1 // SPDX-License-Identifier: GPL-2.0+
3 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
5 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
6 * Author: Thomas Dahlmann
10 * This file does the core driver implementation for the UDC that is based
11 * on Synopsys device controller IP (different than HS OTG IP) that is either
12 * connected through PCI bus or integrated to SoC platforms.
16 #define UDC_MOD_DESCRIPTION "Synopsys USB Device Controller"
17 #define UDC_DRIVER_VERSION_STRING "01.00.0206"
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/kernel.h>
22 #include <linux/delay.h>
23 #include <linux/ioport.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/timer.h>
28 #include <linux/list.h>
29 #include <linux/interrupt.h>
30 #include <linux/ioctl.h>
32 #include <linux/dmapool.h>
33 #include <linux/prefetch.h>
34 #include <linux/moduleparam.h>
35 #include <asm/byteorder.h>
36 #include <asm/unaligned.h>
37 #include "amd5536udc.h"
39 static void udc_tasklet_disconnect(unsigned long);
40 static void udc_setup_endpoints(struct udc
*dev
);
41 static void udc_soft_reset(struct udc
*dev
);
42 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
);
43 static void udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
);
46 static const char mod_desc
[] = UDC_MOD_DESCRIPTION
;
47 static const char name
[] = "udc";
49 /* structure to hold endpoint function pointers */
50 static const struct usb_ep_ops udc_ep_ops
;
52 /* received setup data */
53 static union udc_setup_data setup_data
;
55 /* pointer to device object */
56 static struct udc
*udc
;
58 /* irq spin lock for soft reset */
59 static DEFINE_SPINLOCK(udc_irq_spinlock
);
61 static DEFINE_SPINLOCK(udc_stall_spinlock
);
64 * slave mode: pending bytes in rx fifo after nyet,
65 * used if EPIN irq came but no req was available
67 static unsigned int udc_rxfifo_pending
;
69 /* count soft resets after suspend to avoid loop */
70 static int soft_reset_occured
;
71 static int soft_reset_after_usbreset_occured
;
74 static struct timer_list udc_timer
;
75 static int stop_timer
;
77 /* set_rde -- Is used to control enabling of RX DMA. Problem is
78 * that UDC has only one bit (RDE) to enable/disable RX DMA for
79 * all OUT endpoints. So we have to handle race conditions like
80 * when OUT data reaches the fifo but no request was queued yet.
81 * This cannot be solved by letting the RX DMA disabled until a
82 * request gets queued because there may be other OUT packets
83 * in the FIFO (important for not blocking control traffic).
84 * The value of set_rde controls the correspondig timer.
86 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
87 * set_rde 0 == do not touch RDE, do no start the RDE timer
88 * set_rde 1 == timer function will look whether FIFO has data
89 * set_rde 2 == set by timer function to enable RX DMA on next call
91 static int set_rde
= -1;
93 static DECLARE_COMPLETION(on_exit
);
94 static struct timer_list udc_pollstall_timer
;
95 static int stop_pollstall_timer
;
96 static DECLARE_COMPLETION(on_pollstall_exit
);
98 /* tasklet for usb disconnect */
99 static DECLARE_TASKLET(disconnect_tasklet
, udc_tasklet_disconnect
,
100 (unsigned long) &udc
);
103 /* endpoint names used for print */
104 static const char ep0_string
[] = "ep0in";
105 static const struct {
107 const struct usb_ep_caps caps
;
109 #define EP_INFO(_name, _caps) \
116 USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL
, USB_EP_CAPS_DIR_IN
)),
118 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
119 EP_INFO("ep2in-bulk",
120 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
121 EP_INFO("ep3in-bulk",
122 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
123 EP_INFO("ep4in-bulk",
124 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
125 EP_INFO("ep5in-bulk",
126 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
127 EP_INFO("ep6in-bulk",
128 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
129 EP_INFO("ep7in-bulk",
130 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
131 EP_INFO("ep8in-bulk",
132 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
133 EP_INFO("ep9in-bulk",
134 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
135 EP_INFO("ep10in-bulk",
136 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
137 EP_INFO("ep11in-bulk",
138 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
139 EP_INFO("ep12in-bulk",
140 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
141 EP_INFO("ep13in-bulk",
142 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
143 EP_INFO("ep14in-bulk",
144 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
145 EP_INFO("ep15in-bulk",
146 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
148 USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL
, USB_EP_CAPS_DIR_OUT
)),
149 EP_INFO("ep1out-bulk",
150 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
151 EP_INFO("ep2out-bulk",
152 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
153 EP_INFO("ep3out-bulk",
154 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
155 EP_INFO("ep4out-bulk",
156 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
157 EP_INFO("ep5out-bulk",
158 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
159 EP_INFO("ep6out-bulk",
160 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
161 EP_INFO("ep7out-bulk",
162 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
163 EP_INFO("ep8out-bulk",
164 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
165 EP_INFO("ep9out-bulk",
166 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
167 EP_INFO("ep10out-bulk",
168 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
169 EP_INFO("ep11out-bulk",
170 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
171 EP_INFO("ep12out-bulk",
172 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
173 EP_INFO("ep13out-bulk",
174 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
175 EP_INFO("ep14out-bulk",
176 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
177 EP_INFO("ep15out-bulk",
178 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
183 /* buffer fill mode */
184 static int use_dma_bufferfill_mode
;
185 /* tx buffer size for high speed */
186 static unsigned long hs_tx_buf
= UDC_EPIN_BUFF_SIZE
;
188 /*---------------------------------------------------------------------------*/
189 /* Prints UDC device registers and endpoint irq registers */
190 static void print_regs(struct udc
*dev
)
192 DBG(dev
, "------- Device registers -------\n");
193 DBG(dev
, "dev config = %08x\n", readl(&dev
->regs
->cfg
));
194 DBG(dev
, "dev control = %08x\n", readl(&dev
->regs
->ctl
));
195 DBG(dev
, "dev status = %08x\n", readl(&dev
->regs
->sts
));
197 DBG(dev
, "dev int's = %08x\n", readl(&dev
->regs
->irqsts
));
198 DBG(dev
, "dev intmask = %08x\n", readl(&dev
->regs
->irqmsk
));
200 DBG(dev
, "dev ep int's = %08x\n", readl(&dev
->regs
->ep_irqsts
));
201 DBG(dev
, "dev ep intmask = %08x\n", readl(&dev
->regs
->ep_irqmsk
));
203 DBG(dev
, "USE DMA = %d\n", use_dma
);
204 if (use_dma
&& use_dma_ppb
&& !use_dma_ppb_du
) {
205 DBG(dev
, "DMA mode = PPBNDU (packet per buffer "
206 "WITHOUT desc. update)\n");
207 dev_info(dev
->dev
, "DMA mode (%s)\n", "PPBNDU");
208 } else if (use_dma
&& use_dma_ppb
&& use_dma_ppb_du
) {
209 DBG(dev
, "DMA mode = PPBDU (packet per buffer "
210 "WITH desc. update)\n");
211 dev_info(dev
->dev
, "DMA mode (%s)\n", "PPBDU");
213 if (use_dma
&& use_dma_bufferfill_mode
) {
214 DBG(dev
, "DMA mode = BF (buffer fill mode)\n");
215 dev_info(dev
->dev
, "DMA mode (%s)\n", "BF");
218 dev_info(dev
->dev
, "FIFO mode\n");
219 DBG(dev
, "-------------------------------------------------------\n");
222 /* Masks unused interrupts */
223 int udc_mask_unused_interrupts(struct udc
*dev
)
227 /* mask all dev interrupts */
228 tmp
= AMD_BIT(UDC_DEVINT_SVC
) |
229 AMD_BIT(UDC_DEVINT_ENUM
) |
230 AMD_BIT(UDC_DEVINT_US
) |
231 AMD_BIT(UDC_DEVINT_UR
) |
232 AMD_BIT(UDC_DEVINT_ES
) |
233 AMD_BIT(UDC_DEVINT_SI
) |
234 AMD_BIT(UDC_DEVINT_SOF
)|
235 AMD_BIT(UDC_DEVINT_SC
);
236 writel(tmp
, &dev
->regs
->irqmsk
);
238 /* mask all ep interrupts */
239 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqmsk
);
243 EXPORT_SYMBOL_GPL(udc_mask_unused_interrupts
);
245 /* Enables endpoint 0 interrupts */
246 static int udc_enable_ep0_interrupts(struct udc
*dev
)
250 DBG(dev
, "udc_enable_ep0_interrupts()\n");
253 tmp
= readl(&dev
->regs
->ep_irqmsk
);
254 /* enable ep0 irq's */
255 tmp
&= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0
)
256 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0
);
257 writel(tmp
, &dev
->regs
->ep_irqmsk
);
262 /* Enables device interrupts for SET_INTF and SET_CONFIG */
263 int udc_enable_dev_setup_interrupts(struct udc
*dev
)
267 DBG(dev
, "enable device interrupts for setup data\n");
270 tmp
= readl(&dev
->regs
->irqmsk
);
272 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
273 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_SI
)
274 & AMD_UNMASK_BIT(UDC_DEVINT_SC
)
275 & AMD_UNMASK_BIT(UDC_DEVINT_UR
)
276 & AMD_UNMASK_BIT(UDC_DEVINT_SVC
)
277 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM
);
278 writel(tmp
, &dev
->regs
->irqmsk
);
282 EXPORT_SYMBOL_GPL(udc_enable_dev_setup_interrupts
);
284 /* Calculates fifo start of endpoint based on preceding endpoints */
285 static int udc_set_txfifo_addr(struct udc_ep
*ep
)
291 if (!ep
|| !(ep
->in
))
295 ep
->txfifo
= dev
->txfifo
;
298 for (i
= 0; i
< ep
->num
; i
++) {
299 if (dev
->ep
[i
].regs
) {
301 tmp
= readl(&dev
->ep
[i
].regs
->bufin_framenum
);
302 tmp
= AMD_GETBITS(tmp
, UDC_EPIN_BUFF_SIZE
);
309 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
310 static u32 cnak_pending
;
312 static void UDC_QUEUE_CNAK(struct udc_ep
*ep
, unsigned num
)
314 if (readl(&ep
->regs
->ctl
) & AMD_BIT(UDC_EPCTL_NAK
)) {
315 DBG(ep
->dev
, "NAK could not be cleared for ep%d\n", num
);
316 cnak_pending
|= 1 << (num
);
319 cnak_pending
= cnak_pending
& (~(1 << (num
)));
323 /* Enables endpoint, is called by gadget driver */
325 udc_ep_enable(struct usb_ep
*usbep
, const struct usb_endpoint_descriptor
*desc
)
330 unsigned long iflags
;
335 || usbep
->name
== ep0_string
337 || desc
->bDescriptorType
!= USB_DT_ENDPOINT
)
340 ep
= container_of(usbep
, struct udc_ep
, ep
);
343 DBG(dev
, "udc_ep_enable() ep %d\n", ep
->num
);
345 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
348 spin_lock_irqsave(&dev
->lock
, iflags
);
353 /* set traffic type */
354 tmp
= readl(&dev
->ep
[ep
->num
].regs
->ctl
);
355 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_EPCTL_ET
);
356 writel(tmp
, &dev
->ep
[ep
->num
].regs
->ctl
);
358 /* set max packet size */
359 maxpacket
= usb_endpoint_maxp(desc
);
360 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
361 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_EP_MAX_PKT_SIZE
);
362 ep
->ep
.maxpacket
= maxpacket
;
363 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
368 /* ep ix in UDC CSR register space */
369 udc_csr_epix
= ep
->num
;
371 /* set buffer size (tx fifo entries) */
372 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufin_framenum
);
373 /* double buffering: fifo size = 2 x max packet size */
376 maxpacket
* UDC_EPIN_BUFF_SIZE_MULT
379 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufin_framenum
);
381 /* calc. tx fifo base addr */
382 udc_set_txfifo_addr(ep
);
385 tmp
= readl(&ep
->regs
->ctl
);
386 tmp
|= AMD_BIT(UDC_EPCTL_F
);
387 writel(tmp
, &ep
->regs
->ctl
);
391 /* ep ix in UDC CSR register space */
392 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
394 /* set max packet size UDC CSR */
395 tmp
= readl(&dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
396 tmp
= AMD_ADDBITS(tmp
, maxpacket
,
398 writel(tmp
, &dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
400 if (use_dma
&& !ep
->in
) {
401 /* alloc and init BNA dummy request */
402 ep
->bna_dummy_req
= udc_alloc_bna_dummy(ep
);
403 ep
->bna_occurred
= 0;
406 if (ep
->num
!= UDC_EP0OUT_IX
)
407 dev
->data_ep_enabled
= 1;
411 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
413 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_CSR_NE_MAX_PKT
);
415 tmp
= AMD_ADDBITS(tmp
, desc
->bEndpointAddress
, UDC_CSR_NE_NUM
);
417 tmp
= AMD_ADDBITS(tmp
, ep
->in
, UDC_CSR_NE_DIR
);
419 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_CSR_NE_TYPE
);
421 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
, UDC_CSR_NE_CFG
);
423 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
, UDC_CSR_NE_INTF
);
425 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
, UDC_CSR_NE_ALT
);
427 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
430 tmp
= readl(&dev
->regs
->ep_irqmsk
);
431 tmp
&= AMD_UNMASK_BIT(ep
->num
);
432 writel(tmp
, &dev
->regs
->ep_irqmsk
);
435 * clear NAK by writing CNAK
436 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
438 if (!use_dma
|| ep
->in
) {
439 tmp
= readl(&ep
->regs
->ctl
);
440 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
441 writel(tmp
, &ep
->regs
->ctl
);
443 UDC_QUEUE_CNAK(ep
, ep
->num
);
445 tmp
= desc
->bEndpointAddress
;
446 DBG(dev
, "%s enabled\n", usbep
->name
);
448 spin_unlock_irqrestore(&dev
->lock
, iflags
);
452 /* Resets endpoint */
453 static void ep_init(struct udc_regs __iomem
*regs
, struct udc_ep
*ep
)
457 VDBG(ep
->dev
, "ep-%d reset\n", ep
->num
);
459 ep
->ep
.ops
= &udc_ep_ops
;
460 INIT_LIST_HEAD(&ep
->queue
);
462 usb_ep_set_maxpacket_limit(&ep
->ep
,(u16
) ~0);
464 tmp
= readl(&ep
->regs
->ctl
);
465 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
466 writel(tmp
, &ep
->regs
->ctl
);
469 /* disable interrupt */
470 tmp
= readl(®s
->ep_irqmsk
);
471 tmp
|= AMD_BIT(ep
->num
);
472 writel(tmp
, ®s
->ep_irqmsk
);
475 /* unset P and IN bit of potential former DMA */
476 tmp
= readl(&ep
->regs
->ctl
);
477 tmp
&= AMD_UNMASK_BIT(UDC_EPCTL_P
);
478 writel(tmp
, &ep
->regs
->ctl
);
480 tmp
= readl(&ep
->regs
->sts
);
481 tmp
|= AMD_BIT(UDC_EPSTS_IN
);
482 writel(tmp
, &ep
->regs
->sts
);
485 tmp
= readl(&ep
->regs
->ctl
);
486 tmp
|= AMD_BIT(UDC_EPCTL_F
);
487 writel(tmp
, &ep
->regs
->ctl
);
490 /* reset desc pointer */
491 writel(0, &ep
->regs
->desptr
);
494 /* Disables endpoint, is called by gadget driver */
495 static int udc_ep_disable(struct usb_ep
*usbep
)
497 struct udc_ep
*ep
= NULL
;
498 unsigned long iflags
;
503 ep
= container_of(usbep
, struct udc_ep
, ep
);
504 if (usbep
->name
== ep0_string
|| !ep
->ep
.desc
)
507 DBG(ep
->dev
, "Disable ep-%d\n", ep
->num
);
509 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
510 udc_free_request(&ep
->ep
, &ep
->bna_dummy_req
->req
);
512 ep_init(ep
->dev
->regs
, ep
);
513 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
518 /* Allocates request packet, called by gadget driver */
519 static struct usb_request
*
520 udc_alloc_request(struct usb_ep
*usbep
, gfp_t gfp
)
522 struct udc_request
*req
;
523 struct udc_data_dma
*dma_desc
;
529 ep
= container_of(usbep
, struct udc_ep
, ep
);
531 VDBG(ep
->dev
, "udc_alloc_req(): ep%d\n", ep
->num
);
532 req
= kzalloc(sizeof(struct udc_request
), gfp
);
536 req
->req
.dma
= DMA_DONT_USE
;
537 INIT_LIST_HEAD(&req
->queue
);
540 /* ep0 in requests are allocated from data pool here */
541 dma_desc
= dma_pool_alloc(ep
->dev
->data_requests
, gfp
,
548 VDBG(ep
->dev
, "udc_alloc_req: req = %p dma_desc = %p, "
551 (unsigned long)req
->td_phys
);
552 /* prevent from using desc. - set HOST BUSY */
553 dma_desc
->status
= AMD_ADDBITS(dma_desc
->status
,
554 UDC_DMA_STP_STS_BS_HOST_BUSY
,
556 dma_desc
->bufptr
= cpu_to_le32(DMA_DONT_USE
);
557 req
->td_data
= dma_desc
;
558 req
->td_data_last
= NULL
;
565 /* frees pci pool descriptors of a DMA chain */
566 static void udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
)
568 struct udc_data_dma
*td
= req
->td_data
;
571 dma_addr_t addr_next
= 0x00;
572 dma_addr_t addr
= (dma_addr_t
)td
->next
;
574 DBG(dev
, "free chain req = %p\n", req
);
576 /* do not free first desc., will be done by free for request */
577 for (i
= 1; i
< req
->chain_len
; i
++) {
578 td
= phys_to_virt(addr
);
579 addr_next
= (dma_addr_t
)td
->next
;
580 dma_pool_free(dev
->data_requests
, td
, addr
);
585 /* Frees request packet, called by gadget driver */
587 udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
590 struct udc_request
*req
;
592 if (!usbep
|| !usbreq
)
595 ep
= container_of(usbep
, struct udc_ep
, ep
);
596 req
= container_of(usbreq
, struct udc_request
, req
);
597 VDBG(ep
->dev
, "free_req req=%p\n", req
);
598 BUG_ON(!list_empty(&req
->queue
));
600 VDBG(ep
->dev
, "req->td_data=%p\n", req
->td_data
);
602 /* free dma chain if created */
603 if (req
->chain_len
> 1)
604 udc_free_dma_chain(ep
->dev
, req
);
606 dma_pool_free(ep
->dev
->data_requests
, req
->td_data
,
612 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
613 static void udc_init_bna_dummy(struct udc_request
*req
)
617 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
618 /* set next pointer to itself */
619 req
->td_data
->next
= req
->td_phys
;
622 = AMD_ADDBITS(req
->td_data
->status
,
623 UDC_DMA_STP_STS_BS_DMA_DONE
,
626 pr_debug("bna desc = %p, sts = %08x\n",
627 req
->td_data
, req
->td_data
->status
);
632 /* Allocate BNA dummy descriptor */
633 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
)
635 struct udc_request
*req
= NULL
;
636 struct usb_request
*_req
= NULL
;
638 /* alloc the dummy request */
639 _req
= udc_alloc_request(&ep
->ep
, GFP_ATOMIC
);
641 req
= container_of(_req
, struct udc_request
, req
);
642 ep
->bna_dummy_req
= req
;
643 udc_init_bna_dummy(req
);
648 /* Write data to TX fifo for IN packets */
650 udc_txfifo_write(struct udc_ep
*ep
, struct usb_request
*req
)
656 unsigned remaining
= 0;
661 req_buf
= req
->buf
+ req
->actual
;
663 remaining
= req
->length
- req
->actual
;
665 buf
= (u32
*) req_buf
;
667 bytes
= ep
->ep
.maxpacket
;
668 if (bytes
> remaining
)
672 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++)
673 writel(*(buf
+ i
), ep
->txfifo
);
675 /* remaining bytes must be written by byte access */
676 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
677 writeb((u8
)(*(buf
+ i
) >> (j
<< UDC_BITS_PER_BYTE_SHIFT
)),
681 /* dummy write confirm */
682 writel(0, &ep
->regs
->confirm
);
685 /* Read dwords from RX fifo for OUT transfers */
686 static int udc_rxfifo_read_dwords(struct udc
*dev
, u32
*buf
, int dwords
)
690 VDBG(dev
, "udc_read_dwords(): %d dwords\n", dwords
);
692 for (i
= 0; i
< dwords
; i
++)
693 *(buf
+ i
) = readl(dev
->rxfifo
);
697 /* Read bytes from RX fifo for OUT transfers */
698 static int udc_rxfifo_read_bytes(struct udc
*dev
, u8
*buf
, int bytes
)
703 VDBG(dev
, "udc_read_bytes(): %d bytes\n", bytes
);
706 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++)
707 *((u32
*)(buf
+ (i
<<2))) = readl(dev
->rxfifo
);
709 /* remaining bytes must be read by byte access */
710 if (bytes
% UDC_DWORD_BYTES
) {
711 tmp
= readl(dev
->rxfifo
);
712 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
713 *(buf
+ (i
<<2) + j
) = (u8
)(tmp
& UDC_BYTE_MASK
);
714 tmp
= tmp
>> UDC_BITS_PER_BYTE
;
721 /* Read data from RX fifo for OUT transfers */
723 udc_rxfifo_read(struct udc_ep
*ep
, struct udc_request
*req
)
728 unsigned finished
= 0;
730 /* received number bytes */
731 bytes
= readl(&ep
->regs
->sts
);
732 bytes
= AMD_GETBITS(bytes
, UDC_EPSTS_RX_PKT_SIZE
);
734 buf_space
= req
->req
.length
- req
->req
.actual
;
735 buf
= req
->req
.buf
+ req
->req
.actual
;
736 if (bytes
> buf_space
) {
737 if ((buf_space
% ep
->ep
.maxpacket
) != 0) {
739 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
740 ep
->ep
.name
, bytes
, buf_space
);
741 req
->req
.status
= -EOVERFLOW
;
745 req
->req
.actual
+= bytes
;
748 if (((bytes
% ep
->ep
.maxpacket
) != 0) || (!bytes
)
749 || ((req
->req
.actual
== req
->req
.length
) && !req
->req
.zero
))
752 /* read rx fifo bytes */
753 VDBG(ep
->dev
, "ep %s: rxfifo read %d bytes\n", ep
->ep
.name
, bytes
);
754 udc_rxfifo_read_bytes(ep
->dev
, buf
, bytes
);
759 /* Creates or re-inits a DMA chain */
760 static int udc_create_dma_chain(
762 struct udc_request
*req
,
763 unsigned long buf_len
, gfp_t gfp_flags
766 unsigned long bytes
= req
->req
.length
;
769 struct udc_data_dma
*td
= NULL
;
770 struct udc_data_dma
*last
= NULL
;
771 unsigned long txbytes
;
772 unsigned create_new_chain
= 0;
775 VDBG(ep
->dev
, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
777 dma_addr
= DMA_DONT_USE
;
779 /* unset L bit in first desc for OUT */
781 req
->td_data
->status
&= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L
);
783 /* alloc only new desc's if not already available */
784 len
= req
->req
.length
/ ep
->ep
.maxpacket
;
785 if (req
->req
.length
% ep
->ep
.maxpacket
)
788 if (len
> req
->chain_len
) {
789 /* shorter chain already allocated before */
790 if (req
->chain_len
> 1)
791 udc_free_dma_chain(ep
->dev
, req
);
792 req
->chain_len
= len
;
793 create_new_chain
= 1;
797 /* gen. required number of descriptors and buffers */
798 for (i
= buf_len
; i
< bytes
; i
+= buf_len
) {
799 /* create or determine next desc. */
800 if (create_new_chain
) {
801 td
= dma_pool_alloc(ep
->dev
->data_requests
,
802 gfp_flags
, &dma_addr
);
807 } else if (i
== buf_len
) {
809 td
= (struct udc_data_dma
*)phys_to_virt(
813 td
= (struct udc_data_dma
*)phys_to_virt(last
->next
);
818 td
->bufptr
= req
->req
.dma
+ i
; /* assign buffer */
823 if ((bytes
- i
) >= buf_len
) {
830 /* link td and assign tx bytes */
832 if (create_new_chain
)
833 req
->td_data
->next
= dma_addr
;
836 * req->td_data->next = virt_to_phys(td);
841 req
->td_data
->status
=
842 AMD_ADDBITS(req
->td_data
->status
,
844 UDC_DMA_IN_STS_TXBYTES
);
846 td
->status
= AMD_ADDBITS(td
->status
,
848 UDC_DMA_IN_STS_TXBYTES
);
851 if (create_new_chain
)
852 last
->next
= dma_addr
;
855 * last->next = virt_to_phys(td);
859 td
->status
= AMD_ADDBITS(td
->status
,
861 UDC_DMA_IN_STS_TXBYTES
);
868 td
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
869 /* last desc. points to itself */
870 req
->td_data_last
= td
;
876 /* create/re-init a DMA descriptor or a DMA descriptor chain */
877 static int prep_dma(struct udc_ep
*ep
, struct udc_request
*req
, gfp_t gfp
)
882 VDBG(ep
->dev
, "prep_dma\n");
883 VDBG(ep
->dev
, "prep_dma ep%d req->td_data=%p\n",
884 ep
->num
, req
->td_data
);
886 /* set buffer pointer */
887 req
->td_data
->bufptr
= req
->req
.dma
;
890 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
892 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
895 retval
= udc_create_dma_chain(ep
, req
, ep
->ep
.maxpacket
, gfp
);
897 if (retval
== -ENOMEM
)
898 DBG(ep
->dev
, "Out of DMA memory\n");
902 if (req
->req
.length
== ep
->ep
.maxpacket
) {
904 req
->td_data
->status
=
905 AMD_ADDBITS(req
->td_data
->status
,
907 UDC_DMA_IN_STS_TXBYTES
);
915 VDBG(ep
->dev
, "IN: use_dma_ppb=%d req->req.len=%d "
916 "maxpacket=%d ep%d\n",
917 use_dma_ppb
, req
->req
.length
,
918 ep
->ep
.maxpacket
, ep
->num
);
920 * if bytes < max packet then tx bytes must
921 * be written in packet per buffer mode
923 if (!use_dma_ppb
|| req
->req
.length
< ep
->ep
.maxpacket
924 || ep
->num
== UDC_EP0OUT_IX
925 || ep
->num
== UDC_EP0IN_IX
) {
927 req
->td_data
->status
=
928 AMD_ADDBITS(req
->td_data
->status
,
930 UDC_DMA_IN_STS_TXBYTES
);
931 /* reset frame num */
932 req
->td_data
->status
=
933 AMD_ADDBITS(req
->td_data
->status
,
935 UDC_DMA_IN_STS_FRAMENUM
);
938 req
->td_data
->status
=
939 AMD_ADDBITS(req
->td_data
->status
,
940 UDC_DMA_STP_STS_BS_HOST_BUSY
,
943 VDBG(ep
->dev
, "OUT set host ready\n");
945 req
->td_data
->status
=
946 AMD_ADDBITS(req
->td_data
->status
,
947 UDC_DMA_STP_STS_BS_HOST_READY
,
951 /* clear NAK by writing CNAK */
953 tmp
= readl(&ep
->regs
->ctl
);
954 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
955 writel(tmp
, &ep
->regs
->ctl
);
957 UDC_QUEUE_CNAK(ep
, ep
->num
);
965 /* Completes request packet ... caller MUST hold lock */
967 complete_req(struct udc_ep
*ep
, struct udc_request
*req
, int sts
)
968 __releases(ep
->dev
->lock
)
969 __acquires(ep
->dev
->lock
)
974 VDBG(ep
->dev
, "complete_req(): ep%d\n", ep
->num
);
979 usb_gadget_unmap_request(&dev
->gadget
, &req
->req
, ep
->in
);
984 /* set new status if pending */
985 if (req
->req
.status
== -EINPROGRESS
)
986 req
->req
.status
= sts
;
988 /* remove from ep queue */
989 list_del_init(&req
->queue
);
991 VDBG(ep
->dev
, "req %p => complete %d bytes at %s with sts %d\n",
992 &req
->req
, req
->req
.length
, ep
->ep
.name
, sts
);
994 spin_unlock(&dev
->lock
);
995 usb_gadget_giveback_request(&ep
->ep
, &req
->req
);
996 spin_lock(&dev
->lock
);
1000 /* Iterates to the end of a DMA chain and returns last descriptor */
1001 static struct udc_data_dma
*udc_get_last_dma_desc(struct udc_request
*req
)
1003 struct udc_data_dma
*td
;
1006 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
)))
1007 td
= phys_to_virt(td
->next
);
1013 /* Iterates to the end of a DMA chain and counts bytes received */
1014 static u32
udc_get_ppbdu_rxbytes(struct udc_request
*req
)
1016 struct udc_data_dma
*td
;
1020 /* received number bytes */
1021 count
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_RXBYTES
);
1023 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
1024 td
= phys_to_virt(td
->next
);
1025 /* received number bytes */
1027 count
+= AMD_GETBITS(td
->status
,
1028 UDC_DMA_OUT_STS_RXBYTES
);
1036 /* Enabling RX DMA */
1037 static void udc_set_rde(struct udc
*dev
)
1041 VDBG(dev
, "udc_set_rde()\n");
1042 /* stop RDE timer */
1043 if (timer_pending(&udc_timer
)) {
1045 mod_timer(&udc_timer
, jiffies
- 1);
1048 tmp
= readl(&dev
->regs
->ctl
);
1049 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1050 writel(tmp
, &dev
->regs
->ctl
);
1053 /* Queues a request packet, called by gadget driver */
1055 udc_queue(struct usb_ep
*usbep
, struct usb_request
*usbreq
, gfp_t gfp
)
1059 unsigned long iflags
;
1061 struct udc_request
*req
;
1065 /* check the inputs */
1066 req
= container_of(usbreq
, struct udc_request
, req
);
1068 if (!usbep
|| !usbreq
|| !usbreq
->complete
|| !usbreq
->buf
1069 || !list_empty(&req
->queue
))
1072 ep
= container_of(usbep
, struct udc_ep
, ep
);
1073 if (!ep
->ep
.desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1076 VDBG(ep
->dev
, "udc_queue(): ep%d-in=%d\n", ep
->num
, ep
->in
);
1079 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1082 /* map dma (usually done before) */
1084 VDBG(dev
, "DMA map req %p\n", req
);
1085 retval
= usb_gadget_map_request(&udc
->gadget
, usbreq
, ep
->in
);
1090 VDBG(dev
, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1091 usbep
->name
, usbreq
, usbreq
->length
,
1092 req
->td_data
, usbreq
->buf
);
1094 spin_lock_irqsave(&dev
->lock
, iflags
);
1096 usbreq
->status
= -EINPROGRESS
;
1099 /* on empty queue just do first transfer */
1100 if (list_empty(&ep
->queue
)) {
1102 if (usbreq
->length
== 0) {
1103 /* IN zlp's are handled by hardware */
1104 complete_req(ep
, req
, 0);
1105 VDBG(dev
, "%s: zlp\n", ep
->ep
.name
);
1107 * if set_config or set_intf is waiting for ack by zlp
1110 if (dev
->set_cfg_not_acked
) {
1111 tmp
= readl(&dev
->regs
->ctl
);
1112 tmp
|= AMD_BIT(UDC_DEVCTL_CSR_DONE
);
1113 writel(tmp
, &dev
->regs
->ctl
);
1114 dev
->set_cfg_not_acked
= 0;
1116 /* setup command is ACK'ed now by zlp */
1117 if (dev
->waiting_zlp_ack_ep0in
) {
1118 /* clear NAK by writing CNAK in EP0_IN */
1119 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1120 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1121 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1122 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1123 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
],
1125 dev
->waiting_zlp_ack_ep0in
= 0;
1130 retval
= prep_dma(ep
, req
, GFP_ATOMIC
);
1133 /* write desc pointer to enable DMA */
1135 /* set HOST READY */
1136 req
->td_data
->status
=
1137 AMD_ADDBITS(req
->td_data
->status
,
1138 UDC_DMA_IN_STS_BS_HOST_READY
,
1142 /* disabled rx dma while descriptor update */
1144 /* stop RDE timer */
1145 if (timer_pending(&udc_timer
)) {
1147 mod_timer(&udc_timer
, jiffies
- 1);
1150 tmp
= readl(&dev
->regs
->ctl
);
1151 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1152 writel(tmp
, &dev
->regs
->ctl
);
1156 * if BNA occurred then let BNA dummy desc.
1157 * point to current desc.
1159 if (ep
->bna_occurred
) {
1160 VDBG(dev
, "copy to BNA dummy desc.\n");
1161 memcpy(ep
->bna_dummy_req
->td_data
,
1163 sizeof(struct udc_data_dma
));
1166 /* write desc pointer */
1167 writel(req
->td_phys
, &ep
->regs
->desptr
);
1169 /* clear NAK by writing CNAK */
1171 tmp
= readl(&ep
->regs
->ctl
);
1172 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1173 writel(tmp
, &ep
->regs
->ctl
);
1175 UDC_QUEUE_CNAK(ep
, ep
->num
);
1180 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1181 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1182 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1184 } else if (ep
->in
) {
1186 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1187 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1188 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1191 } else if (ep
->dma
) {
1194 * prep_dma not used for OUT ep's, this is not possible
1195 * for PPB modes, because of chain creation reasons
1198 retval
= prep_dma(ep
, req
, GFP_ATOMIC
);
1203 VDBG(dev
, "list_add\n");
1204 /* add request to ep queue */
1207 list_add_tail(&req
->queue
, &ep
->queue
);
1209 /* open rxfifo if out data queued */
1214 if (ep
->num
!= UDC_EP0OUT_IX
)
1215 dev
->data_ep_queued
= 1;
1217 /* stop OUT naking */
1219 if (!use_dma
&& udc_rxfifo_pending
) {
1220 DBG(dev
, "udc_queue(): pending bytes in "
1221 "rxfifo after nyet\n");
1223 * read pending bytes afer nyet:
1226 if (udc_rxfifo_read(ep
, req
)) {
1228 complete_req(ep
, req
, 0);
1230 udc_rxfifo_pending
= 0;
1237 spin_unlock_irqrestore(&dev
->lock
, iflags
);
1241 /* Empty request queue of an endpoint; caller holds spinlock */
1242 void empty_req_queue(struct udc_ep
*ep
)
1244 struct udc_request
*req
;
1247 while (!list_empty(&ep
->queue
)) {
1248 req
= list_entry(ep
->queue
.next
,
1251 complete_req(ep
, req
, -ESHUTDOWN
);
1254 EXPORT_SYMBOL_GPL(empty_req_queue
);
1256 /* Dequeues a request packet, called by gadget driver */
1257 static int udc_dequeue(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
1260 struct udc_request
*req
;
1262 unsigned long iflags
;
1264 ep
= container_of(usbep
, struct udc_ep
, ep
);
1265 if (!usbep
|| !usbreq
|| (!ep
->ep
.desc
&& (ep
->num
!= 0
1266 && ep
->num
!= UDC_EP0OUT_IX
)))
1269 req
= container_of(usbreq
, struct udc_request
, req
);
1271 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
1272 halted
= ep
->halted
;
1274 /* request in processing or next one */
1275 if (ep
->queue
.next
== &req
->queue
) {
1276 if (ep
->dma
&& req
->dma_going
) {
1278 ep
->cancel_transfer
= 1;
1282 /* stop potential receive DMA */
1283 tmp
= readl(&udc
->regs
->ctl
);
1284 writel(tmp
& AMD_UNMASK_BIT(UDC_DEVCTL_RDE
),
1287 * Cancel transfer later in ISR
1288 * if descriptor was touched.
1290 dma_sts
= AMD_GETBITS(req
->td_data
->status
,
1291 UDC_DMA_OUT_STS_BS
);
1292 if (dma_sts
!= UDC_DMA_OUT_STS_BS_HOST_READY
)
1293 ep
->cancel_transfer
= 1;
1295 udc_init_bna_dummy(ep
->req
);
1296 writel(ep
->bna_dummy_req
->td_phys
,
1299 writel(tmp
, &udc
->regs
->ctl
);
1303 complete_req(ep
, req
, -ECONNRESET
);
1304 ep
->halted
= halted
;
1306 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
1310 /* Halt or clear halt of endpoint */
1312 udc_set_halt(struct usb_ep
*usbep
, int halt
)
1316 unsigned long iflags
;
1322 pr_debug("set_halt %s: halt=%d\n", usbep
->name
, halt
);
1324 ep
= container_of(usbep
, struct udc_ep
, ep
);
1325 if (!ep
->ep
.desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1327 if (!ep
->dev
->driver
|| ep
->dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1330 spin_lock_irqsave(&udc_stall_spinlock
, iflags
);
1331 /* halt or clear halt */
1334 ep
->dev
->stall_ep0in
= 1;
1338 * rxfifo empty not taken into acount
1340 tmp
= readl(&ep
->regs
->ctl
);
1341 tmp
|= AMD_BIT(UDC_EPCTL_S
);
1342 writel(tmp
, &ep
->regs
->ctl
);
1345 /* setup poll timer */
1346 if (!timer_pending(&udc_pollstall_timer
)) {
1347 udc_pollstall_timer
.expires
= jiffies
+
1348 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1350 if (!stop_pollstall_timer
) {
1351 DBG(ep
->dev
, "start polltimer\n");
1352 add_timer(&udc_pollstall_timer
);
1357 /* ep is halted by set_halt() before */
1359 tmp
= readl(&ep
->regs
->ctl
);
1360 /* clear stall bit */
1361 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
1362 /* clear NAK by writing CNAK */
1363 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1364 writel(tmp
, &ep
->regs
->ctl
);
1366 UDC_QUEUE_CNAK(ep
, ep
->num
);
1369 spin_unlock_irqrestore(&udc_stall_spinlock
, iflags
);
1373 /* gadget interface */
1374 static const struct usb_ep_ops udc_ep_ops
= {
1375 .enable
= udc_ep_enable
,
1376 .disable
= udc_ep_disable
,
1378 .alloc_request
= udc_alloc_request
,
1379 .free_request
= udc_free_request
,
1382 .dequeue
= udc_dequeue
,
1384 .set_halt
= udc_set_halt
,
1385 /* fifo ops not implemented */
1388 /*-------------------------------------------------------------------------*/
1390 /* Get frame counter (not implemented) */
1391 static int udc_get_frame(struct usb_gadget
*gadget
)
1396 /* Initiates a remote wakeup */
1397 static int udc_remote_wakeup(struct udc
*dev
)
1399 unsigned long flags
;
1402 DBG(dev
, "UDC initiates remote wakeup\n");
1404 spin_lock_irqsave(&dev
->lock
, flags
);
1406 tmp
= readl(&dev
->regs
->ctl
);
1407 tmp
|= AMD_BIT(UDC_DEVCTL_RES
);
1408 writel(tmp
, &dev
->regs
->ctl
);
1409 tmp
&= AMD_CLEAR_BIT(UDC_DEVCTL_RES
);
1410 writel(tmp
, &dev
->regs
->ctl
);
1412 spin_unlock_irqrestore(&dev
->lock
, flags
);
1416 /* Remote wakeup gadget interface */
1417 static int udc_wakeup(struct usb_gadget
*gadget
)
1423 dev
= container_of(gadget
, struct udc
, gadget
);
1424 udc_remote_wakeup(dev
);
1429 static int amd5536_udc_start(struct usb_gadget
*g
,
1430 struct usb_gadget_driver
*driver
);
1431 static int amd5536_udc_stop(struct usb_gadget
*g
);
1433 static const struct usb_gadget_ops udc_ops
= {
1434 .wakeup
= udc_wakeup
,
1435 .get_frame
= udc_get_frame
,
1436 .udc_start
= amd5536_udc_start
,
1437 .udc_stop
= amd5536_udc_stop
,
1440 /* Setups endpoint parameters, adds endpoints to linked list */
1441 static void make_ep_lists(struct udc
*dev
)
1443 /* make gadget ep lists */
1444 INIT_LIST_HEAD(&dev
->gadget
.ep_list
);
1445 list_add_tail(&dev
->ep
[UDC_EPIN_STATUS_IX
].ep
.ep_list
,
1446 &dev
->gadget
.ep_list
);
1447 list_add_tail(&dev
->ep
[UDC_EPIN_IX
].ep
.ep_list
,
1448 &dev
->gadget
.ep_list
);
1449 list_add_tail(&dev
->ep
[UDC_EPOUT_IX
].ep
.ep_list
,
1450 &dev
->gadget
.ep_list
);
1453 dev
->ep
[UDC_EPIN_STATUS_IX
].fifo_depth
= UDC_EPIN_SMALLINT_BUFF_SIZE
;
1454 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1455 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= UDC_FS_EPIN_BUFF_SIZE
;
1456 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1457 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= hs_tx_buf
;
1458 dev
->ep
[UDC_EPOUT_IX
].fifo_depth
= UDC_RXFIFO_SIZE
;
1461 /* Inits UDC context */
1462 void udc_basic_init(struct udc
*dev
)
1466 DBG(dev
, "udc_basic_init()\n");
1468 dev
->gadget
.speed
= USB_SPEED_UNKNOWN
;
1470 /* stop RDE timer */
1471 if (timer_pending(&udc_timer
)) {
1473 mod_timer(&udc_timer
, jiffies
- 1);
1475 /* stop poll stall timer */
1476 if (timer_pending(&udc_pollstall_timer
))
1477 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1479 tmp
= readl(&dev
->regs
->ctl
);
1480 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1481 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_TDE
);
1482 writel(tmp
, &dev
->regs
->ctl
);
1484 /* enable dynamic CSR programming */
1485 tmp
= readl(&dev
->regs
->cfg
);
1486 tmp
|= AMD_BIT(UDC_DEVCFG_CSR_PRG
);
1487 /* set self powered */
1488 tmp
|= AMD_BIT(UDC_DEVCFG_SP
);
1489 /* set remote wakeupable */
1490 tmp
|= AMD_BIT(UDC_DEVCFG_RWKP
);
1491 writel(tmp
, &dev
->regs
->cfg
);
1495 dev
->data_ep_enabled
= 0;
1496 dev
->data_ep_queued
= 0;
1498 EXPORT_SYMBOL_GPL(udc_basic_init
);
1500 /* init registers at driver load time */
1501 static int startup_registers(struct udc
*dev
)
1505 /* init controller by soft reset */
1506 udc_soft_reset(dev
);
1508 /* mask not needed interrupts */
1509 udc_mask_unused_interrupts(dev
);
1511 /* put into initial config */
1512 udc_basic_init(dev
);
1513 /* link up all endpoints */
1514 udc_setup_endpoints(dev
);
1517 tmp
= readl(&dev
->regs
->cfg
);
1519 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1521 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_HS
, UDC_DEVCFG_SPD
);
1522 writel(tmp
, &dev
->regs
->cfg
);
1527 /* Sets initial endpoint parameters */
1528 static void udc_setup_endpoints(struct udc
*dev
)
1534 DBG(dev
, "udc_setup_endpoints()\n");
1536 /* read enum speed */
1537 tmp
= readl(&dev
->regs
->sts
);
1538 tmp
= AMD_GETBITS(tmp
, UDC_DEVSTS_ENUM_SPEED
);
1539 if (tmp
== UDC_DEVSTS_ENUM_SPEED_HIGH
)
1540 dev
->gadget
.speed
= USB_SPEED_HIGH
;
1541 else if (tmp
== UDC_DEVSTS_ENUM_SPEED_FULL
)
1542 dev
->gadget
.speed
= USB_SPEED_FULL
;
1544 /* set basic ep parameters */
1545 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1548 ep
->ep
.name
= ep_info
[tmp
].name
;
1549 ep
->ep
.caps
= ep_info
[tmp
].caps
;
1551 /* txfifo size is calculated at enable time */
1552 ep
->txfifo
= dev
->txfifo
;
1555 if (tmp
< UDC_EPIN_NUM
) {
1556 ep
->fifo_depth
= UDC_TXFIFO_SIZE
;
1559 ep
->fifo_depth
= UDC_RXFIFO_SIZE
;
1563 ep
->regs
= &dev
->ep_regs
[tmp
];
1565 * ep will be reset only if ep was not enabled before to avoid
1566 * disabling ep interrupts when ENUM interrupt occurs but ep is
1567 * not enabled by gadget driver
1570 ep_init(dev
->regs
, ep
);
1574 * ep->dma is not really used, just to indicate that
1575 * DMA is active: remove this
1576 * dma regs = dev control regs
1578 ep
->dma
= &dev
->regs
->ctl
;
1580 /* nak OUT endpoints until enable - not for ep0 */
1581 if (tmp
!= UDC_EP0IN_IX
&& tmp
!= UDC_EP0OUT_IX
1582 && tmp
> UDC_EPIN_NUM
) {
1584 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
1585 reg
|= AMD_BIT(UDC_EPCTL_SNAK
);
1586 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
1587 dev
->ep
[tmp
].naking
= 1;
1592 /* EP0 max packet */
1593 if (dev
->gadget
.speed
== USB_SPEED_FULL
) {
1594 usb_ep_set_maxpacket_limit(&dev
->ep
[UDC_EP0IN_IX
].ep
,
1595 UDC_FS_EP0IN_MAX_PKT_SIZE
);
1596 usb_ep_set_maxpacket_limit(&dev
->ep
[UDC_EP0OUT_IX
].ep
,
1597 UDC_FS_EP0OUT_MAX_PKT_SIZE
);
1598 } else if (dev
->gadget
.speed
== USB_SPEED_HIGH
) {
1599 usb_ep_set_maxpacket_limit(&dev
->ep
[UDC_EP0IN_IX
].ep
,
1600 UDC_EP0IN_MAX_PKT_SIZE
);
1601 usb_ep_set_maxpacket_limit(&dev
->ep
[UDC_EP0OUT_IX
].ep
,
1602 UDC_EP0OUT_MAX_PKT_SIZE
);
1606 * with suspend bug workaround, ep0 params for gadget driver
1607 * are set at gadget driver bind() call
1609 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
1610 dev
->ep
[UDC_EP0IN_IX
].halted
= 0;
1611 INIT_LIST_HEAD(&dev
->gadget
.ep0
->ep_list
);
1613 /* init cfg/alt/int */
1614 dev
->cur_config
= 0;
1619 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1620 static void usb_connect(struct udc
*dev
)
1622 /* Return if already connected */
1626 dev_info(dev
->dev
, "USB Connect\n");
1630 /* put into initial config */
1631 udc_basic_init(dev
);
1633 /* enable device setup interrupts */
1634 udc_enable_dev_setup_interrupts(dev
);
1638 * Calls gadget with disconnect event and resets the UDC and makes
1639 * initial bringup to be ready for ep0 events
1641 static void usb_disconnect(struct udc
*dev
)
1643 /* Return if already disconnected */
1644 if (!dev
->connected
)
1647 dev_info(dev
->dev
, "USB Disconnect\n");
1651 /* mask interrupts */
1652 udc_mask_unused_interrupts(dev
);
1654 /* REVISIT there doesn't seem to be a point to having this
1655 * talk to a tasklet ... do it directly, we already hold
1656 * the spinlock needed to process the disconnect.
1659 tasklet_schedule(&disconnect_tasklet
);
1662 /* Tasklet for disconnect to be outside of interrupt context */
1663 static void udc_tasklet_disconnect(unsigned long par
)
1665 struct udc
*dev
= (struct udc
*)(*((struct udc
**) par
));
1668 DBG(dev
, "Tasklet disconnect\n");
1669 spin_lock_irq(&dev
->lock
);
1672 spin_unlock(&dev
->lock
);
1673 dev
->driver
->disconnect(&dev
->gadget
);
1674 spin_lock(&dev
->lock
);
1677 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++)
1678 empty_req_queue(&dev
->ep
[tmp
]);
1684 &dev
->ep
[UDC_EP0IN_IX
]);
1687 if (!soft_reset_occured
) {
1688 /* init controller by soft reset */
1689 udc_soft_reset(dev
);
1690 soft_reset_occured
++;
1693 /* re-enable dev interrupts */
1694 udc_enable_dev_setup_interrupts(dev
);
1695 /* back to full speed ? */
1696 if (use_fullspeed
) {
1697 tmp
= readl(&dev
->regs
->cfg
);
1698 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1699 writel(tmp
, &dev
->regs
->cfg
);
1702 spin_unlock_irq(&dev
->lock
);
1705 /* Reset the UDC core */
1706 static void udc_soft_reset(struct udc
*dev
)
1708 unsigned long flags
;
1710 DBG(dev
, "Soft reset\n");
1712 * reset possible waiting interrupts, because int.
1713 * status is lost after soft reset,
1714 * ep int. status reset
1716 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqsts
);
1717 /* device int. status reset */
1718 writel(UDC_DEV_MSK_DISABLE
, &dev
->regs
->irqsts
);
1720 /* Don't do this for Broadcom UDC since this is a reserved
1723 if (dev
->chiprev
!= UDC_BCM_REV
) {
1724 spin_lock_irqsave(&udc_irq_spinlock
, flags
);
1725 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
1726 readl(&dev
->regs
->cfg
);
1727 spin_unlock_irqrestore(&udc_irq_spinlock
, flags
);
1731 /* RDE timer callback to set RDE bit */
1732 static void udc_timer_function(struct timer_list
*unused
)
1736 spin_lock_irq(&udc_irq_spinlock
);
1740 * open the fifo if fifo was filled on last timer call
1744 /* set RDE to receive setup data */
1745 tmp
= readl(&udc
->regs
->ctl
);
1746 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1747 writel(tmp
, &udc
->regs
->ctl
);
1749 } else if (readl(&udc
->regs
->sts
)
1750 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
1752 * if fifo empty setup polling, do not just
1755 udc_timer
.expires
= jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
1757 add_timer(&udc_timer
);
1760 * fifo contains data now, setup timer for opening
1761 * the fifo when timer expires to be able to receive
1762 * setup packets, when data packets gets queued by
1763 * gadget layer then timer will forced to expire with
1764 * set_rde=0 (RDE is set in udc_queue())
1767 /* debug: lhadmot_timer_start = 221070 */
1768 udc_timer
.expires
= jiffies
+ HZ
*UDC_RDE_TIMER_SECONDS
;
1770 add_timer(&udc_timer
);
1774 set_rde
= -1; /* RDE was set by udc_queue() */
1775 spin_unlock_irq(&udc_irq_spinlock
);
1781 /* Handle halt state, used in stall poll timer */
1782 static void udc_handle_halt_state(struct udc_ep
*ep
)
1785 /* set stall as long not halted */
1786 if (ep
->halted
== 1) {
1787 tmp
= readl(&ep
->regs
->ctl
);
1788 /* STALL cleared ? */
1789 if (!(tmp
& AMD_BIT(UDC_EPCTL_S
))) {
1791 * FIXME: MSC spec requires that stall remains
1792 * even on receivng of CLEAR_FEATURE HALT. So
1793 * we would set STALL again here to be compliant.
1794 * But with current mass storage drivers this does
1795 * not work (would produce endless host retries).
1796 * So we clear halt on CLEAR_FEATURE.
1798 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1799 tmp |= AMD_BIT(UDC_EPCTL_S);
1800 writel(tmp, &ep->regs->ctl);*/
1802 /* clear NAK by writing CNAK */
1803 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1804 writel(tmp
, &ep
->regs
->ctl
);
1806 UDC_QUEUE_CNAK(ep
, ep
->num
);
1811 /* Stall timer callback to poll S bit and set it again after */
1812 static void udc_pollstall_timer_function(struct timer_list
*unused
)
1817 spin_lock_irq(&udc_stall_spinlock
);
1819 * only one IN and OUT endpoints are handled
1822 ep
= &udc
->ep
[UDC_EPIN_IX
];
1823 udc_handle_halt_state(ep
);
1826 /* OUT poll stall */
1827 ep
= &udc
->ep
[UDC_EPOUT_IX
];
1828 udc_handle_halt_state(ep
);
1832 /* setup timer again when still halted */
1833 if (!stop_pollstall_timer
&& halted
) {
1834 udc_pollstall_timer
.expires
= jiffies
+
1835 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1837 add_timer(&udc_pollstall_timer
);
1839 spin_unlock_irq(&udc_stall_spinlock
);
1841 if (stop_pollstall_timer
)
1842 complete(&on_pollstall_exit
);
1845 /* Inits endpoint 0 so that SETUP packets are processed */
1846 static void activate_control_endpoints(struct udc
*dev
)
1850 DBG(dev
, "activate_control_endpoints\n");
1853 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1854 tmp
|= AMD_BIT(UDC_EPCTL_F
);
1855 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1857 /* set ep0 directions */
1858 dev
->ep
[UDC_EP0IN_IX
].in
= 1;
1859 dev
->ep
[UDC_EP0OUT_IX
].in
= 0;
1861 /* set buffer size (tx fifo entries) of EP0_IN */
1862 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1863 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1864 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EPIN0_BUFF_SIZE
,
1865 UDC_EPIN_BUFF_SIZE
);
1866 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1867 tmp
= AMD_ADDBITS(tmp
, UDC_EPIN0_BUFF_SIZE
,
1868 UDC_EPIN_BUFF_SIZE
);
1869 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1871 /* set max packet size of EP0_IN */
1872 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1873 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1874 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0IN_MAX_PKT_SIZE
,
1875 UDC_EP_MAX_PKT_SIZE
);
1876 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1877 tmp
= AMD_ADDBITS(tmp
, UDC_EP0IN_MAX_PKT_SIZE
,
1878 UDC_EP_MAX_PKT_SIZE
);
1879 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1881 /* set max packet size of EP0_OUT */
1882 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1883 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1884 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1885 UDC_EP_MAX_PKT_SIZE
);
1886 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1887 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1888 UDC_EP_MAX_PKT_SIZE
);
1889 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1891 /* set max packet size of EP0 in UDC CSR */
1892 tmp
= readl(&dev
->csr
->ne
[0]);
1893 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1894 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1895 UDC_CSR_NE_MAX_PKT
);
1896 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1897 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1898 UDC_CSR_NE_MAX_PKT
);
1899 writel(tmp
, &dev
->csr
->ne
[0]);
1902 dev
->ep
[UDC_EP0OUT_IX
].td
->status
|=
1903 AMD_BIT(UDC_DMA_OUT_STS_L
);
1904 /* write dma desc address */
1905 writel(dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
,
1906 &dev
->ep
[UDC_EP0OUT_IX
].regs
->subptr
);
1907 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
1908 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
1909 /* stop RDE timer */
1910 if (timer_pending(&udc_timer
)) {
1912 mod_timer(&udc_timer
, jiffies
- 1);
1914 /* stop pollstall timer */
1915 if (timer_pending(&udc_pollstall_timer
))
1916 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1918 tmp
= readl(&dev
->regs
->ctl
);
1919 tmp
|= AMD_BIT(UDC_DEVCTL_MODE
)
1920 | AMD_BIT(UDC_DEVCTL_RDE
)
1921 | AMD_BIT(UDC_DEVCTL_TDE
);
1922 if (use_dma_bufferfill_mode
)
1923 tmp
|= AMD_BIT(UDC_DEVCTL_BF
);
1924 else if (use_dma_ppb_du
)
1925 tmp
|= AMD_BIT(UDC_DEVCTL_DU
);
1926 writel(tmp
, &dev
->regs
->ctl
);
1929 /* clear NAK by writing CNAK for EP0IN */
1930 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1931 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1932 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1933 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1934 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
1936 /* clear NAK by writing CNAK for EP0OUT */
1937 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1938 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1939 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1940 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
1941 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
1944 /* Make endpoint 0 ready for control traffic */
1945 static int setup_ep0(struct udc
*dev
)
1947 activate_control_endpoints(dev
);
1948 /* enable ep0 interrupts */
1949 udc_enable_ep0_interrupts(dev
);
1950 /* enable device setup interrupts */
1951 udc_enable_dev_setup_interrupts(dev
);
1956 /* Called by gadget driver to register itself */
1957 static int amd5536_udc_start(struct usb_gadget
*g
,
1958 struct usb_gadget_driver
*driver
)
1960 struct udc
*dev
= to_amd5536_udc(g
);
1963 driver
->driver
.bus
= NULL
;
1964 dev
->driver
= driver
;
1966 /* Some gadget drivers use both ep0 directions.
1967 * NOTE: to gadget driver, ep0 is just one endpoint...
1969 dev
->ep
[UDC_EP0OUT_IX
].ep
.driver_data
=
1970 dev
->ep
[UDC_EP0IN_IX
].ep
.driver_data
;
1972 /* get ready for ep0 traffic */
1976 tmp
= readl(&dev
->regs
->ctl
);
1977 tmp
= tmp
& AMD_CLEAR_BIT(UDC_DEVCTL_SD
);
1978 writel(tmp
, &dev
->regs
->ctl
);
1985 /* shutdown requests and disconnect from gadget */
1987 shutdown(struct udc
*dev
, struct usb_gadget_driver
*driver
)
1988 __releases(dev
->lock
)
1989 __acquires(dev
->lock
)
1993 /* empty queues and init hardware */
1994 udc_basic_init(dev
);
1996 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++)
1997 empty_req_queue(&dev
->ep
[tmp
]);
1999 udc_setup_endpoints(dev
);
2002 /* Called by gadget driver to unregister itself */
2003 static int amd5536_udc_stop(struct usb_gadget
*g
)
2005 struct udc
*dev
= to_amd5536_udc(g
);
2006 unsigned long flags
;
2009 spin_lock_irqsave(&dev
->lock
, flags
);
2010 udc_mask_unused_interrupts(dev
);
2011 shutdown(dev
, NULL
);
2012 spin_unlock_irqrestore(&dev
->lock
, flags
);
2017 tmp
= readl(&dev
->regs
->ctl
);
2018 tmp
|= AMD_BIT(UDC_DEVCTL_SD
);
2019 writel(tmp
, &dev
->regs
->ctl
);
2024 /* Clear pending NAK bits */
2025 static void udc_process_cnak_queue(struct udc
*dev
)
2031 DBG(dev
, "CNAK pending queue processing\n");
2032 for (tmp
= 0; tmp
< UDC_EPIN_NUM_USED
; tmp
++) {
2033 if (cnak_pending
& (1 << tmp
)) {
2034 DBG(dev
, "CNAK pending for ep%d\n", tmp
);
2035 /* clear NAK by writing CNAK */
2036 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
2037 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2038 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
2039 dev
->ep
[tmp
].naking
= 0;
2040 UDC_QUEUE_CNAK(&dev
->ep
[tmp
], dev
->ep
[tmp
].num
);
2043 /* ... and ep0out */
2044 if (cnak_pending
& (1 << UDC_EP0OUT_IX
)) {
2045 DBG(dev
, "CNAK pending for ep%d\n", UDC_EP0OUT_IX
);
2046 /* clear NAK by writing CNAK */
2047 reg
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2048 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2049 writel(reg
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2050 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2051 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
],
2052 dev
->ep
[UDC_EP0OUT_IX
].num
);
2056 /* Enabling RX DMA after setup packet */
2057 static void udc_ep0_set_rde(struct udc
*dev
)
2061 * only enable RXDMA when no data endpoint enabled
2064 if (!dev
->data_ep_enabled
|| dev
->data_ep_queued
) {
2068 * setup timer for enabling RDE (to not enable
2069 * RXFIFO DMA for data endpoints to early)
2071 if (set_rde
!= 0 && !timer_pending(&udc_timer
)) {
2073 jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
2076 add_timer(&udc_timer
);
2083 /* Interrupt handler for data OUT traffic */
2084 static irqreturn_t
udc_data_out_isr(struct udc
*dev
, int ep_ix
)
2086 irqreturn_t ret_val
= IRQ_NONE
;
2089 struct udc_request
*req
;
2091 struct udc_data_dma
*td
= NULL
;
2094 VDBG(dev
, "ep%d irq\n", ep_ix
);
2095 ep
= &dev
->ep
[ep_ix
];
2097 tmp
= readl(&ep
->regs
->sts
);
2100 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2101 DBG(dev
, "BNA ep%dout occurred - DESPTR = %x\n",
2102 ep
->num
, readl(&ep
->regs
->desptr
));
2104 writel(tmp
| AMD_BIT(UDC_EPSTS_BNA
), &ep
->regs
->sts
);
2105 if (!ep
->cancel_transfer
)
2106 ep
->bna_occurred
= 1;
2108 ep
->cancel_transfer
= 0;
2109 ret_val
= IRQ_HANDLED
;
2114 if (tmp
& AMD_BIT(UDC_EPSTS_HE
)) {
2115 dev_err(dev
->dev
, "HE ep%dout occurred\n", ep
->num
);
2118 writel(tmp
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2119 ret_val
= IRQ_HANDLED
;
2123 if (!list_empty(&ep
->queue
)) {
2126 req
= list_entry(ep
->queue
.next
,
2127 struct udc_request
, queue
);
2130 udc_rxfifo_pending
= 1;
2132 VDBG(dev
, "req = %p\n", req
);
2137 if (req
&& udc_rxfifo_read(ep
, req
)) {
2138 ret_val
= IRQ_HANDLED
;
2141 complete_req(ep
, req
, 0);
2143 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2144 req
= list_entry(ep
->queue
.next
,
2145 struct udc_request
, queue
);
2151 } else if (!ep
->cancel_transfer
&& req
) {
2152 ret_val
= IRQ_HANDLED
;
2154 /* check for DMA done */
2156 dma_done
= AMD_GETBITS(req
->td_data
->status
,
2157 UDC_DMA_OUT_STS_BS
);
2158 /* packet per buffer mode - rx bytes */
2161 * if BNA occurred then recover desc. from
2164 if (ep
->bna_occurred
) {
2165 VDBG(dev
, "Recover desc. from BNA dummy\n");
2166 memcpy(req
->td_data
, ep
->bna_dummy_req
->td_data
,
2167 sizeof(struct udc_data_dma
));
2168 ep
->bna_occurred
= 0;
2169 udc_init_bna_dummy(ep
->req
);
2171 td
= udc_get_last_dma_desc(req
);
2172 dma_done
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_BS
);
2174 if (dma_done
== UDC_DMA_OUT_STS_BS_DMA_DONE
) {
2175 /* buffer fill mode - rx bytes */
2177 /* received number bytes */
2178 count
= AMD_GETBITS(req
->td_data
->status
,
2179 UDC_DMA_OUT_STS_RXBYTES
);
2180 VDBG(dev
, "rx bytes=%u\n", count
);
2181 /* packet per buffer mode - rx bytes */
2183 VDBG(dev
, "req->td_data=%p\n", req
->td_data
);
2184 VDBG(dev
, "last desc = %p\n", td
);
2185 /* received number bytes */
2186 if (use_dma_ppb_du
) {
2187 /* every desc. counts bytes */
2188 count
= udc_get_ppbdu_rxbytes(req
);
2190 /* last desc. counts bytes */
2191 count
= AMD_GETBITS(td
->status
,
2192 UDC_DMA_OUT_STS_RXBYTES
);
2193 if (!count
&& req
->req
.length
2194 == UDC_DMA_MAXPACKET
) {
2196 * on 64k packets the RXBYTES
2199 count
= UDC_DMA_MAXPACKET
;
2202 VDBG(dev
, "last desc rx bytes=%u\n", count
);
2205 tmp
= req
->req
.length
- req
->req
.actual
;
2207 if ((tmp
% ep
->ep
.maxpacket
) != 0) {
2208 DBG(dev
, "%s: rx %db, space=%db\n",
2209 ep
->ep
.name
, count
, tmp
);
2210 req
->req
.status
= -EOVERFLOW
;
2214 req
->req
.actual
+= count
;
2216 /* complete request */
2217 complete_req(ep
, req
, 0);
2220 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2221 req
= list_entry(ep
->queue
.next
,
2225 * DMA may be already started by udc_queue()
2226 * called by gadget drivers completion
2227 * routine. This happens when queue
2228 * holds one request only.
2230 if (req
->dma_going
== 0) {
2232 if (prep_dma(ep
, req
, GFP_ATOMIC
) != 0)
2234 /* write desc pointer */
2235 writel(req
->td_phys
,
2243 * implant BNA dummy descriptor to allow
2244 * RXFIFO opening by RDE
2246 if (ep
->bna_dummy_req
) {
2247 /* write desc pointer */
2248 writel(ep
->bna_dummy_req
->td_phys
,
2250 ep
->bna_occurred
= 0;
2254 * schedule timer for setting RDE if queue
2255 * remains empty to allow ep0 packets pass
2259 && !timer_pending(&udc_timer
)) {
2262 + HZ
*UDC_RDE_TIMER_SECONDS
;
2265 add_timer(&udc_timer
);
2267 if (ep
->num
!= UDC_EP0OUT_IX
)
2268 dev
->data_ep_queued
= 0;
2273 * RX DMA must be reenabled for each desc in PPBDU mode
2274 * and must be enabled for PPBNDU mode in case of BNA
2279 } else if (ep
->cancel_transfer
) {
2280 ret_val
= IRQ_HANDLED
;
2281 ep
->cancel_transfer
= 0;
2284 /* check pending CNAKS */
2286 /* CNAk processing when rxfifo empty only */
2287 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2288 udc_process_cnak_queue(dev
);
2291 /* clear OUT bits in ep status */
2292 writel(UDC_EPSTS_OUT_CLEAR
, &ep
->regs
->sts
);
2297 /* Interrupt handler for data IN traffic */
2298 static irqreturn_t
udc_data_in_isr(struct udc
*dev
, int ep_ix
)
2300 irqreturn_t ret_val
= IRQ_NONE
;
2304 struct udc_request
*req
;
2305 struct udc_data_dma
*td
;
2308 ep
= &dev
->ep
[ep_ix
];
2310 epsts
= readl(&ep
->regs
->sts
);
2313 if (epsts
& AMD_BIT(UDC_EPSTS_BNA
)) {
2315 "BNA ep%din occurred - DESPTR = %08lx\n",
2317 (unsigned long) readl(&ep
->regs
->desptr
));
2320 writel(epsts
, &ep
->regs
->sts
);
2321 ret_val
= IRQ_HANDLED
;
2326 if (epsts
& AMD_BIT(UDC_EPSTS_HE
)) {
2328 "HE ep%dn occurred - DESPTR = %08lx\n",
2329 ep
->num
, (unsigned long) readl(&ep
->regs
->desptr
));
2332 writel(epsts
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2333 ret_val
= IRQ_HANDLED
;
2337 /* DMA completion */
2338 if (epsts
& AMD_BIT(UDC_EPSTS_TDC
)) {
2339 VDBG(dev
, "TDC set- completion\n");
2340 ret_val
= IRQ_HANDLED
;
2341 if (!ep
->cancel_transfer
&& !list_empty(&ep
->queue
)) {
2342 req
= list_entry(ep
->queue
.next
,
2343 struct udc_request
, queue
);
2345 * length bytes transferred
2346 * check dma done of last desc. in PPBDU mode
2348 if (use_dma_ppb_du
) {
2349 td
= udc_get_last_dma_desc(req
);
2351 req
->req
.actual
= req
->req
.length
;
2353 /* assume all bytes transferred */
2354 req
->req
.actual
= req
->req
.length
;
2357 if (req
->req
.actual
== req
->req
.length
) {
2359 complete_req(ep
, req
, 0);
2361 /* further request available ? */
2362 if (list_empty(&ep
->queue
)) {
2363 /* disable interrupt */
2364 tmp
= readl(&dev
->regs
->ep_irqmsk
);
2365 tmp
|= AMD_BIT(ep
->num
);
2366 writel(tmp
, &dev
->regs
->ep_irqmsk
);
2370 ep
->cancel_transfer
= 0;
2374 * status reg has IN bit set and TDC not set (if TDC was handled,
2375 * IN must not be handled (UDC defect) ?
2377 if ((epsts
& AMD_BIT(UDC_EPSTS_IN
))
2378 && !(epsts
& AMD_BIT(UDC_EPSTS_TDC
))) {
2379 ret_val
= IRQ_HANDLED
;
2380 if (!list_empty(&ep
->queue
)) {
2382 req
= list_entry(ep
->queue
.next
,
2383 struct udc_request
, queue
);
2387 udc_txfifo_write(ep
, &req
->req
);
2388 len
= req
->req
.length
- req
->req
.actual
;
2389 if (len
> ep
->ep
.maxpacket
)
2390 len
= ep
->ep
.maxpacket
;
2391 req
->req
.actual
+= len
;
2392 if (req
->req
.actual
== req
->req
.length
2393 || (len
!= ep
->ep
.maxpacket
)) {
2395 complete_req(ep
, req
, 0);
2398 } else if (req
&& !req
->dma_going
) {
2399 VDBG(dev
, "IN DMA : req=%p req->td_data=%p\n",
2406 * unset L bit of first desc.
2409 if (use_dma_ppb
&& req
->req
.length
>
2411 req
->td_data
->status
&=
2416 /* write desc pointer */
2417 writel(req
->td_phys
, &ep
->regs
->desptr
);
2419 /* set HOST READY */
2420 req
->td_data
->status
=
2422 req
->td_data
->status
,
2423 UDC_DMA_IN_STS_BS_HOST_READY
,
2426 /* set poll demand bit */
2427 tmp
= readl(&ep
->regs
->ctl
);
2428 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2429 writel(tmp
, &ep
->regs
->ctl
);
2433 } else if (!use_dma
&& ep
->in
) {
2434 /* disable interrupt */
2436 &dev
->regs
->ep_irqmsk
);
2437 tmp
|= AMD_BIT(ep
->num
);
2439 &dev
->regs
->ep_irqmsk
);
2442 /* clear status bits */
2443 writel(epsts
, &ep
->regs
->sts
);
2450 /* Interrupt handler for Control OUT traffic */
2451 static irqreturn_t
udc_control_out_isr(struct udc
*dev
)
2452 __releases(dev
->lock
)
2453 __acquires(dev
->lock
)
2455 irqreturn_t ret_val
= IRQ_NONE
;
2457 int setup_supported
;
2461 struct udc_ep
*ep_tmp
;
2463 ep
= &dev
->ep
[UDC_EP0OUT_IX
];
2466 writel(AMD_BIT(UDC_EPINT_OUT_EP0
), &dev
->regs
->ep_irqsts
);
2468 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2469 /* check BNA and clear if set */
2470 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2471 VDBG(dev
, "ep0: BNA set\n");
2472 writel(AMD_BIT(UDC_EPSTS_BNA
),
2473 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2474 ep
->bna_occurred
= 1;
2475 ret_val
= IRQ_HANDLED
;
2479 /* type of data: SETUP or DATA 0 bytes */
2480 tmp
= AMD_GETBITS(tmp
, UDC_EPSTS_OUT
);
2481 VDBG(dev
, "data_typ = %x\n", tmp
);
2484 if (tmp
== UDC_EPSTS_OUT_SETUP
) {
2485 ret_val
= IRQ_HANDLED
;
2487 ep
->dev
->stall_ep0in
= 0;
2488 dev
->waiting_zlp_ack_ep0in
= 0;
2490 /* set NAK for EP0_IN */
2491 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2492 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
2493 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2494 dev
->ep
[UDC_EP0IN_IX
].naking
= 1;
2495 /* get setup data */
2498 /* clear OUT bits in ep status */
2499 writel(UDC_EPSTS_OUT_CLEAR
,
2500 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2502 setup_data
.data
[0] =
2503 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data12
;
2504 setup_data
.data
[1] =
2505 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data34
;
2506 /* set HOST READY */
2507 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->status
=
2508 UDC_DMA_STP_STS_BS_HOST_READY
;
2511 udc_rxfifo_read_dwords(dev
, setup_data
.data
, 2);
2514 /* determine direction of control data */
2515 if ((setup_data
.request
.bRequestType
& USB_DIR_IN
) != 0) {
2516 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
2518 udc_ep0_set_rde(dev
);
2521 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0OUT_IX
].ep
;
2523 * implant BNA dummy descriptor to allow RXFIFO opening
2526 if (ep
->bna_dummy_req
) {
2527 /* write desc pointer */
2528 writel(ep
->bna_dummy_req
->td_phys
,
2529 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2530 ep
->bna_occurred
= 0;
2534 dev
->ep
[UDC_EP0OUT_IX
].naking
= 1;
2536 * setup timer for enabling RDE (to not enable
2537 * RXFIFO DMA for data to early)
2540 if (!timer_pending(&udc_timer
)) {
2541 udc_timer
.expires
= jiffies
+
2542 HZ
/UDC_RDE_TIMER_DIV
;
2544 add_timer(&udc_timer
);
2549 * mass storage reset must be processed here because
2550 * next packet may be a CLEAR_FEATURE HALT which would not
2551 * clear the stall bit when no STALL handshake was received
2552 * before (autostall can cause this)
2554 if (setup_data
.data
[0] == UDC_MSCRES_DWORD0
2555 && setup_data
.data
[1] == UDC_MSCRES_DWORD1
) {
2556 DBG(dev
, "MSC Reset\n");
2559 * only one IN and OUT endpoints are handled
2561 ep_tmp
= &udc
->ep
[UDC_EPIN_IX
];
2562 udc_set_halt(&ep_tmp
->ep
, 0);
2563 ep_tmp
= &udc
->ep
[UDC_EPOUT_IX
];
2564 udc_set_halt(&ep_tmp
->ep
, 0);
2567 /* call gadget with setup data received */
2568 spin_unlock(&dev
->lock
);
2569 setup_supported
= dev
->driver
->setup(&dev
->gadget
,
2570 &setup_data
.request
);
2571 spin_lock(&dev
->lock
);
2573 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2574 /* ep0 in returns data (not zlp) on IN phase */
2575 if (setup_supported
>= 0 && setup_supported
<
2576 UDC_EP0IN_MAXPACKET
) {
2577 /* clear NAK by writing CNAK in EP0_IN */
2578 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2579 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2580 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
2581 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
2583 /* if unsupported request then stall */
2584 } else if (setup_supported
< 0) {
2585 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2586 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2588 dev
->waiting_zlp_ack_ep0in
= 1;
2591 /* clear NAK by writing CNAK in EP0_OUT */
2593 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2594 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2595 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2596 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2597 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
2601 /* clear OUT bits in ep status */
2602 writel(UDC_EPSTS_OUT_CLEAR
,
2603 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2606 /* data packet 0 bytes */
2607 } else if (tmp
== UDC_EPSTS_OUT_DATA
) {
2608 /* clear OUT bits in ep status */
2609 writel(UDC_EPSTS_OUT_CLEAR
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2611 /* get setup data: only 0 packet */
2613 /* no req if 0 packet, just reactivate */
2614 if (list_empty(&dev
->ep
[UDC_EP0OUT_IX
].queue
)) {
2617 /* set HOST READY */
2618 dev
->ep
[UDC_EP0OUT_IX
].td
->status
=
2620 dev
->ep
[UDC_EP0OUT_IX
].td
->status
,
2621 UDC_DMA_OUT_STS_BS_HOST_READY
,
2622 UDC_DMA_OUT_STS_BS
);
2624 udc_ep0_set_rde(dev
);
2625 ret_val
= IRQ_HANDLED
;
2629 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2630 /* re-program desc. pointer for possible ZLPs */
2631 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
2632 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2634 udc_ep0_set_rde(dev
);
2638 /* received number bytes */
2639 count
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2640 count
= AMD_GETBITS(count
, UDC_EPSTS_RX_PKT_SIZE
);
2641 /* out data for fifo mode not working */
2644 /* 0 packet or real data ? */
2646 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2648 /* dummy read confirm */
2649 readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->confirm
);
2650 ret_val
= IRQ_HANDLED
;
2655 /* check pending CNAKS */
2657 /* CNAk processing when rxfifo empty only */
2658 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2659 udc_process_cnak_queue(dev
);
2666 /* Interrupt handler for Control IN traffic */
2667 static irqreturn_t
udc_control_in_isr(struct udc
*dev
)
2669 irqreturn_t ret_val
= IRQ_NONE
;
2672 struct udc_request
*req
;
2675 ep
= &dev
->ep
[UDC_EP0IN_IX
];
2678 writel(AMD_BIT(UDC_EPINT_IN_EP0
), &dev
->regs
->ep_irqsts
);
2680 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2681 /* DMA completion */
2682 if (tmp
& AMD_BIT(UDC_EPSTS_TDC
)) {
2683 VDBG(dev
, "isr: TDC clear\n");
2684 ret_val
= IRQ_HANDLED
;
2687 writel(AMD_BIT(UDC_EPSTS_TDC
),
2688 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2690 /* status reg has IN bit set ? */
2691 } else if (tmp
& AMD_BIT(UDC_EPSTS_IN
)) {
2692 ret_val
= IRQ_HANDLED
;
2696 writel(AMD_BIT(UDC_EPSTS_IN
),
2697 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2699 if (dev
->stall_ep0in
) {
2700 DBG(dev
, "stall ep0in\n");
2702 tmp
= readl(&ep
->regs
->ctl
);
2703 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2704 writel(tmp
, &ep
->regs
->ctl
);
2706 if (!list_empty(&ep
->queue
)) {
2708 req
= list_entry(ep
->queue
.next
,
2709 struct udc_request
, queue
);
2712 /* write desc pointer */
2713 writel(req
->td_phys
, &ep
->regs
->desptr
);
2714 /* set HOST READY */
2715 req
->td_data
->status
=
2717 req
->td_data
->status
,
2718 UDC_DMA_STP_STS_BS_HOST_READY
,
2719 UDC_DMA_STP_STS_BS
);
2721 /* set poll demand bit */
2723 readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2724 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2726 &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2728 /* all bytes will be transferred */
2729 req
->req
.actual
= req
->req
.length
;
2732 complete_req(ep
, req
, 0);
2736 udc_txfifo_write(ep
, &req
->req
);
2738 /* lengh bytes transferred */
2739 len
= req
->req
.length
- req
->req
.actual
;
2740 if (len
> ep
->ep
.maxpacket
)
2741 len
= ep
->ep
.maxpacket
;
2743 req
->req
.actual
+= len
;
2744 if (req
->req
.actual
== req
->req
.length
2745 || (len
!= ep
->ep
.maxpacket
)) {
2747 complete_req(ep
, req
, 0);
2754 dev
->stall_ep0in
= 0;
2757 writel(AMD_BIT(UDC_EPSTS_IN
),
2758 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2766 /* Interrupt handler for global device events */
2767 static irqreturn_t
udc_dev_isr(struct udc
*dev
, u32 dev_irq
)
2768 __releases(dev
->lock
)
2769 __acquires(dev
->lock
)
2771 irqreturn_t ret_val
= IRQ_NONE
;
2778 /* SET_CONFIG irq ? */
2779 if (dev_irq
& AMD_BIT(UDC_DEVINT_SC
)) {
2780 ret_val
= IRQ_HANDLED
;
2782 /* read config value */
2783 tmp
= readl(&dev
->regs
->sts
);
2784 cfg
= AMD_GETBITS(tmp
, UDC_DEVSTS_CFG
);
2785 DBG(dev
, "SET_CONFIG interrupt: config=%d\n", cfg
);
2786 dev
->cur_config
= cfg
;
2787 dev
->set_cfg_not_acked
= 1;
2789 /* make usb request for gadget driver */
2790 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2791 setup_data
.request
.bRequest
= USB_REQ_SET_CONFIGURATION
;
2792 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_config
);
2794 /* programm the NE registers */
2795 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2799 /* ep ix in UDC CSR register space */
2800 udc_csr_epix
= ep
->num
;
2805 /* ep ix in UDC CSR register space */
2806 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2809 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2811 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
,
2814 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2816 /* clear stall bits */
2818 tmp
= readl(&ep
->regs
->ctl
);
2819 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2820 writel(tmp
, &ep
->regs
->ctl
);
2822 /* call gadget zero with setup data received */
2823 spin_unlock(&dev
->lock
);
2824 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2825 spin_lock(&dev
->lock
);
2827 } /* SET_INTERFACE ? */
2828 if (dev_irq
& AMD_BIT(UDC_DEVINT_SI
)) {
2829 ret_val
= IRQ_HANDLED
;
2831 dev
->set_cfg_not_acked
= 1;
2832 /* read interface and alt setting values */
2833 tmp
= readl(&dev
->regs
->sts
);
2834 dev
->cur_alt
= AMD_GETBITS(tmp
, UDC_DEVSTS_ALT
);
2835 dev
->cur_intf
= AMD_GETBITS(tmp
, UDC_DEVSTS_INTF
);
2837 /* make usb request for gadget driver */
2838 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2839 setup_data
.request
.bRequest
= USB_REQ_SET_INTERFACE
;
2840 setup_data
.request
.bRequestType
= USB_RECIP_INTERFACE
;
2841 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_alt
);
2842 setup_data
.request
.wIndex
= cpu_to_le16(dev
->cur_intf
);
2844 DBG(dev
, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2845 dev
->cur_alt
, dev
->cur_intf
);
2847 /* programm the NE registers */
2848 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2852 /* ep ix in UDC CSR register space */
2853 udc_csr_epix
= ep
->num
;
2858 /* ep ix in UDC CSR register space */
2859 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2864 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2866 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
,
2868 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2870 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
,
2873 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2875 /* clear stall bits */
2877 tmp
= readl(&ep
->regs
->ctl
);
2878 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2879 writel(tmp
, &ep
->regs
->ctl
);
2882 /* call gadget zero with setup data received */
2883 spin_unlock(&dev
->lock
);
2884 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2885 spin_lock(&dev
->lock
);
2888 if (dev_irq
& AMD_BIT(UDC_DEVINT_UR
)) {
2889 DBG(dev
, "USB Reset interrupt\n");
2890 ret_val
= IRQ_HANDLED
;
2892 /* allow soft reset when suspend occurs */
2893 soft_reset_occured
= 0;
2895 dev
->waiting_zlp_ack_ep0in
= 0;
2896 dev
->set_cfg_not_acked
= 0;
2898 /* mask not needed interrupts */
2899 udc_mask_unused_interrupts(dev
);
2901 /* call gadget to resume and reset configs etc. */
2902 spin_unlock(&dev
->lock
);
2903 if (dev
->sys_suspended
&& dev
->driver
->resume
) {
2904 dev
->driver
->resume(&dev
->gadget
);
2905 dev
->sys_suspended
= 0;
2907 usb_gadget_udc_reset(&dev
->gadget
, dev
->driver
);
2908 spin_lock(&dev
->lock
);
2910 /* disable ep0 to empty req queue */
2911 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
2912 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
2914 /* soft reset when rxfifo not empty */
2915 tmp
= readl(&dev
->regs
->sts
);
2916 if (!(tmp
& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2917 && !soft_reset_after_usbreset_occured
) {
2918 udc_soft_reset(dev
);
2919 soft_reset_after_usbreset_occured
++;
2923 * DMA reset to kill potential old DMA hw hang,
2924 * POLL bit is already reset by ep_init() through
2927 DBG(dev
, "DMA machine reset\n");
2928 tmp
= readl(&dev
->regs
->cfg
);
2929 writel(tmp
| AMD_BIT(UDC_DEVCFG_DMARST
), &dev
->regs
->cfg
);
2930 writel(tmp
, &dev
->regs
->cfg
);
2932 /* put into initial config */
2933 udc_basic_init(dev
);
2935 /* enable device setup interrupts */
2936 udc_enable_dev_setup_interrupts(dev
);
2938 /* enable suspend interrupt */
2939 tmp
= readl(&dev
->regs
->irqmsk
);
2940 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_US
);
2941 writel(tmp
, &dev
->regs
->irqmsk
);
2944 if (dev_irq
& AMD_BIT(UDC_DEVINT_US
)) {
2945 DBG(dev
, "USB Suspend interrupt\n");
2946 ret_val
= IRQ_HANDLED
;
2947 if (dev
->driver
->suspend
) {
2948 spin_unlock(&dev
->lock
);
2949 dev
->sys_suspended
= 1;
2950 dev
->driver
->suspend(&dev
->gadget
);
2951 spin_lock(&dev
->lock
);
2954 if (dev_irq
& AMD_BIT(UDC_DEVINT_ENUM
)) {
2955 DBG(dev
, "ENUM interrupt\n");
2956 ret_val
= IRQ_HANDLED
;
2957 soft_reset_after_usbreset_occured
= 0;
2959 /* disable ep0 to empty req queue */
2960 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
2961 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
2963 /* link up all endpoints */
2964 udc_setup_endpoints(dev
);
2965 dev_info(dev
->dev
, "Connect: %s\n",
2966 usb_speed_string(dev
->gadget
.speed
));
2969 activate_control_endpoints(dev
);
2971 /* enable ep0 interrupts */
2972 udc_enable_ep0_interrupts(dev
);
2974 /* session valid change interrupt */
2975 if (dev_irq
& AMD_BIT(UDC_DEVINT_SVC
)) {
2976 DBG(dev
, "USB SVC interrupt\n");
2977 ret_val
= IRQ_HANDLED
;
2979 /* check that session is not valid to detect disconnect */
2980 tmp
= readl(&dev
->regs
->sts
);
2981 if (!(tmp
& AMD_BIT(UDC_DEVSTS_SESSVLD
))) {
2982 /* disable suspend interrupt */
2983 tmp
= readl(&dev
->regs
->irqmsk
);
2984 tmp
|= AMD_BIT(UDC_DEVINT_US
);
2985 writel(tmp
, &dev
->regs
->irqmsk
);
2986 DBG(dev
, "USB Disconnect (session valid low)\n");
2987 /* cleanup on disconnect */
2988 usb_disconnect(udc
);
2996 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
2997 irqreturn_t
udc_irq(int irq
, void *pdev
)
2999 struct udc
*dev
= pdev
;
3003 irqreturn_t ret_val
= IRQ_NONE
;
3005 spin_lock(&dev
->lock
);
3007 /* check for ep irq */
3008 reg
= readl(&dev
->regs
->ep_irqsts
);
3010 if (reg
& AMD_BIT(UDC_EPINT_OUT_EP0
))
3011 ret_val
|= udc_control_out_isr(dev
);
3012 if (reg
& AMD_BIT(UDC_EPINT_IN_EP0
))
3013 ret_val
|= udc_control_in_isr(dev
);
3019 for (i
= 1; i
< UDC_EP_NUM
; i
++) {
3021 if (!(reg
& ep_irq
) || i
== UDC_EPINT_OUT_EP0
)
3024 /* clear irq status */
3025 writel(ep_irq
, &dev
->regs
->ep_irqsts
);
3027 /* irq for out ep ? */
3028 if (i
> UDC_EPIN_NUM
)
3029 ret_val
|= udc_data_out_isr(dev
, i
);
3031 ret_val
|= udc_data_in_isr(dev
, i
);
3037 /* check for dev irq */
3038 reg
= readl(&dev
->regs
->irqsts
);
3041 writel(reg
, &dev
->regs
->irqsts
);
3042 ret_val
|= udc_dev_isr(dev
, reg
);
3046 spin_unlock(&dev
->lock
);
3049 EXPORT_SYMBOL_GPL(udc_irq
);
3051 /* Tears down device */
3052 void gadget_release(struct device
*pdev
)
3054 struct amd5536udc
*dev
= dev_get_drvdata(pdev
);
3057 EXPORT_SYMBOL_GPL(gadget_release
);
3059 /* Cleanup on device remove */
3060 void udc_remove(struct udc
*dev
)
3064 if (timer_pending(&udc_timer
))
3065 wait_for_completion(&on_exit
);
3066 del_timer_sync(&udc_timer
);
3067 /* remove pollstall timer */
3068 stop_pollstall_timer
++;
3069 if (timer_pending(&udc_pollstall_timer
))
3070 wait_for_completion(&on_pollstall_exit
);
3071 del_timer_sync(&udc_pollstall_timer
);
3074 EXPORT_SYMBOL_GPL(udc_remove
);
3076 /* free all the dma pools */
3077 void free_dma_pools(struct udc
*dev
)
3079 dma_pool_free(dev
->stp_requests
, dev
->ep
[UDC_EP0OUT_IX
].td
,
3080 dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3081 dma_pool_free(dev
->stp_requests
, dev
->ep
[UDC_EP0OUT_IX
].td_stp
,
3082 dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3083 dma_pool_destroy(dev
->stp_requests
);
3084 dma_pool_destroy(dev
->data_requests
);
3086 EXPORT_SYMBOL_GPL(free_dma_pools
);
3088 /* create dma pools on init */
3089 int init_dma_pools(struct udc
*dev
)
3091 struct udc_stp_dma
*td_stp
;
3092 struct udc_data_dma
*td_data
;
3095 /* consistent DMA mode setting ? */
3097 use_dma_bufferfill_mode
= 0;
3100 use_dma_bufferfill_mode
= 1;
3104 dev
->data_requests
= dma_pool_create("data_requests", dev
->dev
,
3105 sizeof(struct udc_data_dma
), 0, 0);
3106 if (!dev
->data_requests
) {
3107 DBG(dev
, "can't get request data pool\n");
3111 /* EP0 in dma regs = dev control regs */
3112 dev
->ep
[UDC_EP0IN_IX
].dma
= &dev
->regs
->ctl
;
3114 /* dma desc for setup data */
3115 dev
->stp_requests
= dma_pool_create("setup requests", dev
->dev
,
3116 sizeof(struct udc_stp_dma
), 0, 0);
3117 if (!dev
->stp_requests
) {
3118 DBG(dev
, "can't get stp request pool\n");
3120 goto err_create_dma_pool
;
3123 td_stp
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3124 &dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3129 dev
->ep
[UDC_EP0OUT_IX
].td_stp
= td_stp
;
3131 /* data: 0 packets !? */
3132 td_data
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3133 &dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3136 goto err_alloc_phys
;
3138 dev
->ep
[UDC_EP0OUT_IX
].td
= td_data
;
3142 dma_pool_free(dev
->stp_requests
, dev
->ep
[UDC_EP0OUT_IX
].td_stp
,
3143 dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3145 dma_pool_destroy(dev
->stp_requests
);
3146 dev
->stp_requests
= NULL
;
3147 err_create_dma_pool
:
3148 dma_pool_destroy(dev
->data_requests
);
3149 dev
->data_requests
= NULL
;
3152 EXPORT_SYMBOL_GPL(init_dma_pools
);
3155 int udc_probe(struct udc
*dev
)
3161 /* device struct setup */
3162 dev
->gadget
.ops
= &udc_ops
;
3164 dev_set_name(&dev
->gadget
.dev
, "gadget");
3165 dev
->gadget
.name
= name
;
3166 dev
->gadget
.max_speed
= USB_SPEED_HIGH
;
3168 /* init registers, interrupts, ... */
3169 startup_registers(dev
);
3171 dev_info(dev
->dev
, "%s\n", mod_desc
);
3173 snprintf(tmp
, sizeof(tmp
), "%d", dev
->irq
);
3175 /* Print this device info for AMD chips only*/
3176 if (dev
->chiprev
== UDC_HSA0_REV
||
3177 dev
->chiprev
== UDC_HSB1_REV
) {
3178 dev_info(dev
->dev
, "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3179 tmp
, dev
->phys_addr
, dev
->chiprev
,
3180 (dev
->chiprev
== UDC_HSA0_REV
) ?
3182 strcpy(tmp
, UDC_DRIVER_VERSION_STRING
);
3183 if (dev
->chiprev
== UDC_HSA0_REV
) {
3184 dev_err(dev
->dev
, "chip revision is A0; too old\n");
3189 "driver version: %s(for Geode5536 B1)\n", tmp
);
3194 retval
= usb_add_gadget_udc_release(udc
->dev
, &dev
->gadget
,
3200 timer_setup(&udc_timer
, udc_timer_function
, 0);
3201 timer_setup(&udc_pollstall_timer
, udc_pollstall_timer_function
, 0);
3204 reg
= readl(&dev
->regs
->ctl
);
3205 reg
|= AMD_BIT(UDC_DEVCTL_SD
);
3206 writel(reg
, &dev
->regs
->ctl
);
3208 /* print dev register info */
3216 EXPORT_SYMBOL_GPL(udc_probe
);
3218 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION
);
3219 MODULE_AUTHOR("Thomas Dahlmann");
3220 MODULE_LICENSE("GPL");