key for this governor
506 * @tz: thermal zone to operate on
507 * @params: pointer to private data for this governor
509 * The power allocator governor works optimally with two trips points:
510 * a "switch on" trip point and a "maximum desired temperature". These
511 * are defined as the first and last passive trip points.
513 * If there is only one trip point, then that's considered to be the
514 * "maximum desired temperature" trip point and the governor is always
515 * on. If there are no passive or active trip points, then the
516 * governor won't do anything. In fact, its throttle function
517 * won't be called at all.
519 static void get_governor_trips(struct thermal_zone_device
*tz
,
520 struct power_allocator_params
*params
)
522 int i
, last_active
, last_passive
;
523 bool found_first_passive
;
525 found_first_passive
= false;
526 last_active
= INVALID_TRIP
;
527 last_passive
= INVALID_TRIP
;
529 for (i
= 0; i
< tz
->trips
; i
++) {
530 enum thermal_trip_type type
;
533 ret
= tz
->ops
->get_trip_type(tz
, i
, &type
);
535 dev_warn(&tz
->device
,
536 "Failed to get trip point %d type: %d\n", i
,
541 if (type
== THERMAL_TRIP_PASSIVE
) {
542 if (!found_first_passive
) {
543 params
->trip_switch_on
= i
;
544 found_first_passive
= true;
548 } else if (type
== THERMAL_TRIP_ACTIVE
) {
555 if (last_passive
!= INVALID_TRIP
) {
556 params
->trip_max_desired_temperature
= last_passive
;
557 } else if (found_first_passive
) {
558 params
->trip_max_desired_temperature
= params
->trip_switch_on
;
559 params
->trip_switch_on
= INVALID_TRIP
;
561 params
->trip_switch_on
= INVALID_TRIP
;
562 params
->trip_max_desired_temperature
= last_active
;
566 static void reset_pid_controller(struct power_allocator_params
*params
)
568 params
->err_integral
= 0;
569 params
->prev_err
= 0;
572 static void allow_maximum_power(struct thermal_zone_device
*tz
)
574 struct thermal_instance
*instance
;
575 struct power_allocator_params
*params
= tz
->governor_data
;
577 mutex_lock(&tz
->lock
);
578 list_for_each_entry(instance
, &tz
->thermal_instances
, tz_node
) {
579 if ((instance
->trip
!= params
->trip_max_desired_temperature
) ||
580 (!cdev_is_power_actor(instance
->cdev
)))
583 instance
->target
= 0;
584 mutex_lock(&instance
->cdev
->lock
);
585 instance
->cdev
->updated
= false;
586 mutex_unlock(&instance
->cdev
->lock
);
587 thermal_cdev_update(instance
->cdev
);
589 mutex_unlock(&tz
->lock
);
593 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
594 * @tz: thermal zone to bind it to
596 * Initialize the PID controller parameters and bind it to the thermal
599 * Return: 0 on success, or -ENOMEM if we ran out of memory.
601 static int power_allocator_bind(struct thermal_zone_device
*tz
)
604 struct power_allocator_params
*params
;
607 params
= kzalloc(sizeof(*params
), GFP_KERNEL
);
612 tz
->tzp
= kzalloc(sizeof(*tz
->tzp
), GFP_KERNEL
);
618 params
->allocated_tzp
= true;
621 if (!tz
->tzp
->sustainable_power
)
622 dev_warn(&tz
->device
, "power_allocator: sustainable_power will be estimated\n");
624 get_governor_trips(tz
, params
);
627 ret
= tz
->ops
->get_trip_temp(tz
,
628 params
->trip_max_desired_temperature
,
631 estimate_pid_constants(tz
, tz
->tzp
->sustainable_power
,
632 params
->trip_switch_on
,
636 reset_pid_controller(params
);
638 tz
->governor_data
= params
;
648 static void power_allocator_unbind(struct thermal_zone_device
*tz
)
650 struct power_allocator_params
*params
= tz
->governor_data
;
652 dev_dbg(&tz
->device
, "Unbinding from thermal zone %d\n", tz
->id
);
654 if (params
->allocated_tzp
) {
659 kfree(tz
->governor_data
);
660 tz
->governor_data
= NULL
;
663 static int power_allocator_throttle(struct thermal_zone_device
*tz
, int trip
)
666 int switch_on_temp
, control_temp
;
667 struct power_allocator_params
*params
= tz
->governor_data
;
670 * We get called for every trip point but we only need to do
671 * our calculations once
673 if (trip
!= params
->trip_max_desired_temperature
)
676 ret
= tz
->ops
->get_trip_temp(tz
, params
->trip_switch_on
,
678 if (!ret
&& (tz
->temperature
< switch_on_temp
)) {
680 reset_pid_controller(params
);
681 allow_maximum_power(tz
);
687 ret
= tz
->ops
->get_trip_temp(tz
, params
->trip_max_desired_temperature
,
690 dev_warn(&tz
->device
,
691 "Failed to get the maximum desired temperature: %d\n",
696 return allocate_power(tz
, control_temp
);
699 static struct thermal_governor thermal_gov_power_allocator
= {
700 .name
= "power_allocator",
701 .bind_to_tz
= power_allocator_bind
,
702 .unbind_from_tz
= power_allocator_unbind
,
703 .throttle
= power_allocator_throttle
,
705 THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator
);