2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
32 #define CREATE_TRACE_POINTS
38 #define NVME_MINORS (1U << MINORBITS)
40 unsigned int admin_timeout
= 60;
41 module_param(admin_timeout
, uint
, 0644);
42 MODULE_PARM_DESC(admin_timeout
, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout
);
45 unsigned int nvme_io_timeout
= 30;
46 module_param_named(io_timeout
, nvme_io_timeout
, uint
, 0644);
47 MODULE_PARM_DESC(io_timeout
, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout
);
50 static unsigned char shutdown_timeout
= 5;
51 module_param(shutdown_timeout
, byte
, 0644);
52 MODULE_PARM_DESC(shutdown_timeout
, "timeout in seconds for controller shutdown");
54 static u8 nvme_max_retries
= 5;
55 module_param_named(max_retries
, nvme_max_retries
, byte
, 0644);
56 MODULE_PARM_DESC(max_retries
, "max number of retries a command may have");
58 static unsigned long default_ps_max_latency_us
= 100000;
59 module_param(default_ps_max_latency_us
, ulong
, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us
,
61 "max power saving latency for new devices; use PM QOS to change per device");
63 static bool force_apst
;
64 module_param(force_apst
, bool, 0644);
65 MODULE_PARM_DESC(force_apst
, "allow APST for newly enumerated devices even if quirked off");
68 module_param(streams
, bool, 0644);
69 MODULE_PARM_DESC(streams
, "turn on support for Streams write directives");
72 * nvme_wq - hosts nvme related works that are not reset or delete
73 * nvme_reset_wq - hosts nvme reset works
74 * nvme_delete_wq - hosts nvme delete works
76 * nvme_wq will host works such are scan, aen handling, fw activation,
77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78 * runs reset works which also flush works hosted on nvme_wq for
79 * serialization purposes. nvme_delete_wq host controller deletion
80 * works which flush reset works for serialization.
82 struct workqueue_struct
*nvme_wq
;
83 EXPORT_SYMBOL_GPL(nvme_wq
);
85 struct workqueue_struct
*nvme_reset_wq
;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq
);
88 struct workqueue_struct
*nvme_delete_wq
;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq
);
91 static DEFINE_IDA(nvme_subsystems_ida
);
92 static LIST_HEAD(nvme_subsystems
);
93 static DEFINE_MUTEX(nvme_subsystems_lock
);
95 static DEFINE_IDA(nvme_instance_ida
);
96 static dev_t nvme_chr_devt
;
97 static struct class *nvme_class
;
98 static struct class *nvme_subsys_class
;
100 static void nvme_ns_remove(struct nvme_ns
*ns
);
101 static int nvme_revalidate_disk(struct gendisk
*disk
);
102 static void nvme_put_subsystem(struct nvme_subsystem
*subsys
);
104 int nvme_reset_ctrl(struct nvme_ctrl
*ctrl
)
106 if (!nvme_change_ctrl_state(ctrl
, NVME_CTRL_RESETTING
))
108 if (!queue_work(nvme_reset_wq
, &ctrl
->reset_work
))
112 EXPORT_SYMBOL_GPL(nvme_reset_ctrl
);
114 int nvme_reset_ctrl_sync(struct nvme_ctrl
*ctrl
)
118 ret
= nvme_reset_ctrl(ctrl
);
120 flush_work(&ctrl
->reset_work
);
121 if (ctrl
->state
!= NVME_CTRL_LIVE
&&
122 ctrl
->state
!= NVME_CTRL_ADMIN_ONLY
)
128 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync
);
130 static void nvme_delete_ctrl_work(struct work_struct
*work
)
132 struct nvme_ctrl
*ctrl
=
133 container_of(work
, struct nvme_ctrl
, delete_work
);
135 dev_info(ctrl
->device
,
136 "Removing ctrl: NQN \"%s\"\n", ctrl
->opts
->subsysnqn
);
138 flush_work(&ctrl
->reset_work
);
139 nvme_stop_ctrl(ctrl
);
140 nvme_remove_namespaces(ctrl
);
141 ctrl
->ops
->delete_ctrl(ctrl
);
142 nvme_uninit_ctrl(ctrl
);
146 int nvme_delete_ctrl(struct nvme_ctrl
*ctrl
)
148 if (!nvme_change_ctrl_state(ctrl
, NVME_CTRL_DELETING
))
150 if (!queue_work(nvme_delete_wq
, &ctrl
->delete_work
))
154 EXPORT_SYMBOL_GPL(nvme_delete_ctrl
);
156 int nvme_delete_ctrl_sync(struct nvme_ctrl
*ctrl
)
161 * Keep a reference until the work is flushed since ->delete_ctrl
162 * can free the controller.
165 ret
= nvme_delete_ctrl(ctrl
);
167 flush_work(&ctrl
->delete_work
);
171 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync
);
173 static inline bool nvme_ns_has_pi(struct nvme_ns
*ns
)
175 return ns
->pi_type
&& ns
->ms
== sizeof(struct t10_pi_tuple
);
178 static blk_status_t
nvme_error_status(struct request
*req
)
180 switch (nvme_req(req
)->status
& 0x7ff) {
181 case NVME_SC_SUCCESS
:
183 case NVME_SC_CAP_EXCEEDED
:
184 return BLK_STS_NOSPC
;
185 case NVME_SC_LBA_RANGE
:
186 return BLK_STS_TARGET
;
187 case NVME_SC_BAD_ATTRIBUTES
:
188 case NVME_SC_ONCS_NOT_SUPPORTED
:
189 case NVME_SC_INVALID_OPCODE
:
190 case NVME_SC_INVALID_FIELD
:
191 case NVME_SC_INVALID_NS
:
192 return BLK_STS_NOTSUPP
;
193 case NVME_SC_WRITE_FAULT
:
194 case NVME_SC_READ_ERROR
:
195 case NVME_SC_UNWRITTEN_BLOCK
:
196 case NVME_SC_ACCESS_DENIED
:
197 case NVME_SC_READ_ONLY
:
198 case NVME_SC_COMPARE_FAILED
:
199 return BLK_STS_MEDIUM
;
200 case NVME_SC_GUARD_CHECK
:
201 case NVME_SC_APPTAG_CHECK
:
202 case NVME_SC_REFTAG_CHECK
:
203 case NVME_SC_INVALID_PI
:
204 return BLK_STS_PROTECTION
;
205 case NVME_SC_RESERVATION_CONFLICT
:
206 return BLK_STS_NEXUS
;
208 return BLK_STS_IOERR
;
212 static inline bool nvme_req_needs_retry(struct request
*req
)
214 if (blk_noretry_request(req
))
216 if (nvme_req(req
)->status
& NVME_SC_DNR
)
218 if (nvme_req(req
)->retries
>= nvme_max_retries
)
223 void nvme_complete_rq(struct request
*req
)
225 blk_status_t status
= nvme_error_status(req
);
227 trace_nvme_complete_rq(req
);
229 if (unlikely(status
!= BLK_STS_OK
&& nvme_req_needs_retry(req
))) {
230 if (nvme_req_needs_failover(req
, status
)) {
231 nvme_failover_req(req
);
235 if (!blk_queue_dying(req
->q
)) {
236 nvme_req(req
)->retries
++;
237 blk_mq_requeue_request(req
, true);
241 blk_mq_end_request(req
, status
);
243 EXPORT_SYMBOL_GPL(nvme_complete_rq
);
245 void nvme_cancel_request(struct request
*req
, void *data
, bool reserved
)
247 if (!blk_mq_request_started(req
))
250 dev_dbg_ratelimited(((struct nvme_ctrl
*) data
)->device
,
251 "Cancelling I/O %d", req
->tag
);
253 nvme_req(req
)->status
= NVME_SC_ABORT_REQ
;
254 blk_mq_complete_request(req
);
257 EXPORT_SYMBOL_GPL(nvme_cancel_request
);
259 bool nvme_change_ctrl_state(struct nvme_ctrl
*ctrl
,
260 enum nvme_ctrl_state new_state
)
262 enum nvme_ctrl_state old_state
;
264 bool changed
= false;
266 spin_lock_irqsave(&ctrl
->lock
, flags
);
268 old_state
= ctrl
->state
;
270 case NVME_CTRL_ADMIN_ONLY
:
272 case NVME_CTRL_CONNECTING
:
282 case NVME_CTRL_RESETTING
:
283 case NVME_CTRL_CONNECTING
:
290 case NVME_CTRL_RESETTING
:
294 case NVME_CTRL_ADMIN_ONLY
:
301 case NVME_CTRL_CONNECTING
:
304 case NVME_CTRL_RESETTING
:
311 case NVME_CTRL_DELETING
:
314 case NVME_CTRL_ADMIN_ONLY
:
315 case NVME_CTRL_RESETTING
:
316 case NVME_CTRL_CONNECTING
:
325 case NVME_CTRL_DELETING
:
337 ctrl
->state
= new_state
;
339 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
340 if (changed
&& ctrl
->state
== NVME_CTRL_LIVE
)
341 nvme_kick_requeue_lists(ctrl
);
344 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state
);
346 static void nvme_free_ns_head(struct kref
*ref
)
348 struct nvme_ns_head
*head
=
349 container_of(ref
, struct nvme_ns_head
, ref
);
351 nvme_mpath_remove_disk(head
);
352 ida_simple_remove(&head
->subsys
->ns_ida
, head
->instance
);
353 list_del_init(&head
->entry
);
354 cleanup_srcu_struct(&head
->srcu
);
355 nvme_put_subsystem(head
->subsys
);
359 static void nvme_put_ns_head(struct nvme_ns_head
*head
)
361 kref_put(&head
->ref
, nvme_free_ns_head
);
364 static void nvme_free_ns(struct kref
*kref
)
366 struct nvme_ns
*ns
= container_of(kref
, struct nvme_ns
, kref
);
369 nvme_nvm_unregister(ns
);
372 nvme_put_ns_head(ns
->head
);
373 nvme_put_ctrl(ns
->ctrl
);
377 static void nvme_put_ns(struct nvme_ns
*ns
)
379 kref_put(&ns
->kref
, nvme_free_ns
);
382 static inline void nvme_clear_nvme_request(struct request
*req
)
384 if (!(req
->rq_flags
& RQF_DONTPREP
)) {
385 nvme_req(req
)->retries
= 0;
386 nvme_req(req
)->flags
= 0;
387 req
->rq_flags
|= RQF_DONTPREP
;
391 struct request
*nvme_alloc_request(struct request_queue
*q
,
392 struct nvme_command
*cmd
, blk_mq_req_flags_t flags
, int qid
)
394 unsigned op
= nvme_is_write(cmd
) ? REQ_OP_DRV_OUT
: REQ_OP_DRV_IN
;
397 if (qid
== NVME_QID_ANY
) {
398 req
= blk_mq_alloc_request(q
, op
, flags
);
400 req
= blk_mq_alloc_request_hctx(q
, op
, flags
,
406 req
->cmd_flags
|= REQ_FAILFAST_DRIVER
;
407 nvme_clear_nvme_request(req
);
408 nvme_req(req
)->cmd
= cmd
;
412 EXPORT_SYMBOL_GPL(nvme_alloc_request
);
414 static int nvme_toggle_streams(struct nvme_ctrl
*ctrl
, bool enable
)
416 struct nvme_command c
;
418 memset(&c
, 0, sizeof(c
));
420 c
.directive
.opcode
= nvme_admin_directive_send
;
421 c
.directive
.nsid
= cpu_to_le32(NVME_NSID_ALL
);
422 c
.directive
.doper
= NVME_DIR_SND_ID_OP_ENABLE
;
423 c
.directive
.dtype
= NVME_DIR_IDENTIFY
;
424 c
.directive
.tdtype
= NVME_DIR_STREAMS
;
425 c
.directive
.endir
= enable
? NVME_DIR_ENDIR
: 0;
427 return nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, NULL
, 0);
430 static int nvme_disable_streams(struct nvme_ctrl
*ctrl
)
432 return nvme_toggle_streams(ctrl
, false);
435 static int nvme_enable_streams(struct nvme_ctrl
*ctrl
)
437 return nvme_toggle_streams(ctrl
, true);
440 static int nvme_get_stream_params(struct nvme_ctrl
*ctrl
,
441 struct streams_directive_params
*s
, u32 nsid
)
443 struct nvme_command c
;
445 memset(&c
, 0, sizeof(c
));
446 memset(s
, 0, sizeof(*s
));
448 c
.directive
.opcode
= nvme_admin_directive_recv
;
449 c
.directive
.nsid
= cpu_to_le32(nsid
);
450 c
.directive
.numd
= cpu_to_le32((sizeof(*s
) >> 2) - 1);
451 c
.directive
.doper
= NVME_DIR_RCV_ST_OP_PARAM
;
452 c
.directive
.dtype
= NVME_DIR_STREAMS
;
454 return nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, s
, sizeof(*s
));
457 static int nvme_configure_directives(struct nvme_ctrl
*ctrl
)
459 struct streams_directive_params s
;
462 if (!(ctrl
->oacs
& NVME_CTRL_OACS_DIRECTIVES
))
467 ret
= nvme_enable_streams(ctrl
);
471 ret
= nvme_get_stream_params(ctrl
, &s
, NVME_NSID_ALL
);
475 ctrl
->nssa
= le16_to_cpu(s
.nssa
);
476 if (ctrl
->nssa
< BLK_MAX_WRITE_HINTS
- 1) {
477 dev_info(ctrl
->device
, "too few streams (%u) available\n",
479 nvme_disable_streams(ctrl
);
483 ctrl
->nr_streams
= min_t(unsigned, ctrl
->nssa
, BLK_MAX_WRITE_HINTS
- 1);
484 dev_info(ctrl
->device
, "Using %u streams\n", ctrl
->nr_streams
);
489 * Check if 'req' has a write hint associated with it. If it does, assign
490 * a valid namespace stream to the write.
492 static void nvme_assign_write_stream(struct nvme_ctrl
*ctrl
,
493 struct request
*req
, u16
*control
,
496 enum rw_hint streamid
= req
->write_hint
;
498 if (streamid
== WRITE_LIFE_NOT_SET
|| streamid
== WRITE_LIFE_NONE
)
502 if (WARN_ON_ONCE(streamid
> ctrl
->nr_streams
))
505 *control
|= NVME_RW_DTYPE_STREAMS
;
506 *dsmgmt
|= streamid
<< 16;
509 if (streamid
< ARRAY_SIZE(req
->q
->write_hints
))
510 req
->q
->write_hints
[streamid
] += blk_rq_bytes(req
) >> 9;
513 static inline void nvme_setup_flush(struct nvme_ns
*ns
,
514 struct nvme_command
*cmnd
)
516 memset(cmnd
, 0, sizeof(*cmnd
));
517 cmnd
->common
.opcode
= nvme_cmd_flush
;
518 cmnd
->common
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
521 static blk_status_t
nvme_setup_discard(struct nvme_ns
*ns
, struct request
*req
,
522 struct nvme_command
*cmnd
)
524 unsigned short segments
= blk_rq_nr_discard_segments(req
), n
= 0;
525 struct nvme_dsm_range
*range
;
528 range
= kmalloc_array(segments
, sizeof(*range
), GFP_ATOMIC
);
530 return BLK_STS_RESOURCE
;
532 __rq_for_each_bio(bio
, req
) {
533 u64 slba
= nvme_block_nr(ns
, bio
->bi_iter
.bi_sector
);
534 u32 nlb
= bio
->bi_iter
.bi_size
>> ns
->lba_shift
;
537 range
[n
].cattr
= cpu_to_le32(0);
538 range
[n
].nlb
= cpu_to_le32(nlb
);
539 range
[n
].slba
= cpu_to_le64(slba
);
544 if (WARN_ON_ONCE(n
!= segments
)) {
546 return BLK_STS_IOERR
;
549 memset(cmnd
, 0, sizeof(*cmnd
));
550 cmnd
->dsm
.opcode
= nvme_cmd_dsm
;
551 cmnd
->dsm
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
552 cmnd
->dsm
.nr
= cpu_to_le32(segments
- 1);
553 cmnd
->dsm
.attributes
= cpu_to_le32(NVME_DSMGMT_AD
);
555 req
->special_vec
.bv_page
= virt_to_page(range
);
556 req
->special_vec
.bv_offset
= offset_in_page(range
);
557 req
->special_vec
.bv_len
= sizeof(*range
) * segments
;
558 req
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
563 static inline blk_status_t
nvme_setup_rw(struct nvme_ns
*ns
,
564 struct request
*req
, struct nvme_command
*cmnd
)
566 struct nvme_ctrl
*ctrl
= ns
->ctrl
;
570 if (req
->cmd_flags
& REQ_FUA
)
571 control
|= NVME_RW_FUA
;
572 if (req
->cmd_flags
& (REQ_FAILFAST_DEV
| REQ_RAHEAD
))
573 control
|= NVME_RW_LR
;
575 if (req
->cmd_flags
& REQ_RAHEAD
)
576 dsmgmt
|= NVME_RW_DSM_FREQ_PREFETCH
;
578 memset(cmnd
, 0, sizeof(*cmnd
));
579 cmnd
->rw
.opcode
= (rq_data_dir(req
) ? nvme_cmd_write
: nvme_cmd_read
);
580 cmnd
->rw
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
581 cmnd
->rw
.slba
= cpu_to_le64(nvme_block_nr(ns
, blk_rq_pos(req
)));
582 cmnd
->rw
.length
= cpu_to_le16((blk_rq_bytes(req
) >> ns
->lba_shift
) - 1);
584 if (req_op(req
) == REQ_OP_WRITE
&& ctrl
->nr_streams
)
585 nvme_assign_write_stream(ctrl
, req
, &control
, &dsmgmt
);
589 * If formated with metadata, the block layer always provides a
590 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
591 * we enable the PRACT bit for protection information or set the
592 * namespace capacity to zero to prevent any I/O.
594 if (!blk_integrity_rq(req
)) {
595 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns
)))
596 return BLK_STS_NOTSUPP
;
597 control
|= NVME_RW_PRINFO_PRACT
;
600 switch (ns
->pi_type
) {
601 case NVME_NS_DPS_PI_TYPE3
:
602 control
|= NVME_RW_PRINFO_PRCHK_GUARD
;
604 case NVME_NS_DPS_PI_TYPE1
:
605 case NVME_NS_DPS_PI_TYPE2
:
606 control
|= NVME_RW_PRINFO_PRCHK_GUARD
|
607 NVME_RW_PRINFO_PRCHK_REF
;
608 cmnd
->rw
.reftag
= cpu_to_le32(
609 nvme_block_nr(ns
, blk_rq_pos(req
)));
614 cmnd
->rw
.control
= cpu_to_le16(control
);
615 cmnd
->rw
.dsmgmt
= cpu_to_le32(dsmgmt
);
619 blk_status_t
nvme_setup_cmd(struct nvme_ns
*ns
, struct request
*req
,
620 struct nvme_command
*cmd
)
622 blk_status_t ret
= BLK_STS_OK
;
624 nvme_clear_nvme_request(req
);
626 switch (req_op(req
)) {
629 memcpy(cmd
, nvme_req(req
)->cmd
, sizeof(*cmd
));
632 nvme_setup_flush(ns
, cmd
);
634 case REQ_OP_WRITE_ZEROES
:
635 /* currently only aliased to deallocate for a few ctrls: */
637 ret
= nvme_setup_discard(ns
, req
, cmd
);
641 ret
= nvme_setup_rw(ns
, req
, cmd
);
645 return BLK_STS_IOERR
;
648 cmd
->common
.command_id
= req
->tag
;
650 trace_nvme_setup_nvm_cmd(req
->q
->id
, cmd
);
652 trace_nvme_setup_admin_cmd(cmd
);
655 EXPORT_SYMBOL_GPL(nvme_setup_cmd
);
658 * Returns 0 on success. If the result is negative, it's a Linux error code;
659 * if the result is positive, it's an NVM Express status code
661 int __nvme_submit_sync_cmd(struct request_queue
*q
, struct nvme_command
*cmd
,
662 union nvme_result
*result
, void *buffer
, unsigned bufflen
,
663 unsigned timeout
, int qid
, int at_head
,
664 blk_mq_req_flags_t flags
)
669 req
= nvme_alloc_request(q
, cmd
, flags
, qid
);
673 req
->timeout
= timeout
? timeout
: ADMIN_TIMEOUT
;
675 if (buffer
&& bufflen
) {
676 ret
= blk_rq_map_kern(q
, req
, buffer
, bufflen
, GFP_KERNEL
);
681 blk_execute_rq(req
->q
, NULL
, req
, at_head
);
683 *result
= nvme_req(req
)->result
;
684 if (nvme_req(req
)->flags
& NVME_REQ_CANCELLED
)
687 ret
= nvme_req(req
)->status
;
689 blk_mq_free_request(req
);
692 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd
);
694 int nvme_submit_sync_cmd(struct request_queue
*q
, struct nvme_command
*cmd
,
695 void *buffer
, unsigned bufflen
)
697 return __nvme_submit_sync_cmd(q
, cmd
, NULL
, buffer
, bufflen
, 0,
700 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd
);
702 static void *nvme_add_user_metadata(struct bio
*bio
, void __user
*ubuf
,
703 unsigned len
, u32 seed
, bool write
)
705 struct bio_integrity_payload
*bip
;
709 buf
= kmalloc(len
, GFP_KERNEL
);
714 if (write
&& copy_from_user(buf
, ubuf
, len
))
717 bip
= bio_integrity_alloc(bio
, GFP_KERNEL
, 1);
723 bip
->bip_iter
.bi_size
= len
;
724 bip
->bip_iter
.bi_sector
= seed
;
725 ret
= bio_integrity_add_page(bio
, virt_to_page(buf
), len
,
726 offset_in_page(buf
));
736 static int nvme_submit_user_cmd(struct request_queue
*q
,
737 struct nvme_command
*cmd
, void __user
*ubuffer
,
738 unsigned bufflen
, void __user
*meta_buffer
, unsigned meta_len
,
739 u32 meta_seed
, u32
*result
, unsigned timeout
)
741 bool write
= nvme_is_write(cmd
);
742 struct nvme_ns
*ns
= q
->queuedata
;
743 struct gendisk
*disk
= ns
? ns
->disk
: NULL
;
745 struct bio
*bio
= NULL
;
749 req
= nvme_alloc_request(q
, cmd
, 0, NVME_QID_ANY
);
753 req
->timeout
= timeout
? timeout
: ADMIN_TIMEOUT
;
754 nvme_req(req
)->flags
|= NVME_REQ_USERCMD
;
756 if (ubuffer
&& bufflen
) {
757 ret
= blk_rq_map_user(q
, req
, NULL
, ubuffer
, bufflen
,
763 if (disk
&& meta_buffer
&& meta_len
) {
764 meta
= nvme_add_user_metadata(bio
, meta_buffer
, meta_len
,
770 req
->cmd_flags
|= REQ_INTEGRITY
;
774 blk_execute_rq(req
->q
, disk
, req
, 0);
775 if (nvme_req(req
)->flags
& NVME_REQ_CANCELLED
)
778 ret
= nvme_req(req
)->status
;
780 *result
= le32_to_cpu(nvme_req(req
)->result
.u32
);
781 if (meta
&& !ret
&& !write
) {
782 if (copy_to_user(meta_buffer
, meta
, meta_len
))
788 blk_rq_unmap_user(bio
);
790 blk_mq_free_request(req
);
794 static void nvme_keep_alive_end_io(struct request
*rq
, blk_status_t status
)
796 struct nvme_ctrl
*ctrl
= rq
->end_io_data
;
798 blk_mq_free_request(rq
);
801 dev_err(ctrl
->device
,
802 "failed nvme_keep_alive_end_io error=%d\n",
807 schedule_delayed_work(&ctrl
->ka_work
, ctrl
->kato
* HZ
);
810 static int nvme_keep_alive(struct nvme_ctrl
*ctrl
)
814 rq
= nvme_alloc_request(ctrl
->admin_q
, &ctrl
->ka_cmd
, BLK_MQ_REQ_RESERVED
,
819 rq
->timeout
= ctrl
->kato
* HZ
;
820 rq
->end_io_data
= ctrl
;
822 blk_execute_rq_nowait(rq
->q
, NULL
, rq
, 0, nvme_keep_alive_end_io
);
827 static void nvme_keep_alive_work(struct work_struct
*work
)
829 struct nvme_ctrl
*ctrl
= container_of(to_delayed_work(work
),
830 struct nvme_ctrl
, ka_work
);
832 if (nvme_keep_alive(ctrl
)) {
833 /* allocation failure, reset the controller */
834 dev_err(ctrl
->device
, "keep-alive failed\n");
835 nvme_reset_ctrl(ctrl
);
840 static void nvme_start_keep_alive(struct nvme_ctrl
*ctrl
)
842 if (unlikely(ctrl
->kato
== 0))
845 INIT_DELAYED_WORK(&ctrl
->ka_work
, nvme_keep_alive_work
);
846 memset(&ctrl
->ka_cmd
, 0, sizeof(ctrl
->ka_cmd
));
847 ctrl
->ka_cmd
.common
.opcode
= nvme_admin_keep_alive
;
848 schedule_delayed_work(&ctrl
->ka_work
, ctrl
->kato
* HZ
);
851 void nvme_stop_keep_alive(struct nvme_ctrl
*ctrl
)
853 if (unlikely(ctrl
->kato
== 0))
856 cancel_delayed_work_sync(&ctrl
->ka_work
);
858 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive
);
860 static int nvme_identify_ctrl(struct nvme_ctrl
*dev
, struct nvme_id_ctrl
**id
)
862 struct nvme_command c
= { };
865 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
866 c
.identify
.opcode
= nvme_admin_identify
;
867 c
.identify
.cns
= NVME_ID_CNS_CTRL
;
869 *id
= kmalloc(sizeof(struct nvme_id_ctrl
), GFP_KERNEL
);
873 error
= nvme_submit_sync_cmd(dev
->admin_q
, &c
, *id
,
874 sizeof(struct nvme_id_ctrl
));
880 static int nvme_identify_ns_descs(struct nvme_ctrl
*ctrl
, unsigned nsid
,
881 struct nvme_ns_ids
*ids
)
883 struct nvme_command c
= { };
889 c
.identify
.opcode
= nvme_admin_identify
;
890 c
.identify
.nsid
= cpu_to_le32(nsid
);
891 c
.identify
.cns
= NVME_ID_CNS_NS_DESC_LIST
;
893 data
= kzalloc(NVME_IDENTIFY_DATA_SIZE
, GFP_KERNEL
);
897 status
= nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, data
,
898 NVME_IDENTIFY_DATA_SIZE
);
902 for (pos
= 0; pos
< NVME_IDENTIFY_DATA_SIZE
; pos
+= len
) {
903 struct nvme_ns_id_desc
*cur
= data
+ pos
;
909 case NVME_NIDT_EUI64
:
910 if (cur
->nidl
!= NVME_NIDT_EUI64_LEN
) {
911 dev_warn(ctrl
->device
,
912 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
916 len
= NVME_NIDT_EUI64_LEN
;
917 memcpy(ids
->eui64
, data
+ pos
+ sizeof(*cur
), len
);
919 case NVME_NIDT_NGUID
:
920 if (cur
->nidl
!= NVME_NIDT_NGUID_LEN
) {
921 dev_warn(ctrl
->device
,
922 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
926 len
= NVME_NIDT_NGUID_LEN
;
927 memcpy(ids
->nguid
, data
+ pos
+ sizeof(*cur
), len
);
930 if (cur
->nidl
!= NVME_NIDT_UUID_LEN
) {
931 dev_warn(ctrl
->device
,
932 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
936 len
= NVME_NIDT_UUID_LEN
;
937 uuid_copy(&ids
->uuid
, data
+ pos
+ sizeof(*cur
));
940 /* Skip unnkown types */
952 static int nvme_identify_ns_list(struct nvme_ctrl
*dev
, unsigned nsid
, __le32
*ns_list
)
954 struct nvme_command c
= { };
956 c
.identify
.opcode
= nvme_admin_identify
;
957 c
.identify
.cns
= NVME_ID_CNS_NS_ACTIVE_LIST
;
958 c
.identify
.nsid
= cpu_to_le32(nsid
);
959 return nvme_submit_sync_cmd(dev
->admin_q
, &c
, ns_list
,
960 NVME_IDENTIFY_DATA_SIZE
);
963 static struct nvme_id_ns
*nvme_identify_ns(struct nvme_ctrl
*ctrl
,
966 struct nvme_id_ns
*id
;
967 struct nvme_command c
= { };
970 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
971 c
.identify
.opcode
= nvme_admin_identify
;
972 c
.identify
.nsid
= cpu_to_le32(nsid
);
973 c
.identify
.cns
= NVME_ID_CNS_NS
;
975 id
= kmalloc(sizeof(*id
), GFP_KERNEL
);
979 error
= nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, id
, sizeof(*id
));
981 dev_warn(ctrl
->device
, "Identify namespace failed\n");
989 static int nvme_set_features(struct nvme_ctrl
*dev
, unsigned fid
, unsigned dword11
,
990 void *buffer
, size_t buflen
, u32
*result
)
992 struct nvme_command c
;
993 union nvme_result res
;
996 memset(&c
, 0, sizeof(c
));
997 c
.features
.opcode
= nvme_admin_set_features
;
998 c
.features
.fid
= cpu_to_le32(fid
);
999 c
.features
.dword11
= cpu_to_le32(dword11
);
1001 ret
= __nvme_submit_sync_cmd(dev
->admin_q
, &c
, &res
,
1002 buffer
, buflen
, 0, NVME_QID_ANY
, 0, 0);
1003 if (ret
>= 0 && result
)
1004 *result
= le32_to_cpu(res
.u32
);
1008 int nvme_set_queue_count(struct nvme_ctrl
*ctrl
, int *count
)
1010 u32 q_count
= (*count
- 1) | ((*count
- 1) << 16);
1012 int status
, nr_io_queues
;
1014 status
= nvme_set_features(ctrl
, NVME_FEAT_NUM_QUEUES
, q_count
, NULL
, 0,
1020 * Degraded controllers might return an error when setting the queue
1021 * count. We still want to be able to bring them online and offer
1022 * access to the admin queue, as that might be only way to fix them up.
1025 dev_err(ctrl
->device
, "Could not set queue count (%d)\n", status
);
1028 nr_io_queues
= min(result
& 0xffff, result
>> 16) + 1;
1029 *count
= min(*count
, nr_io_queues
);
1034 EXPORT_SYMBOL_GPL(nvme_set_queue_count
);
1036 static int nvme_submit_io(struct nvme_ns
*ns
, struct nvme_user_io __user
*uio
)
1038 struct nvme_user_io io
;
1039 struct nvme_command c
;
1040 unsigned length
, meta_len
;
1041 void __user
*metadata
;
1043 if (copy_from_user(&io
, uio
, sizeof(io
)))
1048 switch (io
.opcode
) {
1049 case nvme_cmd_write
:
1051 case nvme_cmd_compare
:
1057 length
= (io
.nblocks
+ 1) << ns
->lba_shift
;
1058 meta_len
= (io
.nblocks
+ 1) * ns
->ms
;
1059 metadata
= (void __user
*)(uintptr_t)io
.metadata
;
1064 } else if (meta_len
) {
1065 if ((io
.metadata
& 3) || !io
.metadata
)
1069 memset(&c
, 0, sizeof(c
));
1070 c
.rw
.opcode
= io
.opcode
;
1071 c
.rw
.flags
= io
.flags
;
1072 c
.rw
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
1073 c
.rw
.slba
= cpu_to_le64(io
.slba
);
1074 c
.rw
.length
= cpu_to_le16(io
.nblocks
);
1075 c
.rw
.control
= cpu_to_le16(io
.control
);
1076 c
.rw
.dsmgmt
= cpu_to_le32(io
.dsmgmt
);
1077 c
.rw
.reftag
= cpu_to_le32(io
.reftag
);
1078 c
.rw
.apptag
= cpu_to_le16(io
.apptag
);
1079 c
.rw
.appmask
= cpu_to_le16(io
.appmask
);
1081 return nvme_submit_user_cmd(ns
->queue
, &c
,
1082 (void __user
*)(uintptr_t)io
.addr
, length
,
1083 metadata
, meta_len
, io
.slba
, NULL
, 0);
1086 static u32
nvme_known_admin_effects(u8 opcode
)
1089 case nvme_admin_format_nvm
:
1090 return NVME_CMD_EFFECTS_CSUPP
| NVME_CMD_EFFECTS_LBCC
|
1091 NVME_CMD_EFFECTS_CSE_MASK
;
1092 case nvme_admin_sanitize_nvm
:
1093 return NVME_CMD_EFFECTS_CSE_MASK
;
1100 static u32
nvme_passthru_start(struct nvme_ctrl
*ctrl
, struct nvme_ns
*ns
,
1107 effects
= le32_to_cpu(ctrl
->effects
->iocs
[opcode
]);
1108 if (effects
& ~NVME_CMD_EFFECTS_CSUPP
)
1109 dev_warn(ctrl
->device
,
1110 "IO command:%02x has unhandled effects:%08x\n",
1116 effects
= le32_to_cpu(ctrl
->effects
->acs
[opcode
]);
1118 effects
= nvme_known_admin_effects(opcode
);
1121 * For simplicity, IO to all namespaces is quiesced even if the command
1122 * effects say only one namespace is affected.
1124 if (effects
& (NVME_CMD_EFFECTS_LBCC
| NVME_CMD_EFFECTS_CSE_MASK
)) {
1125 nvme_start_freeze(ctrl
);
1126 nvme_wait_freeze(ctrl
);
1131 static void nvme_update_formats(struct nvme_ctrl
*ctrl
)
1133 struct nvme_ns
*ns
, *next
;
1136 down_write(&ctrl
->namespaces_rwsem
);
1137 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
1138 if (ns
->disk
&& nvme_revalidate_disk(ns
->disk
)) {
1139 list_move_tail(&ns
->list
, &rm_list
);
1142 up_write(&ctrl
->namespaces_rwsem
);
1144 list_for_each_entry_safe(ns
, next
, &rm_list
, list
)
1148 static void nvme_passthru_end(struct nvme_ctrl
*ctrl
, u32 effects
)
1151 * Revalidate LBA changes prior to unfreezing. This is necessary to
1152 * prevent memory corruption if a logical block size was changed by
1155 if (effects
& NVME_CMD_EFFECTS_LBCC
)
1156 nvme_update_formats(ctrl
);
1157 if (effects
& (NVME_CMD_EFFECTS_LBCC
| NVME_CMD_EFFECTS_CSE_MASK
))
1158 nvme_unfreeze(ctrl
);
1159 if (effects
& NVME_CMD_EFFECTS_CCC
)
1160 nvme_init_identify(ctrl
);
1161 if (effects
& (NVME_CMD_EFFECTS_NIC
| NVME_CMD_EFFECTS_NCC
))
1162 nvme_queue_scan(ctrl
);
1165 static int nvme_user_cmd(struct nvme_ctrl
*ctrl
, struct nvme_ns
*ns
,
1166 struct nvme_passthru_cmd __user
*ucmd
)
1168 struct nvme_passthru_cmd cmd
;
1169 struct nvme_command c
;
1170 unsigned timeout
= 0;
1174 if (!capable(CAP_SYS_ADMIN
))
1176 if (copy_from_user(&cmd
, ucmd
, sizeof(cmd
)))
1181 memset(&c
, 0, sizeof(c
));
1182 c
.common
.opcode
= cmd
.opcode
;
1183 c
.common
.flags
= cmd
.flags
;
1184 c
.common
.nsid
= cpu_to_le32(cmd
.nsid
);
1185 c
.common
.cdw2
[0] = cpu_to_le32(cmd
.cdw2
);
1186 c
.common
.cdw2
[1] = cpu_to_le32(cmd
.cdw3
);
1187 c
.common
.cdw10
[0] = cpu_to_le32(cmd
.cdw10
);
1188 c
.common
.cdw10
[1] = cpu_to_le32(cmd
.cdw11
);
1189 c
.common
.cdw10
[2] = cpu_to_le32(cmd
.cdw12
);
1190 c
.common
.cdw10
[3] = cpu_to_le32(cmd
.cdw13
);
1191 c
.common
.cdw10
[4] = cpu_to_le32(cmd
.cdw14
);
1192 c
.common
.cdw10
[5] = cpu_to_le32(cmd
.cdw15
);
1195 timeout
= msecs_to_jiffies(cmd
.timeout_ms
);
1197 effects
= nvme_passthru_start(ctrl
, ns
, cmd
.opcode
);
1198 status
= nvme_submit_user_cmd(ns
? ns
->queue
: ctrl
->admin_q
, &c
,
1199 (void __user
*)(uintptr_t)cmd
.addr
, cmd
.data_len
,
1200 (void __user
*)(uintptr_t)cmd
.metadata
, cmd
.metadata
,
1201 0, &cmd
.result
, timeout
);
1202 nvme_passthru_end(ctrl
, effects
);
1205 if (put_user(cmd
.result
, &ucmd
->result
))
1213 * Issue ioctl requests on the first available path. Note that unlike normal
1214 * block layer requests we will not retry failed request on another controller.
1216 static struct nvme_ns
*nvme_get_ns_from_disk(struct gendisk
*disk
,
1217 struct nvme_ns_head
**head
, int *srcu_idx
)
1219 #ifdef CONFIG_NVME_MULTIPATH
1220 if (disk
->fops
== &nvme_ns_head_ops
) {
1221 *head
= disk
->private_data
;
1222 *srcu_idx
= srcu_read_lock(&(*head
)->srcu
);
1223 return nvme_find_path(*head
);
1228 return disk
->private_data
;
1231 static void nvme_put_ns_from_disk(struct nvme_ns_head
*head
, int idx
)
1234 srcu_read_unlock(&head
->srcu
, idx
);
1237 static int nvme_ns_ioctl(struct nvme_ns
*ns
, unsigned cmd
, unsigned long arg
)
1241 force_successful_syscall_return();
1242 return ns
->head
->ns_id
;
1243 case NVME_IOCTL_ADMIN_CMD
:
1244 return nvme_user_cmd(ns
->ctrl
, NULL
, (void __user
*)arg
);
1245 case NVME_IOCTL_IO_CMD
:
1246 return nvme_user_cmd(ns
->ctrl
, ns
, (void __user
*)arg
);
1247 case NVME_IOCTL_SUBMIT_IO
:
1248 return nvme_submit_io(ns
, (void __user
*)arg
);
1252 return nvme_nvm_ioctl(ns
, cmd
, arg
);
1254 if (is_sed_ioctl(cmd
))
1255 return sed_ioctl(ns
->ctrl
->opal_dev
, cmd
,
1256 (void __user
*) arg
);
1261 static int nvme_ioctl(struct block_device
*bdev
, fmode_t mode
,
1262 unsigned int cmd
, unsigned long arg
)
1264 struct nvme_ns_head
*head
= NULL
;
1268 ns
= nvme_get_ns_from_disk(bdev
->bd_disk
, &head
, &srcu_idx
);
1272 ret
= nvme_ns_ioctl(ns
, cmd
, arg
);
1273 nvme_put_ns_from_disk(head
, srcu_idx
);
1277 static int nvme_open(struct block_device
*bdev
, fmode_t mode
)
1279 struct nvme_ns
*ns
= bdev
->bd_disk
->private_data
;
1281 #ifdef CONFIG_NVME_MULTIPATH
1282 /* should never be called due to GENHD_FL_HIDDEN */
1283 if (WARN_ON_ONCE(ns
->head
->disk
))
1286 if (!kref_get_unless_zero(&ns
->kref
))
1288 if (!try_module_get(ns
->ctrl
->ops
->module
))
1299 static void nvme_release(struct gendisk
*disk
, fmode_t mode
)
1301 struct nvme_ns
*ns
= disk
->private_data
;
1303 module_put(ns
->ctrl
->ops
->module
);
1307 static int nvme_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1309 /* some standard values */
1310 geo
->heads
= 1 << 6;
1311 geo
->sectors
= 1 << 5;
1312 geo
->cylinders
= get_capacity(bdev
->bd_disk
) >> 11;
1316 #ifdef CONFIG_BLK_DEV_INTEGRITY
1317 static void nvme_init_integrity(struct gendisk
*disk
, u16 ms
, u8 pi_type
)
1319 struct blk_integrity integrity
;
1321 memset(&integrity
, 0, sizeof(integrity
));
1323 case NVME_NS_DPS_PI_TYPE3
:
1324 integrity
.profile
= &t10_pi_type3_crc
;
1325 integrity
.tag_size
= sizeof(u16
) + sizeof(u32
);
1326 integrity
.flags
|= BLK_INTEGRITY_DEVICE_CAPABLE
;
1328 case NVME_NS_DPS_PI_TYPE1
:
1329 case NVME_NS_DPS_PI_TYPE2
:
1330 integrity
.profile
= &t10_pi_type1_crc
;
1331 integrity
.tag_size
= sizeof(u16
);
1332 integrity
.flags
|= BLK_INTEGRITY_DEVICE_CAPABLE
;
1335 integrity
.profile
= NULL
;
1338 integrity
.tuple_size
= ms
;
1339 blk_integrity_register(disk
, &integrity
);
1340 blk_queue_max_integrity_segments(disk
->queue
, 1);
1343 static void nvme_init_integrity(struct gendisk
*disk
, u16 ms
, u8 pi_type
)
1346 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1348 static void nvme_set_chunk_size(struct nvme_ns
*ns
)
1350 u32 chunk_size
= (((u32
)ns
->noiob
) << (ns
->lba_shift
- 9));
1351 blk_queue_chunk_sectors(ns
->queue
, rounddown_pow_of_two(chunk_size
));
1354 static void nvme_config_discard(struct nvme_ctrl
*ctrl
,
1355 unsigned stream_alignment
, struct request_queue
*queue
)
1357 u32 size
= queue_logical_block_size(queue
);
1359 if (stream_alignment
)
1360 size
*= stream_alignment
;
1362 BUILD_BUG_ON(PAGE_SIZE
/ sizeof(struct nvme_dsm_range
) <
1363 NVME_DSM_MAX_RANGES
);
1365 queue
->limits
.discard_alignment
= 0;
1366 queue
->limits
.discard_granularity
= size
;
1368 blk_queue_max_discard_sectors(queue
, UINT_MAX
);
1369 blk_queue_max_discard_segments(queue
, NVME_DSM_MAX_RANGES
);
1370 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, queue
);
1372 if (ctrl
->quirks
& NVME_QUIRK_DEALLOCATE_ZEROES
)
1373 blk_queue_max_write_zeroes_sectors(queue
, UINT_MAX
);
1376 static void nvme_report_ns_ids(struct nvme_ctrl
*ctrl
, unsigned int nsid
,
1377 struct nvme_id_ns
*id
, struct nvme_ns_ids
*ids
)
1379 memset(ids
, 0, sizeof(*ids
));
1381 if (ctrl
->vs
>= NVME_VS(1, 1, 0))
1382 memcpy(ids
->eui64
, id
->eui64
, sizeof(id
->eui64
));
1383 if (ctrl
->vs
>= NVME_VS(1, 2, 0))
1384 memcpy(ids
->nguid
, id
->nguid
, sizeof(id
->nguid
));
1385 if (ctrl
->vs
>= NVME_VS(1, 3, 0)) {
1386 /* Don't treat error as fatal we potentially
1387 * already have a NGUID or EUI-64
1389 if (nvme_identify_ns_descs(ctrl
, nsid
, ids
))
1390 dev_warn(ctrl
->device
,
1391 "%s: Identify Descriptors failed\n", __func__
);
1395 static bool nvme_ns_ids_valid(struct nvme_ns_ids
*ids
)
1397 return !uuid_is_null(&ids
->uuid
) ||
1398 memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)) ||
1399 memchr_inv(ids
->eui64
, 0, sizeof(ids
->eui64
));
1402 static bool nvme_ns_ids_equal(struct nvme_ns_ids
*a
, struct nvme_ns_ids
*b
)
1404 return uuid_equal(&a
->uuid
, &b
->uuid
) &&
1405 memcmp(&a
->nguid
, &b
->nguid
, sizeof(a
->nguid
)) == 0 &&
1406 memcmp(&a
->eui64
, &b
->eui64
, sizeof(a
->eui64
)) == 0;
1409 static void nvme_update_disk_info(struct gendisk
*disk
,
1410 struct nvme_ns
*ns
, struct nvme_id_ns
*id
)
1412 sector_t capacity
= le64_to_cpup(&id
->nsze
) << (ns
->lba_shift
- 9);
1413 unsigned short bs
= 1 << ns
->lba_shift
;
1414 unsigned stream_alignment
= 0;
1416 if (ns
->ctrl
->nr_streams
&& ns
->sws
&& ns
->sgs
)
1417 stream_alignment
= ns
->sws
* ns
->sgs
;
1419 blk_mq_freeze_queue(disk
->queue
);
1420 blk_integrity_unregister(disk
);
1422 blk_queue_logical_block_size(disk
->queue
, bs
);
1423 blk_queue_physical_block_size(disk
->queue
, bs
);
1424 blk_queue_io_min(disk
->queue
, bs
);
1426 if (ns
->ms
&& !ns
->ext
&&
1427 (ns
->ctrl
->ops
->flags
& NVME_F_METADATA_SUPPORTED
))
1428 nvme_init_integrity(disk
, ns
->ms
, ns
->pi_type
);
1429 if (ns
->ms
&& !nvme_ns_has_pi(ns
) && !blk_get_integrity(disk
))
1431 set_capacity(disk
, capacity
);
1433 if (ns
->ctrl
->oncs
& NVME_CTRL_ONCS_DSM
)
1434 nvme_config_discard(ns
->ctrl
, stream_alignment
, disk
->queue
);
1435 blk_mq_unfreeze_queue(disk
->queue
);
1438 static void __nvme_revalidate_disk(struct gendisk
*disk
, struct nvme_id_ns
*id
)
1440 struct nvme_ns
*ns
= disk
->private_data
;
1443 * If identify namespace failed, use default 512 byte block size so
1444 * block layer can use before failing read/write for 0 capacity.
1446 ns
->lba_shift
= id
->lbaf
[id
->flbas
& NVME_NS_FLBAS_LBA_MASK
].ds
;
1447 if (ns
->lba_shift
== 0)
1449 ns
->noiob
= le16_to_cpu(id
->noiob
);
1450 ns
->ext
= ns
->ms
&& (id
->flbas
& NVME_NS_FLBAS_META_EXT
);
1451 ns
->ms
= le16_to_cpu(id
->lbaf
[id
->flbas
& NVME_NS_FLBAS_LBA_MASK
].ms
);
1452 /* the PI implementation requires metadata equal t10 pi tuple size */
1453 if (ns
->ms
== sizeof(struct t10_pi_tuple
))
1454 ns
->pi_type
= id
->dps
& NVME_NS_DPS_PI_MASK
;
1459 nvme_set_chunk_size(ns
);
1460 nvme_update_disk_info(disk
, ns
, id
);
1462 nvme_nvm_update_nvm_info(ns
);
1463 #ifdef CONFIG_NVME_MULTIPATH
1465 nvme_update_disk_info(ns
->head
->disk
, ns
, id
);
1469 static int nvme_revalidate_disk(struct gendisk
*disk
)
1471 struct nvme_ns
*ns
= disk
->private_data
;
1472 struct nvme_ctrl
*ctrl
= ns
->ctrl
;
1473 struct nvme_id_ns
*id
;
1474 struct nvme_ns_ids ids
;
1477 if (test_bit(NVME_NS_DEAD
, &ns
->flags
)) {
1478 set_capacity(disk
, 0);
1482 id
= nvme_identify_ns(ctrl
, ns
->head
->ns_id
);
1486 if (id
->ncap
== 0) {
1491 __nvme_revalidate_disk(disk
, id
);
1492 nvme_report_ns_ids(ctrl
, ns
->head
->ns_id
, id
, &ids
);
1493 if (!nvme_ns_ids_equal(&ns
->head
->ids
, &ids
)) {
1494 dev_err(ctrl
->device
,
1495 "identifiers changed for nsid %d\n", ns
->head
->ns_id
);
1504 static char nvme_pr_type(enum pr_type type
)
1507 case PR_WRITE_EXCLUSIVE
:
1509 case PR_EXCLUSIVE_ACCESS
:
1511 case PR_WRITE_EXCLUSIVE_REG_ONLY
:
1513 case PR_EXCLUSIVE_ACCESS_REG_ONLY
:
1515 case PR_WRITE_EXCLUSIVE_ALL_REGS
:
1517 case PR_EXCLUSIVE_ACCESS_ALL_REGS
:
1524 static int nvme_pr_command(struct block_device
*bdev
, u32 cdw10
,
1525 u64 key
, u64 sa_key
, u8 op
)
1527 struct nvme_ns_head
*head
= NULL
;
1529 struct nvme_command c
;
1531 u8 data
[16] = { 0, };
1533 ns
= nvme_get_ns_from_disk(bdev
->bd_disk
, &head
, &srcu_idx
);
1535 return -EWOULDBLOCK
;
1537 put_unaligned_le64(key
, &data
[0]);
1538 put_unaligned_le64(sa_key
, &data
[8]);
1540 memset(&c
, 0, sizeof(c
));
1541 c
.common
.opcode
= op
;
1542 c
.common
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
1543 c
.common
.cdw10
[0] = cpu_to_le32(cdw10
);
1545 ret
= nvme_submit_sync_cmd(ns
->queue
, &c
, data
, 16);
1546 nvme_put_ns_from_disk(head
, srcu_idx
);
1550 static int nvme_pr_register(struct block_device
*bdev
, u64 old
,
1551 u64
new, unsigned flags
)
1555 if (flags
& ~PR_FL_IGNORE_KEY
)
1558 cdw10
= old
? 2 : 0;
1559 cdw10
|= (flags
& PR_FL_IGNORE_KEY
) ? 1 << 3 : 0;
1560 cdw10
|= (1 << 30) | (1 << 31); /* PTPL=1 */
1561 return nvme_pr_command(bdev
, cdw10
, old
, new, nvme_cmd_resv_register
);
1564 static int nvme_pr_reserve(struct block_device
*bdev
, u64 key
,
1565 enum pr_type type
, unsigned flags
)
1569 if (flags
& ~PR_FL_IGNORE_KEY
)
1572 cdw10
= nvme_pr_type(type
) << 8;
1573 cdw10
|= ((flags
& PR_FL_IGNORE_KEY
) ? 1 << 3 : 0);
1574 return nvme_pr_command(bdev
, cdw10
, key
, 0, nvme_cmd_resv_acquire
);
1577 static int nvme_pr_preempt(struct block_device
*bdev
, u64 old
, u64
new,
1578 enum pr_type type
, bool abort
)
1580 u32 cdw10
= nvme_pr_type(type
) << 8 | abort
? 2 : 1;
1581 return nvme_pr_command(bdev
, cdw10
, old
, new, nvme_cmd_resv_acquire
);
1584 static int nvme_pr_clear(struct block_device
*bdev
, u64 key
)
1586 u32 cdw10
= 1 | (key
? 1 << 3 : 0);
1587 return nvme_pr_command(bdev
, cdw10
, key
, 0, nvme_cmd_resv_register
);
1590 static int nvme_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
1592 u32 cdw10
= nvme_pr_type(type
) << 8 | key
? 1 << 3 : 0;
1593 return nvme_pr_command(bdev
, cdw10
, key
, 0, nvme_cmd_resv_release
);
1596 static const struct pr_ops nvme_pr_ops
= {
1597 .pr_register
= nvme_pr_register
,
1598 .pr_reserve
= nvme_pr_reserve
,
1599 .pr_release
= nvme_pr_release
,
1600 .pr_preempt
= nvme_pr_preempt
,
1601 .pr_clear
= nvme_pr_clear
,
1604 #ifdef CONFIG_BLK_SED_OPAL
1605 int nvme_sec_submit(void *data
, u16 spsp
, u8 secp
, void *buffer
, size_t len
,
1608 struct nvme_ctrl
*ctrl
= data
;
1609 struct nvme_command cmd
;
1611 memset(&cmd
, 0, sizeof(cmd
));
1613 cmd
.common
.opcode
= nvme_admin_security_send
;
1615 cmd
.common
.opcode
= nvme_admin_security_recv
;
1616 cmd
.common
.nsid
= 0;
1617 cmd
.common
.cdw10
[0] = cpu_to_le32(((u32
)secp
) << 24 | ((u32
)spsp
) << 8);
1618 cmd
.common
.cdw10
[1] = cpu_to_le32(len
);
1620 return __nvme_submit_sync_cmd(ctrl
->admin_q
, &cmd
, NULL
, buffer
, len
,
1621 ADMIN_TIMEOUT
, NVME_QID_ANY
, 1, 0);
1623 EXPORT_SYMBOL_GPL(nvme_sec_submit
);
1624 #endif /* CONFIG_BLK_SED_OPAL */
1626 static const struct block_device_operations nvme_fops
= {
1627 .owner
= THIS_MODULE
,
1628 .ioctl
= nvme_ioctl
,
1629 .compat_ioctl
= nvme_ioctl
,
1631 .release
= nvme_release
,
1632 .getgeo
= nvme_getgeo
,
1633 .revalidate_disk
= nvme_revalidate_disk
,
1634 .pr_ops
= &nvme_pr_ops
,
1637 #ifdef CONFIG_NVME_MULTIPATH
1638 static int nvme_ns_head_open(struct block_device
*bdev
, fmode_t mode
)
1640 struct nvme_ns_head
*head
= bdev
->bd_disk
->private_data
;
1642 if (!kref_get_unless_zero(&head
->ref
))
1647 static void nvme_ns_head_release(struct gendisk
*disk
, fmode_t mode
)
1649 nvme_put_ns_head(disk
->private_data
);
1652 const struct block_device_operations nvme_ns_head_ops
= {
1653 .owner
= THIS_MODULE
,
1654 .open
= nvme_ns_head_open
,
1655 .release
= nvme_ns_head_release
,
1656 .ioctl
= nvme_ioctl
,
1657 .compat_ioctl
= nvme_ioctl
,
1658 .getgeo
= nvme_getgeo
,
1659 .pr_ops
= &nvme_pr_ops
,
1661 #endif /* CONFIG_NVME_MULTIPATH */
1663 static int nvme_wait_ready(struct nvme_ctrl
*ctrl
, u64 cap
, bool enabled
)
1665 unsigned long timeout
=
1666 ((NVME_CAP_TIMEOUT(cap
) + 1) * HZ
/ 2) + jiffies
;
1667 u32 csts
, bit
= enabled
? NVME_CSTS_RDY
: 0;
1670 while ((ret
= ctrl
->ops
->reg_read32(ctrl
, NVME_REG_CSTS
, &csts
)) == 0) {
1673 if ((csts
& NVME_CSTS_RDY
) == bit
)
1677 if (fatal_signal_pending(current
))
1679 if (time_after(jiffies
, timeout
)) {
1680 dev_err(ctrl
->device
,
1681 "Device not ready; aborting %s\n", enabled
?
1682 "initialisation" : "reset");
1691 * If the device has been passed off to us in an enabled state, just clear
1692 * the enabled bit. The spec says we should set the 'shutdown notification
1693 * bits', but doing so may cause the device to complete commands to the
1694 * admin queue ... and we don't know what memory that might be pointing at!
1696 int nvme_disable_ctrl(struct nvme_ctrl
*ctrl
, u64 cap
)
1700 ctrl
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1701 ctrl
->ctrl_config
&= ~NVME_CC_ENABLE
;
1703 ret
= ctrl
->ops
->reg_write32(ctrl
, NVME_REG_CC
, ctrl
->ctrl_config
);
1707 if (ctrl
->quirks
& NVME_QUIRK_DELAY_BEFORE_CHK_RDY
)
1708 msleep(NVME_QUIRK_DELAY_AMOUNT
);
1710 return nvme_wait_ready(ctrl
, cap
, false);
1712 EXPORT_SYMBOL_GPL(nvme_disable_ctrl
);
1714 int nvme_enable_ctrl(struct nvme_ctrl
*ctrl
, u64 cap
)
1717 * Default to a 4K page size, with the intention to update this
1718 * path in the future to accomodate architectures with differing
1719 * kernel and IO page sizes.
1721 unsigned dev_page_min
= NVME_CAP_MPSMIN(cap
) + 12, page_shift
= 12;
1724 if (page_shift
< dev_page_min
) {
1725 dev_err(ctrl
->device
,
1726 "Minimum device page size %u too large for host (%u)\n",
1727 1 << dev_page_min
, 1 << page_shift
);
1731 ctrl
->page_size
= 1 << page_shift
;
1733 ctrl
->ctrl_config
= NVME_CC_CSS_NVM
;
1734 ctrl
->ctrl_config
|= (page_shift
- 12) << NVME_CC_MPS_SHIFT
;
1735 ctrl
->ctrl_config
|= NVME_CC_AMS_RR
| NVME_CC_SHN_NONE
;
1736 ctrl
->ctrl_config
|= NVME_CC_IOSQES
| NVME_CC_IOCQES
;
1737 ctrl
->ctrl_config
|= NVME_CC_ENABLE
;
1739 ret
= ctrl
->ops
->reg_write32(ctrl
, NVME_REG_CC
, ctrl
->ctrl_config
);
1742 return nvme_wait_ready(ctrl
, cap
, true);
1744 EXPORT_SYMBOL_GPL(nvme_enable_ctrl
);
1746 int nvme_shutdown_ctrl(struct nvme_ctrl
*ctrl
)
1748 unsigned long timeout
= jiffies
+ (ctrl
->shutdown_timeout
* HZ
);
1752 ctrl
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1753 ctrl
->ctrl_config
|= NVME_CC_SHN_NORMAL
;
1755 ret
= ctrl
->ops
->reg_write32(ctrl
, NVME_REG_CC
, ctrl
->ctrl_config
);
1759 while ((ret
= ctrl
->ops
->reg_read32(ctrl
, NVME_REG_CSTS
, &csts
)) == 0) {
1760 if ((csts
& NVME_CSTS_SHST_MASK
) == NVME_CSTS_SHST_CMPLT
)
1764 if (fatal_signal_pending(current
))
1766 if (time_after(jiffies
, timeout
)) {
1767 dev_err(ctrl
->device
,
1768 "Device shutdown incomplete; abort shutdown\n");
1775 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl
);
1777 static void nvme_set_queue_limits(struct nvme_ctrl
*ctrl
,
1778 struct request_queue
*q
)
1782 if (ctrl
->max_hw_sectors
) {
1784 (ctrl
->max_hw_sectors
/ (ctrl
->page_size
>> 9)) + 1;
1786 blk_queue_max_hw_sectors(q
, ctrl
->max_hw_sectors
);
1787 blk_queue_max_segments(q
, min_t(u32
, max_segments
, USHRT_MAX
));
1789 if ((ctrl
->quirks
& NVME_QUIRK_STRIPE_SIZE
) &&
1790 is_power_of_2(ctrl
->max_hw_sectors
))
1791 blk_queue_chunk_sectors(q
, ctrl
->max_hw_sectors
);
1792 blk_queue_virt_boundary(q
, ctrl
->page_size
- 1);
1793 if (ctrl
->vwc
& NVME_CTRL_VWC_PRESENT
)
1795 blk_queue_write_cache(q
, vwc
, vwc
);
1798 static int nvme_configure_timestamp(struct nvme_ctrl
*ctrl
)
1803 if (!(ctrl
->oncs
& NVME_CTRL_ONCS_TIMESTAMP
))
1806 ts
= cpu_to_le64(ktime_to_ms(ktime_get_real()));
1807 ret
= nvme_set_features(ctrl
, NVME_FEAT_TIMESTAMP
, 0, &ts
, sizeof(ts
),
1810 dev_warn_once(ctrl
->device
,
1811 "could not set timestamp (%d)\n", ret
);
1815 static int nvme_configure_apst(struct nvme_ctrl
*ctrl
)
1818 * APST (Autonomous Power State Transition) lets us program a
1819 * table of power state transitions that the controller will
1820 * perform automatically. We configure it with a simple
1821 * heuristic: we are willing to spend at most 2% of the time
1822 * transitioning between power states. Therefore, when running
1823 * in any given state, we will enter the next lower-power
1824 * non-operational state after waiting 50 * (enlat + exlat)
1825 * microseconds, as long as that state's exit latency is under
1826 * the requested maximum latency.
1828 * We will not autonomously enter any non-operational state for
1829 * which the total latency exceeds ps_max_latency_us. Users
1830 * can set ps_max_latency_us to zero to turn off APST.
1834 struct nvme_feat_auto_pst
*table
;
1840 * If APST isn't supported or if we haven't been initialized yet,
1841 * then don't do anything.
1846 if (ctrl
->npss
> 31) {
1847 dev_warn(ctrl
->device
, "NPSS is invalid; not using APST\n");
1851 table
= kzalloc(sizeof(*table
), GFP_KERNEL
);
1855 if (!ctrl
->apst_enabled
|| ctrl
->ps_max_latency_us
== 0) {
1856 /* Turn off APST. */
1858 dev_dbg(ctrl
->device
, "APST disabled\n");
1860 __le64 target
= cpu_to_le64(0);
1864 * Walk through all states from lowest- to highest-power.
1865 * According to the spec, lower-numbered states use more
1866 * power. NPSS, despite the name, is the index of the
1867 * lowest-power state, not the number of states.
1869 for (state
= (int)ctrl
->npss
; state
>= 0; state
--) {
1870 u64 total_latency_us
, exit_latency_us
, transition_ms
;
1873 table
->entries
[state
] = target
;
1876 * Don't allow transitions to the deepest state
1877 * if it's quirked off.
1879 if (state
== ctrl
->npss
&&
1880 (ctrl
->quirks
& NVME_QUIRK_NO_DEEPEST_PS
))
1884 * Is this state a useful non-operational state for
1885 * higher-power states to autonomously transition to?
1887 if (!(ctrl
->psd
[state
].flags
&
1888 NVME_PS_FLAGS_NON_OP_STATE
))
1892 (u64
)le32_to_cpu(ctrl
->psd
[state
].exit_lat
);
1893 if (exit_latency_us
> ctrl
->ps_max_latency_us
)
1898 le32_to_cpu(ctrl
->psd
[state
].entry_lat
);
1901 * This state is good. Use it as the APST idle
1902 * target for higher power states.
1904 transition_ms
= total_latency_us
+ 19;
1905 do_div(transition_ms
, 20);
1906 if (transition_ms
> (1 << 24) - 1)
1907 transition_ms
= (1 << 24) - 1;
1909 target
= cpu_to_le64((state
<< 3) |
1910 (transition_ms
<< 8));
1915 if (total_latency_us
> max_lat_us
)
1916 max_lat_us
= total_latency_us
;
1922 dev_dbg(ctrl
->device
, "APST enabled but no non-operational states are available\n");
1924 dev_dbg(ctrl
->device
, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1925 max_ps
, max_lat_us
, (int)sizeof(*table
), table
);
1929 ret
= nvme_set_features(ctrl
, NVME_FEAT_AUTO_PST
, apste
,
1930 table
, sizeof(*table
), NULL
);
1932 dev_err(ctrl
->device
, "failed to set APST feature (%d)\n", ret
);
1938 static void nvme_set_latency_tolerance(struct device
*dev
, s32 val
)
1940 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
1944 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT
:
1945 case PM_QOS_LATENCY_ANY
:
1953 if (ctrl
->ps_max_latency_us
!= latency
) {
1954 ctrl
->ps_max_latency_us
= latency
;
1955 nvme_configure_apst(ctrl
);
1959 struct nvme_core_quirk_entry
{
1961 * NVMe model and firmware strings are padded with spaces. For
1962 * simplicity, strings in the quirk table are padded with NULLs
1968 unsigned long quirks
;
1971 static const struct nvme_core_quirk_entry core_quirks
[] = {
1974 * This Toshiba device seems to die using any APST states. See:
1975 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1978 .mn
= "THNSF5256GPUK TOSHIBA",
1979 .quirks
= NVME_QUIRK_NO_APST
,
1983 /* match is null-terminated but idstr is space-padded. */
1984 static bool string_matches(const char *idstr
, const char *match
, size_t len
)
1991 matchlen
= strlen(match
);
1992 WARN_ON_ONCE(matchlen
> len
);
1994 if (memcmp(idstr
, match
, matchlen
))
1997 for (; matchlen
< len
; matchlen
++)
1998 if (idstr
[matchlen
] != ' ')
2004 static bool quirk_matches(const struct nvme_id_ctrl
*id
,
2005 const struct nvme_core_quirk_entry
*q
)
2007 return q
->vid
== le16_to_cpu(id
->vid
) &&
2008 string_matches(id
->mn
, q
->mn
, sizeof(id
->mn
)) &&
2009 string_matches(id
->fr
, q
->fr
, sizeof(id
->fr
));
2012 static void nvme_init_subnqn(struct nvme_subsystem
*subsys
, struct nvme_ctrl
*ctrl
,
2013 struct nvme_id_ctrl
*id
)
2018 nqnlen
= strnlen(id
->subnqn
, NVMF_NQN_SIZE
);
2019 if (nqnlen
> 0 && nqnlen
< NVMF_NQN_SIZE
) {
2020 strncpy(subsys
->subnqn
, id
->subnqn
, NVMF_NQN_SIZE
);
2024 if (ctrl
->vs
>= NVME_VS(1, 2, 1))
2025 dev_warn(ctrl
->device
, "missing or invalid SUBNQN field.\n");
2027 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2028 off
= snprintf(subsys
->subnqn
, NVMF_NQN_SIZE
,
2029 "nqn.2014.08.org.nvmexpress:%4x%4x",
2030 le16_to_cpu(id
->vid
), le16_to_cpu(id
->ssvid
));
2031 memcpy(subsys
->subnqn
+ off
, id
->sn
, sizeof(id
->sn
));
2032 off
+= sizeof(id
->sn
);
2033 memcpy(subsys
->subnqn
+ off
, id
->mn
, sizeof(id
->mn
));
2034 off
+= sizeof(id
->mn
);
2035 memset(subsys
->subnqn
+ off
, 0, sizeof(subsys
->subnqn
) - off
);
2038 static void __nvme_release_subsystem(struct nvme_subsystem
*subsys
)
2040 ida_simple_remove(&nvme_subsystems_ida
, subsys
->instance
);
2044 static void nvme_release_subsystem(struct device
*dev
)
2046 __nvme_release_subsystem(container_of(dev
, struct nvme_subsystem
, dev
));
2049 static void nvme_destroy_subsystem(struct kref
*ref
)
2051 struct nvme_subsystem
*subsys
=
2052 container_of(ref
, struct nvme_subsystem
, ref
);
2054 mutex_lock(&nvme_subsystems_lock
);
2055 list_del(&subsys
->entry
);
2056 mutex_unlock(&nvme_subsystems_lock
);
2058 ida_destroy(&subsys
->ns_ida
);
2059 device_del(&subsys
->dev
);
2060 put_device(&subsys
->dev
);
2063 static void nvme_put_subsystem(struct nvme_subsystem
*subsys
)
2065 kref_put(&subsys
->ref
, nvme_destroy_subsystem
);
2068 static struct nvme_subsystem
*__nvme_find_get_subsystem(const char *subsysnqn
)
2070 struct nvme_subsystem
*subsys
;
2072 lockdep_assert_held(&nvme_subsystems_lock
);
2074 list_for_each_entry(subsys
, &nvme_subsystems
, entry
) {
2075 if (strcmp(subsys
->subnqn
, subsysnqn
))
2077 if (!kref_get_unless_zero(&subsys
->ref
))
2085 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2086 struct device_attribute subsys_attr_##_name = \
2087 __ATTR(_name, _mode, _show, NULL)
2089 static ssize_t
nvme_subsys_show_nqn(struct device
*dev
,
2090 struct device_attribute
*attr
,
2093 struct nvme_subsystem
*subsys
=
2094 container_of(dev
, struct nvme_subsystem
, dev
);
2096 return snprintf(buf
, PAGE_SIZE
, "%s\n", subsys
->subnqn
);
2098 static SUBSYS_ATTR_RO(subsysnqn
, S_IRUGO
, nvme_subsys_show_nqn
);
2100 #define nvme_subsys_show_str_function(field) \
2101 static ssize_t subsys_##field##_show(struct device *dev, \
2102 struct device_attribute *attr, char *buf) \
2104 struct nvme_subsystem *subsys = \
2105 container_of(dev, struct nvme_subsystem, dev); \
2106 return sprintf(buf, "%.*s\n", \
2107 (int)sizeof(subsys->field), subsys->field); \
2109 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2111 nvme_subsys_show_str_function(model
);
2112 nvme_subsys_show_str_function(serial
);
2113 nvme_subsys_show_str_function(firmware_rev
);
2115 static struct attribute
*nvme_subsys_attrs
[] = {
2116 &subsys_attr_model
.attr
,
2117 &subsys_attr_serial
.attr
,
2118 &subsys_attr_firmware_rev
.attr
,
2119 &subsys_attr_subsysnqn
.attr
,
2123 static struct attribute_group nvme_subsys_attrs_group
= {
2124 .attrs
= nvme_subsys_attrs
,
2127 static const struct attribute_group
*nvme_subsys_attrs_groups
[] = {
2128 &nvme_subsys_attrs_group
,
2132 static int nvme_active_ctrls(struct nvme_subsystem
*subsys
)
2135 struct nvme_ctrl
*ctrl
;
2137 mutex_lock(&subsys
->lock
);
2138 list_for_each_entry(ctrl
, &subsys
->ctrls
, subsys_entry
) {
2139 if (ctrl
->state
!= NVME_CTRL_DELETING
&&
2140 ctrl
->state
!= NVME_CTRL_DEAD
)
2143 mutex_unlock(&subsys
->lock
);
2148 static int nvme_init_subsystem(struct nvme_ctrl
*ctrl
, struct nvme_id_ctrl
*id
)
2150 struct nvme_subsystem
*subsys
, *found
;
2153 subsys
= kzalloc(sizeof(*subsys
), GFP_KERNEL
);
2156 ret
= ida_simple_get(&nvme_subsystems_ida
, 0, 0, GFP_KERNEL
);
2161 subsys
->instance
= ret
;
2162 mutex_init(&subsys
->lock
);
2163 kref_init(&subsys
->ref
);
2164 INIT_LIST_HEAD(&subsys
->ctrls
);
2165 INIT_LIST_HEAD(&subsys
->nsheads
);
2166 nvme_init_subnqn(subsys
, ctrl
, id
);
2167 memcpy(subsys
->serial
, id
->sn
, sizeof(subsys
->serial
));
2168 memcpy(subsys
->model
, id
->mn
, sizeof(subsys
->model
));
2169 memcpy(subsys
->firmware_rev
, id
->fr
, sizeof(subsys
->firmware_rev
));
2170 subsys
->vendor_id
= le16_to_cpu(id
->vid
);
2171 subsys
->cmic
= id
->cmic
;
2173 subsys
->dev
.class = nvme_subsys_class
;
2174 subsys
->dev
.release
= nvme_release_subsystem
;
2175 subsys
->dev
.groups
= nvme_subsys_attrs_groups
;
2176 dev_set_name(&subsys
->dev
, "nvme-subsys%d", subsys
->instance
);
2177 device_initialize(&subsys
->dev
);
2179 mutex_lock(&nvme_subsystems_lock
);
2180 found
= __nvme_find_get_subsystem(subsys
->subnqn
);
2183 * Verify that the subsystem actually supports multiple
2184 * controllers, else bail out.
2186 if (nvme_active_ctrls(found
) && !(id
->cmic
& (1 << 1))) {
2187 dev_err(ctrl
->device
,
2188 "ignoring ctrl due to duplicate subnqn (%s).\n",
2190 nvme_put_subsystem(found
);
2195 __nvme_release_subsystem(subsys
);
2198 ret
= device_add(&subsys
->dev
);
2200 dev_err(ctrl
->device
,
2201 "failed to register subsystem device.\n");
2204 ida_init(&subsys
->ns_ida
);
2205 list_add_tail(&subsys
->entry
, &nvme_subsystems
);
2208 ctrl
->subsys
= subsys
;
2209 mutex_unlock(&nvme_subsystems_lock
);
2211 if (sysfs_create_link(&subsys
->dev
.kobj
, &ctrl
->device
->kobj
,
2212 dev_name(ctrl
->device
))) {
2213 dev_err(ctrl
->device
,
2214 "failed to create sysfs link from subsystem.\n");
2215 /* the transport driver will eventually put the subsystem */
2219 mutex_lock(&subsys
->lock
);
2220 list_add_tail(&ctrl
->subsys_entry
, &subsys
->ctrls
);
2221 mutex_unlock(&subsys
->lock
);
2226 mutex_unlock(&nvme_subsystems_lock
);
2227 put_device(&subsys
->dev
);
2231 int nvme_get_log_ext(struct nvme_ctrl
*ctrl
, struct nvme_ns
*ns
,
2232 u8 log_page
, void *log
,
2233 size_t size
, u64 offset
)
2235 struct nvme_command c
= { };
2236 unsigned long dwlen
= size
/ 4 - 1;
2238 c
.get_log_page
.opcode
= nvme_admin_get_log_page
;
2241 c
.get_log_page
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
2243 c
.get_log_page
.nsid
= cpu_to_le32(NVME_NSID_ALL
);
2245 c
.get_log_page
.lid
= log_page
;
2246 c
.get_log_page
.numdl
= cpu_to_le16(dwlen
& ((1 << 16) - 1));
2247 c
.get_log_page
.numdu
= cpu_to_le16(dwlen
>> 16);
2248 c
.get_log_page
.lpol
= cpu_to_le32(lower_32_bits(offset
));
2249 c
.get_log_page
.lpou
= cpu_to_le32(upper_32_bits(offset
));
2251 return nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, log
, size
);
2254 static int nvme_get_log(struct nvme_ctrl
*ctrl
, u8 log_page
, void *log
,
2257 return nvme_get_log_ext(ctrl
, NULL
, log_page
, log
, size
, 0);
2260 static int nvme_get_effects_log(struct nvme_ctrl
*ctrl
)
2265 ctrl
->effects
= kzalloc(sizeof(*ctrl
->effects
), GFP_KERNEL
);
2270 ret
= nvme_get_log(ctrl
, NVME_LOG_CMD_EFFECTS
, ctrl
->effects
,
2271 sizeof(*ctrl
->effects
));
2273 kfree(ctrl
->effects
);
2274 ctrl
->effects
= NULL
;
2280 * Initialize the cached copies of the Identify data and various controller
2281 * register in our nvme_ctrl structure. This should be called as soon as
2282 * the admin queue is fully up and running.
2284 int nvme_init_identify(struct nvme_ctrl
*ctrl
)
2286 struct nvme_id_ctrl
*id
;
2288 int ret
, page_shift
;
2290 bool prev_apst_enabled
;
2292 ret
= ctrl
->ops
->reg_read32(ctrl
, NVME_REG_VS
, &ctrl
->vs
);
2294 dev_err(ctrl
->device
, "Reading VS failed (%d)\n", ret
);
2298 ret
= ctrl
->ops
->reg_read64(ctrl
, NVME_REG_CAP
, &cap
);
2300 dev_err(ctrl
->device
, "Reading CAP failed (%d)\n", ret
);
2303 page_shift
= NVME_CAP_MPSMIN(cap
) + 12;
2305 if (ctrl
->vs
>= NVME_VS(1, 1, 0))
2306 ctrl
->subsystem
= NVME_CAP_NSSRC(cap
);
2308 ret
= nvme_identify_ctrl(ctrl
, &id
);
2310 dev_err(ctrl
->device
, "Identify Controller failed (%d)\n", ret
);
2314 if (id
->lpa
& NVME_CTRL_LPA_CMD_EFFECTS_LOG
) {
2315 ret
= nvme_get_effects_log(ctrl
);
2320 if (!ctrl
->identified
) {
2323 ret
= nvme_init_subsystem(ctrl
, id
);
2328 * Check for quirks. Quirk can depend on firmware version,
2329 * so, in principle, the set of quirks present can change
2330 * across a reset. As a possible future enhancement, we
2331 * could re-scan for quirks every time we reinitialize
2332 * the device, but we'd have to make sure that the driver
2333 * behaves intelligently if the quirks change.
2335 for (i
= 0; i
< ARRAY_SIZE(core_quirks
); i
++) {
2336 if (quirk_matches(id
, &core_quirks
[i
]))
2337 ctrl
->quirks
|= core_quirks
[i
].quirks
;
2341 if (force_apst
&& (ctrl
->quirks
& NVME_QUIRK_NO_DEEPEST_PS
)) {
2342 dev_warn(ctrl
->device
, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2343 ctrl
->quirks
&= ~NVME_QUIRK_NO_DEEPEST_PS
;
2346 ctrl
->oacs
= le16_to_cpu(id
->oacs
);
2347 ctrl
->oncs
= le16_to_cpup(&id
->oncs
);
2348 atomic_set(&ctrl
->abort_limit
, id
->acl
+ 1);
2349 ctrl
->vwc
= id
->vwc
;
2350 ctrl
->cntlid
= le16_to_cpup(&id
->cntlid
);
2352 max_hw_sectors
= 1 << (id
->mdts
+ page_shift
- 9);
2354 max_hw_sectors
= UINT_MAX
;
2355 ctrl
->max_hw_sectors
=
2356 min_not_zero(ctrl
->max_hw_sectors
, max_hw_sectors
);
2358 nvme_set_queue_limits(ctrl
, ctrl
->admin_q
);
2359 ctrl
->sgls
= le32_to_cpu(id
->sgls
);
2360 ctrl
->kas
= le16_to_cpu(id
->kas
);
2364 u32 transition_time
= le32_to_cpu(id
->rtd3e
) / 1000000;
2366 ctrl
->shutdown_timeout
= clamp_t(unsigned int, transition_time
,
2367 shutdown_timeout
, 60);
2369 if (ctrl
->shutdown_timeout
!= shutdown_timeout
)
2370 dev_info(ctrl
->device
,
2371 "Shutdown timeout set to %u seconds\n",
2372 ctrl
->shutdown_timeout
);
2374 ctrl
->shutdown_timeout
= shutdown_timeout
;
2376 ctrl
->npss
= id
->npss
;
2377 ctrl
->apsta
= id
->apsta
;
2378 prev_apst_enabled
= ctrl
->apst_enabled
;
2379 if (ctrl
->quirks
& NVME_QUIRK_NO_APST
) {
2380 if (force_apst
&& id
->apsta
) {
2381 dev_warn(ctrl
->device
, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2382 ctrl
->apst_enabled
= true;
2384 ctrl
->apst_enabled
= false;
2387 ctrl
->apst_enabled
= id
->apsta
;
2389 memcpy(ctrl
->psd
, id
->psd
, sizeof(ctrl
->psd
));
2391 if (ctrl
->ops
->flags
& NVME_F_FABRICS
) {
2392 ctrl
->icdoff
= le16_to_cpu(id
->icdoff
);
2393 ctrl
->ioccsz
= le32_to_cpu(id
->ioccsz
);
2394 ctrl
->iorcsz
= le32_to_cpu(id
->iorcsz
);
2395 ctrl
->maxcmd
= le16_to_cpu(id
->maxcmd
);
2398 * In fabrics we need to verify the cntlid matches the
2401 if (ctrl
->cntlid
!= le16_to_cpu(id
->cntlid
)) {
2406 if (!ctrl
->opts
->discovery_nqn
&& !ctrl
->kas
) {
2407 dev_err(ctrl
->device
,
2408 "keep-alive support is mandatory for fabrics\n");
2413 ctrl
->cntlid
= le16_to_cpu(id
->cntlid
);
2414 ctrl
->hmpre
= le32_to_cpu(id
->hmpre
);
2415 ctrl
->hmmin
= le32_to_cpu(id
->hmmin
);
2416 ctrl
->hmminds
= le32_to_cpu(id
->hmminds
);
2417 ctrl
->hmmaxd
= le16_to_cpu(id
->hmmaxd
);
2422 if (ctrl
->apst_enabled
&& !prev_apst_enabled
)
2423 dev_pm_qos_expose_latency_tolerance(ctrl
->device
);
2424 else if (!ctrl
->apst_enabled
&& prev_apst_enabled
)
2425 dev_pm_qos_hide_latency_tolerance(ctrl
->device
);
2427 ret
= nvme_configure_apst(ctrl
);
2431 ret
= nvme_configure_timestamp(ctrl
);
2435 ret
= nvme_configure_directives(ctrl
);
2439 ctrl
->identified
= true;
2447 EXPORT_SYMBOL_GPL(nvme_init_identify
);
2449 static int nvme_dev_open(struct inode
*inode
, struct file
*file
)
2451 struct nvme_ctrl
*ctrl
=
2452 container_of(inode
->i_cdev
, struct nvme_ctrl
, cdev
);
2454 switch (ctrl
->state
) {
2455 case NVME_CTRL_LIVE
:
2456 case NVME_CTRL_ADMIN_ONLY
:
2459 return -EWOULDBLOCK
;
2462 file
->private_data
= ctrl
;
2466 static int nvme_dev_user_cmd(struct nvme_ctrl
*ctrl
, void __user
*argp
)
2471 down_read(&ctrl
->namespaces_rwsem
);
2472 if (list_empty(&ctrl
->namespaces
)) {
2477 ns
= list_first_entry(&ctrl
->namespaces
, struct nvme_ns
, list
);
2478 if (ns
!= list_last_entry(&ctrl
->namespaces
, struct nvme_ns
, list
)) {
2479 dev_warn(ctrl
->device
,
2480 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2485 dev_warn(ctrl
->device
,
2486 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2487 kref_get(&ns
->kref
);
2488 up_read(&ctrl
->namespaces_rwsem
);
2490 ret
= nvme_user_cmd(ctrl
, ns
, argp
);
2495 up_read(&ctrl
->namespaces_rwsem
);
2499 static long nvme_dev_ioctl(struct file
*file
, unsigned int cmd
,
2502 struct nvme_ctrl
*ctrl
= file
->private_data
;
2503 void __user
*argp
= (void __user
*)arg
;
2506 case NVME_IOCTL_ADMIN_CMD
:
2507 return nvme_user_cmd(ctrl
, NULL
, argp
);
2508 case NVME_IOCTL_IO_CMD
:
2509 return nvme_dev_user_cmd(ctrl
, argp
);
2510 case NVME_IOCTL_RESET
:
2511 dev_warn(ctrl
->device
, "resetting controller\n");
2512 return nvme_reset_ctrl_sync(ctrl
);
2513 case NVME_IOCTL_SUBSYS_RESET
:
2514 return nvme_reset_subsystem(ctrl
);
2515 case NVME_IOCTL_RESCAN
:
2516 nvme_queue_scan(ctrl
);
2523 static const struct file_operations nvme_dev_fops
= {
2524 .owner
= THIS_MODULE
,
2525 .open
= nvme_dev_open
,
2526 .unlocked_ioctl
= nvme_dev_ioctl
,
2527 .compat_ioctl
= nvme_dev_ioctl
,
2530 static ssize_t
nvme_sysfs_reset(struct device
*dev
,
2531 struct device_attribute
*attr
, const char *buf
,
2534 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2537 ret
= nvme_reset_ctrl_sync(ctrl
);
2542 static DEVICE_ATTR(reset_controller
, S_IWUSR
, NULL
, nvme_sysfs_reset
);
2544 static ssize_t
nvme_sysfs_rescan(struct device
*dev
,
2545 struct device_attribute
*attr
, const char *buf
,
2548 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2550 nvme_queue_scan(ctrl
);
2553 static DEVICE_ATTR(rescan_controller
, S_IWUSR
, NULL
, nvme_sysfs_rescan
);
2555 static inline struct nvme_ns_head
*dev_to_ns_head(struct device
*dev
)
2557 struct gendisk
*disk
= dev_to_disk(dev
);
2559 if (disk
->fops
== &nvme_fops
)
2560 return nvme_get_ns_from_dev(dev
)->head
;
2562 return disk
->private_data
;
2565 static ssize_t
wwid_show(struct device
*dev
, struct device_attribute
*attr
,
2568 struct nvme_ns_head
*head
= dev_to_ns_head(dev
);
2569 struct nvme_ns_ids
*ids
= &head
->ids
;
2570 struct nvme_subsystem
*subsys
= head
->subsys
;
2571 int serial_len
= sizeof(subsys
->serial
);
2572 int model_len
= sizeof(subsys
->model
);
2574 if (!uuid_is_null(&ids
->uuid
))
2575 return sprintf(buf
, "uuid.%pU\n", &ids
->uuid
);
2577 if (memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)))
2578 return sprintf(buf
, "eui.%16phN\n", ids
->nguid
);
2580 if (memchr_inv(ids
->eui64
, 0, sizeof(ids
->eui64
)))
2581 return sprintf(buf
, "eui.%8phN\n", ids
->eui64
);
2583 while (serial_len
> 0 && (subsys
->serial
[serial_len
- 1] == ' ' ||
2584 subsys
->serial
[serial_len
- 1] == '\0'))
2586 while (model_len
> 0 && (subsys
->model
[model_len
- 1] == ' ' ||
2587 subsys
->model
[model_len
- 1] == '\0'))
2590 return sprintf(buf
, "nvme.%04x-%*phN-%*phN-%08x\n", subsys
->vendor_id
,
2591 serial_len
, subsys
->serial
, model_len
, subsys
->model
,
2594 static DEVICE_ATTR_RO(wwid
);
2596 static ssize_t
nguid_show(struct device
*dev
, struct device_attribute
*attr
,
2599 return sprintf(buf
, "%pU\n", dev_to_ns_head(dev
)->ids
.nguid
);
2601 static DEVICE_ATTR_RO(nguid
);
2603 static ssize_t
uuid_show(struct device
*dev
, struct device_attribute
*attr
,
2606 struct nvme_ns_ids
*ids
= &dev_to_ns_head(dev
)->ids
;
2608 /* For backward compatibility expose the NGUID to userspace if
2609 * we have no UUID set
2611 if (uuid_is_null(&ids
->uuid
)) {
2612 printk_ratelimited(KERN_WARNING
2613 "No UUID available providing old NGUID\n");
2614 return sprintf(buf
, "%pU\n", ids
->nguid
);
2616 return sprintf(buf
, "%pU\n", &ids
->uuid
);
2618 static DEVICE_ATTR_RO(uuid
);
2620 static ssize_t
eui_show(struct device
*dev
, struct device_attribute
*attr
,
2623 return sprintf(buf
, "%8ph\n", dev_to_ns_head(dev
)->ids
.eui64
);
2625 static DEVICE_ATTR_RO(eui
);
2627 static ssize_t
nsid_show(struct device
*dev
, struct device_attribute
*attr
,
2630 return sprintf(buf
, "%d\n", dev_to_ns_head(dev
)->ns_id
);
2632 static DEVICE_ATTR_RO(nsid
);
2634 static struct attribute
*nvme_ns_id_attrs
[] = {
2635 &dev_attr_wwid
.attr
,
2636 &dev_attr_uuid
.attr
,
2637 &dev_attr_nguid
.attr
,
2639 &dev_attr_nsid
.attr
,
2643 static umode_t
nvme_ns_id_attrs_are_visible(struct kobject
*kobj
,
2644 struct attribute
*a
, int n
)
2646 struct device
*dev
= container_of(kobj
, struct device
, kobj
);
2647 struct nvme_ns_ids
*ids
= &dev_to_ns_head(dev
)->ids
;
2649 if (a
== &dev_attr_uuid
.attr
) {
2650 if (uuid_is_null(&ids
->uuid
) &&
2651 !memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)))
2654 if (a
== &dev_attr_nguid
.attr
) {
2655 if (!memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)))
2658 if (a
== &dev_attr_eui
.attr
) {
2659 if (!memchr_inv(ids
->eui64
, 0, sizeof(ids
->eui64
)))
2665 const struct attribute_group nvme_ns_id_attr_group
= {
2666 .attrs
= nvme_ns_id_attrs
,
2667 .is_visible
= nvme_ns_id_attrs_are_visible
,
2670 #define nvme_show_str_function(field) \
2671 static ssize_t field##_show(struct device *dev, \
2672 struct device_attribute *attr, char *buf) \
2674 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2675 return sprintf(buf, "%.*s\n", \
2676 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
2678 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2680 nvme_show_str_function(model
);
2681 nvme_show_str_function(serial
);
2682 nvme_show_str_function(firmware_rev
);
2684 #define nvme_show_int_function(field) \
2685 static ssize_t field##_show(struct device *dev, \
2686 struct device_attribute *attr, char *buf) \
2688 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2689 return sprintf(buf, "%d\n", ctrl->field); \
2691 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2693 nvme_show_int_function(cntlid
);
2695 static ssize_t
nvme_sysfs_delete(struct device
*dev
,
2696 struct device_attribute
*attr
, const char *buf
,
2699 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2701 if (device_remove_file_self(dev
, attr
))
2702 nvme_delete_ctrl_sync(ctrl
);
2705 static DEVICE_ATTR(delete_controller
, S_IWUSR
, NULL
, nvme_sysfs_delete
);
2707 static ssize_t
nvme_sysfs_show_transport(struct device
*dev
,
2708 struct device_attribute
*attr
,
2711 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2713 return snprintf(buf
, PAGE_SIZE
, "%s\n", ctrl
->ops
->name
);
2715 static DEVICE_ATTR(transport
, S_IRUGO
, nvme_sysfs_show_transport
, NULL
);
2717 static ssize_t
nvme_sysfs_show_state(struct device
*dev
,
2718 struct device_attribute
*attr
,
2721 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2722 static const char *const state_name
[] = {
2723 [NVME_CTRL_NEW
] = "new",
2724 [NVME_CTRL_LIVE
] = "live",
2725 [NVME_CTRL_ADMIN_ONLY
] = "only-admin",
2726 [NVME_CTRL_RESETTING
] = "resetting",
2727 [NVME_CTRL_CONNECTING
] = "connecting",
2728 [NVME_CTRL_DELETING
] = "deleting",
2729 [NVME_CTRL_DEAD
] = "dead",
2732 if ((unsigned)ctrl
->state
< ARRAY_SIZE(state_name
) &&
2733 state_name
[ctrl
->state
])
2734 return sprintf(buf
, "%s\n", state_name
[ctrl
->state
]);
2736 return sprintf(buf
, "unknown state\n");
2739 static DEVICE_ATTR(state
, S_IRUGO
, nvme_sysfs_show_state
, NULL
);
2741 static ssize_t
nvme_sysfs_show_subsysnqn(struct device
*dev
,
2742 struct device_attribute
*attr
,
2745 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2747 return snprintf(buf
, PAGE_SIZE
, "%s\n", ctrl
->subsys
->subnqn
);
2749 static DEVICE_ATTR(subsysnqn
, S_IRUGO
, nvme_sysfs_show_subsysnqn
, NULL
);
2751 static ssize_t
nvme_sysfs_show_address(struct device
*dev
,
2752 struct device_attribute
*attr
,
2755 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2757 return ctrl
->ops
->get_address(ctrl
, buf
, PAGE_SIZE
);
2759 static DEVICE_ATTR(address
, S_IRUGO
, nvme_sysfs_show_address
, NULL
);
2761 static struct attribute
*nvme_dev_attrs
[] = {
2762 &dev_attr_reset_controller
.attr
,
2763 &dev_attr_rescan_controller
.attr
,
2764 &dev_attr_model
.attr
,
2765 &dev_attr_serial
.attr
,
2766 &dev_attr_firmware_rev
.attr
,
2767 &dev_attr_cntlid
.attr
,
2768 &dev_attr_delete_controller
.attr
,
2769 &dev_attr_transport
.attr
,
2770 &dev_attr_subsysnqn
.attr
,
2771 &dev_attr_address
.attr
,
2772 &dev_attr_state
.attr
,
2776 static umode_t
nvme_dev_attrs_are_visible(struct kobject
*kobj
,
2777 struct attribute
*a
, int n
)
2779 struct device
*dev
= container_of(kobj
, struct device
, kobj
);
2780 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2782 if (a
== &dev_attr_delete_controller
.attr
&& !ctrl
->ops
->delete_ctrl
)
2784 if (a
== &dev_attr_address
.attr
&& !ctrl
->ops
->get_address
)
2790 static struct attribute_group nvme_dev_attrs_group
= {
2791 .attrs
= nvme_dev_attrs
,
2792 .is_visible
= nvme_dev_attrs_are_visible
,
2795 static const struct attribute_group
*nvme_dev_attr_groups
[] = {
2796 &nvme_dev_attrs_group
,
2800 static struct nvme_ns_head
*__nvme_find_ns_head(struct nvme_subsystem
*subsys
,
2803 struct nvme_ns_head
*h
;
2805 lockdep_assert_held(&subsys
->lock
);
2807 list_for_each_entry(h
, &subsys
->nsheads
, entry
) {
2808 if (h
->ns_id
== nsid
&& kref_get_unless_zero(&h
->ref
))
2815 static int __nvme_check_ids(struct nvme_subsystem
*subsys
,
2816 struct nvme_ns_head
*new)
2818 struct nvme_ns_head
*h
;
2820 lockdep_assert_held(&subsys
->lock
);
2822 list_for_each_entry(h
, &subsys
->nsheads
, entry
) {
2823 if (nvme_ns_ids_valid(&new->ids
) &&
2824 !list_empty(&h
->list
) &&
2825 nvme_ns_ids_equal(&new->ids
, &h
->ids
))
2832 static struct nvme_ns_head
*nvme_alloc_ns_head(struct nvme_ctrl
*ctrl
,
2833 unsigned nsid
, struct nvme_id_ns
*id
)
2835 struct nvme_ns_head
*head
;
2838 head
= kzalloc(sizeof(*head
), GFP_KERNEL
);
2841 ret
= ida_simple_get(&ctrl
->subsys
->ns_ida
, 1, 0, GFP_KERNEL
);
2844 head
->instance
= ret
;
2845 INIT_LIST_HEAD(&head
->list
);
2846 ret
= init_srcu_struct(&head
->srcu
);
2848 goto out_ida_remove
;
2849 head
->subsys
= ctrl
->subsys
;
2851 kref_init(&head
->ref
);
2853 nvme_report_ns_ids(ctrl
, nsid
, id
, &head
->ids
);
2855 ret
= __nvme_check_ids(ctrl
->subsys
, head
);
2857 dev_err(ctrl
->device
,
2858 "duplicate IDs for nsid %d\n", nsid
);
2859 goto out_cleanup_srcu
;
2862 ret
= nvme_mpath_alloc_disk(ctrl
, head
);
2864 goto out_cleanup_srcu
;
2866 list_add_tail(&head
->entry
, &ctrl
->subsys
->nsheads
);
2868 kref_get(&ctrl
->subsys
->ref
);
2872 cleanup_srcu_struct(&head
->srcu
);
2874 ida_simple_remove(&ctrl
->subsys
->ns_ida
, head
->instance
);
2878 return ERR_PTR(ret
);
2881 static int nvme_init_ns_head(struct nvme_ns
*ns
, unsigned nsid
,
2882 struct nvme_id_ns
*id
)
2884 struct nvme_ctrl
*ctrl
= ns
->ctrl
;
2885 bool is_shared
= id
->nmic
& (1 << 0);
2886 struct nvme_ns_head
*head
= NULL
;
2889 mutex_lock(&ctrl
->subsys
->lock
);
2891 head
= __nvme_find_ns_head(ctrl
->subsys
, nsid
);
2893 head
= nvme_alloc_ns_head(ctrl
, nsid
, id
);
2895 ret
= PTR_ERR(head
);
2899 struct nvme_ns_ids ids
;
2901 nvme_report_ns_ids(ctrl
, nsid
, id
, &ids
);
2902 if (!nvme_ns_ids_equal(&head
->ids
, &ids
)) {
2903 dev_err(ctrl
->device
,
2904 "IDs don't match for shared namespace %d\n",
2911 list_add_tail(&ns
->siblings
, &head
->list
);
2915 mutex_unlock(&ctrl
->subsys
->lock
);
2919 static int ns_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2921 struct nvme_ns
*nsa
= container_of(a
, struct nvme_ns
, list
);
2922 struct nvme_ns
*nsb
= container_of(b
, struct nvme_ns
, list
);
2924 return nsa
->head
->ns_id
- nsb
->head
->ns_id
;
2927 static struct nvme_ns
*nvme_find_get_ns(struct nvme_ctrl
*ctrl
, unsigned nsid
)
2929 struct nvme_ns
*ns
, *ret
= NULL
;
2931 down_read(&ctrl
->namespaces_rwsem
);
2932 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
2933 if (ns
->head
->ns_id
== nsid
) {
2934 if (!kref_get_unless_zero(&ns
->kref
))
2939 if (ns
->head
->ns_id
> nsid
)
2942 up_read(&ctrl
->namespaces_rwsem
);
2946 static int nvme_setup_streams_ns(struct nvme_ctrl
*ctrl
, struct nvme_ns
*ns
)
2948 struct streams_directive_params s
;
2951 if (!ctrl
->nr_streams
)
2954 ret
= nvme_get_stream_params(ctrl
, &s
, ns
->head
->ns_id
);
2958 ns
->sws
= le32_to_cpu(s
.sws
);
2959 ns
->sgs
= le16_to_cpu(s
.sgs
);
2962 unsigned int bs
= 1 << ns
->lba_shift
;
2964 blk_queue_io_min(ns
->queue
, bs
* ns
->sws
);
2966 blk_queue_io_opt(ns
->queue
, bs
* ns
->sws
* ns
->sgs
);
2972 static void nvme_alloc_ns(struct nvme_ctrl
*ctrl
, unsigned nsid
)
2975 struct gendisk
*disk
;
2976 struct nvme_id_ns
*id
;
2977 char disk_name
[DISK_NAME_LEN
];
2978 int node
= dev_to_node(ctrl
->dev
), flags
= GENHD_FL_EXT_DEVT
;
2980 ns
= kzalloc_node(sizeof(*ns
), GFP_KERNEL
, node
);
2984 ns
->queue
= blk_mq_init_queue(ctrl
->tagset
);
2985 if (IS_ERR(ns
->queue
))
2987 blk_queue_flag_set(QUEUE_FLAG_NONROT
, ns
->queue
);
2988 ns
->queue
->queuedata
= ns
;
2991 kref_init(&ns
->kref
);
2992 ns
->lba_shift
= 9; /* set to a default value for 512 until disk is validated */
2994 blk_queue_logical_block_size(ns
->queue
, 1 << ns
->lba_shift
);
2995 nvme_set_queue_limits(ctrl
, ns
->queue
);
2997 id
= nvme_identify_ns(ctrl
, nsid
);
2999 goto out_free_queue
;
3004 if (nvme_init_ns_head(ns
, nsid
, id
))
3006 nvme_setup_streams_ns(ctrl
, ns
);
3007 nvme_set_disk_name(disk_name
, ns
, ctrl
, &flags
);
3009 if ((ctrl
->quirks
& NVME_QUIRK_LIGHTNVM
) && id
->vs
[0] == 0x1) {
3010 if (nvme_nvm_register(ns
, disk_name
, node
)) {
3011 dev_warn(ctrl
->device
, "LightNVM init failure\n");
3016 disk
= alloc_disk_node(0, node
);
3020 disk
->fops
= &nvme_fops
;
3021 disk
->private_data
= ns
;
3022 disk
->queue
= ns
->queue
;
3023 disk
->flags
= flags
;
3024 memcpy(disk
->disk_name
, disk_name
, DISK_NAME_LEN
);
3027 __nvme_revalidate_disk(disk
, id
);
3029 down_write(&ctrl
->namespaces_rwsem
);
3030 list_add_tail(&ns
->list
, &ctrl
->namespaces
);
3031 up_write(&ctrl
->namespaces_rwsem
);
3033 nvme_get_ctrl(ctrl
);
3037 device_add_disk(ctrl
->device
, ns
->disk
);
3038 if (sysfs_create_group(&disk_to_dev(ns
->disk
)->kobj
,
3039 &nvme_ns_id_attr_group
))
3040 pr_warn("%s: failed to create sysfs group for identification\n",
3041 ns
->disk
->disk_name
);
3042 if (ns
->ndev
&& nvme_nvm_register_sysfs(ns
))
3043 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3044 ns
->disk
->disk_name
);
3046 nvme_mpath_add_disk(ns
->head
);
3047 nvme_fault_inject_init(ns
);
3050 mutex_lock(&ctrl
->subsys
->lock
);
3051 list_del_rcu(&ns
->siblings
);
3052 mutex_unlock(&ctrl
->subsys
->lock
);
3056 blk_cleanup_queue(ns
->queue
);
3061 static void nvme_ns_remove(struct nvme_ns
*ns
)
3063 if (test_and_set_bit(NVME_NS_REMOVING
, &ns
->flags
))
3066 nvme_fault_inject_fini(ns
);
3067 if (ns
->disk
&& ns
->disk
->flags
& GENHD_FL_UP
) {
3068 sysfs_remove_group(&disk_to_dev(ns
->disk
)->kobj
,
3069 &nvme_ns_id_attr_group
);
3071 nvme_nvm_unregister_sysfs(ns
);
3072 del_gendisk(ns
->disk
);
3073 blk_cleanup_queue(ns
->queue
);
3074 if (blk_get_integrity(ns
->disk
))
3075 blk_integrity_unregister(ns
->disk
);
3078 mutex_lock(&ns
->ctrl
->subsys
->lock
);
3079 nvme_mpath_clear_current_path(ns
);
3080 list_del_rcu(&ns
->siblings
);
3081 mutex_unlock(&ns
->ctrl
->subsys
->lock
);
3083 down_write(&ns
->ctrl
->namespaces_rwsem
);
3084 list_del_init(&ns
->list
);
3085 up_write(&ns
->ctrl
->namespaces_rwsem
);
3087 synchronize_srcu(&ns
->head
->srcu
);
3088 nvme_mpath_check_last_path(ns
);
3092 static void nvme_validate_ns(struct nvme_ctrl
*ctrl
, unsigned nsid
)
3096 ns
= nvme_find_get_ns(ctrl
, nsid
);
3098 if (ns
->disk
&& revalidate_disk(ns
->disk
))
3102 nvme_alloc_ns(ctrl
, nsid
);
3105 static void nvme_remove_invalid_namespaces(struct nvme_ctrl
*ctrl
,
3108 struct nvme_ns
*ns
, *next
;
3111 down_write(&ctrl
->namespaces_rwsem
);
3112 list_for_each_entry_safe(ns
, next
, &ctrl
->namespaces
, list
) {
3113 if (ns
->head
->ns_id
> nsid
)
3114 list_move_tail(&ns
->list
, &rm_list
);
3116 up_write(&ctrl
->namespaces_rwsem
);
3118 list_for_each_entry_safe(ns
, next
, &rm_list
, list
)
3123 static int nvme_scan_ns_list(struct nvme_ctrl
*ctrl
, unsigned nn
)
3127 unsigned i
, j
, nsid
, prev
= 0, num_lists
= DIV_ROUND_UP(nn
, 1024);
3130 ns_list
= kzalloc(NVME_IDENTIFY_DATA_SIZE
, GFP_KERNEL
);
3134 for (i
= 0; i
< num_lists
; i
++) {
3135 ret
= nvme_identify_ns_list(ctrl
, prev
, ns_list
);
3139 for (j
= 0; j
< min(nn
, 1024U); j
++) {
3140 nsid
= le32_to_cpu(ns_list
[j
]);
3144 nvme_validate_ns(ctrl
, nsid
);
3146 while (++prev
< nsid
) {
3147 ns
= nvme_find_get_ns(ctrl
, prev
);
3157 nvme_remove_invalid_namespaces(ctrl
, prev
);
3163 static void nvme_scan_ns_sequential(struct nvme_ctrl
*ctrl
, unsigned nn
)
3167 for (i
= 1; i
<= nn
; i
++)
3168 nvme_validate_ns(ctrl
, i
);
3170 nvme_remove_invalid_namespaces(ctrl
, nn
);
3173 static void nvme_scan_work(struct work_struct
*work
)
3175 struct nvme_ctrl
*ctrl
=
3176 container_of(work
, struct nvme_ctrl
, scan_work
);
3177 struct nvme_id_ctrl
*id
;
3180 if (ctrl
->state
!= NVME_CTRL_LIVE
)
3183 WARN_ON_ONCE(!ctrl
->tagset
);
3185 if (nvme_identify_ctrl(ctrl
, &id
))
3188 nn
= le32_to_cpu(id
->nn
);
3189 if (ctrl
->vs
>= NVME_VS(1, 1, 0) &&
3190 !(ctrl
->quirks
& NVME_QUIRK_IDENTIFY_CNS
)) {
3191 if (!nvme_scan_ns_list(ctrl
, nn
))
3194 nvme_scan_ns_sequential(ctrl
, nn
);
3196 down_write(&ctrl
->namespaces_rwsem
);
3197 list_sort(NULL
, &ctrl
->namespaces
, ns_cmp
);
3198 up_write(&ctrl
->namespaces_rwsem
);
3202 void nvme_queue_scan(struct nvme_ctrl
*ctrl
)
3205 * Only new queue scan work when admin and IO queues are both alive
3207 if (ctrl
->state
== NVME_CTRL_LIVE
)
3208 queue_work(nvme_wq
, &ctrl
->scan_work
);
3210 EXPORT_SYMBOL_GPL(nvme_queue_scan
);
3213 * This function iterates the namespace list unlocked to allow recovery from
3214 * controller failure. It is up to the caller to ensure the namespace list is
3215 * not modified by scan work while this function is executing.
3217 void nvme_remove_namespaces(struct nvme_ctrl
*ctrl
)
3219 struct nvme_ns
*ns
, *next
;
3223 * The dead states indicates the controller was not gracefully
3224 * disconnected. In that case, we won't be able to flush any data while
3225 * removing the namespaces' disks; fail all the queues now to avoid
3226 * potentially having to clean up the failed sync later.
3228 if (ctrl
->state
== NVME_CTRL_DEAD
)
3229 nvme_kill_queues(ctrl
);
3231 down_write(&ctrl
->namespaces_rwsem
);
3232 list_splice_init(&ctrl
->namespaces
, &ns_list
);
3233 up_write(&ctrl
->namespaces_rwsem
);
3235 list_for_each_entry_safe(ns
, next
, &ns_list
, list
)
3238 EXPORT_SYMBOL_GPL(nvme_remove_namespaces
);
3240 static void nvme_aen_uevent(struct nvme_ctrl
*ctrl
)
3242 char *envp
[2] = { NULL
, NULL
};
3243 u32 aen_result
= ctrl
->aen_result
;
3245 ctrl
->aen_result
= 0;
3249 envp
[0] = kasprintf(GFP_KERNEL
, "NVME_AEN=%#08x", aen_result
);
3252 kobject_uevent_env(&ctrl
->device
->kobj
, KOBJ_CHANGE
, envp
);
3256 static void nvme_async_event_work(struct work_struct
*work
)
3258 struct nvme_ctrl
*ctrl
=
3259 container_of(work
, struct nvme_ctrl
, async_event_work
);
3261 nvme_aen_uevent(ctrl
);
3262 ctrl
->ops
->submit_async_event(ctrl
);
3265 static bool nvme_ctrl_pp_status(struct nvme_ctrl
*ctrl
)
3270 if (ctrl
->ops
->reg_read32(ctrl
, NVME_REG_CSTS
, &csts
))
3276 return ((ctrl
->ctrl_config
& NVME_CC_ENABLE
) && (csts
& NVME_CSTS_PP
));
3279 static void nvme_get_fw_slot_info(struct nvme_ctrl
*ctrl
)
3281 struct nvme_fw_slot_info_log
*log
;
3283 log
= kmalloc(sizeof(*log
), GFP_KERNEL
);
3287 if (nvme_get_log(ctrl
, NVME_LOG_FW_SLOT
, log
, sizeof(*log
)))
3288 dev_warn(ctrl
->device
,
3289 "Get FW SLOT INFO log error\n");
3293 static void nvme_fw_act_work(struct work_struct
*work
)
3295 struct nvme_ctrl
*ctrl
= container_of(work
,
3296 struct nvme_ctrl
, fw_act_work
);
3297 unsigned long fw_act_timeout
;
3300 fw_act_timeout
= jiffies
+
3301 msecs_to_jiffies(ctrl
->mtfa
* 100);
3303 fw_act_timeout
= jiffies
+
3304 msecs_to_jiffies(admin_timeout
* 1000);
3306 nvme_stop_queues(ctrl
);
3307 while (nvme_ctrl_pp_status(ctrl
)) {
3308 if (time_after(jiffies
, fw_act_timeout
)) {
3309 dev_warn(ctrl
->device
,
3310 "Fw activation timeout, reset controller\n");
3311 nvme_reset_ctrl(ctrl
);
3317 if (ctrl
->state
!= NVME_CTRL_LIVE
)
3320 nvme_start_queues(ctrl
);
3321 /* read FW slot information to clear the AER */
3322 nvme_get_fw_slot_info(ctrl
);
3325 void nvme_complete_async_event(struct nvme_ctrl
*ctrl
, __le16 status
,
3326 union nvme_result
*res
)
3328 u32 result
= le32_to_cpu(res
->u32
);
3330 if (le16_to_cpu(status
) >> 1 != NVME_SC_SUCCESS
)
3333 switch (result
& 0x7) {
3334 case NVME_AER_ERROR
:
3335 case NVME_AER_SMART
:
3338 ctrl
->aen_result
= result
;
3344 switch (result
& 0xff07) {
3345 case NVME_AER_NOTICE_NS_CHANGED
:
3346 dev_info(ctrl
->device
, "rescanning\n");
3347 nvme_queue_scan(ctrl
);
3349 case NVME_AER_NOTICE_FW_ACT_STARTING
:
3350 queue_work(nvme_wq
, &ctrl
->fw_act_work
);
3353 dev_warn(ctrl
->device
, "async event result %08x\n", result
);
3355 queue_work(nvme_wq
, &ctrl
->async_event_work
);
3357 EXPORT_SYMBOL_GPL(nvme_complete_async_event
);
3359 void nvme_stop_ctrl(struct nvme_ctrl
*ctrl
)
3361 nvme_stop_keep_alive(ctrl
);
3362 flush_work(&ctrl
->async_event_work
);
3363 flush_work(&ctrl
->scan_work
);
3364 cancel_work_sync(&ctrl
->fw_act_work
);
3365 if (ctrl
->ops
->stop_ctrl
)
3366 ctrl
->ops
->stop_ctrl(ctrl
);
3368 EXPORT_SYMBOL_GPL(nvme_stop_ctrl
);
3370 void nvme_start_ctrl(struct nvme_ctrl
*ctrl
)
3373 nvme_start_keep_alive(ctrl
);
3375 if (ctrl
->queue_count
> 1) {
3376 nvme_queue_scan(ctrl
);
3377 queue_work(nvme_wq
, &ctrl
->async_event_work
);
3378 nvme_start_queues(ctrl
);
3381 EXPORT_SYMBOL_GPL(nvme_start_ctrl
);
3383 void nvme_uninit_ctrl(struct nvme_ctrl
*ctrl
)
3385 cdev_device_del(&ctrl
->cdev
, ctrl
->device
);
3387 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl
);
3389 static void nvme_free_ctrl(struct device
*dev
)
3391 struct nvme_ctrl
*ctrl
=
3392 container_of(dev
, struct nvme_ctrl
, ctrl_device
);
3393 struct nvme_subsystem
*subsys
= ctrl
->subsys
;
3395 ida_simple_remove(&nvme_instance_ida
, ctrl
->instance
);
3396 kfree(ctrl
->effects
);
3399 mutex_lock(&subsys
->lock
);
3400 list_del(&ctrl
->subsys_entry
);
3401 mutex_unlock(&subsys
->lock
);
3402 sysfs_remove_link(&subsys
->dev
.kobj
, dev_name(ctrl
->device
));
3405 ctrl
->ops
->free_ctrl(ctrl
);
3408 nvme_put_subsystem(subsys
);
3412 * Initialize a NVMe controller structures. This needs to be called during
3413 * earliest initialization so that we have the initialized structured around
3416 int nvme_init_ctrl(struct nvme_ctrl
*ctrl
, struct device
*dev
,
3417 const struct nvme_ctrl_ops
*ops
, unsigned long quirks
)
3421 ctrl
->state
= NVME_CTRL_NEW
;
3422 spin_lock_init(&ctrl
->lock
);
3423 INIT_LIST_HEAD(&ctrl
->namespaces
);
3424 init_rwsem(&ctrl
->namespaces_rwsem
);
3427 ctrl
->quirks
= quirks
;
3428 INIT_WORK(&ctrl
->scan_work
, nvme_scan_work
);
3429 INIT_WORK(&ctrl
->async_event_work
, nvme_async_event_work
);
3430 INIT_WORK(&ctrl
->fw_act_work
, nvme_fw_act_work
);
3431 INIT_WORK(&ctrl
->delete_work
, nvme_delete_ctrl_work
);
3433 ret
= ida_simple_get(&nvme_instance_ida
, 0, 0, GFP_KERNEL
);
3436 ctrl
->instance
= ret
;
3438 device_initialize(&ctrl
->ctrl_device
);
3439 ctrl
->device
= &ctrl
->ctrl_device
;
3440 ctrl
->device
->devt
= MKDEV(MAJOR(nvme_chr_devt
), ctrl
->instance
);
3441 ctrl
->device
->class = nvme_class
;
3442 ctrl
->device
->parent
= ctrl
->dev
;
3443 ctrl
->device
->groups
= nvme_dev_attr_groups
;
3444 ctrl
->device
->release
= nvme_free_ctrl
;
3445 dev_set_drvdata(ctrl
->device
, ctrl
);
3446 ret
= dev_set_name(ctrl
->device
, "nvme%d", ctrl
->instance
);
3448 goto out_release_instance
;
3450 cdev_init(&ctrl
->cdev
, &nvme_dev_fops
);
3451 ctrl
->cdev
.owner
= ops
->module
;
3452 ret
= cdev_device_add(&ctrl
->cdev
, ctrl
->device
);
3457 * Initialize latency tolerance controls. The sysfs files won't
3458 * be visible to userspace unless the device actually supports APST.
3460 ctrl
->device
->power
.set_latency_tolerance
= nvme_set_latency_tolerance
;
3461 dev_pm_qos_update_user_latency_tolerance(ctrl
->device
,
3462 min(default_ps_max_latency_us
, (unsigned long)S32_MAX
));
3466 kfree_const(dev
->kobj
.name
);
3467 out_release_instance
:
3468 ida_simple_remove(&nvme_instance_ida
, ctrl
->instance
);
3472 EXPORT_SYMBOL_GPL(nvme_init_ctrl
);
3475 * nvme_kill_queues(): Ends all namespace queues
3476 * @ctrl: the dead controller that needs to end
3478 * Call this function when the driver determines it is unable to get the
3479 * controller in a state capable of servicing IO.
3481 void nvme_kill_queues(struct nvme_ctrl
*ctrl
)
3485 down_read(&ctrl
->namespaces_rwsem
);
3487 /* Forcibly unquiesce queues to avoid blocking dispatch */
3489 blk_mq_unquiesce_queue(ctrl
->admin_q
);
3491 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
3493 * Revalidating a dead namespace sets capacity to 0. This will
3494 * end buffered writers dirtying pages that can't be synced.
3496 if (!ns
->disk
|| test_and_set_bit(NVME_NS_DEAD
, &ns
->flags
))
3498 revalidate_disk(ns
->disk
);
3499 blk_set_queue_dying(ns
->queue
);
3501 /* Forcibly unquiesce queues to avoid blocking dispatch */
3502 blk_mq_unquiesce_queue(ns
->queue
);
3504 up_read(&ctrl
->namespaces_rwsem
);
3506 EXPORT_SYMBOL_GPL(nvme_kill_queues
);
3508 void nvme_unfreeze(struct nvme_ctrl
*ctrl
)
3512 down_read(&ctrl
->namespaces_rwsem
);
3513 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3514 blk_mq_unfreeze_queue(ns
->queue
);
3515 up_read(&ctrl
->namespaces_rwsem
);
3517 EXPORT_SYMBOL_GPL(nvme_unfreeze
);
3519 void nvme_wait_freeze_timeout(struct nvme_ctrl
*ctrl
, long timeout
)
3523 down_read(&ctrl
->namespaces_rwsem
);
3524 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
3525 timeout
= blk_mq_freeze_queue_wait_timeout(ns
->queue
, timeout
);
3529 up_read(&ctrl
->namespaces_rwsem
);
3531 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout
);
3533 void nvme_wait_freeze(struct nvme_ctrl
*ctrl
)
3537 down_read(&ctrl
->namespaces_rwsem
);
3538 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3539 blk_mq_freeze_queue_wait(ns
->queue
);
3540 up_read(&ctrl
->namespaces_rwsem
);
3542 EXPORT_SYMBOL_GPL(nvme_wait_freeze
);
3544 void nvme_start_freeze(struct nvme_ctrl
*ctrl
)
3548 down_read(&ctrl
->namespaces_rwsem
);
3549 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3550 blk_freeze_queue_start(ns
->queue
);
3551 up_read(&ctrl
->namespaces_rwsem
);
3553 EXPORT_SYMBOL_GPL(nvme_start_freeze
);
3555 void nvme_stop_queues(struct nvme_ctrl
*ctrl
)
3559 down_read(&ctrl
->namespaces_rwsem
);
3560 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3561 blk_mq_quiesce_queue(ns
->queue
);
3562 up_read(&ctrl
->namespaces_rwsem
);
3564 EXPORT_SYMBOL_GPL(nvme_stop_queues
);
3566 void nvme_start_queues(struct nvme_ctrl
*ctrl
)
3570 down_read(&ctrl
->namespaces_rwsem
);
3571 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3572 blk_mq_unquiesce_queue(ns
->queue
);
3573 up_read(&ctrl
->namespaces_rwsem
);
3575 EXPORT_SYMBOL_GPL(nvme_start_queues
);
3577 int nvme_reinit_tagset(struct nvme_ctrl
*ctrl
, struct blk_mq_tag_set
*set
)
3579 if (!ctrl
->ops
->reinit_request
)
3582 return blk_mq_tagset_iter(set
, set
->driver_data
,
3583 ctrl
->ops
->reinit_request
);
3585 EXPORT_SYMBOL_GPL(nvme_reinit_tagset
);
3587 int __init
nvme_core_init(void)
3589 int result
= -ENOMEM
;
3591 nvme_wq
= alloc_workqueue("nvme-wq",
3592 WQ_UNBOUND
| WQ_MEM_RECLAIM
| WQ_SYSFS
, 0);
3596 nvme_reset_wq
= alloc_workqueue("nvme-reset-wq",
3597 WQ_UNBOUND
| WQ_MEM_RECLAIM
| WQ_SYSFS
, 0);
3601 nvme_delete_wq
= alloc_workqueue("nvme-delete-wq",
3602 WQ_UNBOUND
| WQ_MEM_RECLAIM
| WQ_SYSFS
, 0);
3603 if (!nvme_delete_wq
)
3604 goto destroy_reset_wq
;
3606 result
= alloc_chrdev_region(&nvme_chr_devt
, 0, NVME_MINORS
, "nvme");
3608 goto destroy_delete_wq
;
3610 nvme_class
= class_create(THIS_MODULE
, "nvme");
3611 if (IS_ERR(nvme_class
)) {
3612 result
= PTR_ERR(nvme_class
);
3613 goto unregister_chrdev
;
3616 nvme_subsys_class
= class_create(THIS_MODULE
, "nvme-subsystem");
3617 if (IS_ERR(nvme_subsys_class
)) {
3618 result
= PTR_ERR(nvme_subsys_class
);
3624 class_destroy(nvme_class
);
3626 unregister_chrdev_region(nvme_chr_devt
, NVME_MINORS
);
3628 destroy_workqueue(nvme_delete_wq
);
3630 destroy_workqueue(nvme_reset_wq
);
3632 destroy_workqueue(nvme_wq
);
3637 void nvme_core_exit(void)
3639 ida_destroy(&nvme_subsystems_ida
);
3640 class_destroy(nvme_subsys_class
);
3641 class_destroy(nvme_class
);
3642 unregister_chrdev_region(nvme_chr_devt
, NVME_MINORS
);
3643 destroy_workqueue(nvme_delete_wq
);
3644 destroy_workqueue(nvme_reset_wq
);
3645 destroy_workqueue(nvme_wq
);
3648 MODULE_LICENSE("GPL");
3649 MODULE_VERSION("1.0");
3650 module_init(nvme_core_init
);
3651 module_exit(nvme_core_exit
);