1 // SPDX-License-Identifier: GPL-2.0
3 * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
5 * Copyright (c) 2017 Melexis <cmo@melexis.com>
7 * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/i2c.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/math64.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/regmap.h>
20 #include <linux/iio/iio.h>
21 #include <linux/iio/sysfs.h>
23 /* Memory sections addresses */
24 #define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */
25 #define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */
27 /* EEPROM addresses - used at startup */
28 #define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */
29 #define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */
30 #define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */
31 #define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */
32 #define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */
33 #define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */
34 #define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */
35 #define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */
36 #define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */
37 #define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */
38 #define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */
39 #define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */
40 #define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */
41 #define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */
42 #define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */
43 #define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */
44 #define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */
45 #define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */
46 #define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */
47 #define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */
49 #define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */
50 #define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */
52 #define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */
53 #define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */
55 /* Register addresses - volatile */
56 #define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */
58 /* Control register address - volatile */
59 #define MLX90632_REG_CONTROL 0x3001 /* Control Register address */
60 #define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */
61 /* PowerModes statuses */
62 #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
63 #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
64 #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/
65 #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
66 #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/
68 /* Device status register - volatile */
69 #define MLX90632_REG_STATUS 0x3fff /* Device status register */
70 #define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */
71 #define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */
72 #define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */
73 #define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */
74 #define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */
76 /* RAM_MEAS address-es for each channel */
77 #define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num)
78 #define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1)
79 #define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2)
82 #define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */
83 #define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */
84 #define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */
85 #define MLX90632_REF_12 12LL /**< ResCtrlRef value of Ch 1 or Ch 2 */
86 #define MLX90632_REF_3 12LL /**< ResCtrlRef value of Channel 3 */
87 #define MLX90632_MAX_MEAS_NUM 31 /**< Maximum measurements in list */
88 #define MLX90632_SLEEP_DELAY_MS 3000 /**< Autosleep delay */
90 struct mlx90632_data
{
91 struct i2c_client
*client
;
92 struct mutex lock
; /* Multiple reads for single measurement */
93 struct regmap
*regmap
;
97 static const struct regmap_range mlx90632_volatile_reg_range
[] = {
98 regmap_reg_range(MLX90632_REG_I2C_ADDR
, MLX90632_REG_CONTROL
),
99 regmap_reg_range(MLX90632_REG_STATUS
, MLX90632_REG_STATUS
),
100 regmap_reg_range(MLX90632_RAM_1(0),
101 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM
)),
104 static const struct regmap_access_table mlx90632_volatile_regs_tbl
= {
105 .yes_ranges
= mlx90632_volatile_reg_range
,
106 .n_yes_ranges
= ARRAY_SIZE(mlx90632_volatile_reg_range
),
109 static const struct regmap_range mlx90632_read_reg_range
[] = {
110 regmap_reg_range(MLX90632_EE_VERSION
, MLX90632_EE_Ka
),
111 regmap_reg_range(MLX90632_EE_CTRL
, MLX90632_EE_I2C_ADDR
),
112 regmap_reg_range(MLX90632_EE_Ha
, MLX90632_EE_Hb
),
113 regmap_reg_range(MLX90632_REG_I2C_ADDR
, MLX90632_REG_CONTROL
),
114 regmap_reg_range(MLX90632_REG_STATUS
, MLX90632_REG_STATUS
),
115 regmap_reg_range(MLX90632_RAM_1(0),
116 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM
)),
119 static const struct regmap_access_table mlx90632_readable_regs_tbl
= {
120 .yes_ranges
= mlx90632_read_reg_range
,
121 .n_yes_ranges
= ARRAY_SIZE(mlx90632_read_reg_range
),
124 static const struct regmap_range mlx90632_no_write_reg_range
[] = {
125 regmap_reg_range(MLX90632_EE_VERSION
, MLX90632_EE_Ka
),
126 regmap_reg_range(MLX90632_RAM_1(0),
127 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM
)),
130 static const struct regmap_access_table mlx90632_writeable_regs_tbl
= {
131 .no_ranges
= mlx90632_no_write_reg_range
,
132 .n_no_ranges
= ARRAY_SIZE(mlx90632_no_write_reg_range
),
135 static const struct regmap_config mlx90632_regmap
= {
139 .volatile_table
= &mlx90632_volatile_regs_tbl
,
140 .rd_table
= &mlx90632_readable_regs_tbl
,
141 .wr_table
= &mlx90632_writeable_regs_tbl
,
143 .use_single_read
= true,
144 .use_single_write
= true,
145 .reg_format_endian
= REGMAP_ENDIAN_BIG
,
146 .val_format_endian
= REGMAP_ENDIAN_BIG
,
147 .cache_type
= REGCACHE_RBTREE
,
150 static s32
mlx90632_pwr_set_sleep_step(struct regmap
*regmap
)
152 return regmap_update_bits(regmap
, MLX90632_REG_CONTROL
,
153 MLX90632_CFG_PWR_MASK
,
154 MLX90632_PWR_STATUS_SLEEP_STEP
);
157 static s32
mlx90632_pwr_continuous(struct regmap
*regmap
)
159 return regmap_update_bits(regmap
, MLX90632_REG_CONTROL
,
160 MLX90632_CFG_PWR_MASK
,
161 MLX90632_PWR_STATUS_CONTINUOUS
);
165 * mlx90632_perform_measurement - Trigger and retrieve current measurement cycle
166 * @*data: pointer to mlx90632_data object containing regmap information
168 * Perform a measurement and return latest measurement cycle position reported
169 * by sensor. This is a blocking function for 500ms, as that is default sensor
172 static int mlx90632_perform_measurement(struct mlx90632_data
*data
)
174 int ret
, tries
= 100;
175 unsigned int reg_status
;
177 ret
= regmap_update_bits(data
->regmap
, MLX90632_REG_STATUS
,
178 MLX90632_STAT_DATA_RDY
, 0);
182 while (tries
-- > 0) {
183 ret
= regmap_read(data
->regmap
, MLX90632_REG_STATUS
,
187 if (reg_status
& MLX90632_STAT_DATA_RDY
)
189 usleep_range(10000, 11000);
193 dev_err(&data
->client
->dev
, "data not ready");
197 return (reg_status
& MLX90632_STAT_CYCLE_POS
) >> 2;
200 static int mlx90632_channel_new_select(int perform_ret
, uint8_t *channel_new
,
201 uint8_t *channel_old
)
203 switch (perform_ret
) {
219 static int mlx90632_read_ambient_raw(struct regmap
*regmap
,
220 s16
*ambient_new_raw
, s16
*ambient_old_raw
)
223 unsigned int read_tmp
;
225 ret
= regmap_read(regmap
, MLX90632_RAM_3(1), &read_tmp
);
228 *ambient_new_raw
= (s16
)read_tmp
;
230 ret
= regmap_read(regmap
, MLX90632_RAM_3(2), &read_tmp
);
233 *ambient_old_raw
= (s16
)read_tmp
;
238 static int mlx90632_read_object_raw(struct regmap
*regmap
,
239 int perform_measurement_ret
,
240 s16
*object_new_raw
, s16
*object_old_raw
)
243 unsigned int read_tmp
;
248 ret
= mlx90632_channel_new_select(perform_measurement_ret
, &channel
,
253 ret
= regmap_read(regmap
, MLX90632_RAM_2(channel
), &read_tmp
);
257 read
= (s16
)read_tmp
;
259 ret
= regmap_read(regmap
, MLX90632_RAM_1(channel
), &read_tmp
);
262 *object_new_raw
= (read
+ (s16
)read_tmp
) / 2;
264 ret
= regmap_read(regmap
, MLX90632_RAM_2(channel_old
), &read_tmp
);
267 read
= (s16
)read_tmp
;
269 ret
= regmap_read(regmap
, MLX90632_RAM_1(channel_old
), &read_tmp
);
272 *object_old_raw
= (read
+ (s16
)read_tmp
) / 2;
277 static int mlx90632_read_all_channel(struct mlx90632_data
*data
,
278 s16
*ambient_new_raw
, s16
*ambient_old_raw
,
279 s16
*object_new_raw
, s16
*object_old_raw
)
281 s32 ret
, measurement
;
283 mutex_lock(&data
->lock
);
284 measurement
= mlx90632_perform_measurement(data
);
285 if (measurement
< 0) {
289 ret
= mlx90632_read_ambient_raw(data
->regmap
, ambient_new_raw
,
294 ret
= mlx90632_read_object_raw(data
->regmap
, measurement
,
295 object_new_raw
, object_old_raw
);
297 mutex_unlock(&data
->lock
);
301 static int mlx90632_read_ee_register(struct regmap
*regmap
, u16 reg_lsb
,
308 ret
= regmap_read(regmap
, reg_lsb
, &read
);
314 ret
= regmap_read(regmap
, reg_lsb
+ 1, &read
);
318 *reg_value
= (read
<< 16) | (value
& 0xffff);
323 static s64
mlx90632_preprocess_temp_amb(s16 ambient_new_raw
,
324 s16 ambient_old_raw
, s16 Gb
)
328 kGb
= ((s64
)Gb
* 1000LL) >> 10ULL;
329 VR_Ta
= (s64
)ambient_old_raw
* 1000000LL +
330 kGb
* div64_s64(((s64
)ambient_new_raw
* 1000LL),
333 div64_s64(((s64
)ambient_new_raw
* 1000000000000LL),
334 (MLX90632_REF_3
)), VR_Ta
);
335 return div64_s64(tmp
<< 19ULL, 1000LL);
338 static s64
mlx90632_preprocess_temp_obj(s16 object_new_raw
, s16 object_old_raw
,
340 s16 ambient_old_raw
, s16 Ka
)
344 kKa
= ((s64
)Ka
* 1000LL) >> 10ULL;
345 VR_IR
= (s64
)ambient_old_raw
* 1000000LL +
346 kKa
* div64_s64(((s64
)ambient_new_raw
* 1000LL),
349 div64_s64(((s64
)((object_new_raw
+ object_old_raw
) / 2)
350 * 1000000000000LL), (MLX90632_REF_12
)),
352 return div64_s64((tmp
<< 19ULL), 1000LL);
355 static s32
mlx90632_calc_temp_ambient(s16 ambient_new_raw
, s16 ambient_old_raw
,
356 s32 P_T
, s32 P_R
, s32 P_G
, s32 P_O
,
359 s64 Asub
, Bsub
, Ablock
, Bblock
, Cblock
, AMB
, sum
;
361 AMB
= mlx90632_preprocess_temp_amb(ambient_new_raw
, ambient_old_raw
,
363 Asub
= ((s64
)P_T
* 10000000000LL) >> 44ULL;
364 Bsub
= AMB
- (((s64
)P_R
* 1000LL) >> 8ULL);
365 Ablock
= Asub
* (Bsub
* Bsub
);
366 Bblock
= (div64_s64(Bsub
* 10000000LL, P_G
)) << 20ULL;
367 Cblock
= ((s64
)P_O
* 10000000000LL) >> 8ULL;
369 sum
= div64_s64(Ablock
, 1000000LL) + Bblock
+ Cblock
;
371 return div64_s64(sum
, 10000000LL);
374 static s32
mlx90632_calc_temp_object_iteration(s32 prev_object_temp
, s64 object
,
375 s64 TAdut
, s32 Fa
, s32 Fb
,
376 s32 Ga
, s16 Ha
, s16 Hb
,
379 s64 calcedKsTO
, calcedKsTA
, ir_Alpha
, TAdut4
, Alpha_corr
;
380 s64 Ha_customer
, Hb_customer
;
382 Ha_customer
= ((s64
)Ha
* 1000000LL) >> 14ULL;
383 Hb_customer
= ((s64
)Hb
* 100) >> 10ULL;
385 calcedKsTO
= ((s64
)((s64
)Ga
* (prev_object_temp
- 25 * 1000LL)
387 calcedKsTA
= ((s64
)(Fb
* (TAdut
- 25 * 1000000LL))) >> 36LL;
388 Alpha_corr
= div64_s64((((s64
)(Fa
* 10000000000LL) >> 46LL)
389 * Ha_customer
), 1000LL);
390 Alpha_corr
*= ((s64
)(1 * 1000000LL + calcedKsTO
+ calcedKsTA
));
391 Alpha_corr
= emissivity
* div64_s64(Alpha_corr
, 100000LL);
392 Alpha_corr
= div64_s64(Alpha_corr
, 1000LL);
393 ir_Alpha
= div64_s64((s64
)object
* 10000000LL, Alpha_corr
);
394 TAdut4
= (div64_s64(TAdut
, 10000LL) + 27315) *
395 (div64_s64(TAdut
, 10000LL) + 27315) *
396 (div64_s64(TAdut
, 10000LL) + 27315) *
397 (div64_s64(TAdut
, 10000LL) + 27315);
399 return (int_sqrt64(int_sqrt64(ir_Alpha
* 1000000000000LL + TAdut4
))
400 - 27315 - Hb_customer
) * 10;
403 static s32
mlx90632_calc_temp_object(s64 object
, s64 ambient
, s32 Ea
, s32 Eb
,
404 s32 Fa
, s32 Fb
, s32 Ga
, s16 Ha
, s16 Hb
,
407 s64 kTA
, kTA0
, TAdut
;
411 kTA
= (Ea
* 1000LL) >> 16LL;
412 kTA0
= (Eb
* 1000LL) >> 8LL;
413 TAdut
= div64_s64(((ambient
- kTA0
) * 1000000LL), kTA
) + 25 * 1000000LL;
415 /* Iterations of calculation as described in datasheet */
416 for (i
= 0; i
< 5; ++i
) {
417 temp
= mlx90632_calc_temp_object_iteration(temp
, object
, TAdut
,
424 static int mlx90632_calc_object_dsp105(struct mlx90632_data
*data
, int *val
)
427 s32 Ea
, Eb
, Fa
, Fb
, Ga
;
428 unsigned int read_tmp
;
430 s16 ambient_new_raw
, ambient_old_raw
, object_new_raw
, object_old_raw
;
433 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_Ea
, &Ea
);
436 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_Eb
, &Eb
);
439 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_Fa
, &Fa
);
442 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_Fb
, &Fb
);
445 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_Ga
, &Ga
);
448 ret
= regmap_read(data
->regmap
, MLX90632_EE_Ha
, &read_tmp
);
452 ret
= regmap_read(data
->regmap
, MLX90632_EE_Hb
, &read_tmp
);
456 ret
= regmap_read(data
->regmap
, MLX90632_EE_Gb
, &read_tmp
);
460 ret
= regmap_read(data
->regmap
, MLX90632_EE_Ka
, &read_tmp
);
465 ret
= mlx90632_read_all_channel(data
,
466 &ambient_new_raw
, &ambient_old_raw
,
467 &object_new_raw
, &object_old_raw
);
471 ambient
= mlx90632_preprocess_temp_amb(ambient_new_raw
,
472 ambient_old_raw
, Gb
);
473 object
= mlx90632_preprocess_temp_obj(object_new_raw
,
476 ambient_old_raw
, Ka
);
478 *val
= mlx90632_calc_temp_object(object
, ambient
, Ea
, Eb
, Fa
, Fb
, Ga
,
479 Ha
, Hb
, data
->emissivity
);
483 static int mlx90632_calc_ambient_dsp105(struct mlx90632_data
*data
, int *val
)
486 unsigned int read_tmp
;
489 s16 ambient_new_raw
, ambient_old_raw
;
491 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_P_R
, &PR
);
494 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_P_G
, &PG
);
497 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_P_T
, &PT
);
500 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_P_O
, &PO
);
503 ret
= regmap_read(data
->regmap
, MLX90632_EE_Gb
, &read_tmp
);
508 ret
= mlx90632_read_ambient_raw(data
->regmap
, &ambient_new_raw
,
512 *val
= mlx90632_calc_temp_ambient(ambient_new_raw
, ambient_old_raw
,
517 static int mlx90632_read_raw(struct iio_dev
*indio_dev
,
518 struct iio_chan_spec
const *channel
, int *val
,
519 int *val2
, long mask
)
521 struct mlx90632_data
*data
= iio_priv(indio_dev
);
525 case IIO_CHAN_INFO_PROCESSED
:
526 switch (channel
->channel2
) {
527 case IIO_MOD_TEMP_AMBIENT
:
528 ret
= mlx90632_calc_ambient_dsp105(data
, val
);
532 case IIO_MOD_TEMP_OBJECT
:
533 ret
= mlx90632_calc_object_dsp105(data
, val
);
540 case IIO_CHAN_INFO_CALIBEMISSIVITY
:
541 if (data
->emissivity
== 1000) {
546 *val2
= data
->emissivity
* 1000;
548 return IIO_VAL_INT_PLUS_MICRO
;
555 static int mlx90632_write_raw(struct iio_dev
*indio_dev
,
556 struct iio_chan_spec
const *channel
, int val
,
559 struct mlx90632_data
*data
= iio_priv(indio_dev
);
562 case IIO_CHAN_INFO_CALIBEMISSIVITY
:
563 /* Confirm we are within 0 and 1.0 */
564 if (val
< 0 || val2
< 0 || val
> 1 ||
565 (val
== 1 && val2
!= 0))
567 data
->emissivity
= val
* 1000 + val2
/ 1000;
574 static const struct iio_chan_spec mlx90632_channels
[] = {
578 .channel2
= IIO_MOD_TEMP_AMBIENT
,
579 .info_mask_separate
= BIT(IIO_CHAN_INFO_PROCESSED
),
584 .channel2
= IIO_MOD_TEMP_OBJECT
,
585 .info_mask_separate
= BIT(IIO_CHAN_INFO_PROCESSED
) |
586 BIT(IIO_CHAN_INFO_CALIBEMISSIVITY
),
590 static const struct iio_info mlx90632_info
= {
591 .read_raw
= mlx90632_read_raw
,
592 .write_raw
= mlx90632_write_raw
,
595 static int mlx90632_sleep(struct mlx90632_data
*data
)
597 regcache_mark_dirty(data
->regmap
);
599 dev_dbg(&data
->client
->dev
, "Requesting sleep");
600 return mlx90632_pwr_set_sleep_step(data
->regmap
);
603 static int mlx90632_wakeup(struct mlx90632_data
*data
)
607 ret
= regcache_sync(data
->regmap
);
609 dev_err(&data
->client
->dev
,
610 "Failed to sync regmap registers: %d\n", ret
);
614 dev_dbg(&data
->client
->dev
, "Requesting wake-up\n");
615 return mlx90632_pwr_continuous(data
->regmap
);
618 static int mlx90632_probe(struct i2c_client
*client
,
619 const struct i2c_device_id
*id
)
621 struct iio_dev
*indio_dev
;
622 struct mlx90632_data
*mlx90632
;
623 struct regmap
*regmap
;
627 indio_dev
= devm_iio_device_alloc(&client
->dev
, sizeof(*mlx90632
));
629 dev_err(&client
->dev
, "Failed to allocate device\n");
633 regmap
= devm_regmap_init_i2c(client
, &mlx90632_regmap
);
634 if (IS_ERR(regmap
)) {
635 ret
= PTR_ERR(regmap
);
636 dev_err(&client
->dev
, "Failed to allocate regmap: %d\n", ret
);
640 mlx90632
= iio_priv(indio_dev
);
641 i2c_set_clientdata(client
, indio_dev
);
642 mlx90632
->client
= client
;
643 mlx90632
->regmap
= regmap
;
645 mutex_init(&mlx90632
->lock
);
646 indio_dev
->dev
.parent
= &client
->dev
;
647 indio_dev
->name
= id
->name
;
648 indio_dev
->modes
= INDIO_DIRECT_MODE
;
649 indio_dev
->info
= &mlx90632_info
;
650 indio_dev
->channels
= mlx90632_channels
;
651 indio_dev
->num_channels
= ARRAY_SIZE(mlx90632_channels
);
653 ret
= mlx90632_wakeup(mlx90632
);
655 dev_err(&client
->dev
, "Wakeup failed: %d\n", ret
);
659 ret
= regmap_read(mlx90632
->regmap
, MLX90632_EE_VERSION
, &read
);
661 dev_err(&client
->dev
, "read of version failed: %d\n", ret
);
664 if (read
== MLX90632_ID_MEDICAL
) {
665 dev_dbg(&client
->dev
,
666 "Detected Medical EEPROM calibration %x\n", read
);
667 } else if (read
== MLX90632_ID_CONSUMER
) {
668 dev_dbg(&client
->dev
,
669 "Detected Consumer EEPROM calibration %x\n", read
);
671 dev_err(&client
->dev
,
672 "EEPROM version mismatch %x (expected %x or %x)\n",
673 read
, MLX90632_ID_CONSUMER
, MLX90632_ID_MEDICAL
);
674 return -EPROTONOSUPPORT
;
677 mlx90632
->emissivity
= 1000;
679 pm_runtime_disable(&client
->dev
);
680 ret
= pm_runtime_set_active(&client
->dev
);
682 mlx90632_sleep(mlx90632
);
685 pm_runtime_enable(&client
->dev
);
686 pm_runtime_set_autosuspend_delay(&client
->dev
, MLX90632_SLEEP_DELAY_MS
);
687 pm_runtime_use_autosuspend(&client
->dev
);
689 return iio_device_register(indio_dev
);
692 static int mlx90632_remove(struct i2c_client
*client
)
694 struct iio_dev
*indio_dev
= i2c_get_clientdata(client
);
695 struct mlx90632_data
*data
= iio_priv(indio_dev
);
697 iio_device_unregister(indio_dev
);
699 pm_runtime_disable(&client
->dev
);
700 pm_runtime_set_suspended(&client
->dev
);
701 pm_runtime_put_noidle(&client
->dev
);
703 mlx90632_sleep(data
);
708 static const struct i2c_device_id mlx90632_id
[] = {
712 MODULE_DEVICE_TABLE(i2c
, mlx90632_id
);
714 static const struct of_device_id mlx90632_of_match
[] = {
715 { .compatible
= "melexis,mlx90632" },
718 MODULE_DEVICE_TABLE(of
, mlx90632_of_match
);
720 static int __maybe_unused
mlx90632_pm_suspend(struct device
*dev
)
722 struct iio_dev
*indio_dev
= i2c_get_clientdata(to_i2c_client(dev
));
723 struct mlx90632_data
*data
= iio_priv(indio_dev
);
725 return mlx90632_sleep(data
);
728 static int __maybe_unused
mlx90632_pm_resume(struct device
*dev
)
730 struct iio_dev
*indio_dev
= i2c_get_clientdata(to_i2c_client(dev
));
731 struct mlx90632_data
*data
= iio_priv(indio_dev
);
733 return mlx90632_wakeup(data
);
736 static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops
, mlx90632_pm_suspend
,
737 mlx90632_pm_resume
, NULL
);
739 static struct i2c_driver mlx90632_driver
= {
742 .of_match_table
= mlx90632_of_match
,
743 .pm
= &mlx90632_pm_ops
,
745 .probe
= mlx90632_probe
,
746 .remove
= mlx90632_remove
,
747 .id_table
= mlx90632_id
,
749 module_i2c_driver(mlx90632_driver
);
751 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
752 MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
753 MODULE_LICENSE("GPL v2");