workqueue: Make worker_attach/detach_pool() update worker->pool
[linux/fpc-iii.git] / drivers / nvme / host / core.c
blob99b857e5a7a9c7dcde1e031eeab99f3737f026c3
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
35 #include "nvme.h"
36 #include "fabrics.h"
38 #define NVME_MINORS (1U << MINORBITS)
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 "max power saving latency for new devices; use PM QOS to change per device");
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
72 * nvme_wq - hosts nvme related works that are not reset or delete
73 * nvme_reset_wq - hosts nvme reset works
74 * nvme_delete_wq - hosts nvme delete works
76 * nvme_wq will host works such are scan, aen handling, fw activation,
77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78 * runs reset works which also flush works hosted on nvme_wq for
79 * serialization purposes. nvme_delete_wq host controller deletion
80 * works which flush reset works for serialization.
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
102 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
104 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
106 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
107 return -EBUSY;
108 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
109 return -EBUSY;
110 return 0;
112 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
114 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
116 int ret;
118 ret = nvme_reset_ctrl(ctrl);
119 if (!ret) {
120 flush_work(&ctrl->reset_work);
121 if (ctrl->state != NVME_CTRL_LIVE &&
122 ctrl->state != NVME_CTRL_ADMIN_ONLY)
123 ret = -ENETRESET;
126 return ret;
128 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
130 static void nvme_delete_ctrl_work(struct work_struct *work)
132 struct nvme_ctrl *ctrl =
133 container_of(work, struct nvme_ctrl, delete_work);
135 dev_info(ctrl->device,
136 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
138 flush_work(&ctrl->reset_work);
139 nvme_stop_ctrl(ctrl);
140 nvme_remove_namespaces(ctrl);
141 ctrl->ops->delete_ctrl(ctrl);
142 nvme_uninit_ctrl(ctrl);
143 nvme_put_ctrl(ctrl);
146 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
148 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
149 return -EBUSY;
150 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
151 return -EBUSY;
152 return 0;
154 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
156 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
158 int ret = 0;
161 * Keep a reference until the work is flushed since ->delete_ctrl
162 * can free the controller.
164 nvme_get_ctrl(ctrl);
165 ret = nvme_delete_ctrl(ctrl);
166 if (!ret)
167 flush_work(&ctrl->delete_work);
168 nvme_put_ctrl(ctrl);
169 return ret;
171 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
173 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
175 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
178 static blk_status_t nvme_error_status(struct request *req)
180 switch (nvme_req(req)->status & 0x7ff) {
181 case NVME_SC_SUCCESS:
182 return BLK_STS_OK;
183 case NVME_SC_CAP_EXCEEDED:
184 return BLK_STS_NOSPC;
185 case NVME_SC_LBA_RANGE:
186 return BLK_STS_TARGET;
187 case NVME_SC_BAD_ATTRIBUTES:
188 case NVME_SC_ONCS_NOT_SUPPORTED:
189 case NVME_SC_INVALID_OPCODE:
190 case NVME_SC_INVALID_FIELD:
191 case NVME_SC_INVALID_NS:
192 return BLK_STS_NOTSUPP;
193 case NVME_SC_WRITE_FAULT:
194 case NVME_SC_READ_ERROR:
195 case NVME_SC_UNWRITTEN_BLOCK:
196 case NVME_SC_ACCESS_DENIED:
197 case NVME_SC_READ_ONLY:
198 case NVME_SC_COMPARE_FAILED:
199 return BLK_STS_MEDIUM;
200 case NVME_SC_GUARD_CHECK:
201 case NVME_SC_APPTAG_CHECK:
202 case NVME_SC_REFTAG_CHECK:
203 case NVME_SC_INVALID_PI:
204 return BLK_STS_PROTECTION;
205 case NVME_SC_RESERVATION_CONFLICT:
206 return BLK_STS_NEXUS;
207 default:
208 return BLK_STS_IOERR;
212 static inline bool nvme_req_needs_retry(struct request *req)
214 if (blk_noretry_request(req))
215 return false;
216 if (nvme_req(req)->status & NVME_SC_DNR)
217 return false;
218 if (nvme_req(req)->retries >= nvme_max_retries)
219 return false;
220 return true;
223 void nvme_complete_rq(struct request *req)
225 blk_status_t status = nvme_error_status(req);
227 trace_nvme_complete_rq(req);
229 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
230 if (nvme_req_needs_failover(req, status)) {
231 nvme_failover_req(req);
232 return;
235 if (!blk_queue_dying(req->q)) {
236 nvme_req(req)->retries++;
237 blk_mq_requeue_request(req, true);
238 return;
241 blk_mq_end_request(req, status);
243 EXPORT_SYMBOL_GPL(nvme_complete_rq);
245 void nvme_cancel_request(struct request *req, void *data, bool reserved)
247 if (!blk_mq_request_started(req))
248 return;
250 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
251 "Cancelling I/O %d", req->tag);
253 nvme_req(req)->status = NVME_SC_ABORT_REQ;
254 blk_mq_complete_request(req);
257 EXPORT_SYMBOL_GPL(nvme_cancel_request);
259 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
260 enum nvme_ctrl_state new_state)
262 enum nvme_ctrl_state old_state;
263 unsigned long flags;
264 bool changed = false;
266 spin_lock_irqsave(&ctrl->lock, flags);
268 old_state = ctrl->state;
269 switch (new_state) {
270 case NVME_CTRL_ADMIN_ONLY:
271 switch (old_state) {
272 case NVME_CTRL_CONNECTING:
273 changed = true;
274 /* FALLTHRU */
275 default:
276 break;
278 break;
279 case NVME_CTRL_LIVE:
280 switch (old_state) {
281 case NVME_CTRL_NEW:
282 case NVME_CTRL_RESETTING:
283 case NVME_CTRL_CONNECTING:
284 changed = true;
285 /* FALLTHRU */
286 default:
287 break;
289 break;
290 case NVME_CTRL_RESETTING:
291 switch (old_state) {
292 case NVME_CTRL_NEW:
293 case NVME_CTRL_LIVE:
294 case NVME_CTRL_ADMIN_ONLY:
295 changed = true;
296 /* FALLTHRU */
297 default:
298 break;
300 break;
301 case NVME_CTRL_CONNECTING:
302 switch (old_state) {
303 case NVME_CTRL_NEW:
304 case NVME_CTRL_RESETTING:
305 changed = true;
306 /* FALLTHRU */
307 default:
308 break;
310 break;
311 case NVME_CTRL_DELETING:
312 switch (old_state) {
313 case NVME_CTRL_LIVE:
314 case NVME_CTRL_ADMIN_ONLY:
315 case NVME_CTRL_RESETTING:
316 case NVME_CTRL_CONNECTING:
317 changed = true;
318 /* FALLTHRU */
319 default:
320 break;
322 break;
323 case NVME_CTRL_DEAD:
324 switch (old_state) {
325 case NVME_CTRL_DELETING:
326 changed = true;
327 /* FALLTHRU */
328 default:
329 break;
331 break;
332 default:
333 break;
336 if (changed)
337 ctrl->state = new_state;
339 spin_unlock_irqrestore(&ctrl->lock, flags);
340 if (changed && ctrl->state == NVME_CTRL_LIVE)
341 nvme_kick_requeue_lists(ctrl);
342 return changed;
344 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
346 static void nvme_free_ns_head(struct kref *ref)
348 struct nvme_ns_head *head =
349 container_of(ref, struct nvme_ns_head, ref);
351 nvme_mpath_remove_disk(head);
352 ida_simple_remove(&head->subsys->ns_ida, head->instance);
353 list_del_init(&head->entry);
354 cleanup_srcu_struct(&head->srcu);
355 nvme_put_subsystem(head->subsys);
356 kfree(head);
359 static void nvme_put_ns_head(struct nvme_ns_head *head)
361 kref_put(&head->ref, nvme_free_ns_head);
364 static void nvme_free_ns(struct kref *kref)
366 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
368 if (ns->ndev)
369 nvme_nvm_unregister(ns);
371 put_disk(ns->disk);
372 nvme_put_ns_head(ns->head);
373 nvme_put_ctrl(ns->ctrl);
374 kfree(ns);
377 static void nvme_put_ns(struct nvme_ns *ns)
379 kref_put(&ns->kref, nvme_free_ns);
382 static inline void nvme_clear_nvme_request(struct request *req)
384 if (!(req->rq_flags & RQF_DONTPREP)) {
385 nvme_req(req)->retries = 0;
386 nvme_req(req)->flags = 0;
387 req->rq_flags |= RQF_DONTPREP;
391 struct request *nvme_alloc_request(struct request_queue *q,
392 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
394 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
395 struct request *req;
397 if (qid == NVME_QID_ANY) {
398 req = blk_mq_alloc_request(q, op, flags);
399 } else {
400 req = blk_mq_alloc_request_hctx(q, op, flags,
401 qid ? qid - 1 : 0);
403 if (IS_ERR(req))
404 return req;
406 req->cmd_flags |= REQ_FAILFAST_DRIVER;
407 nvme_clear_nvme_request(req);
408 nvme_req(req)->cmd = cmd;
410 return req;
412 EXPORT_SYMBOL_GPL(nvme_alloc_request);
414 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
416 struct nvme_command c;
418 memset(&c, 0, sizeof(c));
420 c.directive.opcode = nvme_admin_directive_send;
421 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
422 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
423 c.directive.dtype = NVME_DIR_IDENTIFY;
424 c.directive.tdtype = NVME_DIR_STREAMS;
425 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
427 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
430 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
432 return nvme_toggle_streams(ctrl, false);
435 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
437 return nvme_toggle_streams(ctrl, true);
440 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
441 struct streams_directive_params *s, u32 nsid)
443 struct nvme_command c;
445 memset(&c, 0, sizeof(c));
446 memset(s, 0, sizeof(*s));
448 c.directive.opcode = nvme_admin_directive_recv;
449 c.directive.nsid = cpu_to_le32(nsid);
450 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
451 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
452 c.directive.dtype = NVME_DIR_STREAMS;
454 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
457 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
459 struct streams_directive_params s;
460 int ret;
462 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
463 return 0;
464 if (!streams)
465 return 0;
467 ret = nvme_enable_streams(ctrl);
468 if (ret)
469 return ret;
471 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
472 if (ret)
473 return ret;
475 ctrl->nssa = le16_to_cpu(s.nssa);
476 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
477 dev_info(ctrl->device, "too few streams (%u) available\n",
478 ctrl->nssa);
479 nvme_disable_streams(ctrl);
480 return 0;
483 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
484 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
485 return 0;
489 * Check if 'req' has a write hint associated with it. If it does, assign
490 * a valid namespace stream to the write.
492 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
493 struct request *req, u16 *control,
494 u32 *dsmgmt)
496 enum rw_hint streamid = req->write_hint;
498 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
499 streamid = 0;
500 else {
501 streamid--;
502 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
503 return;
505 *control |= NVME_RW_DTYPE_STREAMS;
506 *dsmgmt |= streamid << 16;
509 if (streamid < ARRAY_SIZE(req->q->write_hints))
510 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
513 static inline void nvme_setup_flush(struct nvme_ns *ns,
514 struct nvme_command *cmnd)
516 memset(cmnd, 0, sizeof(*cmnd));
517 cmnd->common.opcode = nvme_cmd_flush;
518 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
521 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
522 struct nvme_command *cmnd)
524 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
525 struct nvme_dsm_range *range;
526 struct bio *bio;
528 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
529 if (!range)
530 return BLK_STS_RESOURCE;
532 __rq_for_each_bio(bio, req) {
533 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
534 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
536 if (n < segments) {
537 range[n].cattr = cpu_to_le32(0);
538 range[n].nlb = cpu_to_le32(nlb);
539 range[n].slba = cpu_to_le64(slba);
541 n++;
544 if (WARN_ON_ONCE(n != segments)) {
545 kfree(range);
546 return BLK_STS_IOERR;
549 memset(cmnd, 0, sizeof(*cmnd));
550 cmnd->dsm.opcode = nvme_cmd_dsm;
551 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
552 cmnd->dsm.nr = cpu_to_le32(segments - 1);
553 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
555 req->special_vec.bv_page = virt_to_page(range);
556 req->special_vec.bv_offset = offset_in_page(range);
557 req->special_vec.bv_len = sizeof(*range) * segments;
558 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
560 return BLK_STS_OK;
563 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
564 struct request *req, struct nvme_command *cmnd)
566 struct nvme_ctrl *ctrl = ns->ctrl;
567 u16 control = 0;
568 u32 dsmgmt = 0;
570 if (req->cmd_flags & REQ_FUA)
571 control |= NVME_RW_FUA;
572 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
573 control |= NVME_RW_LR;
575 if (req->cmd_flags & REQ_RAHEAD)
576 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
578 memset(cmnd, 0, sizeof(*cmnd));
579 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
580 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
581 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
582 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
584 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
585 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
587 if (ns->ms) {
589 * If formated with metadata, the block layer always provides a
590 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
591 * we enable the PRACT bit for protection information or set the
592 * namespace capacity to zero to prevent any I/O.
594 if (!blk_integrity_rq(req)) {
595 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
596 return BLK_STS_NOTSUPP;
597 control |= NVME_RW_PRINFO_PRACT;
600 switch (ns->pi_type) {
601 case NVME_NS_DPS_PI_TYPE3:
602 control |= NVME_RW_PRINFO_PRCHK_GUARD;
603 break;
604 case NVME_NS_DPS_PI_TYPE1:
605 case NVME_NS_DPS_PI_TYPE2:
606 control |= NVME_RW_PRINFO_PRCHK_GUARD |
607 NVME_RW_PRINFO_PRCHK_REF;
608 cmnd->rw.reftag = cpu_to_le32(
609 nvme_block_nr(ns, blk_rq_pos(req)));
610 break;
614 cmnd->rw.control = cpu_to_le16(control);
615 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
616 return 0;
619 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
620 struct nvme_command *cmd)
622 blk_status_t ret = BLK_STS_OK;
624 nvme_clear_nvme_request(req);
626 switch (req_op(req)) {
627 case REQ_OP_DRV_IN:
628 case REQ_OP_DRV_OUT:
629 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
630 break;
631 case REQ_OP_FLUSH:
632 nvme_setup_flush(ns, cmd);
633 break;
634 case REQ_OP_WRITE_ZEROES:
635 /* currently only aliased to deallocate for a few ctrls: */
636 case REQ_OP_DISCARD:
637 ret = nvme_setup_discard(ns, req, cmd);
638 break;
639 case REQ_OP_READ:
640 case REQ_OP_WRITE:
641 ret = nvme_setup_rw(ns, req, cmd);
642 break;
643 default:
644 WARN_ON_ONCE(1);
645 return BLK_STS_IOERR;
648 cmd->common.command_id = req->tag;
649 if (ns)
650 trace_nvme_setup_nvm_cmd(req->q->id, cmd);
651 else
652 trace_nvme_setup_admin_cmd(cmd);
653 return ret;
655 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
658 * Returns 0 on success. If the result is negative, it's a Linux error code;
659 * if the result is positive, it's an NVM Express status code
661 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
662 union nvme_result *result, void *buffer, unsigned bufflen,
663 unsigned timeout, int qid, int at_head,
664 blk_mq_req_flags_t flags)
666 struct request *req;
667 int ret;
669 req = nvme_alloc_request(q, cmd, flags, qid);
670 if (IS_ERR(req))
671 return PTR_ERR(req);
673 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
675 if (buffer && bufflen) {
676 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
677 if (ret)
678 goto out;
681 blk_execute_rq(req->q, NULL, req, at_head);
682 if (result)
683 *result = nvme_req(req)->result;
684 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
685 ret = -EINTR;
686 else
687 ret = nvme_req(req)->status;
688 out:
689 blk_mq_free_request(req);
690 return ret;
692 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
694 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
695 void *buffer, unsigned bufflen)
697 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
698 NVME_QID_ANY, 0, 0);
700 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
702 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
703 unsigned len, u32 seed, bool write)
705 struct bio_integrity_payload *bip;
706 int ret = -ENOMEM;
707 void *buf;
709 buf = kmalloc(len, GFP_KERNEL);
710 if (!buf)
711 goto out;
713 ret = -EFAULT;
714 if (write && copy_from_user(buf, ubuf, len))
715 goto out_free_meta;
717 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
718 if (IS_ERR(bip)) {
719 ret = PTR_ERR(bip);
720 goto out_free_meta;
723 bip->bip_iter.bi_size = len;
724 bip->bip_iter.bi_sector = seed;
725 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
726 offset_in_page(buf));
727 if (ret == len)
728 return buf;
729 ret = -ENOMEM;
730 out_free_meta:
731 kfree(buf);
732 out:
733 return ERR_PTR(ret);
736 static int nvme_submit_user_cmd(struct request_queue *q,
737 struct nvme_command *cmd, void __user *ubuffer,
738 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
739 u32 meta_seed, u32 *result, unsigned timeout)
741 bool write = nvme_is_write(cmd);
742 struct nvme_ns *ns = q->queuedata;
743 struct gendisk *disk = ns ? ns->disk : NULL;
744 struct request *req;
745 struct bio *bio = NULL;
746 void *meta = NULL;
747 int ret;
749 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
750 if (IS_ERR(req))
751 return PTR_ERR(req);
753 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
754 nvme_req(req)->flags |= NVME_REQ_USERCMD;
756 if (ubuffer && bufflen) {
757 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
758 GFP_KERNEL);
759 if (ret)
760 goto out;
761 bio = req->bio;
762 bio->bi_disk = disk;
763 if (disk && meta_buffer && meta_len) {
764 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
765 meta_seed, write);
766 if (IS_ERR(meta)) {
767 ret = PTR_ERR(meta);
768 goto out_unmap;
770 req->cmd_flags |= REQ_INTEGRITY;
774 blk_execute_rq(req->q, disk, req, 0);
775 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
776 ret = -EINTR;
777 else
778 ret = nvme_req(req)->status;
779 if (result)
780 *result = le32_to_cpu(nvme_req(req)->result.u32);
781 if (meta && !ret && !write) {
782 if (copy_to_user(meta_buffer, meta, meta_len))
783 ret = -EFAULT;
785 kfree(meta);
786 out_unmap:
787 if (bio)
788 blk_rq_unmap_user(bio);
789 out:
790 blk_mq_free_request(req);
791 return ret;
794 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
796 struct nvme_ctrl *ctrl = rq->end_io_data;
798 blk_mq_free_request(rq);
800 if (status) {
801 dev_err(ctrl->device,
802 "failed nvme_keep_alive_end_io error=%d\n",
803 status);
804 return;
807 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
810 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
812 struct request *rq;
814 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
815 NVME_QID_ANY);
816 if (IS_ERR(rq))
817 return PTR_ERR(rq);
819 rq->timeout = ctrl->kato * HZ;
820 rq->end_io_data = ctrl;
822 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
824 return 0;
827 static void nvme_keep_alive_work(struct work_struct *work)
829 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
830 struct nvme_ctrl, ka_work);
832 if (nvme_keep_alive(ctrl)) {
833 /* allocation failure, reset the controller */
834 dev_err(ctrl->device, "keep-alive failed\n");
835 nvme_reset_ctrl(ctrl);
836 return;
840 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
842 if (unlikely(ctrl->kato == 0))
843 return;
845 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
846 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
847 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
848 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
851 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
853 if (unlikely(ctrl->kato == 0))
854 return;
856 cancel_delayed_work_sync(&ctrl->ka_work);
858 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
860 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
862 struct nvme_command c = { };
863 int error;
865 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
866 c.identify.opcode = nvme_admin_identify;
867 c.identify.cns = NVME_ID_CNS_CTRL;
869 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
870 if (!*id)
871 return -ENOMEM;
873 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
874 sizeof(struct nvme_id_ctrl));
875 if (error)
876 kfree(*id);
877 return error;
880 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
881 struct nvme_ns_ids *ids)
883 struct nvme_command c = { };
884 int status;
885 void *data;
886 int pos;
887 int len;
889 c.identify.opcode = nvme_admin_identify;
890 c.identify.nsid = cpu_to_le32(nsid);
891 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
893 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
894 if (!data)
895 return -ENOMEM;
897 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
898 NVME_IDENTIFY_DATA_SIZE);
899 if (status)
900 goto free_data;
902 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
903 struct nvme_ns_id_desc *cur = data + pos;
905 if (cur->nidl == 0)
906 break;
908 switch (cur->nidt) {
909 case NVME_NIDT_EUI64:
910 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
911 dev_warn(ctrl->device,
912 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
913 cur->nidl);
914 goto free_data;
916 len = NVME_NIDT_EUI64_LEN;
917 memcpy(ids->eui64, data + pos + sizeof(*cur), len);
918 break;
919 case NVME_NIDT_NGUID:
920 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
921 dev_warn(ctrl->device,
922 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
923 cur->nidl);
924 goto free_data;
926 len = NVME_NIDT_NGUID_LEN;
927 memcpy(ids->nguid, data + pos + sizeof(*cur), len);
928 break;
929 case NVME_NIDT_UUID:
930 if (cur->nidl != NVME_NIDT_UUID_LEN) {
931 dev_warn(ctrl->device,
932 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
933 cur->nidl);
934 goto free_data;
936 len = NVME_NIDT_UUID_LEN;
937 uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
938 break;
939 default:
940 /* Skip unnkown types */
941 len = cur->nidl;
942 break;
945 len += sizeof(*cur);
947 free_data:
948 kfree(data);
949 return status;
952 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
954 struct nvme_command c = { };
956 c.identify.opcode = nvme_admin_identify;
957 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
958 c.identify.nsid = cpu_to_le32(nsid);
959 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
960 NVME_IDENTIFY_DATA_SIZE);
963 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
964 unsigned nsid)
966 struct nvme_id_ns *id;
967 struct nvme_command c = { };
968 int error;
970 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
971 c.identify.opcode = nvme_admin_identify;
972 c.identify.nsid = cpu_to_le32(nsid);
973 c.identify.cns = NVME_ID_CNS_NS;
975 id = kmalloc(sizeof(*id), GFP_KERNEL);
976 if (!id)
977 return NULL;
979 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
980 if (error) {
981 dev_warn(ctrl->device, "Identify namespace failed\n");
982 kfree(id);
983 return NULL;
986 return id;
989 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
990 void *buffer, size_t buflen, u32 *result)
992 struct nvme_command c;
993 union nvme_result res;
994 int ret;
996 memset(&c, 0, sizeof(c));
997 c.features.opcode = nvme_admin_set_features;
998 c.features.fid = cpu_to_le32(fid);
999 c.features.dword11 = cpu_to_le32(dword11);
1001 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1002 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1003 if (ret >= 0 && result)
1004 *result = le32_to_cpu(res.u32);
1005 return ret;
1008 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1010 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1011 u32 result;
1012 int status, nr_io_queues;
1014 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1015 &result);
1016 if (status < 0)
1017 return status;
1020 * Degraded controllers might return an error when setting the queue
1021 * count. We still want to be able to bring them online and offer
1022 * access to the admin queue, as that might be only way to fix them up.
1024 if (status > 0) {
1025 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1026 *count = 0;
1027 } else {
1028 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1029 *count = min(*count, nr_io_queues);
1032 return 0;
1034 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1036 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1038 struct nvme_user_io io;
1039 struct nvme_command c;
1040 unsigned length, meta_len;
1041 void __user *metadata;
1043 if (copy_from_user(&io, uio, sizeof(io)))
1044 return -EFAULT;
1045 if (io.flags)
1046 return -EINVAL;
1048 switch (io.opcode) {
1049 case nvme_cmd_write:
1050 case nvme_cmd_read:
1051 case nvme_cmd_compare:
1052 break;
1053 default:
1054 return -EINVAL;
1057 length = (io.nblocks + 1) << ns->lba_shift;
1058 meta_len = (io.nblocks + 1) * ns->ms;
1059 metadata = (void __user *)(uintptr_t)io.metadata;
1061 if (ns->ext) {
1062 length += meta_len;
1063 meta_len = 0;
1064 } else if (meta_len) {
1065 if ((io.metadata & 3) || !io.metadata)
1066 return -EINVAL;
1069 memset(&c, 0, sizeof(c));
1070 c.rw.opcode = io.opcode;
1071 c.rw.flags = io.flags;
1072 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1073 c.rw.slba = cpu_to_le64(io.slba);
1074 c.rw.length = cpu_to_le16(io.nblocks);
1075 c.rw.control = cpu_to_le16(io.control);
1076 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1077 c.rw.reftag = cpu_to_le32(io.reftag);
1078 c.rw.apptag = cpu_to_le16(io.apptag);
1079 c.rw.appmask = cpu_to_le16(io.appmask);
1081 return nvme_submit_user_cmd(ns->queue, &c,
1082 (void __user *)(uintptr_t)io.addr, length,
1083 metadata, meta_len, io.slba, NULL, 0);
1086 static u32 nvme_known_admin_effects(u8 opcode)
1088 switch (opcode) {
1089 case nvme_admin_format_nvm:
1090 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1091 NVME_CMD_EFFECTS_CSE_MASK;
1092 case nvme_admin_sanitize_nvm:
1093 return NVME_CMD_EFFECTS_CSE_MASK;
1094 default:
1095 break;
1097 return 0;
1100 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1101 u8 opcode)
1103 u32 effects = 0;
1105 if (ns) {
1106 if (ctrl->effects)
1107 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1108 if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1109 dev_warn(ctrl->device,
1110 "IO command:%02x has unhandled effects:%08x\n",
1111 opcode, effects);
1112 return 0;
1115 if (ctrl->effects)
1116 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1117 else
1118 effects = nvme_known_admin_effects(opcode);
1121 * For simplicity, IO to all namespaces is quiesced even if the command
1122 * effects say only one namespace is affected.
1124 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1125 nvme_start_freeze(ctrl);
1126 nvme_wait_freeze(ctrl);
1128 return effects;
1131 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1133 struct nvme_ns *ns, *next;
1134 LIST_HEAD(rm_list);
1136 down_write(&ctrl->namespaces_rwsem);
1137 list_for_each_entry(ns, &ctrl->namespaces, list) {
1138 if (ns->disk && nvme_revalidate_disk(ns->disk)) {
1139 list_move_tail(&ns->list, &rm_list);
1142 up_write(&ctrl->namespaces_rwsem);
1144 list_for_each_entry_safe(ns, next, &rm_list, list)
1145 nvme_ns_remove(ns);
1148 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1151 * Revalidate LBA changes prior to unfreezing. This is necessary to
1152 * prevent memory corruption if a logical block size was changed by
1153 * this command.
1155 if (effects & NVME_CMD_EFFECTS_LBCC)
1156 nvme_update_formats(ctrl);
1157 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1158 nvme_unfreeze(ctrl);
1159 if (effects & NVME_CMD_EFFECTS_CCC)
1160 nvme_init_identify(ctrl);
1161 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1162 nvme_queue_scan(ctrl);
1165 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1166 struct nvme_passthru_cmd __user *ucmd)
1168 struct nvme_passthru_cmd cmd;
1169 struct nvme_command c;
1170 unsigned timeout = 0;
1171 u32 effects;
1172 int status;
1174 if (!capable(CAP_SYS_ADMIN))
1175 return -EACCES;
1176 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1177 return -EFAULT;
1178 if (cmd.flags)
1179 return -EINVAL;
1181 memset(&c, 0, sizeof(c));
1182 c.common.opcode = cmd.opcode;
1183 c.common.flags = cmd.flags;
1184 c.common.nsid = cpu_to_le32(cmd.nsid);
1185 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1186 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1187 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1188 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1189 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1190 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1191 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1192 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1194 if (cmd.timeout_ms)
1195 timeout = msecs_to_jiffies(cmd.timeout_ms);
1197 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1198 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1199 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1200 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1201 0, &cmd.result, timeout);
1202 nvme_passthru_end(ctrl, effects);
1204 if (status >= 0) {
1205 if (put_user(cmd.result, &ucmd->result))
1206 return -EFAULT;
1209 return status;
1213 * Issue ioctl requests on the first available path. Note that unlike normal
1214 * block layer requests we will not retry failed request on another controller.
1216 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1217 struct nvme_ns_head **head, int *srcu_idx)
1219 #ifdef CONFIG_NVME_MULTIPATH
1220 if (disk->fops == &nvme_ns_head_ops) {
1221 *head = disk->private_data;
1222 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1223 return nvme_find_path(*head);
1225 #endif
1226 *head = NULL;
1227 *srcu_idx = -1;
1228 return disk->private_data;
1231 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1233 if (head)
1234 srcu_read_unlock(&head->srcu, idx);
1237 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1239 switch (cmd) {
1240 case NVME_IOCTL_ID:
1241 force_successful_syscall_return();
1242 return ns->head->ns_id;
1243 case NVME_IOCTL_ADMIN_CMD:
1244 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1245 case NVME_IOCTL_IO_CMD:
1246 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1247 case NVME_IOCTL_SUBMIT_IO:
1248 return nvme_submit_io(ns, (void __user *)arg);
1249 default:
1250 #ifdef CONFIG_NVM
1251 if (ns->ndev)
1252 return nvme_nvm_ioctl(ns, cmd, arg);
1253 #endif
1254 if (is_sed_ioctl(cmd))
1255 return sed_ioctl(ns->ctrl->opal_dev, cmd,
1256 (void __user *) arg);
1257 return -ENOTTY;
1261 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1262 unsigned int cmd, unsigned long arg)
1264 struct nvme_ns_head *head = NULL;
1265 struct nvme_ns *ns;
1266 int srcu_idx, ret;
1268 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1269 if (unlikely(!ns))
1270 ret = -EWOULDBLOCK;
1271 else
1272 ret = nvme_ns_ioctl(ns, cmd, arg);
1273 nvme_put_ns_from_disk(head, srcu_idx);
1274 return ret;
1277 static int nvme_open(struct block_device *bdev, fmode_t mode)
1279 struct nvme_ns *ns = bdev->bd_disk->private_data;
1281 #ifdef CONFIG_NVME_MULTIPATH
1282 /* should never be called due to GENHD_FL_HIDDEN */
1283 if (WARN_ON_ONCE(ns->head->disk))
1284 goto fail;
1285 #endif
1286 if (!kref_get_unless_zero(&ns->kref))
1287 goto fail;
1288 if (!try_module_get(ns->ctrl->ops->module))
1289 goto fail_put_ns;
1291 return 0;
1293 fail_put_ns:
1294 nvme_put_ns(ns);
1295 fail:
1296 return -ENXIO;
1299 static void nvme_release(struct gendisk *disk, fmode_t mode)
1301 struct nvme_ns *ns = disk->private_data;
1303 module_put(ns->ctrl->ops->module);
1304 nvme_put_ns(ns);
1307 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1309 /* some standard values */
1310 geo->heads = 1 << 6;
1311 geo->sectors = 1 << 5;
1312 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1313 return 0;
1316 #ifdef CONFIG_BLK_DEV_INTEGRITY
1317 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1319 struct blk_integrity integrity;
1321 memset(&integrity, 0, sizeof(integrity));
1322 switch (pi_type) {
1323 case NVME_NS_DPS_PI_TYPE3:
1324 integrity.profile = &t10_pi_type3_crc;
1325 integrity.tag_size = sizeof(u16) + sizeof(u32);
1326 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1327 break;
1328 case NVME_NS_DPS_PI_TYPE1:
1329 case NVME_NS_DPS_PI_TYPE2:
1330 integrity.profile = &t10_pi_type1_crc;
1331 integrity.tag_size = sizeof(u16);
1332 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1333 break;
1334 default:
1335 integrity.profile = NULL;
1336 break;
1338 integrity.tuple_size = ms;
1339 blk_integrity_register(disk, &integrity);
1340 blk_queue_max_integrity_segments(disk->queue, 1);
1342 #else
1343 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1346 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1348 static void nvme_set_chunk_size(struct nvme_ns *ns)
1350 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1351 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1354 static void nvme_config_discard(struct nvme_ctrl *ctrl,
1355 unsigned stream_alignment, struct request_queue *queue)
1357 u32 size = queue_logical_block_size(queue);
1359 if (stream_alignment)
1360 size *= stream_alignment;
1362 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1363 NVME_DSM_MAX_RANGES);
1365 queue->limits.discard_alignment = 0;
1366 queue->limits.discard_granularity = size;
1368 blk_queue_max_discard_sectors(queue, UINT_MAX);
1369 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1370 blk_queue_flag_set(QUEUE_FLAG_DISCARD, queue);
1372 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1373 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1376 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1377 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1379 memset(ids, 0, sizeof(*ids));
1381 if (ctrl->vs >= NVME_VS(1, 1, 0))
1382 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1383 if (ctrl->vs >= NVME_VS(1, 2, 0))
1384 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1385 if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1386 /* Don't treat error as fatal we potentially
1387 * already have a NGUID or EUI-64
1389 if (nvme_identify_ns_descs(ctrl, nsid, ids))
1390 dev_warn(ctrl->device,
1391 "%s: Identify Descriptors failed\n", __func__);
1395 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1397 return !uuid_is_null(&ids->uuid) ||
1398 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1399 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1402 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1404 return uuid_equal(&a->uuid, &b->uuid) &&
1405 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1406 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1409 static void nvme_update_disk_info(struct gendisk *disk,
1410 struct nvme_ns *ns, struct nvme_id_ns *id)
1412 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1413 unsigned short bs = 1 << ns->lba_shift;
1414 unsigned stream_alignment = 0;
1416 if (ns->ctrl->nr_streams && ns->sws && ns->sgs)
1417 stream_alignment = ns->sws * ns->sgs;
1419 blk_mq_freeze_queue(disk->queue);
1420 blk_integrity_unregister(disk);
1422 blk_queue_logical_block_size(disk->queue, bs);
1423 blk_queue_physical_block_size(disk->queue, bs);
1424 blk_queue_io_min(disk->queue, bs);
1426 if (ns->ms && !ns->ext &&
1427 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1428 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1429 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1430 capacity = 0;
1431 set_capacity(disk, capacity);
1433 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1434 nvme_config_discard(ns->ctrl, stream_alignment, disk->queue);
1435 blk_mq_unfreeze_queue(disk->queue);
1438 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1440 struct nvme_ns *ns = disk->private_data;
1443 * If identify namespace failed, use default 512 byte block size so
1444 * block layer can use before failing read/write for 0 capacity.
1446 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1447 if (ns->lba_shift == 0)
1448 ns->lba_shift = 9;
1449 ns->noiob = le16_to_cpu(id->noiob);
1450 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1451 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1452 /* the PI implementation requires metadata equal t10 pi tuple size */
1453 if (ns->ms == sizeof(struct t10_pi_tuple))
1454 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1455 else
1456 ns->pi_type = 0;
1458 if (ns->noiob)
1459 nvme_set_chunk_size(ns);
1460 nvme_update_disk_info(disk, ns, id);
1461 if (ns->ndev)
1462 nvme_nvm_update_nvm_info(ns);
1463 #ifdef CONFIG_NVME_MULTIPATH
1464 if (ns->head->disk)
1465 nvme_update_disk_info(ns->head->disk, ns, id);
1466 #endif
1469 static int nvme_revalidate_disk(struct gendisk *disk)
1471 struct nvme_ns *ns = disk->private_data;
1472 struct nvme_ctrl *ctrl = ns->ctrl;
1473 struct nvme_id_ns *id;
1474 struct nvme_ns_ids ids;
1475 int ret = 0;
1477 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1478 set_capacity(disk, 0);
1479 return -ENODEV;
1482 id = nvme_identify_ns(ctrl, ns->head->ns_id);
1483 if (!id)
1484 return -ENODEV;
1486 if (id->ncap == 0) {
1487 ret = -ENODEV;
1488 goto out;
1491 __nvme_revalidate_disk(disk, id);
1492 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1493 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1494 dev_err(ctrl->device,
1495 "identifiers changed for nsid %d\n", ns->head->ns_id);
1496 ret = -ENODEV;
1499 out:
1500 kfree(id);
1501 return ret;
1504 static char nvme_pr_type(enum pr_type type)
1506 switch (type) {
1507 case PR_WRITE_EXCLUSIVE:
1508 return 1;
1509 case PR_EXCLUSIVE_ACCESS:
1510 return 2;
1511 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1512 return 3;
1513 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1514 return 4;
1515 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1516 return 5;
1517 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1518 return 6;
1519 default:
1520 return 0;
1524 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1525 u64 key, u64 sa_key, u8 op)
1527 struct nvme_ns_head *head = NULL;
1528 struct nvme_ns *ns;
1529 struct nvme_command c;
1530 int srcu_idx, ret;
1531 u8 data[16] = { 0, };
1533 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1534 if (unlikely(!ns))
1535 return -EWOULDBLOCK;
1537 put_unaligned_le64(key, &data[0]);
1538 put_unaligned_le64(sa_key, &data[8]);
1540 memset(&c, 0, sizeof(c));
1541 c.common.opcode = op;
1542 c.common.nsid = cpu_to_le32(ns->head->ns_id);
1543 c.common.cdw10[0] = cpu_to_le32(cdw10);
1545 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1546 nvme_put_ns_from_disk(head, srcu_idx);
1547 return ret;
1550 static int nvme_pr_register(struct block_device *bdev, u64 old,
1551 u64 new, unsigned flags)
1553 u32 cdw10;
1555 if (flags & ~PR_FL_IGNORE_KEY)
1556 return -EOPNOTSUPP;
1558 cdw10 = old ? 2 : 0;
1559 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1560 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1561 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1564 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1565 enum pr_type type, unsigned flags)
1567 u32 cdw10;
1569 if (flags & ~PR_FL_IGNORE_KEY)
1570 return -EOPNOTSUPP;
1572 cdw10 = nvme_pr_type(type) << 8;
1573 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1574 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1577 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1578 enum pr_type type, bool abort)
1580 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1581 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1584 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1586 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1587 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1590 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1592 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1593 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1596 static const struct pr_ops nvme_pr_ops = {
1597 .pr_register = nvme_pr_register,
1598 .pr_reserve = nvme_pr_reserve,
1599 .pr_release = nvme_pr_release,
1600 .pr_preempt = nvme_pr_preempt,
1601 .pr_clear = nvme_pr_clear,
1604 #ifdef CONFIG_BLK_SED_OPAL
1605 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1606 bool send)
1608 struct nvme_ctrl *ctrl = data;
1609 struct nvme_command cmd;
1611 memset(&cmd, 0, sizeof(cmd));
1612 if (send)
1613 cmd.common.opcode = nvme_admin_security_send;
1614 else
1615 cmd.common.opcode = nvme_admin_security_recv;
1616 cmd.common.nsid = 0;
1617 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1618 cmd.common.cdw10[1] = cpu_to_le32(len);
1620 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1621 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1623 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1624 #endif /* CONFIG_BLK_SED_OPAL */
1626 static const struct block_device_operations nvme_fops = {
1627 .owner = THIS_MODULE,
1628 .ioctl = nvme_ioctl,
1629 .compat_ioctl = nvme_ioctl,
1630 .open = nvme_open,
1631 .release = nvme_release,
1632 .getgeo = nvme_getgeo,
1633 .revalidate_disk= nvme_revalidate_disk,
1634 .pr_ops = &nvme_pr_ops,
1637 #ifdef CONFIG_NVME_MULTIPATH
1638 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1640 struct nvme_ns_head *head = bdev->bd_disk->private_data;
1642 if (!kref_get_unless_zero(&head->ref))
1643 return -ENXIO;
1644 return 0;
1647 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1649 nvme_put_ns_head(disk->private_data);
1652 const struct block_device_operations nvme_ns_head_ops = {
1653 .owner = THIS_MODULE,
1654 .open = nvme_ns_head_open,
1655 .release = nvme_ns_head_release,
1656 .ioctl = nvme_ioctl,
1657 .compat_ioctl = nvme_ioctl,
1658 .getgeo = nvme_getgeo,
1659 .pr_ops = &nvme_pr_ops,
1661 #endif /* CONFIG_NVME_MULTIPATH */
1663 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1665 unsigned long timeout =
1666 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1667 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1668 int ret;
1670 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1671 if (csts == ~0)
1672 return -ENODEV;
1673 if ((csts & NVME_CSTS_RDY) == bit)
1674 break;
1676 msleep(100);
1677 if (fatal_signal_pending(current))
1678 return -EINTR;
1679 if (time_after(jiffies, timeout)) {
1680 dev_err(ctrl->device,
1681 "Device not ready; aborting %s\n", enabled ?
1682 "initialisation" : "reset");
1683 return -ENODEV;
1687 return ret;
1691 * If the device has been passed off to us in an enabled state, just clear
1692 * the enabled bit. The spec says we should set the 'shutdown notification
1693 * bits', but doing so may cause the device to complete commands to the
1694 * admin queue ... and we don't know what memory that might be pointing at!
1696 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1698 int ret;
1700 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1701 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1703 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1704 if (ret)
1705 return ret;
1707 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1708 msleep(NVME_QUIRK_DELAY_AMOUNT);
1710 return nvme_wait_ready(ctrl, cap, false);
1712 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1714 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1717 * Default to a 4K page size, with the intention to update this
1718 * path in the future to accomodate architectures with differing
1719 * kernel and IO page sizes.
1721 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1722 int ret;
1724 if (page_shift < dev_page_min) {
1725 dev_err(ctrl->device,
1726 "Minimum device page size %u too large for host (%u)\n",
1727 1 << dev_page_min, 1 << page_shift);
1728 return -ENODEV;
1731 ctrl->page_size = 1 << page_shift;
1733 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1734 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1735 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1736 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1737 ctrl->ctrl_config |= NVME_CC_ENABLE;
1739 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1740 if (ret)
1741 return ret;
1742 return nvme_wait_ready(ctrl, cap, true);
1744 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1746 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1748 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1749 u32 csts;
1750 int ret;
1752 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1753 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1755 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1756 if (ret)
1757 return ret;
1759 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1760 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1761 break;
1763 msleep(100);
1764 if (fatal_signal_pending(current))
1765 return -EINTR;
1766 if (time_after(jiffies, timeout)) {
1767 dev_err(ctrl->device,
1768 "Device shutdown incomplete; abort shutdown\n");
1769 return -ENODEV;
1773 return ret;
1775 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1777 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1778 struct request_queue *q)
1780 bool vwc = false;
1782 if (ctrl->max_hw_sectors) {
1783 u32 max_segments =
1784 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1786 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1787 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1789 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1790 is_power_of_2(ctrl->max_hw_sectors))
1791 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1792 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1793 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1794 vwc = true;
1795 blk_queue_write_cache(q, vwc, vwc);
1798 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1800 __le64 ts;
1801 int ret;
1803 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1804 return 0;
1806 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1807 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1808 NULL);
1809 if (ret)
1810 dev_warn_once(ctrl->device,
1811 "could not set timestamp (%d)\n", ret);
1812 return ret;
1815 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1818 * APST (Autonomous Power State Transition) lets us program a
1819 * table of power state transitions that the controller will
1820 * perform automatically. We configure it with a simple
1821 * heuristic: we are willing to spend at most 2% of the time
1822 * transitioning between power states. Therefore, when running
1823 * in any given state, we will enter the next lower-power
1824 * non-operational state after waiting 50 * (enlat + exlat)
1825 * microseconds, as long as that state's exit latency is under
1826 * the requested maximum latency.
1828 * We will not autonomously enter any non-operational state for
1829 * which the total latency exceeds ps_max_latency_us. Users
1830 * can set ps_max_latency_us to zero to turn off APST.
1833 unsigned apste;
1834 struct nvme_feat_auto_pst *table;
1835 u64 max_lat_us = 0;
1836 int max_ps = -1;
1837 int ret;
1840 * If APST isn't supported or if we haven't been initialized yet,
1841 * then don't do anything.
1843 if (!ctrl->apsta)
1844 return 0;
1846 if (ctrl->npss > 31) {
1847 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1848 return 0;
1851 table = kzalloc(sizeof(*table), GFP_KERNEL);
1852 if (!table)
1853 return 0;
1855 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1856 /* Turn off APST. */
1857 apste = 0;
1858 dev_dbg(ctrl->device, "APST disabled\n");
1859 } else {
1860 __le64 target = cpu_to_le64(0);
1861 int state;
1864 * Walk through all states from lowest- to highest-power.
1865 * According to the spec, lower-numbered states use more
1866 * power. NPSS, despite the name, is the index of the
1867 * lowest-power state, not the number of states.
1869 for (state = (int)ctrl->npss; state >= 0; state--) {
1870 u64 total_latency_us, exit_latency_us, transition_ms;
1872 if (target)
1873 table->entries[state] = target;
1876 * Don't allow transitions to the deepest state
1877 * if it's quirked off.
1879 if (state == ctrl->npss &&
1880 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1881 continue;
1884 * Is this state a useful non-operational state for
1885 * higher-power states to autonomously transition to?
1887 if (!(ctrl->psd[state].flags &
1888 NVME_PS_FLAGS_NON_OP_STATE))
1889 continue;
1891 exit_latency_us =
1892 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1893 if (exit_latency_us > ctrl->ps_max_latency_us)
1894 continue;
1896 total_latency_us =
1897 exit_latency_us +
1898 le32_to_cpu(ctrl->psd[state].entry_lat);
1901 * This state is good. Use it as the APST idle
1902 * target for higher power states.
1904 transition_ms = total_latency_us + 19;
1905 do_div(transition_ms, 20);
1906 if (transition_ms > (1 << 24) - 1)
1907 transition_ms = (1 << 24) - 1;
1909 target = cpu_to_le64((state << 3) |
1910 (transition_ms << 8));
1912 if (max_ps == -1)
1913 max_ps = state;
1915 if (total_latency_us > max_lat_us)
1916 max_lat_us = total_latency_us;
1919 apste = 1;
1921 if (max_ps == -1) {
1922 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1923 } else {
1924 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1925 max_ps, max_lat_us, (int)sizeof(*table), table);
1929 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1930 table, sizeof(*table), NULL);
1931 if (ret)
1932 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1934 kfree(table);
1935 return ret;
1938 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1940 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1941 u64 latency;
1943 switch (val) {
1944 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1945 case PM_QOS_LATENCY_ANY:
1946 latency = U64_MAX;
1947 break;
1949 default:
1950 latency = val;
1953 if (ctrl->ps_max_latency_us != latency) {
1954 ctrl->ps_max_latency_us = latency;
1955 nvme_configure_apst(ctrl);
1959 struct nvme_core_quirk_entry {
1961 * NVMe model and firmware strings are padded with spaces. For
1962 * simplicity, strings in the quirk table are padded with NULLs
1963 * instead.
1965 u16 vid;
1966 const char *mn;
1967 const char *fr;
1968 unsigned long quirks;
1971 static const struct nvme_core_quirk_entry core_quirks[] = {
1974 * This Toshiba device seems to die using any APST states. See:
1975 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1977 .vid = 0x1179,
1978 .mn = "THNSF5256GPUK TOSHIBA",
1979 .quirks = NVME_QUIRK_NO_APST,
1983 /* match is null-terminated but idstr is space-padded. */
1984 static bool string_matches(const char *idstr, const char *match, size_t len)
1986 size_t matchlen;
1988 if (!match)
1989 return true;
1991 matchlen = strlen(match);
1992 WARN_ON_ONCE(matchlen > len);
1994 if (memcmp(idstr, match, matchlen))
1995 return false;
1997 for (; matchlen < len; matchlen++)
1998 if (idstr[matchlen] != ' ')
1999 return false;
2001 return true;
2004 static bool quirk_matches(const struct nvme_id_ctrl *id,
2005 const struct nvme_core_quirk_entry *q)
2007 return q->vid == le16_to_cpu(id->vid) &&
2008 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2009 string_matches(id->fr, q->fr, sizeof(id->fr));
2012 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2013 struct nvme_id_ctrl *id)
2015 size_t nqnlen;
2016 int off;
2018 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2019 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2020 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2021 return;
2024 if (ctrl->vs >= NVME_VS(1, 2, 1))
2025 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2027 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2028 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2029 "nqn.2014.08.org.nvmexpress:%4x%4x",
2030 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2031 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2032 off += sizeof(id->sn);
2033 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2034 off += sizeof(id->mn);
2035 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2038 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2040 ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2041 kfree(subsys);
2044 static void nvme_release_subsystem(struct device *dev)
2046 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2049 static void nvme_destroy_subsystem(struct kref *ref)
2051 struct nvme_subsystem *subsys =
2052 container_of(ref, struct nvme_subsystem, ref);
2054 mutex_lock(&nvme_subsystems_lock);
2055 list_del(&subsys->entry);
2056 mutex_unlock(&nvme_subsystems_lock);
2058 ida_destroy(&subsys->ns_ida);
2059 device_del(&subsys->dev);
2060 put_device(&subsys->dev);
2063 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2065 kref_put(&subsys->ref, nvme_destroy_subsystem);
2068 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2070 struct nvme_subsystem *subsys;
2072 lockdep_assert_held(&nvme_subsystems_lock);
2074 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2075 if (strcmp(subsys->subnqn, subsysnqn))
2076 continue;
2077 if (!kref_get_unless_zero(&subsys->ref))
2078 continue;
2079 return subsys;
2082 return NULL;
2085 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2086 struct device_attribute subsys_attr_##_name = \
2087 __ATTR(_name, _mode, _show, NULL)
2089 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2090 struct device_attribute *attr,
2091 char *buf)
2093 struct nvme_subsystem *subsys =
2094 container_of(dev, struct nvme_subsystem, dev);
2096 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2098 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2100 #define nvme_subsys_show_str_function(field) \
2101 static ssize_t subsys_##field##_show(struct device *dev, \
2102 struct device_attribute *attr, char *buf) \
2104 struct nvme_subsystem *subsys = \
2105 container_of(dev, struct nvme_subsystem, dev); \
2106 return sprintf(buf, "%.*s\n", \
2107 (int)sizeof(subsys->field), subsys->field); \
2109 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2111 nvme_subsys_show_str_function(model);
2112 nvme_subsys_show_str_function(serial);
2113 nvme_subsys_show_str_function(firmware_rev);
2115 static struct attribute *nvme_subsys_attrs[] = {
2116 &subsys_attr_model.attr,
2117 &subsys_attr_serial.attr,
2118 &subsys_attr_firmware_rev.attr,
2119 &subsys_attr_subsysnqn.attr,
2120 NULL,
2123 static struct attribute_group nvme_subsys_attrs_group = {
2124 .attrs = nvme_subsys_attrs,
2127 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2128 &nvme_subsys_attrs_group,
2129 NULL,
2132 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2134 int count = 0;
2135 struct nvme_ctrl *ctrl;
2137 mutex_lock(&subsys->lock);
2138 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2139 if (ctrl->state != NVME_CTRL_DELETING &&
2140 ctrl->state != NVME_CTRL_DEAD)
2141 count++;
2143 mutex_unlock(&subsys->lock);
2145 return count;
2148 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2150 struct nvme_subsystem *subsys, *found;
2151 int ret;
2153 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2154 if (!subsys)
2155 return -ENOMEM;
2156 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2157 if (ret < 0) {
2158 kfree(subsys);
2159 return ret;
2161 subsys->instance = ret;
2162 mutex_init(&subsys->lock);
2163 kref_init(&subsys->ref);
2164 INIT_LIST_HEAD(&subsys->ctrls);
2165 INIT_LIST_HEAD(&subsys->nsheads);
2166 nvme_init_subnqn(subsys, ctrl, id);
2167 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2168 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2169 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2170 subsys->vendor_id = le16_to_cpu(id->vid);
2171 subsys->cmic = id->cmic;
2173 subsys->dev.class = nvme_subsys_class;
2174 subsys->dev.release = nvme_release_subsystem;
2175 subsys->dev.groups = nvme_subsys_attrs_groups;
2176 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2177 device_initialize(&subsys->dev);
2179 mutex_lock(&nvme_subsystems_lock);
2180 found = __nvme_find_get_subsystem(subsys->subnqn);
2181 if (found) {
2183 * Verify that the subsystem actually supports multiple
2184 * controllers, else bail out.
2186 if (nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2187 dev_err(ctrl->device,
2188 "ignoring ctrl due to duplicate subnqn (%s).\n",
2189 found->subnqn);
2190 nvme_put_subsystem(found);
2191 ret = -EINVAL;
2192 goto out_unlock;
2195 __nvme_release_subsystem(subsys);
2196 subsys = found;
2197 } else {
2198 ret = device_add(&subsys->dev);
2199 if (ret) {
2200 dev_err(ctrl->device,
2201 "failed to register subsystem device.\n");
2202 goto out_unlock;
2204 ida_init(&subsys->ns_ida);
2205 list_add_tail(&subsys->entry, &nvme_subsystems);
2208 ctrl->subsys = subsys;
2209 mutex_unlock(&nvme_subsystems_lock);
2211 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2212 dev_name(ctrl->device))) {
2213 dev_err(ctrl->device,
2214 "failed to create sysfs link from subsystem.\n");
2215 /* the transport driver will eventually put the subsystem */
2216 return -EINVAL;
2219 mutex_lock(&subsys->lock);
2220 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2221 mutex_unlock(&subsys->lock);
2223 return 0;
2225 out_unlock:
2226 mutex_unlock(&nvme_subsystems_lock);
2227 put_device(&subsys->dev);
2228 return ret;
2231 int nvme_get_log_ext(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
2232 u8 log_page, void *log,
2233 size_t size, u64 offset)
2235 struct nvme_command c = { };
2236 unsigned long dwlen = size / 4 - 1;
2238 c.get_log_page.opcode = nvme_admin_get_log_page;
2240 if (ns)
2241 c.get_log_page.nsid = cpu_to_le32(ns->head->ns_id);
2242 else
2243 c.get_log_page.nsid = cpu_to_le32(NVME_NSID_ALL);
2245 c.get_log_page.lid = log_page;
2246 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2247 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2248 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2249 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2251 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2254 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log,
2255 size_t size)
2257 return nvme_get_log_ext(ctrl, NULL, log_page, log, size, 0);
2260 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2262 int ret;
2264 if (!ctrl->effects)
2265 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2267 if (!ctrl->effects)
2268 return 0;
2270 ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects,
2271 sizeof(*ctrl->effects));
2272 if (ret) {
2273 kfree(ctrl->effects);
2274 ctrl->effects = NULL;
2276 return ret;
2280 * Initialize the cached copies of the Identify data and various controller
2281 * register in our nvme_ctrl structure. This should be called as soon as
2282 * the admin queue is fully up and running.
2284 int nvme_init_identify(struct nvme_ctrl *ctrl)
2286 struct nvme_id_ctrl *id;
2287 u64 cap;
2288 int ret, page_shift;
2289 u32 max_hw_sectors;
2290 bool prev_apst_enabled;
2292 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2293 if (ret) {
2294 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2295 return ret;
2298 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2299 if (ret) {
2300 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2301 return ret;
2303 page_shift = NVME_CAP_MPSMIN(cap) + 12;
2305 if (ctrl->vs >= NVME_VS(1, 1, 0))
2306 ctrl->subsystem = NVME_CAP_NSSRC(cap);
2308 ret = nvme_identify_ctrl(ctrl, &id);
2309 if (ret) {
2310 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2311 return -EIO;
2314 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2315 ret = nvme_get_effects_log(ctrl);
2316 if (ret < 0)
2317 return ret;
2320 if (!ctrl->identified) {
2321 int i;
2323 ret = nvme_init_subsystem(ctrl, id);
2324 if (ret)
2325 goto out_free;
2328 * Check for quirks. Quirk can depend on firmware version,
2329 * so, in principle, the set of quirks present can change
2330 * across a reset. As a possible future enhancement, we
2331 * could re-scan for quirks every time we reinitialize
2332 * the device, but we'd have to make sure that the driver
2333 * behaves intelligently if the quirks change.
2335 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2336 if (quirk_matches(id, &core_quirks[i]))
2337 ctrl->quirks |= core_quirks[i].quirks;
2341 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2342 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2343 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2346 ctrl->oacs = le16_to_cpu(id->oacs);
2347 ctrl->oncs = le16_to_cpup(&id->oncs);
2348 atomic_set(&ctrl->abort_limit, id->acl + 1);
2349 ctrl->vwc = id->vwc;
2350 ctrl->cntlid = le16_to_cpup(&id->cntlid);
2351 if (id->mdts)
2352 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2353 else
2354 max_hw_sectors = UINT_MAX;
2355 ctrl->max_hw_sectors =
2356 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2358 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2359 ctrl->sgls = le32_to_cpu(id->sgls);
2360 ctrl->kas = le16_to_cpu(id->kas);
2362 if (id->rtd3e) {
2363 /* us -> s */
2364 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2366 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2367 shutdown_timeout, 60);
2369 if (ctrl->shutdown_timeout != shutdown_timeout)
2370 dev_info(ctrl->device,
2371 "Shutdown timeout set to %u seconds\n",
2372 ctrl->shutdown_timeout);
2373 } else
2374 ctrl->shutdown_timeout = shutdown_timeout;
2376 ctrl->npss = id->npss;
2377 ctrl->apsta = id->apsta;
2378 prev_apst_enabled = ctrl->apst_enabled;
2379 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2380 if (force_apst && id->apsta) {
2381 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2382 ctrl->apst_enabled = true;
2383 } else {
2384 ctrl->apst_enabled = false;
2386 } else {
2387 ctrl->apst_enabled = id->apsta;
2389 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2391 if (ctrl->ops->flags & NVME_F_FABRICS) {
2392 ctrl->icdoff = le16_to_cpu(id->icdoff);
2393 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2394 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2395 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2398 * In fabrics we need to verify the cntlid matches the
2399 * admin connect
2401 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2402 ret = -EINVAL;
2403 goto out_free;
2406 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2407 dev_err(ctrl->device,
2408 "keep-alive support is mandatory for fabrics\n");
2409 ret = -EINVAL;
2410 goto out_free;
2412 } else {
2413 ctrl->cntlid = le16_to_cpu(id->cntlid);
2414 ctrl->hmpre = le32_to_cpu(id->hmpre);
2415 ctrl->hmmin = le32_to_cpu(id->hmmin);
2416 ctrl->hmminds = le32_to_cpu(id->hmminds);
2417 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2420 kfree(id);
2422 if (ctrl->apst_enabled && !prev_apst_enabled)
2423 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2424 else if (!ctrl->apst_enabled && prev_apst_enabled)
2425 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2427 ret = nvme_configure_apst(ctrl);
2428 if (ret < 0)
2429 return ret;
2431 ret = nvme_configure_timestamp(ctrl);
2432 if (ret < 0)
2433 return ret;
2435 ret = nvme_configure_directives(ctrl);
2436 if (ret < 0)
2437 return ret;
2439 ctrl->identified = true;
2441 return 0;
2443 out_free:
2444 kfree(id);
2445 return ret;
2447 EXPORT_SYMBOL_GPL(nvme_init_identify);
2449 static int nvme_dev_open(struct inode *inode, struct file *file)
2451 struct nvme_ctrl *ctrl =
2452 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2454 switch (ctrl->state) {
2455 case NVME_CTRL_LIVE:
2456 case NVME_CTRL_ADMIN_ONLY:
2457 break;
2458 default:
2459 return -EWOULDBLOCK;
2462 file->private_data = ctrl;
2463 return 0;
2466 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2468 struct nvme_ns *ns;
2469 int ret;
2471 down_read(&ctrl->namespaces_rwsem);
2472 if (list_empty(&ctrl->namespaces)) {
2473 ret = -ENOTTY;
2474 goto out_unlock;
2477 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2478 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2479 dev_warn(ctrl->device,
2480 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2481 ret = -EINVAL;
2482 goto out_unlock;
2485 dev_warn(ctrl->device,
2486 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2487 kref_get(&ns->kref);
2488 up_read(&ctrl->namespaces_rwsem);
2490 ret = nvme_user_cmd(ctrl, ns, argp);
2491 nvme_put_ns(ns);
2492 return ret;
2494 out_unlock:
2495 up_read(&ctrl->namespaces_rwsem);
2496 return ret;
2499 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2500 unsigned long arg)
2502 struct nvme_ctrl *ctrl = file->private_data;
2503 void __user *argp = (void __user *)arg;
2505 switch (cmd) {
2506 case NVME_IOCTL_ADMIN_CMD:
2507 return nvme_user_cmd(ctrl, NULL, argp);
2508 case NVME_IOCTL_IO_CMD:
2509 return nvme_dev_user_cmd(ctrl, argp);
2510 case NVME_IOCTL_RESET:
2511 dev_warn(ctrl->device, "resetting controller\n");
2512 return nvme_reset_ctrl_sync(ctrl);
2513 case NVME_IOCTL_SUBSYS_RESET:
2514 return nvme_reset_subsystem(ctrl);
2515 case NVME_IOCTL_RESCAN:
2516 nvme_queue_scan(ctrl);
2517 return 0;
2518 default:
2519 return -ENOTTY;
2523 static const struct file_operations nvme_dev_fops = {
2524 .owner = THIS_MODULE,
2525 .open = nvme_dev_open,
2526 .unlocked_ioctl = nvme_dev_ioctl,
2527 .compat_ioctl = nvme_dev_ioctl,
2530 static ssize_t nvme_sysfs_reset(struct device *dev,
2531 struct device_attribute *attr, const char *buf,
2532 size_t count)
2534 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2535 int ret;
2537 ret = nvme_reset_ctrl_sync(ctrl);
2538 if (ret < 0)
2539 return ret;
2540 return count;
2542 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2544 static ssize_t nvme_sysfs_rescan(struct device *dev,
2545 struct device_attribute *attr, const char *buf,
2546 size_t count)
2548 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2550 nvme_queue_scan(ctrl);
2551 return count;
2553 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2555 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2557 struct gendisk *disk = dev_to_disk(dev);
2559 if (disk->fops == &nvme_fops)
2560 return nvme_get_ns_from_dev(dev)->head;
2561 else
2562 return disk->private_data;
2565 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2566 char *buf)
2568 struct nvme_ns_head *head = dev_to_ns_head(dev);
2569 struct nvme_ns_ids *ids = &head->ids;
2570 struct nvme_subsystem *subsys = head->subsys;
2571 int serial_len = sizeof(subsys->serial);
2572 int model_len = sizeof(subsys->model);
2574 if (!uuid_is_null(&ids->uuid))
2575 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2577 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2578 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2580 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2581 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2583 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2584 subsys->serial[serial_len - 1] == '\0'))
2585 serial_len--;
2586 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2587 subsys->model[model_len - 1] == '\0'))
2588 model_len--;
2590 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2591 serial_len, subsys->serial, model_len, subsys->model,
2592 head->ns_id);
2594 static DEVICE_ATTR_RO(wwid);
2596 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2597 char *buf)
2599 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2601 static DEVICE_ATTR_RO(nguid);
2603 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2604 char *buf)
2606 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2608 /* For backward compatibility expose the NGUID to userspace if
2609 * we have no UUID set
2611 if (uuid_is_null(&ids->uuid)) {
2612 printk_ratelimited(KERN_WARNING
2613 "No UUID available providing old NGUID\n");
2614 return sprintf(buf, "%pU\n", ids->nguid);
2616 return sprintf(buf, "%pU\n", &ids->uuid);
2618 static DEVICE_ATTR_RO(uuid);
2620 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2621 char *buf)
2623 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2625 static DEVICE_ATTR_RO(eui);
2627 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2628 char *buf)
2630 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2632 static DEVICE_ATTR_RO(nsid);
2634 static struct attribute *nvme_ns_id_attrs[] = {
2635 &dev_attr_wwid.attr,
2636 &dev_attr_uuid.attr,
2637 &dev_attr_nguid.attr,
2638 &dev_attr_eui.attr,
2639 &dev_attr_nsid.attr,
2640 NULL,
2643 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2644 struct attribute *a, int n)
2646 struct device *dev = container_of(kobj, struct device, kobj);
2647 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2649 if (a == &dev_attr_uuid.attr) {
2650 if (uuid_is_null(&ids->uuid) &&
2651 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2652 return 0;
2654 if (a == &dev_attr_nguid.attr) {
2655 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2656 return 0;
2658 if (a == &dev_attr_eui.attr) {
2659 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2660 return 0;
2662 return a->mode;
2665 const struct attribute_group nvme_ns_id_attr_group = {
2666 .attrs = nvme_ns_id_attrs,
2667 .is_visible = nvme_ns_id_attrs_are_visible,
2670 #define nvme_show_str_function(field) \
2671 static ssize_t field##_show(struct device *dev, \
2672 struct device_attribute *attr, char *buf) \
2674 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2675 return sprintf(buf, "%.*s\n", \
2676 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
2678 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2680 nvme_show_str_function(model);
2681 nvme_show_str_function(serial);
2682 nvme_show_str_function(firmware_rev);
2684 #define nvme_show_int_function(field) \
2685 static ssize_t field##_show(struct device *dev, \
2686 struct device_attribute *attr, char *buf) \
2688 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2689 return sprintf(buf, "%d\n", ctrl->field); \
2691 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2693 nvme_show_int_function(cntlid);
2695 static ssize_t nvme_sysfs_delete(struct device *dev,
2696 struct device_attribute *attr, const char *buf,
2697 size_t count)
2699 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2701 if (device_remove_file_self(dev, attr))
2702 nvme_delete_ctrl_sync(ctrl);
2703 return count;
2705 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2707 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2708 struct device_attribute *attr,
2709 char *buf)
2711 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2713 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2715 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2717 static ssize_t nvme_sysfs_show_state(struct device *dev,
2718 struct device_attribute *attr,
2719 char *buf)
2721 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2722 static const char *const state_name[] = {
2723 [NVME_CTRL_NEW] = "new",
2724 [NVME_CTRL_LIVE] = "live",
2725 [NVME_CTRL_ADMIN_ONLY] = "only-admin",
2726 [NVME_CTRL_RESETTING] = "resetting",
2727 [NVME_CTRL_CONNECTING] = "connecting",
2728 [NVME_CTRL_DELETING] = "deleting",
2729 [NVME_CTRL_DEAD] = "dead",
2732 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2733 state_name[ctrl->state])
2734 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2736 return sprintf(buf, "unknown state\n");
2739 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2741 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2742 struct device_attribute *attr,
2743 char *buf)
2745 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2747 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2749 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2751 static ssize_t nvme_sysfs_show_address(struct device *dev,
2752 struct device_attribute *attr,
2753 char *buf)
2755 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2757 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2759 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2761 static struct attribute *nvme_dev_attrs[] = {
2762 &dev_attr_reset_controller.attr,
2763 &dev_attr_rescan_controller.attr,
2764 &dev_attr_model.attr,
2765 &dev_attr_serial.attr,
2766 &dev_attr_firmware_rev.attr,
2767 &dev_attr_cntlid.attr,
2768 &dev_attr_delete_controller.attr,
2769 &dev_attr_transport.attr,
2770 &dev_attr_subsysnqn.attr,
2771 &dev_attr_address.attr,
2772 &dev_attr_state.attr,
2773 NULL
2776 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2777 struct attribute *a, int n)
2779 struct device *dev = container_of(kobj, struct device, kobj);
2780 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2782 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2783 return 0;
2784 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2785 return 0;
2787 return a->mode;
2790 static struct attribute_group nvme_dev_attrs_group = {
2791 .attrs = nvme_dev_attrs,
2792 .is_visible = nvme_dev_attrs_are_visible,
2795 static const struct attribute_group *nvme_dev_attr_groups[] = {
2796 &nvme_dev_attrs_group,
2797 NULL,
2800 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2801 unsigned nsid)
2803 struct nvme_ns_head *h;
2805 lockdep_assert_held(&subsys->lock);
2807 list_for_each_entry(h, &subsys->nsheads, entry) {
2808 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2809 return h;
2812 return NULL;
2815 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2816 struct nvme_ns_head *new)
2818 struct nvme_ns_head *h;
2820 lockdep_assert_held(&subsys->lock);
2822 list_for_each_entry(h, &subsys->nsheads, entry) {
2823 if (nvme_ns_ids_valid(&new->ids) &&
2824 !list_empty(&h->list) &&
2825 nvme_ns_ids_equal(&new->ids, &h->ids))
2826 return -EINVAL;
2829 return 0;
2832 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2833 unsigned nsid, struct nvme_id_ns *id)
2835 struct nvme_ns_head *head;
2836 int ret = -ENOMEM;
2838 head = kzalloc(sizeof(*head), GFP_KERNEL);
2839 if (!head)
2840 goto out;
2841 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2842 if (ret < 0)
2843 goto out_free_head;
2844 head->instance = ret;
2845 INIT_LIST_HEAD(&head->list);
2846 ret = init_srcu_struct(&head->srcu);
2847 if (ret)
2848 goto out_ida_remove;
2849 head->subsys = ctrl->subsys;
2850 head->ns_id = nsid;
2851 kref_init(&head->ref);
2853 nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2855 ret = __nvme_check_ids(ctrl->subsys, head);
2856 if (ret) {
2857 dev_err(ctrl->device,
2858 "duplicate IDs for nsid %d\n", nsid);
2859 goto out_cleanup_srcu;
2862 ret = nvme_mpath_alloc_disk(ctrl, head);
2863 if (ret)
2864 goto out_cleanup_srcu;
2866 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2868 kref_get(&ctrl->subsys->ref);
2870 return head;
2871 out_cleanup_srcu:
2872 cleanup_srcu_struct(&head->srcu);
2873 out_ida_remove:
2874 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2875 out_free_head:
2876 kfree(head);
2877 out:
2878 return ERR_PTR(ret);
2881 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2882 struct nvme_id_ns *id)
2884 struct nvme_ctrl *ctrl = ns->ctrl;
2885 bool is_shared = id->nmic & (1 << 0);
2886 struct nvme_ns_head *head = NULL;
2887 int ret = 0;
2889 mutex_lock(&ctrl->subsys->lock);
2890 if (is_shared)
2891 head = __nvme_find_ns_head(ctrl->subsys, nsid);
2892 if (!head) {
2893 head = nvme_alloc_ns_head(ctrl, nsid, id);
2894 if (IS_ERR(head)) {
2895 ret = PTR_ERR(head);
2896 goto out_unlock;
2898 } else {
2899 struct nvme_ns_ids ids;
2901 nvme_report_ns_ids(ctrl, nsid, id, &ids);
2902 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2903 dev_err(ctrl->device,
2904 "IDs don't match for shared namespace %d\n",
2905 nsid);
2906 ret = -EINVAL;
2907 goto out_unlock;
2911 list_add_tail(&ns->siblings, &head->list);
2912 ns->head = head;
2914 out_unlock:
2915 mutex_unlock(&ctrl->subsys->lock);
2916 return ret;
2919 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2921 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2922 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2924 return nsa->head->ns_id - nsb->head->ns_id;
2927 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2929 struct nvme_ns *ns, *ret = NULL;
2931 down_read(&ctrl->namespaces_rwsem);
2932 list_for_each_entry(ns, &ctrl->namespaces, list) {
2933 if (ns->head->ns_id == nsid) {
2934 if (!kref_get_unless_zero(&ns->kref))
2935 continue;
2936 ret = ns;
2937 break;
2939 if (ns->head->ns_id > nsid)
2940 break;
2942 up_read(&ctrl->namespaces_rwsem);
2943 return ret;
2946 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2948 struct streams_directive_params s;
2949 int ret;
2951 if (!ctrl->nr_streams)
2952 return 0;
2954 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2955 if (ret)
2956 return ret;
2958 ns->sws = le32_to_cpu(s.sws);
2959 ns->sgs = le16_to_cpu(s.sgs);
2961 if (ns->sws) {
2962 unsigned int bs = 1 << ns->lba_shift;
2964 blk_queue_io_min(ns->queue, bs * ns->sws);
2965 if (ns->sgs)
2966 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2969 return 0;
2972 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2974 struct nvme_ns *ns;
2975 struct gendisk *disk;
2976 struct nvme_id_ns *id;
2977 char disk_name[DISK_NAME_LEN];
2978 int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
2980 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2981 if (!ns)
2982 return;
2984 ns->queue = blk_mq_init_queue(ctrl->tagset);
2985 if (IS_ERR(ns->queue))
2986 goto out_free_ns;
2987 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
2988 ns->queue->queuedata = ns;
2989 ns->ctrl = ctrl;
2991 kref_init(&ns->kref);
2992 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2994 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2995 nvme_set_queue_limits(ctrl, ns->queue);
2997 id = nvme_identify_ns(ctrl, nsid);
2998 if (!id)
2999 goto out_free_queue;
3001 if (id->ncap == 0)
3002 goto out_free_id;
3004 if (nvme_init_ns_head(ns, nsid, id))
3005 goto out_free_id;
3006 nvme_setup_streams_ns(ctrl, ns);
3007 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3009 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3010 if (nvme_nvm_register(ns, disk_name, node)) {
3011 dev_warn(ctrl->device, "LightNVM init failure\n");
3012 goto out_unlink_ns;
3016 disk = alloc_disk_node(0, node);
3017 if (!disk)
3018 goto out_unlink_ns;
3020 disk->fops = &nvme_fops;
3021 disk->private_data = ns;
3022 disk->queue = ns->queue;
3023 disk->flags = flags;
3024 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3025 ns->disk = disk;
3027 __nvme_revalidate_disk(disk, id);
3029 down_write(&ctrl->namespaces_rwsem);
3030 list_add_tail(&ns->list, &ctrl->namespaces);
3031 up_write(&ctrl->namespaces_rwsem);
3033 nvme_get_ctrl(ctrl);
3035 kfree(id);
3037 device_add_disk(ctrl->device, ns->disk);
3038 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
3039 &nvme_ns_id_attr_group))
3040 pr_warn("%s: failed to create sysfs group for identification\n",
3041 ns->disk->disk_name);
3042 if (ns->ndev && nvme_nvm_register_sysfs(ns))
3043 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3044 ns->disk->disk_name);
3046 nvme_mpath_add_disk(ns->head);
3047 nvme_fault_inject_init(ns);
3048 return;
3049 out_unlink_ns:
3050 mutex_lock(&ctrl->subsys->lock);
3051 list_del_rcu(&ns->siblings);
3052 mutex_unlock(&ctrl->subsys->lock);
3053 out_free_id:
3054 kfree(id);
3055 out_free_queue:
3056 blk_cleanup_queue(ns->queue);
3057 out_free_ns:
3058 kfree(ns);
3061 static void nvme_ns_remove(struct nvme_ns *ns)
3063 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3064 return;
3066 nvme_fault_inject_fini(ns);
3067 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3068 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
3069 &nvme_ns_id_attr_group);
3070 if (ns->ndev)
3071 nvme_nvm_unregister_sysfs(ns);
3072 del_gendisk(ns->disk);
3073 blk_cleanup_queue(ns->queue);
3074 if (blk_get_integrity(ns->disk))
3075 blk_integrity_unregister(ns->disk);
3078 mutex_lock(&ns->ctrl->subsys->lock);
3079 nvme_mpath_clear_current_path(ns);
3080 list_del_rcu(&ns->siblings);
3081 mutex_unlock(&ns->ctrl->subsys->lock);
3083 down_write(&ns->ctrl->namespaces_rwsem);
3084 list_del_init(&ns->list);
3085 up_write(&ns->ctrl->namespaces_rwsem);
3087 synchronize_srcu(&ns->head->srcu);
3088 nvme_mpath_check_last_path(ns);
3089 nvme_put_ns(ns);
3092 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3094 struct nvme_ns *ns;
3096 ns = nvme_find_get_ns(ctrl, nsid);
3097 if (ns) {
3098 if (ns->disk && revalidate_disk(ns->disk))
3099 nvme_ns_remove(ns);
3100 nvme_put_ns(ns);
3101 } else
3102 nvme_alloc_ns(ctrl, nsid);
3105 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3106 unsigned nsid)
3108 struct nvme_ns *ns, *next;
3109 LIST_HEAD(rm_list);
3111 down_write(&ctrl->namespaces_rwsem);
3112 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3113 if (ns->head->ns_id > nsid)
3114 list_move_tail(&ns->list, &rm_list);
3116 up_write(&ctrl->namespaces_rwsem);
3118 list_for_each_entry_safe(ns, next, &rm_list, list)
3119 nvme_ns_remove(ns);
3123 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3125 struct nvme_ns *ns;
3126 __le32 *ns_list;
3127 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3128 int ret = 0;
3130 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3131 if (!ns_list)
3132 return -ENOMEM;
3134 for (i = 0; i < num_lists; i++) {
3135 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3136 if (ret)
3137 goto free;
3139 for (j = 0; j < min(nn, 1024U); j++) {
3140 nsid = le32_to_cpu(ns_list[j]);
3141 if (!nsid)
3142 goto out;
3144 nvme_validate_ns(ctrl, nsid);
3146 while (++prev < nsid) {
3147 ns = nvme_find_get_ns(ctrl, prev);
3148 if (ns) {
3149 nvme_ns_remove(ns);
3150 nvme_put_ns(ns);
3154 nn -= j;
3156 out:
3157 nvme_remove_invalid_namespaces(ctrl, prev);
3158 free:
3159 kfree(ns_list);
3160 return ret;
3163 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3165 unsigned i;
3167 for (i = 1; i <= nn; i++)
3168 nvme_validate_ns(ctrl, i);
3170 nvme_remove_invalid_namespaces(ctrl, nn);
3173 static void nvme_scan_work(struct work_struct *work)
3175 struct nvme_ctrl *ctrl =
3176 container_of(work, struct nvme_ctrl, scan_work);
3177 struct nvme_id_ctrl *id;
3178 unsigned nn;
3180 if (ctrl->state != NVME_CTRL_LIVE)
3181 return;
3183 WARN_ON_ONCE(!ctrl->tagset);
3185 if (nvme_identify_ctrl(ctrl, &id))
3186 return;
3188 nn = le32_to_cpu(id->nn);
3189 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3190 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3191 if (!nvme_scan_ns_list(ctrl, nn))
3192 goto done;
3194 nvme_scan_ns_sequential(ctrl, nn);
3195 done:
3196 down_write(&ctrl->namespaces_rwsem);
3197 list_sort(NULL, &ctrl->namespaces, ns_cmp);
3198 up_write(&ctrl->namespaces_rwsem);
3199 kfree(id);
3202 void nvme_queue_scan(struct nvme_ctrl *ctrl)
3205 * Only new queue scan work when admin and IO queues are both alive
3207 if (ctrl->state == NVME_CTRL_LIVE)
3208 queue_work(nvme_wq, &ctrl->scan_work);
3210 EXPORT_SYMBOL_GPL(nvme_queue_scan);
3213 * This function iterates the namespace list unlocked to allow recovery from
3214 * controller failure. It is up to the caller to ensure the namespace list is
3215 * not modified by scan work while this function is executing.
3217 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3219 struct nvme_ns *ns, *next;
3220 LIST_HEAD(ns_list);
3223 * The dead states indicates the controller was not gracefully
3224 * disconnected. In that case, we won't be able to flush any data while
3225 * removing the namespaces' disks; fail all the queues now to avoid
3226 * potentially having to clean up the failed sync later.
3228 if (ctrl->state == NVME_CTRL_DEAD)
3229 nvme_kill_queues(ctrl);
3231 down_write(&ctrl->namespaces_rwsem);
3232 list_splice_init(&ctrl->namespaces, &ns_list);
3233 up_write(&ctrl->namespaces_rwsem);
3235 list_for_each_entry_safe(ns, next, &ns_list, list)
3236 nvme_ns_remove(ns);
3238 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3240 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3242 char *envp[2] = { NULL, NULL };
3243 u32 aen_result = ctrl->aen_result;
3245 ctrl->aen_result = 0;
3246 if (!aen_result)
3247 return;
3249 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3250 if (!envp[0])
3251 return;
3252 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3253 kfree(envp[0]);
3256 static void nvme_async_event_work(struct work_struct *work)
3258 struct nvme_ctrl *ctrl =
3259 container_of(work, struct nvme_ctrl, async_event_work);
3261 nvme_aen_uevent(ctrl);
3262 ctrl->ops->submit_async_event(ctrl);
3265 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3268 u32 csts;
3270 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3271 return false;
3273 if (csts == ~0)
3274 return false;
3276 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3279 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3281 struct nvme_fw_slot_info_log *log;
3283 log = kmalloc(sizeof(*log), GFP_KERNEL);
3284 if (!log)
3285 return;
3287 if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log)))
3288 dev_warn(ctrl->device,
3289 "Get FW SLOT INFO log error\n");
3290 kfree(log);
3293 static void nvme_fw_act_work(struct work_struct *work)
3295 struct nvme_ctrl *ctrl = container_of(work,
3296 struct nvme_ctrl, fw_act_work);
3297 unsigned long fw_act_timeout;
3299 if (ctrl->mtfa)
3300 fw_act_timeout = jiffies +
3301 msecs_to_jiffies(ctrl->mtfa * 100);
3302 else
3303 fw_act_timeout = jiffies +
3304 msecs_to_jiffies(admin_timeout * 1000);
3306 nvme_stop_queues(ctrl);
3307 while (nvme_ctrl_pp_status(ctrl)) {
3308 if (time_after(jiffies, fw_act_timeout)) {
3309 dev_warn(ctrl->device,
3310 "Fw activation timeout, reset controller\n");
3311 nvme_reset_ctrl(ctrl);
3312 break;
3314 msleep(100);
3317 if (ctrl->state != NVME_CTRL_LIVE)
3318 return;
3320 nvme_start_queues(ctrl);
3321 /* read FW slot information to clear the AER */
3322 nvme_get_fw_slot_info(ctrl);
3325 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3326 union nvme_result *res)
3328 u32 result = le32_to_cpu(res->u32);
3330 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3331 return;
3333 switch (result & 0x7) {
3334 case NVME_AER_ERROR:
3335 case NVME_AER_SMART:
3336 case NVME_AER_CSS:
3337 case NVME_AER_VS:
3338 ctrl->aen_result = result;
3339 break;
3340 default:
3341 break;
3344 switch (result & 0xff07) {
3345 case NVME_AER_NOTICE_NS_CHANGED:
3346 dev_info(ctrl->device, "rescanning\n");
3347 nvme_queue_scan(ctrl);
3348 break;
3349 case NVME_AER_NOTICE_FW_ACT_STARTING:
3350 queue_work(nvme_wq, &ctrl->fw_act_work);
3351 break;
3352 default:
3353 dev_warn(ctrl->device, "async event result %08x\n", result);
3355 queue_work(nvme_wq, &ctrl->async_event_work);
3357 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3359 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3361 nvme_stop_keep_alive(ctrl);
3362 flush_work(&ctrl->async_event_work);
3363 flush_work(&ctrl->scan_work);
3364 cancel_work_sync(&ctrl->fw_act_work);
3365 if (ctrl->ops->stop_ctrl)
3366 ctrl->ops->stop_ctrl(ctrl);
3368 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3370 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3372 if (ctrl->kato)
3373 nvme_start_keep_alive(ctrl);
3375 if (ctrl->queue_count > 1) {
3376 nvme_queue_scan(ctrl);
3377 queue_work(nvme_wq, &ctrl->async_event_work);
3378 nvme_start_queues(ctrl);
3381 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3383 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3385 cdev_device_del(&ctrl->cdev, ctrl->device);
3387 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3389 static void nvme_free_ctrl(struct device *dev)
3391 struct nvme_ctrl *ctrl =
3392 container_of(dev, struct nvme_ctrl, ctrl_device);
3393 struct nvme_subsystem *subsys = ctrl->subsys;
3395 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3396 kfree(ctrl->effects);
3398 if (subsys) {
3399 mutex_lock(&subsys->lock);
3400 list_del(&ctrl->subsys_entry);
3401 mutex_unlock(&subsys->lock);
3402 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3405 ctrl->ops->free_ctrl(ctrl);
3407 if (subsys)
3408 nvme_put_subsystem(subsys);
3412 * Initialize a NVMe controller structures. This needs to be called during
3413 * earliest initialization so that we have the initialized structured around
3414 * during probing.
3416 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3417 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3419 int ret;
3421 ctrl->state = NVME_CTRL_NEW;
3422 spin_lock_init(&ctrl->lock);
3423 INIT_LIST_HEAD(&ctrl->namespaces);
3424 init_rwsem(&ctrl->namespaces_rwsem);
3425 ctrl->dev = dev;
3426 ctrl->ops = ops;
3427 ctrl->quirks = quirks;
3428 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3429 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3430 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3431 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3433 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3434 if (ret < 0)
3435 goto out;
3436 ctrl->instance = ret;
3438 device_initialize(&ctrl->ctrl_device);
3439 ctrl->device = &ctrl->ctrl_device;
3440 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3441 ctrl->device->class = nvme_class;
3442 ctrl->device->parent = ctrl->dev;
3443 ctrl->device->groups = nvme_dev_attr_groups;
3444 ctrl->device->release = nvme_free_ctrl;
3445 dev_set_drvdata(ctrl->device, ctrl);
3446 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3447 if (ret)
3448 goto out_release_instance;
3450 cdev_init(&ctrl->cdev, &nvme_dev_fops);
3451 ctrl->cdev.owner = ops->module;
3452 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3453 if (ret)
3454 goto out_free_name;
3457 * Initialize latency tolerance controls. The sysfs files won't
3458 * be visible to userspace unless the device actually supports APST.
3460 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3461 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3462 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3464 return 0;
3465 out_free_name:
3466 kfree_const(dev->kobj.name);
3467 out_release_instance:
3468 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3469 out:
3470 return ret;
3472 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3475 * nvme_kill_queues(): Ends all namespace queues
3476 * @ctrl: the dead controller that needs to end
3478 * Call this function when the driver determines it is unable to get the
3479 * controller in a state capable of servicing IO.
3481 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3483 struct nvme_ns *ns;
3485 down_read(&ctrl->namespaces_rwsem);
3487 /* Forcibly unquiesce queues to avoid blocking dispatch */
3488 if (ctrl->admin_q)
3489 blk_mq_unquiesce_queue(ctrl->admin_q);
3491 list_for_each_entry(ns, &ctrl->namespaces, list) {
3493 * Revalidating a dead namespace sets capacity to 0. This will
3494 * end buffered writers dirtying pages that can't be synced.
3496 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
3497 continue;
3498 revalidate_disk(ns->disk);
3499 blk_set_queue_dying(ns->queue);
3501 /* Forcibly unquiesce queues to avoid blocking dispatch */
3502 blk_mq_unquiesce_queue(ns->queue);
3504 up_read(&ctrl->namespaces_rwsem);
3506 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3508 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3510 struct nvme_ns *ns;
3512 down_read(&ctrl->namespaces_rwsem);
3513 list_for_each_entry(ns, &ctrl->namespaces, list)
3514 blk_mq_unfreeze_queue(ns->queue);
3515 up_read(&ctrl->namespaces_rwsem);
3517 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3519 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3521 struct nvme_ns *ns;
3523 down_read(&ctrl->namespaces_rwsem);
3524 list_for_each_entry(ns, &ctrl->namespaces, list) {
3525 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3526 if (timeout <= 0)
3527 break;
3529 up_read(&ctrl->namespaces_rwsem);
3531 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3533 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3535 struct nvme_ns *ns;
3537 down_read(&ctrl->namespaces_rwsem);
3538 list_for_each_entry(ns, &ctrl->namespaces, list)
3539 blk_mq_freeze_queue_wait(ns->queue);
3540 up_read(&ctrl->namespaces_rwsem);
3542 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3544 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3546 struct nvme_ns *ns;
3548 down_read(&ctrl->namespaces_rwsem);
3549 list_for_each_entry(ns, &ctrl->namespaces, list)
3550 blk_freeze_queue_start(ns->queue);
3551 up_read(&ctrl->namespaces_rwsem);
3553 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3555 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3557 struct nvme_ns *ns;
3559 down_read(&ctrl->namespaces_rwsem);
3560 list_for_each_entry(ns, &ctrl->namespaces, list)
3561 blk_mq_quiesce_queue(ns->queue);
3562 up_read(&ctrl->namespaces_rwsem);
3564 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3566 void nvme_start_queues(struct nvme_ctrl *ctrl)
3568 struct nvme_ns *ns;
3570 down_read(&ctrl->namespaces_rwsem);
3571 list_for_each_entry(ns, &ctrl->namespaces, list)
3572 blk_mq_unquiesce_queue(ns->queue);
3573 up_read(&ctrl->namespaces_rwsem);
3575 EXPORT_SYMBOL_GPL(nvme_start_queues);
3577 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set)
3579 if (!ctrl->ops->reinit_request)
3580 return 0;
3582 return blk_mq_tagset_iter(set, set->driver_data,
3583 ctrl->ops->reinit_request);
3585 EXPORT_SYMBOL_GPL(nvme_reinit_tagset);
3587 int __init nvme_core_init(void)
3589 int result = -ENOMEM;
3591 nvme_wq = alloc_workqueue("nvme-wq",
3592 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3593 if (!nvme_wq)
3594 goto out;
3596 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3597 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3598 if (!nvme_reset_wq)
3599 goto destroy_wq;
3601 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3602 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3603 if (!nvme_delete_wq)
3604 goto destroy_reset_wq;
3606 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3607 if (result < 0)
3608 goto destroy_delete_wq;
3610 nvme_class = class_create(THIS_MODULE, "nvme");
3611 if (IS_ERR(nvme_class)) {
3612 result = PTR_ERR(nvme_class);
3613 goto unregister_chrdev;
3616 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3617 if (IS_ERR(nvme_subsys_class)) {
3618 result = PTR_ERR(nvme_subsys_class);
3619 goto destroy_class;
3621 return 0;
3623 destroy_class:
3624 class_destroy(nvme_class);
3625 unregister_chrdev:
3626 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3627 destroy_delete_wq:
3628 destroy_workqueue(nvme_delete_wq);
3629 destroy_reset_wq:
3630 destroy_workqueue(nvme_reset_wq);
3631 destroy_wq:
3632 destroy_workqueue(nvme_wq);
3633 out:
3634 return result;
3637 void nvme_core_exit(void)
3639 ida_destroy(&nvme_subsystems_ida);
3640 class_destroy(nvme_subsys_class);
3641 class_destroy(nvme_class);
3642 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3643 destroy_workqueue(nvme_delete_wq);
3644 destroy_workqueue(nvme_reset_wq);
3645 destroy_workqueue(nvme_wq);
3648 MODULE_LICENSE("GPL");
3649 MODULE_VERSION("1.0");
3650 module_init(nvme_core_init);
3651 module_exit(nvme_core_exit);