Merge tag 'chrome-platform-for-linus-4.13' of git://git.kernel.org/pub/scm/linux...
[linux/fpc-iii.git] / arch / powerpc / perf / core-book3s.c
blob6c2d4168daec9a426ff2d9d5fb622fe3338dc836
1 /*
2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <asm/reg.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
24 #define BHRB_MAX_ENTRIES 32
25 #define BHRB_TARGET 0x0000000000000002
26 #define BHRB_PREDICTION 0x0000000000000001
27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
29 struct cpu_hw_events {
30 int n_events;
31 int n_percpu;
32 int disabled;
33 int n_added;
34 int n_limited;
35 u8 pmcs_enabled;
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
40 * The order of the MMCR array is:
41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 * - 32-bit, MMCR0, MMCR1, MMCR2
44 unsigned long mmcr[4];
45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
51 unsigned int txn_flags;
52 int n_txn_start;
54 /* BHRB bits */
55 u64 bhrb_filter; /* BHRB HW branch filter */
56 unsigned int bhrb_users;
57 void *bhrb_context;
58 struct perf_branch_stack bhrb_stack;
59 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
60 u64 ic_init;
63 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65 static struct power_pmu *ppmu;
68 * Normally, to ignore kernel events we set the FCS (freeze counters
69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
70 * hypervisor bit set in the MSR, or if we are running on a processor
71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
72 * then we need to use the FCHV bit to ignore kernel events.
74 static unsigned int freeze_events_kernel = MMCR0_FCS;
77 * 32-bit doesn't have MMCRA but does have an MMCR2,
78 * and a few other names are different.
80 #ifdef CONFIG_PPC32
82 #define MMCR0_FCHV 0
83 #define MMCR0_PMCjCE MMCR0_PMCnCE
84 #define MMCR0_FC56 0
85 #define MMCR0_PMAO 0
86 #define MMCR0_EBE 0
87 #define MMCR0_BHRBA 0
88 #define MMCR0_PMCC 0
89 #define MMCR0_PMCC_U6 0
91 #define SPRN_MMCRA SPRN_MMCR2
92 #define MMCRA_SAMPLE_ENABLE 0
94 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
96 return 0;
98 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
99 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
101 return 0;
103 static inline void perf_read_regs(struct pt_regs *regs)
105 regs->result = 0;
107 static inline int perf_intr_is_nmi(struct pt_regs *regs)
109 return 0;
112 static inline int siar_valid(struct pt_regs *regs)
114 return 1;
117 static bool is_ebb_event(struct perf_event *event) { return false; }
118 static int ebb_event_check(struct perf_event *event) { return 0; }
119 static void ebb_event_add(struct perf_event *event) { }
120 static void ebb_switch_out(unsigned long mmcr0) { }
121 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
123 return cpuhw->mmcr[0];
126 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
127 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
128 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
129 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
130 static void pmao_restore_workaround(bool ebb) { }
131 static bool use_ic(u64 event)
133 return false;
135 #endif /* CONFIG_PPC32 */
137 static bool regs_use_siar(struct pt_regs *regs)
140 * When we take a performance monitor exception the regs are setup
141 * using perf_read_regs() which overloads some fields, in particular
142 * regs->result to tell us whether to use SIAR.
144 * However if the regs are from another exception, eg. a syscall, then
145 * they have not been setup using perf_read_regs() and so regs->result
146 * is something random.
148 return ((TRAP(regs) == 0xf00) && regs->result);
152 * Things that are specific to 64-bit implementations.
154 #ifdef CONFIG_PPC64
156 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
158 unsigned long mmcra = regs->dsisr;
160 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
161 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
162 if (slot > 1)
163 return 4 * (slot - 1);
166 return 0;
170 * The user wants a data address recorded.
171 * If we're not doing instruction sampling, give them the SDAR
172 * (sampled data address). If we are doing instruction sampling, then
173 * only give them the SDAR if it corresponds to the instruction
174 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
175 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
177 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
179 unsigned long mmcra = regs->dsisr;
180 bool sdar_valid;
182 if (ppmu->flags & PPMU_HAS_SIER)
183 sdar_valid = regs->dar & SIER_SDAR_VALID;
184 else {
185 unsigned long sdsync;
187 if (ppmu->flags & PPMU_SIAR_VALID)
188 sdsync = POWER7P_MMCRA_SDAR_VALID;
189 else if (ppmu->flags & PPMU_ALT_SIPR)
190 sdsync = POWER6_MMCRA_SDSYNC;
191 else if (ppmu->flags & PPMU_NO_SIAR)
192 sdsync = MMCRA_SAMPLE_ENABLE;
193 else
194 sdsync = MMCRA_SDSYNC;
196 sdar_valid = mmcra & sdsync;
199 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
200 *addrp = mfspr(SPRN_SDAR);
203 static bool regs_sihv(struct pt_regs *regs)
205 unsigned long sihv = MMCRA_SIHV;
207 if (ppmu->flags & PPMU_HAS_SIER)
208 return !!(regs->dar & SIER_SIHV);
210 if (ppmu->flags & PPMU_ALT_SIPR)
211 sihv = POWER6_MMCRA_SIHV;
213 return !!(regs->dsisr & sihv);
216 static bool regs_sipr(struct pt_regs *regs)
218 unsigned long sipr = MMCRA_SIPR;
220 if (ppmu->flags & PPMU_HAS_SIER)
221 return !!(regs->dar & SIER_SIPR);
223 if (ppmu->flags & PPMU_ALT_SIPR)
224 sipr = POWER6_MMCRA_SIPR;
226 return !!(regs->dsisr & sipr);
229 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
231 if (regs->msr & MSR_PR)
232 return PERF_RECORD_MISC_USER;
233 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
234 return PERF_RECORD_MISC_HYPERVISOR;
235 return PERF_RECORD_MISC_KERNEL;
238 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
240 bool use_siar = regs_use_siar(regs);
242 if (!use_siar)
243 return perf_flags_from_msr(regs);
246 * If we don't have flags in MMCRA, rather than using
247 * the MSR, we intuit the flags from the address in
248 * SIAR which should give slightly more reliable
249 * results
251 if (ppmu->flags & PPMU_NO_SIPR) {
252 unsigned long siar = mfspr(SPRN_SIAR);
253 if (is_kernel_addr(siar))
254 return PERF_RECORD_MISC_KERNEL;
255 return PERF_RECORD_MISC_USER;
258 /* PR has priority over HV, so order below is important */
259 if (regs_sipr(regs))
260 return PERF_RECORD_MISC_USER;
262 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
263 return PERF_RECORD_MISC_HYPERVISOR;
265 return PERF_RECORD_MISC_KERNEL;
269 * Overload regs->dsisr to store MMCRA so we only need to read it once
270 * on each interrupt.
271 * Overload regs->dar to store SIER if we have it.
272 * Overload regs->result to specify whether we should use the MSR (result
273 * is zero) or the SIAR (result is non zero).
275 static inline void perf_read_regs(struct pt_regs *regs)
277 unsigned long mmcra = mfspr(SPRN_MMCRA);
278 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
279 int use_siar;
281 regs->dsisr = mmcra;
283 if (ppmu->flags & PPMU_HAS_SIER)
284 regs->dar = mfspr(SPRN_SIER);
287 * If this isn't a PMU exception (eg a software event) the SIAR is
288 * not valid. Use pt_regs.
290 * If it is a marked event use the SIAR.
292 * If the PMU doesn't update the SIAR for non marked events use
293 * pt_regs.
295 * If the PMU has HV/PR flags then check to see if they
296 * place the exception in userspace. If so, use pt_regs. In
297 * continuous sampling mode the SIAR and the PMU exception are
298 * not synchronised, so they may be many instructions apart.
299 * This can result in confusing backtraces. We still want
300 * hypervisor samples as well as samples in the kernel with
301 * interrupts off hence the userspace check.
303 if (TRAP(regs) != 0xf00)
304 use_siar = 0;
305 else if ((ppmu->flags & PPMU_NO_SIAR))
306 use_siar = 0;
307 else if (marked)
308 use_siar = 1;
309 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
310 use_siar = 0;
311 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
312 use_siar = 0;
313 else
314 use_siar = 1;
316 regs->result = use_siar;
320 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
321 * it as an NMI.
323 static inline int perf_intr_is_nmi(struct pt_regs *regs)
325 return !regs->softe;
329 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
330 * must be sampled only if the SIAR-valid bit is set.
332 * For unmarked instructions and for processors that don't have the SIAR-Valid
333 * bit, assume that SIAR is valid.
335 static inline int siar_valid(struct pt_regs *regs)
337 unsigned long mmcra = regs->dsisr;
338 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
340 if (marked) {
341 if (ppmu->flags & PPMU_HAS_SIER)
342 return regs->dar & SIER_SIAR_VALID;
344 if (ppmu->flags & PPMU_SIAR_VALID)
345 return mmcra & POWER7P_MMCRA_SIAR_VALID;
348 return 1;
352 /* Reset all possible BHRB entries */
353 static void power_pmu_bhrb_reset(void)
355 asm volatile(PPC_CLRBHRB);
358 static void power_pmu_bhrb_enable(struct perf_event *event)
360 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
362 if (!ppmu->bhrb_nr)
363 return;
365 /* Clear BHRB if we changed task context to avoid data leaks */
366 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
367 power_pmu_bhrb_reset();
368 cpuhw->bhrb_context = event->ctx;
370 cpuhw->bhrb_users++;
371 perf_sched_cb_inc(event->ctx->pmu);
374 static void power_pmu_bhrb_disable(struct perf_event *event)
376 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
378 if (!ppmu->bhrb_nr)
379 return;
381 WARN_ON_ONCE(!cpuhw->bhrb_users);
382 cpuhw->bhrb_users--;
383 perf_sched_cb_dec(event->ctx->pmu);
385 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
386 /* BHRB cannot be turned off when other
387 * events are active on the PMU.
390 /* avoid stale pointer */
391 cpuhw->bhrb_context = NULL;
395 /* Called from ctxsw to prevent one process's branch entries to
396 * mingle with the other process's entries during context switch.
398 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
400 if (!ppmu->bhrb_nr)
401 return;
403 if (sched_in)
404 power_pmu_bhrb_reset();
406 /* Calculate the to address for a branch */
407 static __u64 power_pmu_bhrb_to(u64 addr)
409 unsigned int instr;
410 int ret;
411 __u64 target;
413 if (is_kernel_addr(addr))
414 return branch_target((unsigned int *)addr);
416 /* Userspace: need copy instruction here then translate it */
417 pagefault_disable();
418 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
419 if (ret) {
420 pagefault_enable();
421 return 0;
423 pagefault_enable();
425 target = branch_target(&instr);
426 if ((!target) || (instr & BRANCH_ABSOLUTE))
427 return target;
429 /* Translate relative branch target from kernel to user address */
430 return target - (unsigned long)&instr + addr;
433 /* Processing BHRB entries */
434 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
436 u64 val;
437 u64 addr;
438 int r_index, u_index, pred;
440 r_index = 0;
441 u_index = 0;
442 while (r_index < ppmu->bhrb_nr) {
443 /* Assembly read function */
444 val = read_bhrb(r_index++);
445 if (!val)
446 /* Terminal marker: End of valid BHRB entries */
447 break;
448 else {
449 addr = val & BHRB_EA;
450 pred = val & BHRB_PREDICTION;
452 if (!addr)
453 /* invalid entry */
454 continue;
456 /* Branches are read most recent first (ie. mfbhrb 0 is
457 * the most recent branch).
458 * There are two types of valid entries:
459 * 1) a target entry which is the to address of a
460 * computed goto like a blr,bctr,btar. The next
461 * entry read from the bhrb will be branch
462 * corresponding to this target (ie. the actual
463 * blr/bctr/btar instruction).
464 * 2) a from address which is an actual branch. If a
465 * target entry proceeds this, then this is the
466 * matching branch for that target. If this is not
467 * following a target entry, then this is a branch
468 * where the target is given as an immediate field
469 * in the instruction (ie. an i or b form branch).
470 * In this case we need to read the instruction from
471 * memory to determine the target/to address.
474 if (val & BHRB_TARGET) {
475 /* Target branches use two entries
476 * (ie. computed gotos/XL form)
478 cpuhw->bhrb_entries[u_index].to = addr;
479 cpuhw->bhrb_entries[u_index].mispred = pred;
480 cpuhw->bhrb_entries[u_index].predicted = ~pred;
482 /* Get from address in next entry */
483 val = read_bhrb(r_index++);
484 addr = val & BHRB_EA;
485 if (val & BHRB_TARGET) {
486 /* Shouldn't have two targets in a
487 row.. Reset index and try again */
488 r_index--;
489 addr = 0;
491 cpuhw->bhrb_entries[u_index].from = addr;
492 } else {
493 /* Branches to immediate field
494 (ie I or B form) */
495 cpuhw->bhrb_entries[u_index].from = addr;
496 cpuhw->bhrb_entries[u_index].to =
497 power_pmu_bhrb_to(addr);
498 cpuhw->bhrb_entries[u_index].mispred = pred;
499 cpuhw->bhrb_entries[u_index].predicted = ~pred;
501 u_index++;
505 cpuhw->bhrb_stack.nr = u_index;
506 return;
509 static bool is_ebb_event(struct perf_event *event)
512 * This could be a per-PMU callback, but we'd rather avoid the cost. We
513 * check that the PMU supports EBB, meaning those that don't can still
514 * use bit 63 of the event code for something else if they wish.
516 return (ppmu->flags & PPMU_ARCH_207S) &&
517 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
520 static int ebb_event_check(struct perf_event *event)
522 struct perf_event *leader = event->group_leader;
524 /* Event and group leader must agree on EBB */
525 if (is_ebb_event(leader) != is_ebb_event(event))
526 return -EINVAL;
528 if (is_ebb_event(event)) {
529 if (!(event->attach_state & PERF_ATTACH_TASK))
530 return -EINVAL;
532 if (!leader->attr.pinned || !leader->attr.exclusive)
533 return -EINVAL;
535 if (event->attr.freq ||
536 event->attr.inherit ||
537 event->attr.sample_type ||
538 event->attr.sample_period ||
539 event->attr.enable_on_exec)
540 return -EINVAL;
543 return 0;
546 static void ebb_event_add(struct perf_event *event)
548 if (!is_ebb_event(event) || current->thread.used_ebb)
549 return;
552 * IFF this is the first time we've added an EBB event, set
553 * PMXE in the user MMCR0 so we can detect when it's cleared by
554 * userspace. We need this so that we can context switch while
555 * userspace is in the EBB handler (where PMXE is 0).
557 current->thread.used_ebb = 1;
558 current->thread.mmcr0 |= MMCR0_PMXE;
561 static void ebb_switch_out(unsigned long mmcr0)
563 if (!(mmcr0 & MMCR0_EBE))
564 return;
566 current->thread.siar = mfspr(SPRN_SIAR);
567 current->thread.sier = mfspr(SPRN_SIER);
568 current->thread.sdar = mfspr(SPRN_SDAR);
569 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
570 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
573 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
575 unsigned long mmcr0 = cpuhw->mmcr[0];
577 if (!ebb)
578 goto out;
580 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
581 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
584 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
585 * with pmao_restore_workaround() because we may add PMAO but we never
586 * clear it here.
588 mmcr0 |= current->thread.mmcr0;
591 * Be careful not to set PMXE if userspace had it cleared. This is also
592 * compatible with pmao_restore_workaround() because it has already
593 * cleared PMXE and we leave PMAO alone.
595 if (!(current->thread.mmcr0 & MMCR0_PMXE))
596 mmcr0 &= ~MMCR0_PMXE;
598 mtspr(SPRN_SIAR, current->thread.siar);
599 mtspr(SPRN_SIER, current->thread.sier);
600 mtspr(SPRN_SDAR, current->thread.sdar);
603 * Merge the kernel & user values of MMCR2. The semantics we implement
604 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
605 * but not clear bits. If a task wants to be able to clear bits, ie.
606 * unfreeze counters, it should not set exclude_xxx in its events and
607 * instead manage the MMCR2 entirely by itself.
609 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
610 out:
611 return mmcr0;
614 static void pmao_restore_workaround(bool ebb)
616 unsigned pmcs[6];
618 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
619 return;
622 * On POWER8E there is a hardware defect which affects the PMU context
623 * switch logic, ie. power_pmu_disable/enable().
625 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
626 * by the hardware. Sometime later the actual PMU exception is
627 * delivered.
629 * If we context switch, or simply disable/enable, the PMU prior to the
630 * exception arriving, the exception will be lost when we clear PMAO.
632 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
633 * set, and this _should_ generate an exception. However because of the
634 * defect no exception is generated when we write PMAO, and we get
635 * stuck with no counters counting but no exception delivered.
637 * The workaround is to detect this case and tweak the hardware to
638 * create another pending PMU exception.
640 * We do that by setting up PMC6 (cycles) for an imminent overflow and
641 * enabling the PMU. That causes a new exception to be generated in the
642 * chip, but we don't take it yet because we have interrupts hard
643 * disabled. We then write back the PMU state as we want it to be seen
644 * by the exception handler. When we reenable interrupts the exception
645 * handler will be called and see the correct state.
647 * The logic is the same for EBB, except that the exception is gated by
648 * us having interrupts hard disabled as well as the fact that we are
649 * not in userspace. The exception is finally delivered when we return
650 * to userspace.
653 /* Only if PMAO is set and PMAO_SYNC is clear */
654 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
655 return;
657 /* If we're doing EBB, only if BESCR[GE] is set */
658 if (ebb && !(current->thread.bescr & BESCR_GE))
659 return;
662 * We are already soft-disabled in power_pmu_enable(). We need to hard
663 * disable to actually prevent the PMU exception from firing.
665 hard_irq_disable();
668 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
669 * Using read/write_pmc() in a for loop adds 12 function calls and
670 * almost doubles our code size.
672 pmcs[0] = mfspr(SPRN_PMC1);
673 pmcs[1] = mfspr(SPRN_PMC2);
674 pmcs[2] = mfspr(SPRN_PMC3);
675 pmcs[3] = mfspr(SPRN_PMC4);
676 pmcs[4] = mfspr(SPRN_PMC5);
677 pmcs[5] = mfspr(SPRN_PMC6);
679 /* Ensure all freeze bits are unset */
680 mtspr(SPRN_MMCR2, 0);
682 /* Set up PMC6 to overflow in one cycle */
683 mtspr(SPRN_PMC6, 0x7FFFFFFE);
685 /* Enable exceptions and unfreeze PMC6 */
686 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
688 /* Now we need to refreeze and restore the PMCs */
689 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
691 mtspr(SPRN_PMC1, pmcs[0]);
692 mtspr(SPRN_PMC2, pmcs[1]);
693 mtspr(SPRN_PMC3, pmcs[2]);
694 mtspr(SPRN_PMC4, pmcs[3]);
695 mtspr(SPRN_PMC5, pmcs[4]);
696 mtspr(SPRN_PMC6, pmcs[5]);
699 static bool use_ic(u64 event)
701 if (cpu_has_feature(CPU_FTR_POWER9_DD1) &&
702 (event == 0x200f2 || event == 0x300f2))
703 return true;
705 return false;
707 #endif /* CONFIG_PPC64 */
709 static void perf_event_interrupt(struct pt_regs *regs);
712 * Read one performance monitor counter (PMC).
714 static unsigned long read_pmc(int idx)
716 unsigned long val;
718 switch (idx) {
719 case 1:
720 val = mfspr(SPRN_PMC1);
721 break;
722 case 2:
723 val = mfspr(SPRN_PMC2);
724 break;
725 case 3:
726 val = mfspr(SPRN_PMC3);
727 break;
728 case 4:
729 val = mfspr(SPRN_PMC4);
730 break;
731 case 5:
732 val = mfspr(SPRN_PMC5);
733 break;
734 case 6:
735 val = mfspr(SPRN_PMC6);
736 break;
737 #ifdef CONFIG_PPC64
738 case 7:
739 val = mfspr(SPRN_PMC7);
740 break;
741 case 8:
742 val = mfspr(SPRN_PMC8);
743 break;
744 #endif /* CONFIG_PPC64 */
745 default:
746 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
747 val = 0;
749 return val;
753 * Write one PMC.
755 static void write_pmc(int idx, unsigned long val)
757 switch (idx) {
758 case 1:
759 mtspr(SPRN_PMC1, val);
760 break;
761 case 2:
762 mtspr(SPRN_PMC2, val);
763 break;
764 case 3:
765 mtspr(SPRN_PMC3, val);
766 break;
767 case 4:
768 mtspr(SPRN_PMC4, val);
769 break;
770 case 5:
771 mtspr(SPRN_PMC5, val);
772 break;
773 case 6:
774 mtspr(SPRN_PMC6, val);
775 break;
776 #ifdef CONFIG_PPC64
777 case 7:
778 mtspr(SPRN_PMC7, val);
779 break;
780 case 8:
781 mtspr(SPRN_PMC8, val);
782 break;
783 #endif /* CONFIG_PPC64 */
784 default:
785 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
789 /* Called from sysrq_handle_showregs() */
790 void perf_event_print_debug(void)
792 unsigned long sdar, sier, flags;
793 u32 pmcs[MAX_HWEVENTS];
794 int i;
796 if (!ppmu->n_counter)
797 return;
799 local_irq_save(flags);
801 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
802 smp_processor_id(), ppmu->name, ppmu->n_counter);
804 for (i = 0; i < ppmu->n_counter; i++)
805 pmcs[i] = read_pmc(i + 1);
807 for (; i < MAX_HWEVENTS; i++)
808 pmcs[i] = 0xdeadbeef;
810 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
811 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
813 if (ppmu->n_counter > 4)
814 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
815 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
817 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
818 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
820 sdar = sier = 0;
821 #ifdef CONFIG_PPC64
822 sdar = mfspr(SPRN_SDAR);
824 if (ppmu->flags & PPMU_HAS_SIER)
825 sier = mfspr(SPRN_SIER);
827 if (ppmu->flags & PPMU_ARCH_207S) {
828 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
829 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
830 pr_info("EBBRR: %016lx BESCR: %016lx\n",
831 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
833 #endif
834 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
835 mfspr(SPRN_SIAR), sdar, sier);
837 local_irq_restore(flags);
841 * Check if a set of events can all go on the PMU at once.
842 * If they can't, this will look at alternative codes for the events
843 * and see if any combination of alternative codes is feasible.
844 * The feasible set is returned in event_id[].
846 static int power_check_constraints(struct cpu_hw_events *cpuhw,
847 u64 event_id[], unsigned int cflags[],
848 int n_ev)
850 unsigned long mask, value, nv;
851 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
852 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
853 int i, j;
854 unsigned long addf = ppmu->add_fields;
855 unsigned long tadd = ppmu->test_adder;
857 if (n_ev > ppmu->n_counter)
858 return -1;
860 /* First see if the events will go on as-is */
861 for (i = 0; i < n_ev; ++i) {
862 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
863 && !ppmu->limited_pmc_event(event_id[i])) {
864 ppmu->get_alternatives(event_id[i], cflags[i],
865 cpuhw->alternatives[i]);
866 event_id[i] = cpuhw->alternatives[i][0];
868 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
869 &cpuhw->avalues[i][0]))
870 return -1;
872 value = mask = 0;
873 for (i = 0; i < n_ev; ++i) {
874 nv = (value | cpuhw->avalues[i][0]) +
875 (value & cpuhw->avalues[i][0] & addf);
876 if ((((nv + tadd) ^ value) & mask) != 0 ||
877 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
878 cpuhw->amasks[i][0]) != 0)
879 break;
880 value = nv;
881 mask |= cpuhw->amasks[i][0];
883 if (i == n_ev)
884 return 0; /* all OK */
886 /* doesn't work, gather alternatives... */
887 if (!ppmu->get_alternatives)
888 return -1;
889 for (i = 0; i < n_ev; ++i) {
890 choice[i] = 0;
891 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
892 cpuhw->alternatives[i]);
893 for (j = 1; j < n_alt[i]; ++j)
894 ppmu->get_constraint(cpuhw->alternatives[i][j],
895 &cpuhw->amasks[i][j],
896 &cpuhw->avalues[i][j]);
899 /* enumerate all possibilities and see if any will work */
900 i = 0;
901 j = -1;
902 value = mask = nv = 0;
903 while (i < n_ev) {
904 if (j >= 0) {
905 /* we're backtracking, restore context */
906 value = svalues[i];
907 mask = smasks[i];
908 j = choice[i];
911 * See if any alternative k for event_id i,
912 * where k > j, will satisfy the constraints.
914 while (++j < n_alt[i]) {
915 nv = (value | cpuhw->avalues[i][j]) +
916 (value & cpuhw->avalues[i][j] & addf);
917 if ((((nv + tadd) ^ value) & mask) == 0 &&
918 (((nv + tadd) ^ cpuhw->avalues[i][j])
919 & cpuhw->amasks[i][j]) == 0)
920 break;
922 if (j >= n_alt[i]) {
924 * No feasible alternative, backtrack
925 * to event_id i-1 and continue enumerating its
926 * alternatives from where we got up to.
928 if (--i < 0)
929 return -1;
930 } else {
932 * Found a feasible alternative for event_id i,
933 * remember where we got up to with this event_id,
934 * go on to the next event_id, and start with
935 * the first alternative for it.
937 choice[i] = j;
938 svalues[i] = value;
939 smasks[i] = mask;
940 value = nv;
941 mask |= cpuhw->amasks[i][j];
942 ++i;
943 j = -1;
947 /* OK, we have a feasible combination, tell the caller the solution */
948 for (i = 0; i < n_ev; ++i)
949 event_id[i] = cpuhw->alternatives[i][choice[i]];
950 return 0;
954 * Check if newly-added events have consistent settings for
955 * exclude_{user,kernel,hv} with each other and any previously
956 * added events.
958 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
959 int n_prev, int n_new)
961 int eu = 0, ek = 0, eh = 0;
962 int i, n, first;
963 struct perf_event *event;
966 * If the PMU we're on supports per event exclude settings then we
967 * don't need to do any of this logic. NB. This assumes no PMU has both
968 * per event exclude and limited PMCs.
970 if (ppmu->flags & PPMU_ARCH_207S)
971 return 0;
973 n = n_prev + n_new;
974 if (n <= 1)
975 return 0;
977 first = 1;
978 for (i = 0; i < n; ++i) {
979 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
980 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
981 continue;
983 event = ctrs[i];
984 if (first) {
985 eu = event->attr.exclude_user;
986 ek = event->attr.exclude_kernel;
987 eh = event->attr.exclude_hv;
988 first = 0;
989 } else if (event->attr.exclude_user != eu ||
990 event->attr.exclude_kernel != ek ||
991 event->attr.exclude_hv != eh) {
992 return -EAGAIN;
996 if (eu || ek || eh)
997 for (i = 0; i < n; ++i)
998 if (cflags[i] & PPMU_LIMITED_PMC_OK)
999 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1001 return 0;
1004 static u64 check_and_compute_delta(u64 prev, u64 val)
1006 u64 delta = (val - prev) & 0xfffffffful;
1009 * POWER7 can roll back counter values, if the new value is smaller
1010 * than the previous value it will cause the delta and the counter to
1011 * have bogus values unless we rolled a counter over. If a coutner is
1012 * rolled back, it will be smaller, but within 256, which is the maximum
1013 * number of events to rollback at once. If we detect a rollback
1014 * return 0. This can lead to a small lack of precision in the
1015 * counters.
1017 if (prev > val && (prev - val) < 256)
1018 delta = 0;
1020 return delta;
1023 static void power_pmu_read(struct perf_event *event)
1025 s64 val, delta, prev;
1026 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1028 if (event->hw.state & PERF_HES_STOPPED)
1029 return;
1031 if (!event->hw.idx)
1032 return;
1034 if (is_ebb_event(event)) {
1035 val = read_pmc(event->hw.idx);
1036 if (use_ic(event->attr.config)) {
1037 val = mfspr(SPRN_IC);
1038 if (val > cpuhw->ic_init)
1039 val = val - cpuhw->ic_init;
1040 else
1041 val = val + (0 - cpuhw->ic_init);
1043 local64_set(&event->hw.prev_count, val);
1044 return;
1048 * Performance monitor interrupts come even when interrupts
1049 * are soft-disabled, as long as interrupts are hard-enabled.
1050 * Therefore we treat them like NMIs.
1052 do {
1053 prev = local64_read(&event->hw.prev_count);
1054 barrier();
1055 val = read_pmc(event->hw.idx);
1056 if (use_ic(event->attr.config)) {
1057 val = mfspr(SPRN_IC);
1058 if (val > cpuhw->ic_init)
1059 val = val - cpuhw->ic_init;
1060 else
1061 val = val + (0 - cpuhw->ic_init);
1063 delta = check_and_compute_delta(prev, val);
1064 if (!delta)
1065 return;
1066 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1068 local64_add(delta, &event->count);
1071 * A number of places program the PMC with (0x80000000 - period_left).
1072 * We never want period_left to be less than 1 because we will program
1073 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1074 * roll around to 0 before taking an exception. We have seen this
1075 * on POWER8.
1077 * To fix this, clamp the minimum value of period_left to 1.
1079 do {
1080 prev = local64_read(&event->hw.period_left);
1081 val = prev - delta;
1082 if (val < 1)
1083 val = 1;
1084 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1088 * On some machines, PMC5 and PMC6 can't be written, don't respect
1089 * the freeze conditions, and don't generate interrupts. This tells
1090 * us if `event' is using such a PMC.
1092 static int is_limited_pmc(int pmcnum)
1094 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1095 && (pmcnum == 5 || pmcnum == 6);
1098 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1099 unsigned long pmc5, unsigned long pmc6)
1101 struct perf_event *event;
1102 u64 val, prev, delta;
1103 int i;
1105 for (i = 0; i < cpuhw->n_limited; ++i) {
1106 event = cpuhw->limited_counter[i];
1107 if (!event->hw.idx)
1108 continue;
1109 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1110 prev = local64_read(&event->hw.prev_count);
1111 event->hw.idx = 0;
1112 delta = check_and_compute_delta(prev, val);
1113 if (delta)
1114 local64_add(delta, &event->count);
1118 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1119 unsigned long pmc5, unsigned long pmc6)
1121 struct perf_event *event;
1122 u64 val, prev;
1123 int i;
1125 for (i = 0; i < cpuhw->n_limited; ++i) {
1126 event = cpuhw->limited_counter[i];
1127 event->hw.idx = cpuhw->limited_hwidx[i];
1128 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1129 prev = local64_read(&event->hw.prev_count);
1130 if (check_and_compute_delta(prev, val))
1131 local64_set(&event->hw.prev_count, val);
1132 perf_event_update_userpage(event);
1137 * Since limited events don't respect the freeze conditions, we
1138 * have to read them immediately after freezing or unfreezing the
1139 * other events. We try to keep the values from the limited
1140 * events as consistent as possible by keeping the delay (in
1141 * cycles and instructions) between freezing/unfreezing and reading
1142 * the limited events as small and consistent as possible.
1143 * Therefore, if any limited events are in use, we read them
1144 * both, and always in the same order, to minimize variability,
1145 * and do it inside the same asm that writes MMCR0.
1147 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1149 unsigned long pmc5, pmc6;
1151 if (!cpuhw->n_limited) {
1152 mtspr(SPRN_MMCR0, mmcr0);
1153 return;
1157 * Write MMCR0, then read PMC5 and PMC6 immediately.
1158 * To ensure we don't get a performance monitor interrupt
1159 * between writing MMCR0 and freezing/thawing the limited
1160 * events, we first write MMCR0 with the event overflow
1161 * interrupt enable bits turned off.
1163 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1164 : "=&r" (pmc5), "=&r" (pmc6)
1165 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1166 "i" (SPRN_MMCR0),
1167 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1169 if (mmcr0 & MMCR0_FC)
1170 freeze_limited_counters(cpuhw, pmc5, pmc6);
1171 else
1172 thaw_limited_counters(cpuhw, pmc5, pmc6);
1175 * Write the full MMCR0 including the event overflow interrupt
1176 * enable bits, if necessary.
1178 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1179 mtspr(SPRN_MMCR0, mmcr0);
1183 * Disable all events to prevent PMU interrupts and to allow
1184 * events to be added or removed.
1186 static void power_pmu_disable(struct pmu *pmu)
1188 struct cpu_hw_events *cpuhw;
1189 unsigned long flags, mmcr0, val;
1191 if (!ppmu)
1192 return;
1193 local_irq_save(flags);
1194 cpuhw = this_cpu_ptr(&cpu_hw_events);
1196 if (!cpuhw->disabled) {
1198 * Check if we ever enabled the PMU on this cpu.
1200 if (!cpuhw->pmcs_enabled) {
1201 ppc_enable_pmcs();
1202 cpuhw->pmcs_enabled = 1;
1206 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1208 val = mmcr0 = mfspr(SPRN_MMCR0);
1209 val |= MMCR0_FC;
1210 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1211 MMCR0_FC56);
1214 * The barrier is to make sure the mtspr has been
1215 * executed and the PMU has frozen the events etc.
1216 * before we return.
1218 write_mmcr0(cpuhw, val);
1219 mb();
1222 * Disable instruction sampling if it was enabled
1224 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1225 mtspr(SPRN_MMCRA,
1226 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1227 mb();
1230 cpuhw->disabled = 1;
1231 cpuhw->n_added = 0;
1233 ebb_switch_out(mmcr0);
1236 local_irq_restore(flags);
1240 * Re-enable all events if disable == 0.
1241 * If we were previously disabled and events were added, then
1242 * put the new config on the PMU.
1244 static void power_pmu_enable(struct pmu *pmu)
1246 struct perf_event *event;
1247 struct cpu_hw_events *cpuhw;
1248 unsigned long flags;
1249 long i;
1250 unsigned long val, mmcr0;
1251 s64 left;
1252 unsigned int hwc_index[MAX_HWEVENTS];
1253 int n_lim;
1254 int idx;
1255 bool ebb;
1257 if (!ppmu)
1258 return;
1259 local_irq_save(flags);
1261 cpuhw = this_cpu_ptr(&cpu_hw_events);
1262 if (!cpuhw->disabled)
1263 goto out;
1265 if (cpuhw->n_events == 0) {
1266 ppc_set_pmu_inuse(0);
1267 goto out;
1270 cpuhw->disabled = 0;
1273 * EBB requires an exclusive group and all events must have the EBB
1274 * flag set, or not set, so we can just check a single event. Also we
1275 * know we have at least one event.
1277 ebb = is_ebb_event(cpuhw->event[0]);
1280 * If we didn't change anything, or only removed events,
1281 * no need to recalculate MMCR* settings and reset the PMCs.
1282 * Just reenable the PMU with the current MMCR* settings
1283 * (possibly updated for removal of events).
1285 if (!cpuhw->n_added) {
1286 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1287 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1288 goto out_enable;
1292 * Clear all MMCR settings and recompute them for the new set of events.
1294 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1296 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1297 cpuhw->mmcr, cpuhw->event)) {
1298 /* shouldn't ever get here */
1299 printk(KERN_ERR "oops compute_mmcr failed\n");
1300 goto out;
1303 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1305 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1306 * bits for the first event. We have already checked that all
1307 * events have the same value for these bits as the first event.
1309 event = cpuhw->event[0];
1310 if (event->attr.exclude_user)
1311 cpuhw->mmcr[0] |= MMCR0_FCP;
1312 if (event->attr.exclude_kernel)
1313 cpuhw->mmcr[0] |= freeze_events_kernel;
1314 if (event->attr.exclude_hv)
1315 cpuhw->mmcr[0] |= MMCR0_FCHV;
1319 * Write the new configuration to MMCR* with the freeze
1320 * bit set and set the hardware events to their initial values.
1321 * Then unfreeze the events.
1323 ppc_set_pmu_inuse(1);
1324 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1325 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1326 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1327 | MMCR0_FC);
1328 if (ppmu->flags & PPMU_ARCH_207S)
1329 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1332 * Read off any pre-existing events that need to move
1333 * to another PMC.
1335 for (i = 0; i < cpuhw->n_events; ++i) {
1336 event = cpuhw->event[i];
1337 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1338 power_pmu_read(event);
1339 write_pmc(event->hw.idx, 0);
1340 event->hw.idx = 0;
1345 * Initialize the PMCs for all the new and moved events.
1347 cpuhw->n_limited = n_lim = 0;
1348 for (i = 0; i < cpuhw->n_events; ++i) {
1349 event = cpuhw->event[i];
1350 if (event->hw.idx)
1351 continue;
1352 idx = hwc_index[i] + 1;
1353 if (is_limited_pmc(idx)) {
1354 cpuhw->limited_counter[n_lim] = event;
1355 cpuhw->limited_hwidx[n_lim] = idx;
1356 ++n_lim;
1357 continue;
1360 if (ebb)
1361 val = local64_read(&event->hw.prev_count);
1362 else {
1363 val = 0;
1364 if (event->hw.sample_period) {
1365 left = local64_read(&event->hw.period_left);
1366 if (left < 0x80000000L)
1367 val = 0x80000000L - left;
1369 local64_set(&event->hw.prev_count, val);
1372 event->hw.idx = idx;
1373 if (event->hw.state & PERF_HES_STOPPED)
1374 val = 0;
1375 write_pmc(idx, val);
1377 perf_event_update_userpage(event);
1379 cpuhw->n_limited = n_lim;
1380 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1382 out_enable:
1383 pmao_restore_workaround(ebb);
1385 mmcr0 = ebb_switch_in(ebb, cpuhw);
1387 mb();
1388 if (cpuhw->bhrb_users)
1389 ppmu->config_bhrb(cpuhw->bhrb_filter);
1391 write_mmcr0(cpuhw, mmcr0);
1394 * Enable instruction sampling if necessary
1396 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1397 mb();
1398 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1401 out:
1403 local_irq_restore(flags);
1406 static int collect_events(struct perf_event *group, int max_count,
1407 struct perf_event *ctrs[], u64 *events,
1408 unsigned int *flags)
1410 int n = 0;
1411 struct perf_event *event;
1413 if (!is_software_event(group)) {
1414 if (n >= max_count)
1415 return -1;
1416 ctrs[n] = group;
1417 flags[n] = group->hw.event_base;
1418 events[n++] = group->hw.config;
1420 list_for_each_entry(event, &group->sibling_list, group_entry) {
1421 if (!is_software_event(event) &&
1422 event->state != PERF_EVENT_STATE_OFF) {
1423 if (n >= max_count)
1424 return -1;
1425 ctrs[n] = event;
1426 flags[n] = event->hw.event_base;
1427 events[n++] = event->hw.config;
1430 return n;
1434 * Add a event to the PMU.
1435 * If all events are not already frozen, then we disable and
1436 * re-enable the PMU in order to get hw_perf_enable to do the
1437 * actual work of reconfiguring the PMU.
1439 static int power_pmu_add(struct perf_event *event, int ef_flags)
1441 struct cpu_hw_events *cpuhw;
1442 unsigned long flags;
1443 int n0;
1444 int ret = -EAGAIN;
1446 local_irq_save(flags);
1447 perf_pmu_disable(event->pmu);
1450 * Add the event to the list (if there is room)
1451 * and check whether the total set is still feasible.
1453 cpuhw = this_cpu_ptr(&cpu_hw_events);
1454 n0 = cpuhw->n_events;
1455 if (n0 >= ppmu->n_counter)
1456 goto out;
1457 cpuhw->event[n0] = event;
1458 cpuhw->events[n0] = event->hw.config;
1459 cpuhw->flags[n0] = event->hw.event_base;
1462 * This event may have been disabled/stopped in record_and_restart()
1463 * because we exceeded the ->event_limit. If re-starting the event,
1464 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1465 * notification is re-enabled.
1467 if (!(ef_flags & PERF_EF_START))
1468 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1469 else
1470 event->hw.state = 0;
1473 * If group events scheduling transaction was started,
1474 * skip the schedulability test here, it will be performed
1475 * at commit time(->commit_txn) as a whole
1477 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1478 goto nocheck;
1480 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1481 goto out;
1482 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1483 goto out;
1484 event->hw.config = cpuhw->events[n0];
1486 nocheck:
1487 ebb_event_add(event);
1489 ++cpuhw->n_events;
1490 ++cpuhw->n_added;
1492 ret = 0;
1493 out:
1494 if (has_branch_stack(event)) {
1495 power_pmu_bhrb_enable(event);
1496 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1497 event->attr.branch_sample_type);
1501 * Workaround for POWER9 DD1 to use the Instruction Counter
1502 * register value for instruction counting
1504 if (use_ic(event->attr.config))
1505 cpuhw->ic_init = mfspr(SPRN_IC);
1507 perf_pmu_enable(event->pmu);
1508 local_irq_restore(flags);
1509 return ret;
1513 * Remove a event from the PMU.
1515 static void power_pmu_del(struct perf_event *event, int ef_flags)
1517 struct cpu_hw_events *cpuhw;
1518 long i;
1519 unsigned long flags;
1521 local_irq_save(flags);
1522 perf_pmu_disable(event->pmu);
1524 power_pmu_read(event);
1526 cpuhw = this_cpu_ptr(&cpu_hw_events);
1527 for (i = 0; i < cpuhw->n_events; ++i) {
1528 if (event == cpuhw->event[i]) {
1529 while (++i < cpuhw->n_events) {
1530 cpuhw->event[i-1] = cpuhw->event[i];
1531 cpuhw->events[i-1] = cpuhw->events[i];
1532 cpuhw->flags[i-1] = cpuhw->flags[i];
1534 --cpuhw->n_events;
1535 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1536 if (event->hw.idx) {
1537 write_pmc(event->hw.idx, 0);
1538 event->hw.idx = 0;
1540 perf_event_update_userpage(event);
1541 break;
1544 for (i = 0; i < cpuhw->n_limited; ++i)
1545 if (event == cpuhw->limited_counter[i])
1546 break;
1547 if (i < cpuhw->n_limited) {
1548 while (++i < cpuhw->n_limited) {
1549 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1550 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1552 --cpuhw->n_limited;
1554 if (cpuhw->n_events == 0) {
1555 /* disable exceptions if no events are running */
1556 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1559 if (has_branch_stack(event))
1560 power_pmu_bhrb_disable(event);
1562 perf_pmu_enable(event->pmu);
1563 local_irq_restore(flags);
1567 * POWER-PMU does not support disabling individual counters, hence
1568 * program their cycle counter to their max value and ignore the interrupts.
1571 static void power_pmu_start(struct perf_event *event, int ef_flags)
1573 unsigned long flags;
1574 s64 left;
1575 unsigned long val;
1577 if (!event->hw.idx || !event->hw.sample_period)
1578 return;
1580 if (!(event->hw.state & PERF_HES_STOPPED))
1581 return;
1583 if (ef_flags & PERF_EF_RELOAD)
1584 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1586 local_irq_save(flags);
1587 perf_pmu_disable(event->pmu);
1589 event->hw.state = 0;
1590 left = local64_read(&event->hw.period_left);
1592 val = 0;
1593 if (left < 0x80000000L)
1594 val = 0x80000000L - left;
1596 write_pmc(event->hw.idx, val);
1598 perf_event_update_userpage(event);
1599 perf_pmu_enable(event->pmu);
1600 local_irq_restore(flags);
1603 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1605 unsigned long flags;
1607 if (!event->hw.idx || !event->hw.sample_period)
1608 return;
1610 if (event->hw.state & PERF_HES_STOPPED)
1611 return;
1613 local_irq_save(flags);
1614 perf_pmu_disable(event->pmu);
1616 power_pmu_read(event);
1617 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1618 write_pmc(event->hw.idx, 0);
1620 perf_event_update_userpage(event);
1621 perf_pmu_enable(event->pmu);
1622 local_irq_restore(flags);
1626 * Start group events scheduling transaction
1627 * Set the flag to make pmu::enable() not perform the
1628 * schedulability test, it will be performed at commit time
1630 * We only support PERF_PMU_TXN_ADD transactions. Save the
1631 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1632 * transactions.
1634 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1636 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1638 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1640 cpuhw->txn_flags = txn_flags;
1641 if (txn_flags & ~PERF_PMU_TXN_ADD)
1642 return;
1644 perf_pmu_disable(pmu);
1645 cpuhw->n_txn_start = cpuhw->n_events;
1649 * Stop group events scheduling transaction
1650 * Clear the flag and pmu::enable() will perform the
1651 * schedulability test.
1653 static void power_pmu_cancel_txn(struct pmu *pmu)
1655 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1656 unsigned int txn_flags;
1658 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1660 txn_flags = cpuhw->txn_flags;
1661 cpuhw->txn_flags = 0;
1662 if (txn_flags & ~PERF_PMU_TXN_ADD)
1663 return;
1665 perf_pmu_enable(pmu);
1669 * Commit group events scheduling transaction
1670 * Perform the group schedulability test as a whole
1671 * Return 0 if success
1673 static int power_pmu_commit_txn(struct pmu *pmu)
1675 struct cpu_hw_events *cpuhw;
1676 long i, n;
1678 if (!ppmu)
1679 return -EAGAIN;
1681 cpuhw = this_cpu_ptr(&cpu_hw_events);
1682 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1684 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1685 cpuhw->txn_flags = 0;
1686 return 0;
1689 n = cpuhw->n_events;
1690 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1691 return -EAGAIN;
1692 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1693 if (i < 0)
1694 return -EAGAIN;
1696 for (i = cpuhw->n_txn_start; i < n; ++i)
1697 cpuhw->event[i]->hw.config = cpuhw->events[i];
1699 cpuhw->txn_flags = 0;
1700 perf_pmu_enable(pmu);
1701 return 0;
1705 * Return 1 if we might be able to put event on a limited PMC,
1706 * or 0 if not.
1707 * A event can only go on a limited PMC if it counts something
1708 * that a limited PMC can count, doesn't require interrupts, and
1709 * doesn't exclude any processor mode.
1711 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1712 unsigned int flags)
1714 int n;
1715 u64 alt[MAX_EVENT_ALTERNATIVES];
1717 if (event->attr.exclude_user
1718 || event->attr.exclude_kernel
1719 || event->attr.exclude_hv
1720 || event->attr.sample_period)
1721 return 0;
1723 if (ppmu->limited_pmc_event(ev))
1724 return 1;
1727 * The requested event_id isn't on a limited PMC already;
1728 * see if any alternative code goes on a limited PMC.
1730 if (!ppmu->get_alternatives)
1731 return 0;
1733 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1734 n = ppmu->get_alternatives(ev, flags, alt);
1736 return n > 0;
1740 * Find an alternative event_id that goes on a normal PMC, if possible,
1741 * and return the event_id code, or 0 if there is no such alternative.
1742 * (Note: event_id code 0 is "don't count" on all machines.)
1744 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1746 u64 alt[MAX_EVENT_ALTERNATIVES];
1747 int n;
1749 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1750 n = ppmu->get_alternatives(ev, flags, alt);
1751 if (!n)
1752 return 0;
1753 return alt[0];
1756 /* Number of perf_events counting hardware events */
1757 static atomic_t num_events;
1758 /* Used to avoid races in calling reserve/release_pmc_hardware */
1759 static DEFINE_MUTEX(pmc_reserve_mutex);
1762 * Release the PMU if this is the last perf_event.
1764 static void hw_perf_event_destroy(struct perf_event *event)
1766 if (!atomic_add_unless(&num_events, -1, 1)) {
1767 mutex_lock(&pmc_reserve_mutex);
1768 if (atomic_dec_return(&num_events) == 0)
1769 release_pmc_hardware();
1770 mutex_unlock(&pmc_reserve_mutex);
1775 * Translate a generic cache event_id config to a raw event_id code.
1777 static int hw_perf_cache_event(u64 config, u64 *eventp)
1779 unsigned long type, op, result;
1780 int ev;
1782 if (!ppmu->cache_events)
1783 return -EINVAL;
1785 /* unpack config */
1786 type = config & 0xff;
1787 op = (config >> 8) & 0xff;
1788 result = (config >> 16) & 0xff;
1790 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1791 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1792 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1793 return -EINVAL;
1795 ev = (*ppmu->cache_events)[type][op][result];
1796 if (ev == 0)
1797 return -EOPNOTSUPP;
1798 if (ev == -1)
1799 return -EINVAL;
1800 *eventp = ev;
1801 return 0;
1804 static int power_pmu_event_init(struct perf_event *event)
1806 u64 ev;
1807 unsigned long flags;
1808 struct perf_event *ctrs[MAX_HWEVENTS];
1809 u64 events[MAX_HWEVENTS];
1810 unsigned int cflags[MAX_HWEVENTS];
1811 int n;
1812 int err;
1813 struct cpu_hw_events *cpuhw;
1815 if (!ppmu)
1816 return -ENOENT;
1818 if (has_branch_stack(event)) {
1819 /* PMU has BHRB enabled */
1820 if (!(ppmu->flags & PPMU_ARCH_207S))
1821 return -EOPNOTSUPP;
1824 switch (event->attr.type) {
1825 case PERF_TYPE_HARDWARE:
1826 ev = event->attr.config;
1827 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1828 return -EOPNOTSUPP;
1829 ev = ppmu->generic_events[ev];
1830 break;
1831 case PERF_TYPE_HW_CACHE:
1832 err = hw_perf_cache_event(event->attr.config, &ev);
1833 if (err)
1834 return err;
1835 break;
1836 case PERF_TYPE_RAW:
1837 ev = event->attr.config;
1838 break;
1839 default:
1840 return -ENOENT;
1843 event->hw.config_base = ev;
1844 event->hw.idx = 0;
1847 * If we are not running on a hypervisor, force the
1848 * exclude_hv bit to 0 so that we don't care what
1849 * the user set it to.
1851 if (!firmware_has_feature(FW_FEATURE_LPAR))
1852 event->attr.exclude_hv = 0;
1855 * If this is a per-task event, then we can use
1856 * PM_RUN_* events interchangeably with their non RUN_*
1857 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1858 * XXX we should check if the task is an idle task.
1860 flags = 0;
1861 if (event->attach_state & PERF_ATTACH_TASK)
1862 flags |= PPMU_ONLY_COUNT_RUN;
1865 * If this machine has limited events, check whether this
1866 * event_id could go on a limited event.
1868 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1869 if (can_go_on_limited_pmc(event, ev, flags)) {
1870 flags |= PPMU_LIMITED_PMC_OK;
1871 } else if (ppmu->limited_pmc_event(ev)) {
1873 * The requested event_id is on a limited PMC,
1874 * but we can't use a limited PMC; see if any
1875 * alternative goes on a normal PMC.
1877 ev = normal_pmc_alternative(ev, flags);
1878 if (!ev)
1879 return -EINVAL;
1883 /* Extra checks for EBB */
1884 err = ebb_event_check(event);
1885 if (err)
1886 return err;
1889 * If this is in a group, check if it can go on with all the
1890 * other hardware events in the group. We assume the event
1891 * hasn't been linked into its leader's sibling list at this point.
1893 n = 0;
1894 if (event->group_leader != event) {
1895 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1896 ctrs, events, cflags);
1897 if (n < 0)
1898 return -EINVAL;
1900 events[n] = ev;
1901 ctrs[n] = event;
1902 cflags[n] = flags;
1903 if (check_excludes(ctrs, cflags, n, 1))
1904 return -EINVAL;
1906 cpuhw = &get_cpu_var(cpu_hw_events);
1907 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1909 if (has_branch_stack(event)) {
1910 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1911 event->attr.branch_sample_type);
1913 if (cpuhw->bhrb_filter == -1) {
1914 put_cpu_var(cpu_hw_events);
1915 return -EOPNOTSUPP;
1919 put_cpu_var(cpu_hw_events);
1920 if (err)
1921 return -EINVAL;
1923 event->hw.config = events[n];
1924 event->hw.event_base = cflags[n];
1925 event->hw.last_period = event->hw.sample_period;
1926 local64_set(&event->hw.period_left, event->hw.last_period);
1929 * For EBB events we just context switch the PMC value, we don't do any
1930 * of the sample_period logic. We use hw.prev_count for this.
1932 if (is_ebb_event(event))
1933 local64_set(&event->hw.prev_count, 0);
1936 * See if we need to reserve the PMU.
1937 * If no events are currently in use, then we have to take a
1938 * mutex to ensure that we don't race with another task doing
1939 * reserve_pmc_hardware or release_pmc_hardware.
1941 err = 0;
1942 if (!atomic_inc_not_zero(&num_events)) {
1943 mutex_lock(&pmc_reserve_mutex);
1944 if (atomic_read(&num_events) == 0 &&
1945 reserve_pmc_hardware(perf_event_interrupt))
1946 err = -EBUSY;
1947 else
1948 atomic_inc(&num_events);
1949 mutex_unlock(&pmc_reserve_mutex);
1951 event->destroy = hw_perf_event_destroy;
1953 return err;
1956 static int power_pmu_event_idx(struct perf_event *event)
1958 return event->hw.idx;
1961 ssize_t power_events_sysfs_show(struct device *dev,
1962 struct device_attribute *attr, char *page)
1964 struct perf_pmu_events_attr *pmu_attr;
1966 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1968 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1971 static struct pmu power_pmu = {
1972 .pmu_enable = power_pmu_enable,
1973 .pmu_disable = power_pmu_disable,
1974 .event_init = power_pmu_event_init,
1975 .add = power_pmu_add,
1976 .del = power_pmu_del,
1977 .start = power_pmu_start,
1978 .stop = power_pmu_stop,
1979 .read = power_pmu_read,
1980 .start_txn = power_pmu_start_txn,
1981 .cancel_txn = power_pmu_cancel_txn,
1982 .commit_txn = power_pmu_commit_txn,
1983 .event_idx = power_pmu_event_idx,
1984 .sched_task = power_pmu_sched_task,
1988 * A counter has overflowed; update its count and record
1989 * things if requested. Note that interrupts are hard-disabled
1990 * here so there is no possibility of being interrupted.
1992 static void record_and_restart(struct perf_event *event, unsigned long val,
1993 struct pt_regs *regs)
1995 u64 period = event->hw.sample_period;
1996 s64 prev, delta, left;
1997 int record = 0;
1999 if (event->hw.state & PERF_HES_STOPPED) {
2000 write_pmc(event->hw.idx, 0);
2001 return;
2004 /* we don't have to worry about interrupts here */
2005 prev = local64_read(&event->hw.prev_count);
2006 delta = check_and_compute_delta(prev, val);
2007 local64_add(delta, &event->count);
2010 * See if the total period for this event has expired,
2011 * and update for the next period.
2013 val = 0;
2014 left = local64_read(&event->hw.period_left) - delta;
2015 if (delta == 0)
2016 left++;
2017 if (period) {
2018 if (left <= 0) {
2019 left += period;
2020 if (left <= 0)
2021 left = period;
2022 record = siar_valid(regs);
2023 event->hw.last_period = event->hw.sample_period;
2025 if (left < 0x80000000LL)
2026 val = 0x80000000LL - left;
2029 write_pmc(event->hw.idx, val);
2030 local64_set(&event->hw.prev_count, val);
2031 local64_set(&event->hw.period_left, left);
2032 perf_event_update_userpage(event);
2035 * Finally record data if requested.
2037 if (record) {
2038 struct perf_sample_data data;
2040 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2042 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
2043 perf_get_data_addr(regs, &data.addr);
2045 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2046 struct cpu_hw_events *cpuhw;
2047 cpuhw = this_cpu_ptr(&cpu_hw_events);
2048 power_pmu_bhrb_read(cpuhw);
2049 data.br_stack = &cpuhw->bhrb_stack;
2052 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2053 ppmu->get_mem_data_src)
2054 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2056 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2057 ppmu->get_mem_weight)
2058 ppmu->get_mem_weight(&data.weight);
2060 if (perf_event_overflow(event, &data, regs))
2061 power_pmu_stop(event, 0);
2066 * Called from generic code to get the misc flags (i.e. processor mode)
2067 * for an event_id.
2069 unsigned long perf_misc_flags(struct pt_regs *regs)
2071 u32 flags = perf_get_misc_flags(regs);
2073 if (flags)
2074 return flags;
2075 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2076 PERF_RECORD_MISC_KERNEL;
2080 * Called from generic code to get the instruction pointer
2081 * for an event_id.
2083 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2085 bool use_siar = regs_use_siar(regs);
2087 if (use_siar && siar_valid(regs))
2088 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2089 else if (use_siar)
2090 return 0; // no valid instruction pointer
2091 else
2092 return regs->nip;
2095 static bool pmc_overflow_power7(unsigned long val)
2098 * Events on POWER7 can roll back if a speculative event doesn't
2099 * eventually complete. Unfortunately in some rare cases they will
2100 * raise a performance monitor exception. We need to catch this to
2101 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2102 * cycles from overflow.
2104 * We only do this if the first pass fails to find any overflowing
2105 * PMCs because a user might set a period of less than 256 and we
2106 * don't want to mistakenly reset them.
2108 if ((0x80000000 - val) <= 256)
2109 return true;
2111 return false;
2114 static bool pmc_overflow(unsigned long val)
2116 if ((int)val < 0)
2117 return true;
2119 return false;
2123 * Performance monitor interrupt stuff
2125 static void perf_event_interrupt(struct pt_regs *regs)
2127 int i, j;
2128 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2129 struct perf_event *event;
2130 unsigned long val[8];
2131 int found, active;
2132 int nmi;
2134 if (cpuhw->n_limited)
2135 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2136 mfspr(SPRN_PMC6));
2138 perf_read_regs(regs);
2140 nmi = perf_intr_is_nmi(regs);
2141 if (nmi)
2142 nmi_enter();
2143 else
2144 irq_enter();
2146 /* Read all the PMCs since we'll need them a bunch of times */
2147 for (i = 0; i < ppmu->n_counter; ++i)
2148 val[i] = read_pmc(i + 1);
2150 /* Try to find what caused the IRQ */
2151 found = 0;
2152 for (i = 0; i < ppmu->n_counter; ++i) {
2153 if (!pmc_overflow(val[i]))
2154 continue;
2155 if (is_limited_pmc(i + 1))
2156 continue; /* these won't generate IRQs */
2158 * We've found one that's overflowed. For active
2159 * counters we need to log this. For inactive
2160 * counters, we need to reset it anyway
2162 found = 1;
2163 active = 0;
2164 for (j = 0; j < cpuhw->n_events; ++j) {
2165 event = cpuhw->event[j];
2166 if (event->hw.idx == (i + 1)) {
2167 active = 1;
2168 record_and_restart(event, val[i], regs);
2169 break;
2172 if (!active)
2173 /* reset non active counters that have overflowed */
2174 write_pmc(i + 1, 0);
2176 if (!found && pvr_version_is(PVR_POWER7)) {
2177 /* check active counters for special buggy p7 overflow */
2178 for (i = 0; i < cpuhw->n_events; ++i) {
2179 event = cpuhw->event[i];
2180 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2181 continue;
2182 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2183 /* event has overflowed in a buggy way*/
2184 found = 1;
2185 record_and_restart(event,
2186 val[event->hw.idx - 1],
2187 regs);
2191 if (!found && !nmi && printk_ratelimit())
2192 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2195 * Reset MMCR0 to its normal value. This will set PMXE and
2196 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2197 * and thus allow interrupts to occur again.
2198 * XXX might want to use MSR.PM to keep the events frozen until
2199 * we get back out of this interrupt.
2201 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2203 if (nmi)
2204 nmi_exit();
2205 else
2206 irq_exit();
2209 static int power_pmu_prepare_cpu(unsigned int cpu)
2211 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2213 if (ppmu) {
2214 memset(cpuhw, 0, sizeof(*cpuhw));
2215 cpuhw->mmcr[0] = MMCR0_FC;
2217 return 0;
2220 int register_power_pmu(struct power_pmu *pmu)
2222 if (ppmu)
2223 return -EBUSY; /* something's already registered */
2225 ppmu = pmu;
2226 pr_info("%s performance monitor hardware support registered\n",
2227 pmu->name);
2229 power_pmu.attr_groups = ppmu->attr_groups;
2231 #ifdef MSR_HV
2233 * Use FCHV to ignore kernel events if MSR.HV is set.
2235 if (mfmsr() & MSR_HV)
2236 freeze_events_kernel = MMCR0_FCHV;
2237 #endif /* CONFIG_PPC64 */
2239 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2240 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2241 power_pmu_prepare_cpu, NULL);
2242 return 0;