2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock
);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node
);
81 EXPORT_PER_CPU_SYMBOL(numa_node
);
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
91 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
93 int _node_numa_mem_
[MAX_NUMNODES
];
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex
);
98 DEFINE_PER_CPU(struct work_struct
, pcpu_drain
);
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy
;
102 EXPORT_SYMBOL(latent_entropy
);
106 * Array of node states.
108 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
109 [N_POSSIBLE
] = NODE_MASK_ALL
,
110 [N_ONLINE
] = { { [0] = 1UL } },
112 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
116 [N_MEMORY
] = { { [0] = 1UL } },
117 [N_CPU
] = { { [0] = 1UL } },
120 EXPORT_SYMBOL(node_states
);
122 /* Protect totalram_pages and zone->managed_pages */
123 static DEFINE_SPINLOCK(managed_page_count_lock
);
125 unsigned long totalram_pages __read_mostly
;
126 unsigned long totalreserve_pages __read_mostly
;
127 unsigned long totalcma_pages __read_mostly
;
129 int percpu_pagelist_fraction
;
130 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
133 * A cached value of the page's pageblock's migratetype, used when the page is
134 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
135 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
136 * Also the migratetype set in the page does not necessarily match the pcplist
137 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
138 * other index - this ensures that it will be put on the correct CMA freelist.
140 static inline int get_pcppage_migratetype(struct page
*page
)
145 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
147 page
->index
= migratetype
;
150 #ifdef CONFIG_PM_SLEEP
152 * The following functions are used by the suspend/hibernate code to temporarily
153 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
154 * while devices are suspended. To avoid races with the suspend/hibernate code,
155 * they should always be called with pm_mutex held (gfp_allowed_mask also should
156 * only be modified with pm_mutex held, unless the suspend/hibernate code is
157 * guaranteed not to run in parallel with that modification).
160 static gfp_t saved_gfp_mask
;
162 void pm_restore_gfp_mask(void)
164 WARN_ON(!mutex_is_locked(&pm_mutex
));
165 if (saved_gfp_mask
) {
166 gfp_allowed_mask
= saved_gfp_mask
;
171 void pm_restrict_gfp_mask(void)
173 WARN_ON(!mutex_is_locked(&pm_mutex
));
174 WARN_ON(saved_gfp_mask
);
175 saved_gfp_mask
= gfp_allowed_mask
;
176 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
179 bool pm_suspended_storage(void)
181 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
185 #endif /* CONFIG_PM_SLEEP */
187 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
188 unsigned int pageblock_order __read_mostly
;
191 static void __free_pages_ok(struct page
*page
, unsigned int order
);
194 * results with 256, 32 in the lowmem_reserve sysctl:
195 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
196 * 1G machine -> (16M dma, 784M normal, 224M high)
197 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
198 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
199 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
201 * TBD: should special case ZONE_DMA32 machines here - in those we normally
202 * don't need any ZONE_NORMAL reservation
204 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
205 #ifdef CONFIG_ZONE_DMA
208 #ifdef CONFIG_ZONE_DMA32
211 #ifdef CONFIG_HIGHMEM
217 EXPORT_SYMBOL(totalram_pages
);
219 static char * const zone_names
[MAX_NR_ZONES
] = {
220 #ifdef CONFIG_ZONE_DMA
223 #ifdef CONFIG_ZONE_DMA32
227 #ifdef CONFIG_HIGHMEM
231 #ifdef CONFIG_ZONE_DEVICE
236 char * const migratetype_names
[MIGRATE_TYPES
] = {
244 #ifdef CONFIG_MEMORY_ISOLATION
249 compound_page_dtor
* const compound_page_dtors
[] = {
252 #ifdef CONFIG_HUGETLB_PAGE
255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 int min_free_kbytes
= 1024;
261 int user_min_free_kbytes
= -1;
262 int watermark_scale_factor
= 10;
264 static unsigned long __meminitdata nr_kernel_pages
;
265 static unsigned long __meminitdata nr_all_pages
;
266 static unsigned long __meminitdata dma_reserve
;
268 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
269 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
270 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
271 static unsigned long __initdata required_kernelcore
;
272 static unsigned long __initdata required_movablecore
;
273 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
274 static bool mirrored_kernelcore
;
276 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 EXPORT_SYMBOL(movable_zone
);
279 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
283 int nr_online_nodes __read_mostly
= 1;
284 EXPORT_SYMBOL(nr_node_ids
);
285 EXPORT_SYMBOL(nr_online_nodes
);
288 int page_group_by_mobility_disabled __read_mostly
;
290 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
291 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
293 unsigned long max_initialise
;
294 unsigned long reserved_lowmem
;
297 * Initialise at least 2G of a node but also take into account that
298 * two large system hashes that can take up 1GB for 0.25TB/node.
300 max_initialise
= max(2UL << (30 - PAGE_SHIFT
),
301 (pgdat
->node_spanned_pages
>> 8));
304 * Compensate the all the memblock reservations (e.g. crash kernel)
305 * from the initial estimation to make sure we will initialize enough
308 reserved_lowmem
= memblock_reserved_memory_within(pgdat
->node_start_pfn
,
309 pgdat
->node_start_pfn
+ max_initialise
);
310 max_initialise
+= reserved_lowmem
;
312 pgdat
->static_init_size
= min(max_initialise
, pgdat
->node_spanned_pages
);
313 pgdat
->first_deferred_pfn
= ULONG_MAX
;
316 /* Returns true if the struct page for the pfn is uninitialised */
317 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
319 int nid
= early_pfn_to_nid(pfn
);
321 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
328 * Returns false when the remaining initialisation should be deferred until
329 * later in the boot cycle when it can be parallelised.
331 static inline bool update_defer_init(pg_data_t
*pgdat
,
332 unsigned long pfn
, unsigned long zone_end
,
333 unsigned long *nr_initialised
)
335 /* Always populate low zones for address-contrained allocations */
336 if (zone_end
< pgdat_end_pfn(pgdat
))
339 if ((*nr_initialised
> pgdat
->static_init_size
) &&
340 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
341 pgdat
->first_deferred_pfn
= pfn
;
348 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
352 static inline bool early_page_uninitialised(unsigned long pfn
)
357 static inline bool update_defer_init(pg_data_t
*pgdat
,
358 unsigned long pfn
, unsigned long zone_end
,
359 unsigned long *nr_initialised
)
365 /* Return a pointer to the bitmap storing bits affecting a block of pages */
366 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
369 #ifdef CONFIG_SPARSEMEM
370 return __pfn_to_section(pfn
)->pageblock_flags
;
372 return page_zone(page
)->pageblock_flags
;
373 #endif /* CONFIG_SPARSEMEM */
376 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
378 #ifdef CONFIG_SPARSEMEM
379 pfn
&= (PAGES_PER_SECTION
-1);
380 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
382 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
383 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
384 #endif /* CONFIG_SPARSEMEM */
388 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
389 * @page: The page within the block of interest
390 * @pfn: The target page frame number
391 * @end_bitidx: The last bit of interest to retrieve
392 * @mask: mask of bits that the caller is interested in
394 * Return: pageblock_bits flags
396 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
398 unsigned long end_bitidx
,
401 unsigned long *bitmap
;
402 unsigned long bitidx
, word_bitidx
;
405 bitmap
= get_pageblock_bitmap(page
, pfn
);
406 bitidx
= pfn_to_bitidx(page
, pfn
);
407 word_bitidx
= bitidx
/ BITS_PER_LONG
;
408 bitidx
&= (BITS_PER_LONG
-1);
410 word
= bitmap
[word_bitidx
];
411 bitidx
+= end_bitidx
;
412 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
415 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
416 unsigned long end_bitidx
,
419 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
422 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
424 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
428 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
429 * @page: The page within the block of interest
430 * @flags: The flags to set
431 * @pfn: The target page frame number
432 * @end_bitidx: The last bit of interest
433 * @mask: mask of bits that the caller is interested in
435 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
437 unsigned long end_bitidx
,
440 unsigned long *bitmap
;
441 unsigned long bitidx
, word_bitidx
;
442 unsigned long old_word
, word
;
444 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
446 bitmap
= get_pageblock_bitmap(page
, pfn
);
447 bitidx
= pfn_to_bitidx(page
, pfn
);
448 word_bitidx
= bitidx
/ BITS_PER_LONG
;
449 bitidx
&= (BITS_PER_LONG
-1);
451 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
453 bitidx
+= end_bitidx
;
454 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
455 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
457 word
= READ_ONCE(bitmap
[word_bitidx
]);
459 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
460 if (word
== old_word
)
466 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
468 if (unlikely(page_group_by_mobility_disabled
&&
469 migratetype
< MIGRATE_PCPTYPES
))
470 migratetype
= MIGRATE_UNMOVABLE
;
472 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
473 PB_migrate
, PB_migrate_end
);
476 #ifdef CONFIG_DEBUG_VM
477 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
481 unsigned long pfn
= page_to_pfn(page
);
482 unsigned long sp
, start_pfn
;
485 seq
= zone_span_seqbegin(zone
);
486 start_pfn
= zone
->zone_start_pfn
;
487 sp
= zone
->spanned_pages
;
488 if (!zone_spans_pfn(zone
, pfn
))
490 } while (zone_span_seqretry(zone
, seq
));
493 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
494 pfn
, zone_to_nid(zone
), zone
->name
,
495 start_pfn
, start_pfn
+ sp
);
500 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
502 if (!pfn_valid_within(page_to_pfn(page
)))
504 if (zone
!= page_zone(page
))
510 * Temporary debugging check for pages not lying within a given zone.
512 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
514 if (page_outside_zone_boundaries(zone
, page
))
516 if (!page_is_consistent(zone
, page
))
522 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
528 static void bad_page(struct page
*page
, const char *reason
,
529 unsigned long bad_flags
)
531 static unsigned long resume
;
532 static unsigned long nr_shown
;
533 static unsigned long nr_unshown
;
536 * Allow a burst of 60 reports, then keep quiet for that minute;
537 * or allow a steady drip of one report per second.
539 if (nr_shown
== 60) {
540 if (time_before(jiffies
, resume
)) {
546 "BUG: Bad page state: %lu messages suppressed\n",
553 resume
= jiffies
+ 60 * HZ
;
555 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
556 current
->comm
, page_to_pfn(page
));
557 __dump_page(page
, reason
);
558 bad_flags
&= page
->flags
;
560 pr_alert("bad because of flags: %#lx(%pGp)\n",
561 bad_flags
, &bad_flags
);
562 dump_page_owner(page
);
567 /* Leave bad fields for debug, except PageBuddy could make trouble */
568 page_mapcount_reset(page
); /* remove PageBuddy */
569 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
573 * Higher-order pages are called "compound pages". They are structured thusly:
575 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
577 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
578 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
580 * The first tail page's ->compound_dtor holds the offset in array of compound
581 * page destructors. See compound_page_dtors.
583 * The first tail page's ->compound_order holds the order of allocation.
584 * This usage means that zero-order pages may not be compound.
587 void free_compound_page(struct page
*page
)
589 __free_pages_ok(page
, compound_order(page
));
592 void prep_compound_page(struct page
*page
, unsigned int order
)
595 int nr_pages
= 1 << order
;
597 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
598 set_compound_order(page
, order
);
600 for (i
= 1; i
< nr_pages
; i
++) {
601 struct page
*p
= page
+ i
;
602 set_page_count(p
, 0);
603 p
->mapping
= TAIL_MAPPING
;
604 set_compound_head(p
, page
);
606 atomic_set(compound_mapcount_ptr(page
), -1);
609 #ifdef CONFIG_DEBUG_PAGEALLOC
610 unsigned int _debug_guardpage_minorder
;
611 bool _debug_pagealloc_enabled __read_mostly
612 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
613 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
614 bool _debug_guardpage_enabled __read_mostly
;
616 static int __init
early_debug_pagealloc(char *buf
)
620 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
622 early_param("debug_pagealloc", early_debug_pagealloc
);
624 static bool need_debug_guardpage(void)
626 /* If we don't use debug_pagealloc, we don't need guard page */
627 if (!debug_pagealloc_enabled())
630 if (!debug_guardpage_minorder())
636 static void init_debug_guardpage(void)
638 if (!debug_pagealloc_enabled())
641 if (!debug_guardpage_minorder())
644 _debug_guardpage_enabled
= true;
647 struct page_ext_operations debug_guardpage_ops
= {
648 .need
= need_debug_guardpage
,
649 .init
= init_debug_guardpage
,
652 static int __init
debug_guardpage_minorder_setup(char *buf
)
656 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
657 pr_err("Bad debug_guardpage_minorder value\n");
660 _debug_guardpage_minorder
= res
;
661 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
664 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
666 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
667 unsigned int order
, int migratetype
)
669 struct page_ext
*page_ext
;
671 if (!debug_guardpage_enabled())
674 if (order
>= debug_guardpage_minorder())
677 page_ext
= lookup_page_ext(page
);
678 if (unlikely(!page_ext
))
681 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
683 INIT_LIST_HEAD(&page
->lru
);
684 set_page_private(page
, order
);
685 /* Guard pages are not available for any usage */
686 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
691 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
692 unsigned int order
, int migratetype
)
694 struct page_ext
*page_ext
;
696 if (!debug_guardpage_enabled())
699 page_ext
= lookup_page_ext(page
);
700 if (unlikely(!page_ext
))
703 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
705 set_page_private(page
, 0);
706 if (!is_migrate_isolate(migratetype
))
707 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
710 struct page_ext_operations debug_guardpage_ops
;
711 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
712 unsigned int order
, int migratetype
) { return false; }
713 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
714 unsigned int order
, int migratetype
) {}
717 static inline void set_page_order(struct page
*page
, unsigned int order
)
719 set_page_private(page
, order
);
720 __SetPageBuddy(page
);
723 static inline void rmv_page_order(struct page
*page
)
725 __ClearPageBuddy(page
);
726 set_page_private(page
, 0);
730 * This function checks whether a page is free && is the buddy
731 * we can do coalesce a page and its buddy if
732 * (a) the buddy is not in a hole (check before calling!) &&
733 * (b) the buddy is in the buddy system &&
734 * (c) a page and its buddy have the same order &&
735 * (d) a page and its buddy are in the same zone.
737 * For recording whether a page is in the buddy system, we set ->_mapcount
738 * PAGE_BUDDY_MAPCOUNT_VALUE.
739 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
740 * serialized by zone->lock.
742 * For recording page's order, we use page_private(page).
744 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
747 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
748 if (page_zone_id(page
) != page_zone_id(buddy
))
751 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
756 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
758 * zone check is done late to avoid uselessly
759 * calculating zone/node ids for pages that could
762 if (page_zone_id(page
) != page_zone_id(buddy
))
765 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
773 * Freeing function for a buddy system allocator.
775 * The concept of a buddy system is to maintain direct-mapped table
776 * (containing bit values) for memory blocks of various "orders".
777 * The bottom level table contains the map for the smallest allocatable
778 * units of memory (here, pages), and each level above it describes
779 * pairs of units from the levels below, hence, "buddies".
780 * At a high level, all that happens here is marking the table entry
781 * at the bottom level available, and propagating the changes upward
782 * as necessary, plus some accounting needed to play nicely with other
783 * parts of the VM system.
784 * At each level, we keep a list of pages, which are heads of continuous
785 * free pages of length of (1 << order) and marked with _mapcount
786 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
788 * So when we are allocating or freeing one, we can derive the state of the
789 * other. That is, if we allocate a small block, and both were
790 * free, the remainder of the region must be split into blocks.
791 * If a block is freed, and its buddy is also free, then this
792 * triggers coalescing into a block of larger size.
797 static inline void __free_one_page(struct page
*page
,
799 struct zone
*zone
, unsigned int order
,
802 unsigned long combined_pfn
;
803 unsigned long uninitialized_var(buddy_pfn
);
805 unsigned int max_order
;
807 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
809 VM_BUG_ON(!zone_is_initialized(zone
));
810 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
812 VM_BUG_ON(migratetype
== -1);
813 if (likely(!is_migrate_isolate(migratetype
)))
814 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
816 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
817 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
820 while (order
< max_order
- 1) {
821 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
822 buddy
= page
+ (buddy_pfn
- pfn
);
824 if (!pfn_valid_within(buddy_pfn
))
826 if (!page_is_buddy(page
, buddy
, order
))
829 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
830 * merge with it and move up one order.
832 if (page_is_guard(buddy
)) {
833 clear_page_guard(zone
, buddy
, order
, migratetype
);
835 list_del(&buddy
->lru
);
836 zone
->free_area
[order
].nr_free
--;
837 rmv_page_order(buddy
);
839 combined_pfn
= buddy_pfn
& pfn
;
840 page
= page
+ (combined_pfn
- pfn
);
844 if (max_order
< MAX_ORDER
) {
845 /* If we are here, it means order is >= pageblock_order.
846 * We want to prevent merge between freepages on isolate
847 * pageblock and normal pageblock. Without this, pageblock
848 * isolation could cause incorrect freepage or CMA accounting.
850 * We don't want to hit this code for the more frequent
853 if (unlikely(has_isolate_pageblock(zone
))) {
856 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
857 buddy
= page
+ (buddy_pfn
- pfn
);
858 buddy_mt
= get_pageblock_migratetype(buddy
);
860 if (migratetype
!= buddy_mt
861 && (is_migrate_isolate(migratetype
) ||
862 is_migrate_isolate(buddy_mt
)))
866 goto continue_merging
;
870 set_page_order(page
, order
);
873 * If this is not the largest possible page, check if the buddy
874 * of the next-highest order is free. If it is, it's possible
875 * that pages are being freed that will coalesce soon. In case,
876 * that is happening, add the free page to the tail of the list
877 * so it's less likely to be used soon and more likely to be merged
878 * as a higher order page
880 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)) {
881 struct page
*higher_page
, *higher_buddy
;
882 combined_pfn
= buddy_pfn
& pfn
;
883 higher_page
= page
+ (combined_pfn
- pfn
);
884 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
885 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
886 if (pfn_valid_within(buddy_pfn
) &&
887 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
888 list_add_tail(&page
->lru
,
889 &zone
->free_area
[order
].free_list
[migratetype
]);
894 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
896 zone
->free_area
[order
].nr_free
++;
900 * A bad page could be due to a number of fields. Instead of multiple branches,
901 * try and check multiple fields with one check. The caller must do a detailed
902 * check if necessary.
904 static inline bool page_expected_state(struct page
*page
,
905 unsigned long check_flags
)
907 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
910 if (unlikely((unsigned long)page
->mapping
|
911 page_ref_count(page
) |
913 (unsigned long)page
->mem_cgroup
|
915 (page
->flags
& check_flags
)))
921 static void free_pages_check_bad(struct page
*page
)
923 const char *bad_reason
;
924 unsigned long bad_flags
;
929 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
930 bad_reason
= "nonzero mapcount";
931 if (unlikely(page
->mapping
!= NULL
))
932 bad_reason
= "non-NULL mapping";
933 if (unlikely(page_ref_count(page
) != 0))
934 bad_reason
= "nonzero _refcount";
935 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
936 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
937 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
940 if (unlikely(page
->mem_cgroup
))
941 bad_reason
= "page still charged to cgroup";
943 bad_page(page
, bad_reason
, bad_flags
);
946 static inline int free_pages_check(struct page
*page
)
948 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
951 /* Something has gone sideways, find it */
952 free_pages_check_bad(page
);
956 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
961 * We rely page->lru.next never has bit 0 set, unless the page
962 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
964 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
966 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
970 switch (page
- head_page
) {
972 /* the first tail page: ->mapping is compound_mapcount() */
973 if (unlikely(compound_mapcount(page
))) {
974 bad_page(page
, "nonzero compound_mapcount", 0);
980 * the second tail page: ->mapping is
981 * page_deferred_list().next -- ignore value.
985 if (page
->mapping
!= TAIL_MAPPING
) {
986 bad_page(page
, "corrupted mapping in tail page", 0);
991 if (unlikely(!PageTail(page
))) {
992 bad_page(page
, "PageTail not set", 0);
995 if (unlikely(compound_head(page
) != head_page
)) {
996 bad_page(page
, "compound_head not consistent", 0);
1001 page
->mapping
= NULL
;
1002 clear_compound_head(page
);
1006 static __always_inline
bool free_pages_prepare(struct page
*page
,
1007 unsigned int order
, bool check_free
)
1011 VM_BUG_ON_PAGE(PageTail(page
), page
);
1013 trace_mm_page_free(page
, order
);
1014 kmemcheck_free_shadow(page
, order
);
1017 * Check tail pages before head page information is cleared to
1018 * avoid checking PageCompound for order-0 pages.
1020 if (unlikely(order
)) {
1021 bool compound
= PageCompound(page
);
1024 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1027 ClearPageDoubleMap(page
);
1028 for (i
= 1; i
< (1 << order
); i
++) {
1030 bad
+= free_tail_pages_check(page
, page
+ i
);
1031 if (unlikely(free_pages_check(page
+ i
))) {
1035 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1038 if (PageMappingFlags(page
))
1039 page
->mapping
= NULL
;
1040 if (memcg_kmem_enabled() && PageKmemcg(page
))
1041 memcg_kmem_uncharge(page
, order
);
1043 bad
+= free_pages_check(page
);
1047 page_cpupid_reset_last(page
);
1048 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1049 reset_page_owner(page
, order
);
1051 if (!PageHighMem(page
)) {
1052 debug_check_no_locks_freed(page_address(page
),
1053 PAGE_SIZE
<< order
);
1054 debug_check_no_obj_freed(page_address(page
),
1055 PAGE_SIZE
<< order
);
1057 arch_free_page(page
, order
);
1058 kernel_poison_pages(page
, 1 << order
, 0);
1059 kernel_map_pages(page
, 1 << order
, 0);
1060 kasan_free_pages(page
, order
);
1065 #ifdef CONFIG_DEBUG_VM
1066 static inline bool free_pcp_prepare(struct page
*page
)
1068 return free_pages_prepare(page
, 0, true);
1071 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1076 static bool free_pcp_prepare(struct page
*page
)
1078 return free_pages_prepare(page
, 0, false);
1081 static bool bulkfree_pcp_prepare(struct page
*page
)
1083 return free_pages_check(page
);
1085 #endif /* CONFIG_DEBUG_VM */
1088 * Frees a number of pages from the PCP lists
1089 * Assumes all pages on list are in same zone, and of same order.
1090 * count is the number of pages to free.
1092 * If the zone was previously in an "all pages pinned" state then look to
1093 * see if this freeing clears that state.
1095 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1096 * pinned" detection logic.
1098 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1099 struct per_cpu_pages
*pcp
)
1101 int migratetype
= 0;
1103 bool isolated_pageblocks
;
1105 spin_lock(&zone
->lock
);
1106 isolated_pageblocks
= has_isolate_pageblock(zone
);
1110 struct list_head
*list
;
1113 * Remove pages from lists in a round-robin fashion. A
1114 * batch_free count is maintained that is incremented when an
1115 * empty list is encountered. This is so more pages are freed
1116 * off fuller lists instead of spinning excessively around empty
1121 if (++migratetype
== MIGRATE_PCPTYPES
)
1123 list
= &pcp
->lists
[migratetype
];
1124 } while (list_empty(list
));
1126 /* This is the only non-empty list. Free them all. */
1127 if (batch_free
== MIGRATE_PCPTYPES
)
1131 int mt
; /* migratetype of the to-be-freed page */
1133 page
= list_last_entry(list
, struct page
, lru
);
1134 /* must delete as __free_one_page list manipulates */
1135 list_del(&page
->lru
);
1137 mt
= get_pcppage_migratetype(page
);
1138 /* MIGRATE_ISOLATE page should not go to pcplists */
1139 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1140 /* Pageblock could have been isolated meanwhile */
1141 if (unlikely(isolated_pageblocks
))
1142 mt
= get_pageblock_migratetype(page
);
1144 if (bulkfree_pcp_prepare(page
))
1147 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1148 trace_mm_page_pcpu_drain(page
, 0, mt
);
1149 } while (--count
&& --batch_free
&& !list_empty(list
));
1151 spin_unlock(&zone
->lock
);
1154 static void free_one_page(struct zone
*zone
,
1155 struct page
*page
, unsigned long pfn
,
1159 spin_lock(&zone
->lock
);
1160 if (unlikely(has_isolate_pageblock(zone
) ||
1161 is_migrate_isolate(migratetype
))) {
1162 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1164 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1165 spin_unlock(&zone
->lock
);
1168 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1169 unsigned long zone
, int nid
)
1171 set_page_links(page
, zone
, nid
, pfn
);
1172 init_page_count(page
);
1173 page_mapcount_reset(page
);
1174 page_cpupid_reset_last(page
);
1176 INIT_LIST_HEAD(&page
->lru
);
1177 #ifdef WANT_PAGE_VIRTUAL
1178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1179 if (!is_highmem_idx(zone
))
1180 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1184 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
1187 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
1190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1191 static void init_reserved_page(unsigned long pfn
)
1196 if (!early_page_uninitialised(pfn
))
1199 nid
= early_pfn_to_nid(pfn
);
1200 pgdat
= NODE_DATA(nid
);
1202 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1203 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1205 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1208 __init_single_pfn(pfn
, zid
, nid
);
1211 static inline void init_reserved_page(unsigned long pfn
)
1214 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1217 * Initialised pages do not have PageReserved set. This function is
1218 * called for each range allocated by the bootmem allocator and
1219 * marks the pages PageReserved. The remaining valid pages are later
1220 * sent to the buddy page allocator.
1222 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1224 unsigned long start_pfn
= PFN_DOWN(start
);
1225 unsigned long end_pfn
= PFN_UP(end
);
1227 for (; start_pfn
< end_pfn
; start_pfn
++) {
1228 if (pfn_valid(start_pfn
)) {
1229 struct page
*page
= pfn_to_page(start_pfn
);
1231 init_reserved_page(start_pfn
);
1233 /* Avoid false-positive PageTail() */
1234 INIT_LIST_HEAD(&page
->lru
);
1236 SetPageReserved(page
);
1241 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1243 unsigned long flags
;
1245 unsigned long pfn
= page_to_pfn(page
);
1247 if (!free_pages_prepare(page
, order
, true))
1250 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1251 local_irq_save(flags
);
1252 __count_vm_events(PGFREE
, 1 << order
);
1253 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1254 local_irq_restore(flags
);
1257 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1259 unsigned int nr_pages
= 1 << order
;
1260 struct page
*p
= page
;
1264 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1266 __ClearPageReserved(p
);
1267 set_page_count(p
, 0);
1269 __ClearPageReserved(p
);
1270 set_page_count(p
, 0);
1272 page_zone(page
)->managed_pages
+= nr_pages
;
1273 set_page_refcounted(page
);
1274 __free_pages(page
, order
);
1277 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1278 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1280 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1282 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1284 static DEFINE_SPINLOCK(early_pfn_lock
);
1287 spin_lock(&early_pfn_lock
);
1288 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1290 nid
= first_online_node
;
1291 spin_unlock(&early_pfn_lock
);
1297 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1298 static inline bool __meminit __maybe_unused
1299 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1300 struct mminit_pfnnid_cache
*state
)
1304 nid
= __early_pfn_to_nid(pfn
, state
);
1305 if (nid
>= 0 && nid
!= node
)
1310 /* Only safe to use early in boot when initialisation is single-threaded */
1311 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1313 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1318 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1322 static inline bool __meminit __maybe_unused
1323 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1324 struct mminit_pfnnid_cache
*state
)
1331 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1334 if (early_page_uninitialised(pfn
))
1336 return __free_pages_boot_core(page
, order
);
1340 * Check that the whole (or subset of) a pageblock given by the interval of
1341 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1342 * with the migration of free compaction scanner. The scanners then need to
1343 * use only pfn_valid_within() check for arches that allow holes within
1346 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 * It's possible on some configurations to have a setup like node0 node1 node0
1349 * i.e. it's possible that all pages within a zones range of pages do not
1350 * belong to a single zone. We assume that a border between node0 and node1
1351 * can occur within a single pageblock, but not a node0 node1 node0
1352 * interleaving within a single pageblock. It is therefore sufficient to check
1353 * the first and last page of a pageblock and avoid checking each individual
1354 * page in a pageblock.
1356 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1357 unsigned long end_pfn
, struct zone
*zone
)
1359 struct page
*start_page
;
1360 struct page
*end_page
;
1362 /* end_pfn is one past the range we are checking */
1365 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1368 start_page
= pfn_to_online_page(start_pfn
);
1372 if (page_zone(start_page
) != zone
)
1375 end_page
= pfn_to_page(end_pfn
);
1377 /* This gives a shorter code than deriving page_zone(end_page) */
1378 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1384 void set_zone_contiguous(struct zone
*zone
)
1386 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1387 unsigned long block_end_pfn
;
1389 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1390 for (; block_start_pfn
< zone_end_pfn(zone
);
1391 block_start_pfn
= block_end_pfn
,
1392 block_end_pfn
+= pageblock_nr_pages
) {
1394 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1396 if (!__pageblock_pfn_to_page(block_start_pfn
,
1397 block_end_pfn
, zone
))
1401 /* We confirm that there is no hole */
1402 zone
->contiguous
= true;
1405 void clear_zone_contiguous(struct zone
*zone
)
1407 zone
->contiguous
= false;
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __init
deferred_free_range(struct page
*page
,
1412 unsigned long pfn
, int nr_pages
)
1419 /* Free a large naturally-aligned chunk if possible */
1420 if (nr_pages
== pageblock_nr_pages
&&
1421 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1422 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1423 __free_pages_boot_core(page
, pageblock_order
);
1427 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1428 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1429 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1430 __free_pages_boot_core(page
, 0);
1434 /* Completion tracking for deferred_init_memmap() threads */
1435 static atomic_t pgdat_init_n_undone __initdata
;
1436 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1438 static inline void __init
pgdat_init_report_one_done(void)
1440 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1441 complete(&pgdat_init_all_done_comp
);
1444 /* Initialise remaining memory on a node */
1445 static int __init
deferred_init_memmap(void *data
)
1447 pg_data_t
*pgdat
= data
;
1448 int nid
= pgdat
->node_id
;
1449 struct mminit_pfnnid_cache nid_init_state
= { };
1450 unsigned long start
= jiffies
;
1451 unsigned long nr_pages
= 0;
1452 unsigned long walk_start
, walk_end
;
1455 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1456 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1458 if (first_init_pfn
== ULONG_MAX
) {
1459 pgdat_init_report_one_done();
1463 /* Bind memory initialisation thread to a local node if possible */
1464 if (!cpumask_empty(cpumask
))
1465 set_cpus_allowed_ptr(current
, cpumask
);
1467 /* Sanity check boundaries */
1468 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1469 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1470 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1472 /* Only the highest zone is deferred so find it */
1473 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1474 zone
= pgdat
->node_zones
+ zid
;
1475 if (first_init_pfn
< zone_end_pfn(zone
))
1479 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1480 unsigned long pfn
, end_pfn
;
1481 struct page
*page
= NULL
;
1482 struct page
*free_base_page
= NULL
;
1483 unsigned long free_base_pfn
= 0;
1486 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1487 pfn
= first_init_pfn
;
1488 if (pfn
< walk_start
)
1490 if (pfn
< zone
->zone_start_pfn
)
1491 pfn
= zone
->zone_start_pfn
;
1493 for (; pfn
< end_pfn
; pfn
++) {
1494 if (!pfn_valid_within(pfn
))
1498 * Ensure pfn_valid is checked every
1499 * pageblock_nr_pages for memory holes
1501 if ((pfn
& (pageblock_nr_pages
- 1)) == 0) {
1502 if (!pfn_valid(pfn
)) {
1508 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1513 /* Minimise pfn page lookups and scheduler checks */
1514 if (page
&& (pfn
& (pageblock_nr_pages
- 1)) != 0) {
1517 nr_pages
+= nr_to_free
;
1518 deferred_free_range(free_base_page
,
1519 free_base_pfn
, nr_to_free
);
1520 free_base_page
= NULL
;
1521 free_base_pfn
= nr_to_free
= 0;
1523 page
= pfn_to_page(pfn
);
1528 VM_BUG_ON(page_zone(page
) != zone
);
1532 __init_single_page(page
, pfn
, zid
, nid
);
1533 if (!free_base_page
) {
1534 free_base_page
= page
;
1535 free_base_pfn
= pfn
;
1540 /* Where possible, batch up pages for a single free */
1543 /* Free the current block of pages to allocator */
1544 nr_pages
+= nr_to_free
;
1545 deferred_free_range(free_base_page
, free_base_pfn
,
1547 free_base_page
= NULL
;
1548 free_base_pfn
= nr_to_free
= 0;
1550 /* Free the last block of pages to allocator */
1551 nr_pages
+= nr_to_free
;
1552 deferred_free_range(free_base_page
, free_base_pfn
, nr_to_free
);
1554 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1557 /* Sanity check that the next zone really is unpopulated */
1558 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1560 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1561 jiffies_to_msecs(jiffies
- start
));
1563 pgdat_init_report_one_done();
1566 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1568 void __init
page_alloc_init_late(void)
1572 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1575 /* There will be num_node_state(N_MEMORY) threads */
1576 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1577 for_each_node_state(nid
, N_MEMORY
) {
1578 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1581 /* Block until all are initialised */
1582 wait_for_completion(&pgdat_init_all_done_comp
);
1584 /* Reinit limits that are based on free pages after the kernel is up */
1585 files_maxfiles_init();
1588 for_each_populated_zone(zone
)
1589 set_zone_contiguous(zone
);
1593 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1594 void __init
init_cma_reserved_pageblock(struct page
*page
)
1596 unsigned i
= pageblock_nr_pages
;
1597 struct page
*p
= page
;
1600 __ClearPageReserved(p
);
1601 set_page_count(p
, 0);
1604 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1606 if (pageblock_order
>= MAX_ORDER
) {
1607 i
= pageblock_nr_pages
;
1610 set_page_refcounted(p
);
1611 __free_pages(p
, MAX_ORDER
- 1);
1612 p
+= MAX_ORDER_NR_PAGES
;
1613 } while (i
-= MAX_ORDER_NR_PAGES
);
1615 set_page_refcounted(page
);
1616 __free_pages(page
, pageblock_order
);
1619 adjust_managed_page_count(page
, pageblock_nr_pages
);
1624 * The order of subdivision here is critical for the IO subsystem.
1625 * Please do not alter this order without good reasons and regression
1626 * testing. Specifically, as large blocks of memory are subdivided,
1627 * the order in which smaller blocks are delivered depends on the order
1628 * they're subdivided in this function. This is the primary factor
1629 * influencing the order in which pages are delivered to the IO
1630 * subsystem according to empirical testing, and this is also justified
1631 * by considering the behavior of a buddy system containing a single
1632 * large block of memory acted on by a series of small allocations.
1633 * This behavior is a critical factor in sglist merging's success.
1637 static inline void expand(struct zone
*zone
, struct page
*page
,
1638 int low
, int high
, struct free_area
*area
,
1641 unsigned long size
= 1 << high
;
1643 while (high
> low
) {
1647 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1650 * Mark as guard pages (or page), that will allow to
1651 * merge back to allocator when buddy will be freed.
1652 * Corresponding page table entries will not be touched,
1653 * pages will stay not present in virtual address space
1655 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1658 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1660 set_page_order(&page
[size
], high
);
1664 static void check_new_page_bad(struct page
*page
)
1666 const char *bad_reason
= NULL
;
1667 unsigned long bad_flags
= 0;
1669 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1670 bad_reason
= "nonzero mapcount";
1671 if (unlikely(page
->mapping
!= NULL
))
1672 bad_reason
= "non-NULL mapping";
1673 if (unlikely(page_ref_count(page
) != 0))
1674 bad_reason
= "nonzero _count";
1675 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1676 bad_reason
= "HWPoisoned (hardware-corrupted)";
1677 bad_flags
= __PG_HWPOISON
;
1678 /* Don't complain about hwpoisoned pages */
1679 page_mapcount_reset(page
); /* remove PageBuddy */
1682 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1683 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1684 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1687 if (unlikely(page
->mem_cgroup
))
1688 bad_reason
= "page still charged to cgroup";
1690 bad_page(page
, bad_reason
, bad_flags
);
1694 * This page is about to be returned from the page allocator
1696 static inline int check_new_page(struct page
*page
)
1698 if (likely(page_expected_state(page
,
1699 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1702 check_new_page_bad(page
);
1706 static inline bool free_pages_prezeroed(void)
1708 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1709 page_poisoning_enabled();
1712 #ifdef CONFIG_DEBUG_VM
1713 static bool check_pcp_refill(struct page
*page
)
1718 static bool check_new_pcp(struct page
*page
)
1720 return check_new_page(page
);
1723 static bool check_pcp_refill(struct page
*page
)
1725 return check_new_page(page
);
1727 static bool check_new_pcp(struct page
*page
)
1731 #endif /* CONFIG_DEBUG_VM */
1733 static bool check_new_pages(struct page
*page
, unsigned int order
)
1736 for (i
= 0; i
< (1 << order
); i
++) {
1737 struct page
*p
= page
+ i
;
1739 if (unlikely(check_new_page(p
)))
1746 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1749 set_page_private(page
, 0);
1750 set_page_refcounted(page
);
1752 arch_alloc_page(page
, order
);
1753 kernel_map_pages(page
, 1 << order
, 1);
1754 kernel_poison_pages(page
, 1 << order
, 1);
1755 kasan_alloc_pages(page
, order
);
1756 set_page_owner(page
, order
, gfp_flags
);
1759 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1760 unsigned int alloc_flags
)
1764 post_alloc_hook(page
, order
, gfp_flags
);
1766 if (!free_pages_prezeroed() && (gfp_flags
& __GFP_ZERO
))
1767 for (i
= 0; i
< (1 << order
); i
++)
1768 clear_highpage(page
+ i
);
1770 if (order
&& (gfp_flags
& __GFP_COMP
))
1771 prep_compound_page(page
, order
);
1774 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1775 * allocate the page. The expectation is that the caller is taking
1776 * steps that will free more memory. The caller should avoid the page
1777 * being used for !PFMEMALLOC purposes.
1779 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1780 set_page_pfmemalloc(page
);
1782 clear_page_pfmemalloc(page
);
1786 * Go through the free lists for the given migratetype and remove
1787 * the smallest available page from the freelists
1790 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1793 unsigned int current_order
;
1794 struct free_area
*area
;
1797 /* Find a page of the appropriate size in the preferred list */
1798 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1799 area
= &(zone
->free_area
[current_order
]);
1800 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1804 list_del(&page
->lru
);
1805 rmv_page_order(page
);
1807 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1808 set_pcppage_migratetype(page
, migratetype
);
1817 * This array describes the order lists are fallen back to when
1818 * the free lists for the desirable migrate type are depleted
1820 static int fallbacks
[MIGRATE_TYPES
][4] = {
1821 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1822 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1823 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1825 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1827 #ifdef CONFIG_MEMORY_ISOLATION
1828 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1833 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1836 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1839 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1840 unsigned int order
) { return NULL
; }
1844 * Move the free pages in a range to the free lists of the requested type.
1845 * Note that start_page and end_pages are not aligned on a pageblock
1846 * boundary. If alignment is required, use move_freepages_block()
1848 static int move_freepages(struct zone
*zone
,
1849 struct page
*start_page
, struct page
*end_page
,
1850 int migratetype
, int *num_movable
)
1854 int pages_moved
= 0;
1856 #ifndef CONFIG_HOLES_IN_ZONE
1858 * page_zone is not safe to call in this context when
1859 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1860 * anyway as we check zone boundaries in move_freepages_block().
1861 * Remove at a later date when no bug reports exist related to
1862 * grouping pages by mobility
1864 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1870 for (page
= start_page
; page
<= end_page
;) {
1871 if (!pfn_valid_within(page_to_pfn(page
))) {
1876 /* Make sure we are not inadvertently changing nodes */
1877 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1879 if (!PageBuddy(page
)) {
1881 * We assume that pages that could be isolated for
1882 * migration are movable. But we don't actually try
1883 * isolating, as that would be expensive.
1886 (PageLRU(page
) || __PageMovable(page
)))
1893 order
= page_order(page
);
1894 list_move(&page
->lru
,
1895 &zone
->free_area
[order
].free_list
[migratetype
]);
1897 pages_moved
+= 1 << order
;
1903 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1904 int migratetype
, int *num_movable
)
1906 unsigned long start_pfn
, end_pfn
;
1907 struct page
*start_page
, *end_page
;
1909 start_pfn
= page_to_pfn(page
);
1910 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1911 start_page
= pfn_to_page(start_pfn
);
1912 end_page
= start_page
+ pageblock_nr_pages
- 1;
1913 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1915 /* Do not cross zone boundaries */
1916 if (!zone_spans_pfn(zone
, start_pfn
))
1918 if (!zone_spans_pfn(zone
, end_pfn
))
1921 return move_freepages(zone
, start_page
, end_page
, migratetype
,
1925 static void change_pageblock_range(struct page
*pageblock_page
,
1926 int start_order
, int migratetype
)
1928 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1930 while (nr_pageblocks
--) {
1931 set_pageblock_migratetype(pageblock_page
, migratetype
);
1932 pageblock_page
+= pageblock_nr_pages
;
1937 * When we are falling back to another migratetype during allocation, try to
1938 * steal extra free pages from the same pageblocks to satisfy further
1939 * allocations, instead of polluting multiple pageblocks.
1941 * If we are stealing a relatively large buddy page, it is likely there will
1942 * be more free pages in the pageblock, so try to steal them all. For
1943 * reclaimable and unmovable allocations, we steal regardless of page size,
1944 * as fragmentation caused by those allocations polluting movable pageblocks
1945 * is worse than movable allocations stealing from unmovable and reclaimable
1948 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1951 * Leaving this order check is intended, although there is
1952 * relaxed order check in next check. The reason is that
1953 * we can actually steal whole pageblock if this condition met,
1954 * but, below check doesn't guarantee it and that is just heuristic
1955 * so could be changed anytime.
1957 if (order
>= pageblock_order
)
1960 if (order
>= pageblock_order
/ 2 ||
1961 start_mt
== MIGRATE_RECLAIMABLE
||
1962 start_mt
== MIGRATE_UNMOVABLE
||
1963 page_group_by_mobility_disabled
)
1970 * This function implements actual steal behaviour. If order is large enough,
1971 * we can steal whole pageblock. If not, we first move freepages in this
1972 * pageblock to our migratetype and determine how many already-allocated pages
1973 * are there in the pageblock with a compatible migratetype. If at least half
1974 * of pages are free or compatible, we can change migratetype of the pageblock
1975 * itself, so pages freed in the future will be put on the correct free list.
1977 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1978 int start_type
, bool whole_block
)
1980 unsigned int current_order
= page_order(page
);
1981 struct free_area
*area
;
1982 int free_pages
, movable_pages
, alike_pages
;
1985 old_block_type
= get_pageblock_migratetype(page
);
1988 * This can happen due to races and we want to prevent broken
1989 * highatomic accounting.
1991 if (is_migrate_highatomic(old_block_type
))
1994 /* Take ownership for orders >= pageblock_order */
1995 if (current_order
>= pageblock_order
) {
1996 change_pageblock_range(page
, current_order
, start_type
);
2000 /* We are not allowed to try stealing from the whole block */
2004 free_pages
= move_freepages_block(zone
, page
, start_type
,
2007 * Determine how many pages are compatible with our allocation.
2008 * For movable allocation, it's the number of movable pages which
2009 * we just obtained. For other types it's a bit more tricky.
2011 if (start_type
== MIGRATE_MOVABLE
) {
2012 alike_pages
= movable_pages
;
2015 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2016 * to MOVABLE pageblock, consider all non-movable pages as
2017 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2018 * vice versa, be conservative since we can't distinguish the
2019 * exact migratetype of non-movable pages.
2021 if (old_block_type
== MIGRATE_MOVABLE
)
2022 alike_pages
= pageblock_nr_pages
2023 - (free_pages
+ movable_pages
);
2028 /* moving whole block can fail due to zone boundary conditions */
2033 * If a sufficient number of pages in the block are either free or of
2034 * comparable migratability as our allocation, claim the whole block.
2036 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2037 page_group_by_mobility_disabled
)
2038 set_pageblock_migratetype(page
, start_type
);
2043 area
= &zone
->free_area
[current_order
];
2044 list_move(&page
->lru
, &area
->free_list
[start_type
]);
2048 * Check whether there is a suitable fallback freepage with requested order.
2049 * If only_stealable is true, this function returns fallback_mt only if
2050 * we can steal other freepages all together. This would help to reduce
2051 * fragmentation due to mixed migratetype pages in one pageblock.
2053 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2054 int migratetype
, bool only_stealable
, bool *can_steal
)
2059 if (area
->nr_free
== 0)
2064 fallback_mt
= fallbacks
[migratetype
][i
];
2065 if (fallback_mt
== MIGRATE_TYPES
)
2068 if (list_empty(&area
->free_list
[fallback_mt
]))
2071 if (can_steal_fallback(order
, migratetype
))
2074 if (!only_stealable
)
2085 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2086 * there are no empty page blocks that contain a page with a suitable order
2088 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2089 unsigned int alloc_order
)
2092 unsigned long max_managed
, flags
;
2095 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2096 * Check is race-prone but harmless.
2098 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2099 if (zone
->nr_reserved_highatomic
>= max_managed
)
2102 spin_lock_irqsave(&zone
->lock
, flags
);
2104 /* Recheck the nr_reserved_highatomic limit under the lock */
2105 if (zone
->nr_reserved_highatomic
>= max_managed
)
2109 mt
= get_pageblock_migratetype(page
);
2110 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2111 && !is_migrate_cma(mt
)) {
2112 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2113 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2114 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2118 spin_unlock_irqrestore(&zone
->lock
, flags
);
2122 * Used when an allocation is about to fail under memory pressure. This
2123 * potentially hurts the reliability of high-order allocations when under
2124 * intense memory pressure but failed atomic allocations should be easier
2125 * to recover from than an OOM.
2127 * If @force is true, try to unreserve a pageblock even though highatomic
2128 * pageblock is exhausted.
2130 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2133 struct zonelist
*zonelist
= ac
->zonelist
;
2134 unsigned long flags
;
2141 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2144 * Preserve at least one pageblock unless memory pressure
2147 if (!force
&& zone
->nr_reserved_highatomic
<=
2151 spin_lock_irqsave(&zone
->lock
, flags
);
2152 for (order
= 0; order
< MAX_ORDER
; order
++) {
2153 struct free_area
*area
= &(zone
->free_area
[order
]);
2155 page
= list_first_entry_or_null(
2156 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2162 * In page freeing path, migratetype change is racy so
2163 * we can counter several free pages in a pageblock
2164 * in this loop althoug we changed the pageblock type
2165 * from highatomic to ac->migratetype. So we should
2166 * adjust the count once.
2168 if (is_migrate_highatomic_page(page
)) {
2170 * It should never happen but changes to
2171 * locking could inadvertently allow a per-cpu
2172 * drain to add pages to MIGRATE_HIGHATOMIC
2173 * while unreserving so be safe and watch for
2176 zone
->nr_reserved_highatomic
-= min(
2178 zone
->nr_reserved_highatomic
);
2182 * Convert to ac->migratetype and avoid the normal
2183 * pageblock stealing heuristics. Minimally, the caller
2184 * is doing the work and needs the pages. More
2185 * importantly, if the block was always converted to
2186 * MIGRATE_UNMOVABLE or another type then the number
2187 * of pageblocks that cannot be completely freed
2190 set_pageblock_migratetype(page
, ac
->migratetype
);
2191 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2194 spin_unlock_irqrestore(&zone
->lock
, flags
);
2198 spin_unlock_irqrestore(&zone
->lock
, flags
);
2205 * Try finding a free buddy page on the fallback list and put it on the free
2206 * list of requested migratetype, possibly along with other pages from the same
2207 * block, depending on fragmentation avoidance heuristics. Returns true if
2208 * fallback was found so that __rmqueue_smallest() can grab it.
2210 * The use of signed ints for order and current_order is a deliberate
2211 * deviation from the rest of this file, to make the for loop
2212 * condition simpler.
2215 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
2217 struct free_area
*area
;
2224 * Find the largest available free page in the other list. This roughly
2225 * approximates finding the pageblock with the most free pages, which
2226 * would be too costly to do exactly.
2228 for (current_order
= MAX_ORDER
- 1; current_order
>= order
;
2230 area
= &(zone
->free_area
[current_order
]);
2231 fallback_mt
= find_suitable_fallback(area
, current_order
,
2232 start_migratetype
, false, &can_steal
);
2233 if (fallback_mt
== -1)
2237 * We cannot steal all free pages from the pageblock and the
2238 * requested migratetype is movable. In that case it's better to
2239 * steal and split the smallest available page instead of the
2240 * largest available page, because even if the next movable
2241 * allocation falls back into a different pageblock than this
2242 * one, it won't cause permanent fragmentation.
2244 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2245 && current_order
> order
)
2254 for (current_order
= order
; current_order
< MAX_ORDER
;
2256 area
= &(zone
->free_area
[current_order
]);
2257 fallback_mt
= find_suitable_fallback(area
, current_order
,
2258 start_migratetype
, false, &can_steal
);
2259 if (fallback_mt
!= -1)
2264 * This should not happen - we already found a suitable fallback
2265 * when looking for the largest page.
2267 VM_BUG_ON(current_order
== MAX_ORDER
);
2270 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2273 steal_suitable_fallback(zone
, page
, start_migratetype
, can_steal
);
2275 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2276 start_migratetype
, fallback_mt
);
2283 * Do the hard work of removing an element from the buddy allocator.
2284 * Call me with the zone->lock already held.
2286 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
2292 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2293 if (unlikely(!page
)) {
2294 if (migratetype
== MIGRATE_MOVABLE
)
2295 page
= __rmqueue_cma_fallback(zone
, order
);
2297 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
))
2301 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2306 * Obtain a specified number of elements from the buddy allocator, all under
2307 * a single hold of the lock, for efficiency. Add them to the supplied list.
2308 * Returns the number of new pages which were placed at *list.
2310 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2311 unsigned long count
, struct list_head
*list
,
2312 int migratetype
, bool cold
)
2316 spin_lock(&zone
->lock
);
2317 for (i
= 0; i
< count
; ++i
) {
2318 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2319 if (unlikely(page
== NULL
))
2322 if (unlikely(check_pcp_refill(page
)))
2326 * Split buddy pages returned by expand() are received here
2327 * in physical page order. The page is added to the callers and
2328 * list and the list head then moves forward. From the callers
2329 * perspective, the linked list is ordered by page number in
2330 * some conditions. This is useful for IO devices that can
2331 * merge IO requests if the physical pages are ordered
2335 list_add(&page
->lru
, list
);
2337 list_add_tail(&page
->lru
, list
);
2340 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2341 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2346 * i pages were removed from the buddy list even if some leak due
2347 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2348 * on i. Do not confuse with 'alloced' which is the number of
2349 * pages added to the pcp list.
2351 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2352 spin_unlock(&zone
->lock
);
2358 * Called from the vmstat counter updater to drain pagesets of this
2359 * currently executing processor on remote nodes after they have
2362 * Note that this function must be called with the thread pinned to
2363 * a single processor.
2365 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2367 unsigned long flags
;
2368 int to_drain
, batch
;
2370 local_irq_save(flags
);
2371 batch
= READ_ONCE(pcp
->batch
);
2372 to_drain
= min(pcp
->count
, batch
);
2374 free_pcppages_bulk(zone
, to_drain
, pcp
);
2375 pcp
->count
-= to_drain
;
2377 local_irq_restore(flags
);
2382 * Drain pcplists of the indicated processor and zone.
2384 * The processor must either be the current processor and the
2385 * thread pinned to the current processor or a processor that
2388 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2390 unsigned long flags
;
2391 struct per_cpu_pageset
*pset
;
2392 struct per_cpu_pages
*pcp
;
2394 local_irq_save(flags
);
2395 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2399 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2402 local_irq_restore(flags
);
2406 * Drain pcplists of all zones on the indicated processor.
2408 * The processor must either be the current processor and the
2409 * thread pinned to the current processor or a processor that
2412 static void drain_pages(unsigned int cpu
)
2416 for_each_populated_zone(zone
) {
2417 drain_pages_zone(cpu
, zone
);
2422 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2424 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2425 * the single zone's pages.
2427 void drain_local_pages(struct zone
*zone
)
2429 int cpu
= smp_processor_id();
2432 drain_pages_zone(cpu
, zone
);
2437 static void drain_local_pages_wq(struct work_struct
*work
)
2440 * drain_all_pages doesn't use proper cpu hotplug protection so
2441 * we can race with cpu offline when the WQ can move this from
2442 * a cpu pinned worker to an unbound one. We can operate on a different
2443 * cpu which is allright but we also have to make sure to not move to
2447 drain_local_pages(NULL
);
2452 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2454 * When zone parameter is non-NULL, spill just the single zone's pages.
2456 * Note that this can be extremely slow as the draining happens in a workqueue.
2458 void drain_all_pages(struct zone
*zone
)
2463 * Allocate in the BSS so we wont require allocation in
2464 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2466 static cpumask_t cpus_with_pcps
;
2469 * Make sure nobody triggers this path before mm_percpu_wq is fully
2472 if (WARN_ON_ONCE(!mm_percpu_wq
))
2475 /* Workqueues cannot recurse */
2476 if (current
->flags
& PF_WQ_WORKER
)
2480 * Do not drain if one is already in progress unless it's specific to
2481 * a zone. Such callers are primarily CMA and memory hotplug and need
2482 * the drain to be complete when the call returns.
2484 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2487 mutex_lock(&pcpu_drain_mutex
);
2491 * We don't care about racing with CPU hotplug event
2492 * as offline notification will cause the notified
2493 * cpu to drain that CPU pcps and on_each_cpu_mask
2494 * disables preemption as part of its processing
2496 for_each_online_cpu(cpu
) {
2497 struct per_cpu_pageset
*pcp
;
2499 bool has_pcps
= false;
2502 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2506 for_each_populated_zone(z
) {
2507 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2508 if (pcp
->pcp
.count
) {
2516 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2518 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2521 for_each_cpu(cpu
, &cpus_with_pcps
) {
2522 struct work_struct
*work
= per_cpu_ptr(&pcpu_drain
, cpu
);
2523 INIT_WORK(work
, drain_local_pages_wq
);
2524 queue_work_on(cpu
, mm_percpu_wq
, work
);
2526 for_each_cpu(cpu
, &cpus_with_pcps
)
2527 flush_work(per_cpu_ptr(&pcpu_drain
, cpu
));
2529 mutex_unlock(&pcpu_drain_mutex
);
2532 #ifdef CONFIG_HIBERNATION
2534 void mark_free_pages(struct zone
*zone
)
2536 unsigned long pfn
, max_zone_pfn
;
2537 unsigned long flags
;
2538 unsigned int order
, t
;
2541 if (zone_is_empty(zone
))
2544 spin_lock_irqsave(&zone
->lock
, flags
);
2546 max_zone_pfn
= zone_end_pfn(zone
);
2547 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2548 if (pfn_valid(pfn
)) {
2549 page
= pfn_to_page(pfn
);
2551 if (page_zone(page
) != zone
)
2554 if (!swsusp_page_is_forbidden(page
))
2555 swsusp_unset_page_free(page
);
2558 for_each_migratetype_order(order
, t
) {
2559 list_for_each_entry(page
,
2560 &zone
->free_area
[order
].free_list
[t
], lru
) {
2563 pfn
= page_to_pfn(page
);
2564 for (i
= 0; i
< (1UL << order
); i
++)
2565 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2568 spin_unlock_irqrestore(&zone
->lock
, flags
);
2570 #endif /* CONFIG_PM */
2573 * Free a 0-order page
2574 * cold == true ? free a cold page : free a hot page
2576 void free_hot_cold_page(struct page
*page
, bool cold
)
2578 struct zone
*zone
= page_zone(page
);
2579 struct per_cpu_pages
*pcp
;
2580 unsigned long flags
;
2581 unsigned long pfn
= page_to_pfn(page
);
2584 if (!free_pcp_prepare(page
))
2587 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2588 set_pcppage_migratetype(page
, migratetype
);
2589 local_irq_save(flags
);
2590 __count_vm_event(PGFREE
);
2593 * We only track unmovable, reclaimable and movable on pcp lists.
2594 * Free ISOLATE pages back to the allocator because they are being
2595 * offlined but treat HIGHATOMIC as movable pages so we can get those
2596 * areas back if necessary. Otherwise, we may have to free
2597 * excessively into the page allocator
2599 if (migratetype
>= MIGRATE_PCPTYPES
) {
2600 if (unlikely(is_migrate_isolate(migratetype
))) {
2601 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2604 migratetype
= MIGRATE_MOVABLE
;
2607 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2609 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2611 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2613 if (pcp
->count
>= pcp
->high
) {
2614 unsigned long batch
= READ_ONCE(pcp
->batch
);
2615 free_pcppages_bulk(zone
, batch
, pcp
);
2616 pcp
->count
-= batch
;
2620 local_irq_restore(flags
);
2624 * Free a list of 0-order pages
2626 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2628 struct page
*page
, *next
;
2630 list_for_each_entry_safe(page
, next
, list
, lru
) {
2631 trace_mm_page_free_batched(page
, cold
);
2632 free_hot_cold_page(page
, cold
);
2637 * split_page takes a non-compound higher-order page, and splits it into
2638 * n (1<<order) sub-pages: page[0..n]
2639 * Each sub-page must be freed individually.
2641 * Note: this is probably too low level an operation for use in drivers.
2642 * Please consult with lkml before using this in your driver.
2644 void split_page(struct page
*page
, unsigned int order
)
2648 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2649 VM_BUG_ON_PAGE(!page_count(page
), page
);
2651 #ifdef CONFIG_KMEMCHECK
2653 * Split shadow pages too, because free(page[0]) would
2654 * otherwise free the whole shadow.
2656 if (kmemcheck_page_is_tracked(page
))
2657 split_page(virt_to_page(page
[0].shadow
), order
);
2660 for (i
= 1; i
< (1 << order
); i
++)
2661 set_page_refcounted(page
+ i
);
2662 split_page_owner(page
, order
);
2664 EXPORT_SYMBOL_GPL(split_page
);
2666 int __isolate_free_page(struct page
*page
, unsigned int order
)
2668 unsigned long watermark
;
2672 BUG_ON(!PageBuddy(page
));
2674 zone
= page_zone(page
);
2675 mt
= get_pageblock_migratetype(page
);
2677 if (!is_migrate_isolate(mt
)) {
2679 * Obey watermarks as if the page was being allocated. We can
2680 * emulate a high-order watermark check with a raised order-0
2681 * watermark, because we already know our high-order page
2684 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2685 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2688 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2691 /* Remove page from free list */
2692 list_del(&page
->lru
);
2693 zone
->free_area
[order
].nr_free
--;
2694 rmv_page_order(page
);
2697 * Set the pageblock if the isolated page is at least half of a
2700 if (order
>= pageblock_order
- 1) {
2701 struct page
*endpage
= page
+ (1 << order
) - 1;
2702 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2703 int mt
= get_pageblock_migratetype(page
);
2704 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
2705 && !is_migrate_highatomic(mt
))
2706 set_pageblock_migratetype(page
,
2712 return 1UL << order
;
2716 * Update NUMA hit/miss statistics
2718 * Must be called with interrupts disabled.
2720 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
2723 enum zone_stat_item local_stat
= NUMA_LOCAL
;
2725 if (z
->node
!= numa_node_id())
2726 local_stat
= NUMA_OTHER
;
2728 if (z
->node
== preferred_zone
->node
)
2729 __inc_zone_state(z
, NUMA_HIT
);
2731 __inc_zone_state(z
, NUMA_MISS
);
2732 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
2734 __inc_zone_state(z
, local_stat
);
2738 /* Remove page from the per-cpu list, caller must protect the list */
2739 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
2740 bool cold
, struct per_cpu_pages
*pcp
,
2741 struct list_head
*list
)
2746 if (list_empty(list
)) {
2747 pcp
->count
+= rmqueue_bulk(zone
, 0,
2750 if (unlikely(list_empty(list
)))
2755 page
= list_last_entry(list
, struct page
, lru
);
2757 page
= list_first_entry(list
, struct page
, lru
);
2759 list_del(&page
->lru
);
2761 } while (check_new_pcp(page
));
2766 /* Lock and remove page from the per-cpu list */
2767 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
2768 struct zone
*zone
, unsigned int order
,
2769 gfp_t gfp_flags
, int migratetype
)
2771 struct per_cpu_pages
*pcp
;
2772 struct list_head
*list
;
2773 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2775 unsigned long flags
;
2777 local_irq_save(flags
);
2778 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2779 list
= &pcp
->lists
[migratetype
];
2780 page
= __rmqueue_pcplist(zone
, migratetype
, cold
, pcp
, list
);
2782 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2783 zone_statistics(preferred_zone
, zone
);
2785 local_irq_restore(flags
);
2790 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2793 struct page
*rmqueue(struct zone
*preferred_zone
,
2794 struct zone
*zone
, unsigned int order
,
2795 gfp_t gfp_flags
, unsigned int alloc_flags
,
2798 unsigned long flags
;
2801 if (likely(order
== 0)) {
2802 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
2803 gfp_flags
, migratetype
);
2808 * We most definitely don't want callers attempting to
2809 * allocate greater than order-1 page units with __GFP_NOFAIL.
2811 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2812 spin_lock_irqsave(&zone
->lock
, flags
);
2816 if (alloc_flags
& ALLOC_HARDER
) {
2817 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2819 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2822 page
= __rmqueue(zone
, order
, migratetype
);
2823 } while (page
&& check_new_pages(page
, order
));
2824 spin_unlock(&zone
->lock
);
2827 __mod_zone_freepage_state(zone
, -(1 << order
),
2828 get_pcppage_migratetype(page
));
2830 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2831 zone_statistics(preferred_zone
, zone
);
2832 local_irq_restore(flags
);
2835 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
2839 local_irq_restore(flags
);
2843 #ifdef CONFIG_FAIL_PAGE_ALLOC
2846 struct fault_attr attr
;
2848 bool ignore_gfp_highmem
;
2849 bool ignore_gfp_reclaim
;
2851 } fail_page_alloc
= {
2852 .attr
= FAULT_ATTR_INITIALIZER
,
2853 .ignore_gfp_reclaim
= true,
2854 .ignore_gfp_highmem
= true,
2858 static int __init
setup_fail_page_alloc(char *str
)
2860 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2862 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2864 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2866 if (order
< fail_page_alloc
.min_order
)
2868 if (gfp_mask
& __GFP_NOFAIL
)
2870 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2872 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2873 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2876 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2879 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2881 static int __init
fail_page_alloc_debugfs(void)
2883 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2886 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2887 &fail_page_alloc
.attr
);
2889 return PTR_ERR(dir
);
2891 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2892 &fail_page_alloc
.ignore_gfp_reclaim
))
2894 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2895 &fail_page_alloc
.ignore_gfp_highmem
))
2897 if (!debugfs_create_u32("min-order", mode
, dir
,
2898 &fail_page_alloc
.min_order
))
2903 debugfs_remove_recursive(dir
);
2908 late_initcall(fail_page_alloc_debugfs
);
2910 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2912 #else /* CONFIG_FAIL_PAGE_ALLOC */
2914 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2919 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2922 * Return true if free base pages are above 'mark'. For high-order checks it
2923 * will return true of the order-0 watermark is reached and there is at least
2924 * one free page of a suitable size. Checking now avoids taking the zone lock
2925 * to check in the allocation paths if no pages are free.
2927 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2928 int classzone_idx
, unsigned int alloc_flags
,
2933 const bool alloc_harder
= (alloc_flags
& ALLOC_HARDER
);
2935 /* free_pages may go negative - that's OK */
2936 free_pages
-= (1 << order
) - 1;
2938 if (alloc_flags
& ALLOC_HIGH
)
2942 * If the caller does not have rights to ALLOC_HARDER then subtract
2943 * the high-atomic reserves. This will over-estimate the size of the
2944 * atomic reserve but it avoids a search.
2946 if (likely(!alloc_harder
))
2947 free_pages
-= z
->nr_reserved_highatomic
;
2952 /* If allocation can't use CMA areas don't use free CMA pages */
2953 if (!(alloc_flags
& ALLOC_CMA
))
2954 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2958 * Check watermarks for an order-0 allocation request. If these
2959 * are not met, then a high-order request also cannot go ahead
2960 * even if a suitable page happened to be free.
2962 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2965 /* If this is an order-0 request then the watermark is fine */
2969 /* For a high-order request, check at least one suitable page is free */
2970 for (o
= order
; o
< MAX_ORDER
; o
++) {
2971 struct free_area
*area
= &z
->free_area
[o
];
2980 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
2981 if (!list_empty(&area
->free_list
[mt
]))
2986 if ((alloc_flags
& ALLOC_CMA
) &&
2987 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
2995 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2996 int classzone_idx
, unsigned int alloc_flags
)
2998 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2999 zone_page_state(z
, NR_FREE_PAGES
));
3002 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3003 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3005 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3009 /* If allocation can't use CMA areas don't use free CMA pages */
3010 if (!(alloc_flags
& ALLOC_CMA
))
3011 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3015 * Fast check for order-0 only. If this fails then the reserves
3016 * need to be calculated. There is a corner case where the check
3017 * passes but only the high-order atomic reserve are free. If
3018 * the caller is !atomic then it'll uselessly search the free
3019 * list. That corner case is then slower but it is harmless.
3021 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3024 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3028 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3029 unsigned long mark
, int classzone_idx
)
3031 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3033 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3034 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3036 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3041 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3043 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3046 #else /* CONFIG_NUMA */
3047 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3051 #endif /* CONFIG_NUMA */
3054 * get_page_from_freelist goes through the zonelist trying to allocate
3057 static struct page
*
3058 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3059 const struct alloc_context
*ac
)
3061 struct zoneref
*z
= ac
->preferred_zoneref
;
3063 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3066 * Scan zonelist, looking for a zone with enough free.
3067 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3069 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3074 if (cpusets_enabled() &&
3075 (alloc_flags
& ALLOC_CPUSET
) &&
3076 !__cpuset_zone_allowed(zone
, gfp_mask
))
3079 * When allocating a page cache page for writing, we
3080 * want to get it from a node that is within its dirty
3081 * limit, such that no single node holds more than its
3082 * proportional share of globally allowed dirty pages.
3083 * The dirty limits take into account the node's
3084 * lowmem reserves and high watermark so that kswapd
3085 * should be able to balance it without having to
3086 * write pages from its LRU list.
3088 * XXX: For now, allow allocations to potentially
3089 * exceed the per-node dirty limit in the slowpath
3090 * (spread_dirty_pages unset) before going into reclaim,
3091 * which is important when on a NUMA setup the allowed
3092 * nodes are together not big enough to reach the
3093 * global limit. The proper fix for these situations
3094 * will require awareness of nodes in the
3095 * dirty-throttling and the flusher threads.
3097 if (ac
->spread_dirty_pages
) {
3098 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3101 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3102 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3107 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
3108 if (!zone_watermark_fast(zone
, order
, mark
,
3109 ac_classzone_idx(ac
), alloc_flags
)) {
3112 /* Checked here to keep the fast path fast */
3113 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3114 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3117 if (node_reclaim_mode
== 0 ||
3118 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3121 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3123 case NODE_RECLAIM_NOSCAN
:
3126 case NODE_RECLAIM_FULL
:
3127 /* scanned but unreclaimable */
3130 /* did we reclaim enough */
3131 if (zone_watermark_ok(zone
, order
, mark
,
3132 ac_classzone_idx(ac
), alloc_flags
))
3140 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3141 gfp_mask
, alloc_flags
, ac
->migratetype
);
3143 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3146 * If this is a high-order atomic allocation then check
3147 * if the pageblock should be reserved for the future
3149 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3150 reserve_highatomic_pageblock(page
, zone
, order
);
3160 * Large machines with many possible nodes should not always dump per-node
3161 * meminfo in irq context.
3163 static inline bool should_suppress_show_mem(void)
3168 ret
= in_interrupt();
3173 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3175 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3176 static DEFINE_RATELIMIT_STATE(show_mem_rs
, HZ
, 1);
3178 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs
))
3182 * This documents exceptions given to allocations in certain
3183 * contexts that are allowed to allocate outside current's set
3186 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3187 if (test_thread_flag(TIF_MEMDIE
) ||
3188 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3189 filter
&= ~SHOW_MEM_FILTER_NODES
;
3190 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3191 filter
&= ~SHOW_MEM_FILTER_NODES
;
3193 show_mem(filter
, nodemask
);
3196 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3198 struct va_format vaf
;
3200 static DEFINE_RATELIMIT_STATE(nopage_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3201 DEFAULT_RATELIMIT_BURST
);
3203 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3206 pr_warn("%s: ", current
->comm
);
3208 va_start(args
, fmt
);
3211 pr_cont("%pV", &vaf
);
3214 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask
, &gfp_mask
);
3216 pr_cont("%*pbl\n", nodemask_pr_args(nodemask
));
3218 pr_cont("(null)\n");
3220 cpuset_print_current_mems_allowed();
3223 warn_alloc_show_mem(gfp_mask
, nodemask
);
3226 static inline struct page
*
3227 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3228 unsigned int alloc_flags
,
3229 const struct alloc_context
*ac
)
3233 page
= get_page_from_freelist(gfp_mask
, order
,
3234 alloc_flags
|ALLOC_CPUSET
, ac
);
3236 * fallback to ignore cpuset restriction if our nodes
3240 page
= get_page_from_freelist(gfp_mask
, order
,
3246 static inline struct page
*
3247 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3248 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3250 struct oom_control oc
= {
3251 .zonelist
= ac
->zonelist
,
3252 .nodemask
= ac
->nodemask
,
3254 .gfp_mask
= gfp_mask
,
3259 *did_some_progress
= 0;
3262 * Acquire the oom lock. If that fails, somebody else is
3263 * making progress for us.
3265 if (!mutex_trylock(&oom_lock
)) {
3266 *did_some_progress
= 1;
3267 schedule_timeout_uninterruptible(1);
3272 * Go through the zonelist yet one more time, keep very high watermark
3273 * here, this is only to catch a parallel oom killing, we must fail if
3274 * we're still under heavy pressure.
3276 page
= get_page_from_freelist(gfp_mask
| __GFP_HARDWALL
, order
,
3277 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3281 /* Coredumps can quickly deplete all memory reserves */
3282 if (current
->flags
& PF_DUMPCORE
)
3284 /* The OOM killer will not help higher order allocs */
3285 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3287 /* The OOM killer does not needlessly kill tasks for lowmem */
3288 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3290 if (pm_suspended_storage())
3293 * XXX: GFP_NOFS allocations should rather fail than rely on
3294 * other request to make a forward progress.
3295 * We are in an unfortunate situation where out_of_memory cannot
3296 * do much for this context but let's try it to at least get
3297 * access to memory reserved if the current task is killed (see
3298 * out_of_memory). Once filesystems are ready to handle allocation
3299 * failures more gracefully we should just bail out here.
3302 /* The OOM killer may not free memory on a specific node */
3303 if (gfp_mask
& __GFP_THISNODE
)
3306 /* Exhausted what can be done so it's blamo time */
3307 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3308 *did_some_progress
= 1;
3311 * Help non-failing allocations by giving them access to memory
3314 if (gfp_mask
& __GFP_NOFAIL
)
3315 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3316 ALLOC_NO_WATERMARKS
, ac
);
3319 mutex_unlock(&oom_lock
);
3324 * Maximum number of compaction retries wit a progress before OOM
3325 * killer is consider as the only way to move forward.
3327 #define MAX_COMPACT_RETRIES 16
3329 #ifdef CONFIG_COMPACTION
3330 /* Try memory compaction for high-order allocations before reclaim */
3331 static struct page
*
3332 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3333 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3334 enum compact_priority prio
, enum compact_result
*compact_result
)
3337 unsigned int noreclaim_flag
;
3342 noreclaim_flag
= memalloc_noreclaim_save();
3343 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3345 memalloc_noreclaim_restore(noreclaim_flag
);
3347 if (*compact_result
<= COMPACT_INACTIVE
)
3351 * At least in one zone compaction wasn't deferred or skipped, so let's
3352 * count a compaction stall
3354 count_vm_event(COMPACTSTALL
);
3356 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3359 struct zone
*zone
= page_zone(page
);
3361 zone
->compact_blockskip_flush
= false;
3362 compaction_defer_reset(zone
, order
, true);
3363 count_vm_event(COMPACTSUCCESS
);
3368 * It's bad if compaction run occurs and fails. The most likely reason
3369 * is that pages exist, but not enough to satisfy watermarks.
3371 count_vm_event(COMPACTFAIL
);
3379 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3380 enum compact_result compact_result
,
3381 enum compact_priority
*compact_priority
,
3382 int *compaction_retries
)
3384 int max_retries
= MAX_COMPACT_RETRIES
;
3387 int retries
= *compaction_retries
;
3388 enum compact_priority priority
= *compact_priority
;
3393 if (compaction_made_progress(compact_result
))
3394 (*compaction_retries
)++;
3397 * compaction considers all the zone as desperately out of memory
3398 * so it doesn't really make much sense to retry except when the
3399 * failure could be caused by insufficient priority
3401 if (compaction_failed(compact_result
))
3402 goto check_priority
;
3405 * make sure the compaction wasn't deferred or didn't bail out early
3406 * due to locks contention before we declare that we should give up.
3407 * But do not retry if the given zonelist is not suitable for
3410 if (compaction_withdrawn(compact_result
)) {
3411 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3416 * !costly requests are much more important than __GFP_REPEAT
3417 * costly ones because they are de facto nofail and invoke OOM
3418 * killer to move on while costly can fail and users are ready
3419 * to cope with that. 1/4 retries is rather arbitrary but we
3420 * would need much more detailed feedback from compaction to
3421 * make a better decision.
3423 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3425 if (*compaction_retries
<= max_retries
) {
3431 * Make sure there are attempts at the highest priority if we exhausted
3432 * all retries or failed at the lower priorities.
3435 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3436 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3438 if (*compact_priority
> min_priority
) {
3439 (*compact_priority
)--;
3440 *compaction_retries
= 0;
3444 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3448 static inline struct page
*
3449 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3450 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3451 enum compact_priority prio
, enum compact_result
*compact_result
)
3453 *compact_result
= COMPACT_SKIPPED
;
3458 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3459 enum compact_result compact_result
,
3460 enum compact_priority
*compact_priority
,
3461 int *compaction_retries
)
3466 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3470 * There are setups with compaction disabled which would prefer to loop
3471 * inside the allocator rather than hit the oom killer prematurely.
3472 * Let's give them a good hope and keep retrying while the order-0
3473 * watermarks are OK.
3475 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3477 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3478 ac_classzone_idx(ac
), alloc_flags
))
3483 #endif /* CONFIG_COMPACTION */
3485 /* Perform direct synchronous page reclaim */
3487 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3488 const struct alloc_context
*ac
)
3490 struct reclaim_state reclaim_state
;
3492 unsigned int noreclaim_flag
;
3496 /* We now go into synchronous reclaim */
3497 cpuset_memory_pressure_bump();
3498 noreclaim_flag
= memalloc_noreclaim_save();
3499 lockdep_set_current_reclaim_state(gfp_mask
);
3500 reclaim_state
.reclaimed_slab
= 0;
3501 current
->reclaim_state
= &reclaim_state
;
3503 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3506 current
->reclaim_state
= NULL
;
3507 lockdep_clear_current_reclaim_state();
3508 memalloc_noreclaim_restore(noreclaim_flag
);
3515 /* The really slow allocator path where we enter direct reclaim */
3516 static inline struct page
*
3517 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3518 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3519 unsigned long *did_some_progress
)
3521 struct page
*page
= NULL
;
3522 bool drained
= false;
3524 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3525 if (unlikely(!(*did_some_progress
)))
3529 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3532 * If an allocation failed after direct reclaim, it could be because
3533 * pages are pinned on the per-cpu lists or in high alloc reserves.
3534 * Shrink them them and try again
3536 if (!page
&& !drained
) {
3537 unreserve_highatomic_pageblock(ac
, false);
3538 drain_all_pages(NULL
);
3546 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
3550 pg_data_t
*last_pgdat
= NULL
;
3552 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3553 ac
->high_zoneidx
, ac
->nodemask
) {
3554 if (last_pgdat
!= zone
->zone_pgdat
)
3555 wakeup_kswapd(zone
, order
, ac
->high_zoneidx
);
3556 last_pgdat
= zone
->zone_pgdat
;
3560 static inline unsigned int
3561 gfp_to_alloc_flags(gfp_t gfp_mask
)
3563 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3565 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3566 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3569 * The caller may dip into page reserves a bit more if the caller
3570 * cannot run direct reclaim, or if the caller has realtime scheduling
3571 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3572 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3574 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3576 if (gfp_mask
& __GFP_ATOMIC
) {
3578 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3579 * if it can't schedule.
3581 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3582 alloc_flags
|= ALLOC_HARDER
;
3584 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3585 * comment for __cpuset_node_allowed().
3587 alloc_flags
&= ~ALLOC_CPUSET
;
3588 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3589 alloc_flags
|= ALLOC_HARDER
;
3592 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3593 alloc_flags
|= ALLOC_CMA
;
3598 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3600 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3603 if (gfp_mask
& __GFP_MEMALLOC
)
3605 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3607 if (!in_interrupt() &&
3608 ((current
->flags
& PF_MEMALLOC
) ||
3609 unlikely(test_thread_flag(TIF_MEMDIE
))))
3616 * Checks whether it makes sense to retry the reclaim to make a forward progress
3617 * for the given allocation request.
3619 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3620 * without success, or when we couldn't even meet the watermark if we
3621 * reclaimed all remaining pages on the LRU lists.
3623 * Returns true if a retry is viable or false to enter the oom path.
3626 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3627 struct alloc_context
*ac
, int alloc_flags
,
3628 bool did_some_progress
, int *no_progress_loops
)
3634 * Costly allocations might have made a progress but this doesn't mean
3635 * their order will become available due to high fragmentation so
3636 * always increment the no progress counter for them
3638 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3639 *no_progress_loops
= 0;
3641 (*no_progress_loops
)++;
3644 * Make sure we converge to OOM if we cannot make any progress
3645 * several times in the row.
3647 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
3648 /* Before OOM, exhaust highatomic_reserve */
3649 return unreserve_highatomic_pageblock(ac
, true);
3653 * Keep reclaiming pages while there is a chance this will lead
3654 * somewhere. If none of the target zones can satisfy our allocation
3655 * request even if all reclaimable pages are considered then we are
3656 * screwed and have to go OOM.
3658 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3660 unsigned long available
;
3661 unsigned long reclaimable
;
3662 unsigned long min_wmark
= min_wmark_pages(zone
);
3665 available
= reclaimable
= zone_reclaimable_pages(zone
);
3666 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3669 * Would the allocation succeed if we reclaimed all
3670 * reclaimable pages?
3672 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
3673 ac_classzone_idx(ac
), alloc_flags
, available
);
3674 trace_reclaim_retry_zone(z
, order
, reclaimable
,
3675 available
, min_wmark
, *no_progress_loops
, wmark
);
3678 * If we didn't make any progress and have a lot of
3679 * dirty + writeback pages then we should wait for
3680 * an IO to complete to slow down the reclaim and
3681 * prevent from pre mature OOM
3683 if (!did_some_progress
) {
3684 unsigned long write_pending
;
3686 write_pending
= zone_page_state_snapshot(zone
,
3687 NR_ZONE_WRITE_PENDING
);
3689 if (2 * write_pending
> reclaimable
) {
3690 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3696 * Memory allocation/reclaim might be called from a WQ
3697 * context and the current implementation of the WQ
3698 * concurrency control doesn't recognize that
3699 * a particular WQ is congested if the worker thread is
3700 * looping without ever sleeping. Therefore we have to
3701 * do a short sleep here rather than calling
3704 if (current
->flags
& PF_WQ_WORKER
)
3705 schedule_timeout_uninterruptible(1);
3717 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
3720 * It's possible that cpuset's mems_allowed and the nodemask from
3721 * mempolicy don't intersect. This should be normally dealt with by
3722 * policy_nodemask(), but it's possible to race with cpuset update in
3723 * such a way the check therein was true, and then it became false
3724 * before we got our cpuset_mems_cookie here.
3725 * This assumes that for all allocations, ac->nodemask can come only
3726 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3727 * when it does not intersect with the cpuset restrictions) or the
3728 * caller can deal with a violated nodemask.
3730 if (cpusets_enabled() && ac
->nodemask
&&
3731 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
3732 ac
->nodemask
= NULL
;
3737 * When updating a task's mems_allowed or mempolicy nodemask, it is
3738 * possible to race with parallel threads in such a way that our
3739 * allocation can fail while the mask is being updated. If we are about
3740 * to fail, check if the cpuset changed during allocation and if so,
3743 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3749 static inline struct page
*
3750 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3751 struct alloc_context
*ac
)
3753 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3754 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
3755 struct page
*page
= NULL
;
3756 unsigned int alloc_flags
;
3757 unsigned long did_some_progress
;
3758 enum compact_priority compact_priority
;
3759 enum compact_result compact_result
;
3760 int compaction_retries
;
3761 int no_progress_loops
;
3762 unsigned long alloc_start
= jiffies
;
3763 unsigned int stall_timeout
= 10 * HZ
;
3764 unsigned int cpuset_mems_cookie
;
3767 * In the slowpath, we sanity check order to avoid ever trying to
3768 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3769 * be using allocators in order of preference for an area that is
3772 if (order
>= MAX_ORDER
) {
3773 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3778 * We also sanity check to catch abuse of atomic reserves being used by
3779 * callers that are not in atomic context.
3781 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3782 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3783 gfp_mask
&= ~__GFP_ATOMIC
;
3786 compaction_retries
= 0;
3787 no_progress_loops
= 0;
3788 compact_priority
= DEF_COMPACT_PRIORITY
;
3789 cpuset_mems_cookie
= read_mems_allowed_begin();
3792 * The fast path uses conservative alloc_flags to succeed only until
3793 * kswapd needs to be woken up, and to avoid the cost of setting up
3794 * alloc_flags precisely. So we do that now.
3796 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3799 * We need to recalculate the starting point for the zonelist iterator
3800 * because we might have used different nodemask in the fast path, or
3801 * there was a cpuset modification and we are retrying - otherwise we
3802 * could end up iterating over non-eligible zones endlessly.
3804 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3805 ac
->high_zoneidx
, ac
->nodemask
);
3806 if (!ac
->preferred_zoneref
->zone
)
3809 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3810 wake_all_kswapds(order
, ac
);
3813 * The adjusted alloc_flags might result in immediate success, so try
3816 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3821 * For costly allocations, try direct compaction first, as it's likely
3822 * that we have enough base pages and don't need to reclaim. For non-
3823 * movable high-order allocations, do that as well, as compaction will
3824 * try prevent permanent fragmentation by migrating from blocks of the
3826 * Don't try this for allocations that are allowed to ignore
3827 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3829 if (can_direct_reclaim
&&
3831 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
3832 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
3833 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
3835 INIT_COMPACT_PRIORITY
,
3841 * Checks for costly allocations with __GFP_NORETRY, which
3842 * includes THP page fault allocations
3844 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
3846 * If compaction is deferred for high-order allocations,
3847 * it is because sync compaction recently failed. If
3848 * this is the case and the caller requested a THP
3849 * allocation, we do not want to heavily disrupt the
3850 * system, so we fail the allocation instead of entering
3853 if (compact_result
== COMPACT_DEFERRED
)
3857 * Looks like reclaim/compaction is worth trying, but
3858 * sync compaction could be very expensive, so keep
3859 * using async compaction.
3861 compact_priority
= INIT_COMPACT_PRIORITY
;
3866 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3867 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3868 wake_all_kswapds(order
, ac
);
3870 if (gfp_pfmemalloc_allowed(gfp_mask
))
3871 alloc_flags
= ALLOC_NO_WATERMARKS
;
3874 * Reset the zonelist iterators if memory policies can be ignored.
3875 * These allocations are high priority and system rather than user
3878 if (!(alloc_flags
& ALLOC_CPUSET
) || (alloc_flags
& ALLOC_NO_WATERMARKS
)) {
3879 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
3880 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3881 ac
->high_zoneidx
, ac
->nodemask
);
3884 /* Attempt with potentially adjusted zonelist and alloc_flags */
3885 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3889 /* Caller is not willing to reclaim, we can't balance anything */
3890 if (!can_direct_reclaim
)
3893 /* Make sure we know about allocations which stall for too long */
3894 if (time_after(jiffies
, alloc_start
+ stall_timeout
)) {
3895 warn_alloc(gfp_mask
& ~__GFP_NOWARN
, ac
->nodemask
,
3896 "page allocation stalls for %ums, order:%u",
3897 jiffies_to_msecs(jiffies
-alloc_start
), order
);
3898 stall_timeout
+= 10 * HZ
;
3901 /* Avoid recursion of direct reclaim */
3902 if (current
->flags
& PF_MEMALLOC
)
3905 /* Try direct reclaim and then allocating */
3906 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3907 &did_some_progress
);
3911 /* Try direct compaction and then allocating */
3912 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3913 compact_priority
, &compact_result
);
3917 /* Do not loop if specifically requested */
3918 if (gfp_mask
& __GFP_NORETRY
)
3922 * Do not retry costly high order allocations unless they are
3925 if (costly_order
&& !(gfp_mask
& __GFP_REPEAT
))
3928 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
3929 did_some_progress
> 0, &no_progress_loops
))
3933 * It doesn't make any sense to retry for the compaction if the order-0
3934 * reclaim is not able to make any progress because the current
3935 * implementation of the compaction depends on the sufficient amount
3936 * of free memory (see __compaction_suitable)
3938 if (did_some_progress
> 0 &&
3939 should_compact_retry(ac
, order
, alloc_flags
,
3940 compact_result
, &compact_priority
,
3941 &compaction_retries
))
3945 /* Deal with possible cpuset update races before we start OOM killing */
3946 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
3949 /* Reclaim has failed us, start killing things */
3950 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3954 /* Avoid allocations with no watermarks from looping endlessly */
3955 if (test_thread_flag(TIF_MEMDIE
) &&
3956 (alloc_flags
== ALLOC_NO_WATERMARKS
||
3957 (gfp_mask
& __GFP_NOMEMALLOC
)))
3960 /* Retry as long as the OOM killer is making progress */
3961 if (did_some_progress
) {
3962 no_progress_loops
= 0;
3967 /* Deal with possible cpuset update races before we fail */
3968 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
3972 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3975 if (gfp_mask
& __GFP_NOFAIL
) {
3977 * All existing users of the __GFP_NOFAIL are blockable, so warn
3978 * of any new users that actually require GFP_NOWAIT
3980 if (WARN_ON_ONCE(!can_direct_reclaim
))
3984 * PF_MEMALLOC request from this context is rather bizarre
3985 * because we cannot reclaim anything and only can loop waiting
3986 * for somebody to do a work for us
3988 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
3991 * non failing costly orders are a hard requirement which we
3992 * are not prepared for much so let's warn about these users
3993 * so that we can identify them and convert them to something
3996 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
3999 * Help non-failing allocations by giving them access to memory
4000 * reserves but do not use ALLOC_NO_WATERMARKS because this
4001 * could deplete whole memory reserves which would just make
4002 * the situation worse
4004 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4012 warn_alloc(gfp_mask
, ac
->nodemask
,
4013 "page allocation failure: order:%u", order
);
4018 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4019 int preferred_nid
, nodemask_t
*nodemask
,
4020 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4021 unsigned int *alloc_flags
)
4023 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4024 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4025 ac
->nodemask
= nodemask
;
4026 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4028 if (cpusets_enabled()) {
4029 *alloc_mask
|= __GFP_HARDWALL
;
4031 ac
->nodemask
= &cpuset_current_mems_allowed
;
4033 *alloc_flags
|= ALLOC_CPUSET
;
4036 lockdep_trace_alloc(gfp_mask
);
4038 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4040 if (should_fail_alloc_page(gfp_mask
, order
))
4043 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4044 *alloc_flags
|= ALLOC_CMA
;
4049 /* Determine whether to spread dirty pages and what the first usable zone */
4050 static inline void finalise_ac(gfp_t gfp_mask
,
4051 unsigned int order
, struct alloc_context
*ac
)
4053 /* Dirty zone balancing only done in the fast path */
4054 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4057 * The preferred zone is used for statistics but crucially it is
4058 * also used as the starting point for the zonelist iterator. It
4059 * may get reset for allocations that ignore memory policies.
4061 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4062 ac
->high_zoneidx
, ac
->nodemask
);
4066 * This is the 'heart' of the zoned buddy allocator.
4069 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4070 nodemask_t
*nodemask
)
4073 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4074 gfp_t alloc_mask
= gfp_mask
; /* The gfp_t that was actually used for allocation */
4075 struct alloc_context ac
= { };
4077 gfp_mask
&= gfp_allowed_mask
;
4078 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4081 finalise_ac(gfp_mask
, order
, &ac
);
4083 /* First allocation attempt */
4084 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4089 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4090 * resp. GFP_NOIO which has to be inherited for all allocation requests
4091 * from a particular context which has been marked by
4092 * memalloc_no{fs,io}_{save,restore}.
4094 alloc_mask
= current_gfp_context(gfp_mask
);
4095 ac
.spread_dirty_pages
= false;
4098 * Restore the original nodemask if it was potentially replaced with
4099 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4101 if (unlikely(ac
.nodemask
!= nodemask
))
4102 ac
.nodemask
= nodemask
;
4104 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4107 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4108 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4109 __free_pages(page
, order
);
4113 if (kmemcheck_enabled
&& page
)
4114 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
4116 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4120 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4123 * Common helper functions.
4125 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4130 * __get_free_pages() returns a 32-bit address, which cannot represent
4133 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
4135 page
= alloc_pages(gfp_mask
, order
);
4138 return (unsigned long) page_address(page
);
4140 EXPORT_SYMBOL(__get_free_pages
);
4142 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4144 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4146 EXPORT_SYMBOL(get_zeroed_page
);
4148 void __free_pages(struct page
*page
, unsigned int order
)
4150 if (put_page_testzero(page
)) {
4152 free_hot_cold_page(page
, false);
4154 __free_pages_ok(page
, order
);
4158 EXPORT_SYMBOL(__free_pages
);
4160 void free_pages(unsigned long addr
, unsigned int order
)
4163 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4164 __free_pages(virt_to_page((void *)addr
), order
);
4168 EXPORT_SYMBOL(free_pages
);
4172 * An arbitrary-length arbitrary-offset area of memory which resides
4173 * within a 0 or higher order page. Multiple fragments within that page
4174 * are individually refcounted, in the page's reference counter.
4176 * The page_frag functions below provide a simple allocation framework for
4177 * page fragments. This is used by the network stack and network device
4178 * drivers to provide a backing region of memory for use as either an
4179 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4181 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4184 struct page
*page
= NULL
;
4185 gfp_t gfp
= gfp_mask
;
4187 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4188 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4190 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4191 PAGE_FRAG_CACHE_MAX_ORDER
);
4192 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4194 if (unlikely(!page
))
4195 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4197 nc
->va
= page
? page_address(page
) : NULL
;
4202 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4204 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4206 if (page_ref_sub_and_test(page
, count
)) {
4207 unsigned int order
= compound_order(page
);
4210 free_hot_cold_page(page
, false);
4212 __free_pages_ok(page
, order
);
4215 EXPORT_SYMBOL(__page_frag_cache_drain
);
4217 void *page_frag_alloc(struct page_frag_cache
*nc
,
4218 unsigned int fragsz
, gfp_t gfp_mask
)
4220 unsigned int size
= PAGE_SIZE
;
4224 if (unlikely(!nc
->va
)) {
4226 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4230 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4231 /* if size can vary use size else just use PAGE_SIZE */
4234 /* Even if we own the page, we do not use atomic_set().
4235 * This would break get_page_unless_zero() users.
4237 page_ref_add(page
, size
- 1);
4239 /* reset page count bias and offset to start of new frag */
4240 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4241 nc
->pagecnt_bias
= size
;
4245 offset
= nc
->offset
- fragsz
;
4246 if (unlikely(offset
< 0)) {
4247 page
= virt_to_page(nc
->va
);
4249 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4252 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4253 /* if size can vary use size else just use PAGE_SIZE */
4256 /* OK, page count is 0, we can safely set it */
4257 set_page_count(page
, size
);
4259 /* reset page count bias and offset to start of new frag */
4260 nc
->pagecnt_bias
= size
;
4261 offset
= size
- fragsz
;
4265 nc
->offset
= offset
;
4267 return nc
->va
+ offset
;
4269 EXPORT_SYMBOL(page_frag_alloc
);
4272 * Frees a page fragment allocated out of either a compound or order 0 page.
4274 void page_frag_free(void *addr
)
4276 struct page
*page
= virt_to_head_page(addr
);
4278 if (unlikely(put_page_testzero(page
)))
4279 __free_pages_ok(page
, compound_order(page
));
4281 EXPORT_SYMBOL(page_frag_free
);
4283 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4287 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4288 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4290 split_page(virt_to_page((void *)addr
), order
);
4291 while (used
< alloc_end
) {
4296 return (void *)addr
;
4300 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4301 * @size: the number of bytes to allocate
4302 * @gfp_mask: GFP flags for the allocation
4304 * This function is similar to alloc_pages(), except that it allocates the
4305 * minimum number of pages to satisfy the request. alloc_pages() can only
4306 * allocate memory in power-of-two pages.
4308 * This function is also limited by MAX_ORDER.
4310 * Memory allocated by this function must be released by free_pages_exact().
4312 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4314 unsigned int order
= get_order(size
);
4317 addr
= __get_free_pages(gfp_mask
, order
);
4318 return make_alloc_exact(addr
, order
, size
);
4320 EXPORT_SYMBOL(alloc_pages_exact
);
4323 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4325 * @nid: the preferred node ID where memory should be allocated
4326 * @size: the number of bytes to allocate
4327 * @gfp_mask: GFP flags for the allocation
4329 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4332 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4334 unsigned int order
= get_order(size
);
4335 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4338 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4342 * free_pages_exact - release memory allocated via alloc_pages_exact()
4343 * @virt: the value returned by alloc_pages_exact.
4344 * @size: size of allocation, same value as passed to alloc_pages_exact().
4346 * Release the memory allocated by a previous call to alloc_pages_exact.
4348 void free_pages_exact(void *virt
, size_t size
)
4350 unsigned long addr
= (unsigned long)virt
;
4351 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4353 while (addr
< end
) {
4358 EXPORT_SYMBOL(free_pages_exact
);
4361 * nr_free_zone_pages - count number of pages beyond high watermark
4362 * @offset: The zone index of the highest zone
4364 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4365 * high watermark within all zones at or below a given zone index. For each
4366 * zone, the number of pages is calculated as:
4368 * nr_free_zone_pages = managed_pages - high_pages
4370 static unsigned long nr_free_zone_pages(int offset
)
4375 /* Just pick one node, since fallback list is circular */
4376 unsigned long sum
= 0;
4378 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4380 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4381 unsigned long size
= zone
->managed_pages
;
4382 unsigned long high
= high_wmark_pages(zone
);
4391 * nr_free_buffer_pages - count number of pages beyond high watermark
4393 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4394 * watermark within ZONE_DMA and ZONE_NORMAL.
4396 unsigned long nr_free_buffer_pages(void)
4398 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4400 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4403 * nr_free_pagecache_pages - count number of pages beyond high watermark
4405 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4406 * high watermark within all zones.
4408 unsigned long nr_free_pagecache_pages(void)
4410 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4413 static inline void show_node(struct zone
*zone
)
4415 if (IS_ENABLED(CONFIG_NUMA
))
4416 printk("Node %d ", zone_to_nid(zone
));
4419 long si_mem_available(void)
4422 unsigned long pagecache
;
4423 unsigned long wmark_low
= 0;
4424 unsigned long pages
[NR_LRU_LISTS
];
4428 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4429 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4432 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4435 * Estimate the amount of memory available for userspace allocations,
4436 * without causing swapping.
4438 available
= global_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4441 * Not all the page cache can be freed, otherwise the system will
4442 * start swapping. Assume at least half of the page cache, or the
4443 * low watermark worth of cache, needs to stay.
4445 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4446 pagecache
-= min(pagecache
/ 2, wmark_low
);
4447 available
+= pagecache
;
4450 * Part of the reclaimable slab consists of items that are in use,
4451 * and cannot be freed. Cap this estimate at the low watermark.
4453 available
+= global_page_state(NR_SLAB_RECLAIMABLE
) -
4454 min(global_page_state(NR_SLAB_RECLAIMABLE
) / 2, wmark_low
);
4460 EXPORT_SYMBOL_GPL(si_mem_available
);
4462 void si_meminfo(struct sysinfo
*val
)
4464 val
->totalram
= totalram_pages
;
4465 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4466 val
->freeram
= global_page_state(NR_FREE_PAGES
);
4467 val
->bufferram
= nr_blockdev_pages();
4468 val
->totalhigh
= totalhigh_pages
;
4469 val
->freehigh
= nr_free_highpages();
4470 val
->mem_unit
= PAGE_SIZE
;
4473 EXPORT_SYMBOL(si_meminfo
);
4476 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4478 int zone_type
; /* needs to be signed */
4479 unsigned long managed_pages
= 0;
4480 unsigned long managed_highpages
= 0;
4481 unsigned long free_highpages
= 0;
4482 pg_data_t
*pgdat
= NODE_DATA(nid
);
4484 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4485 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4486 val
->totalram
= managed_pages
;
4487 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4488 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4489 #ifdef CONFIG_HIGHMEM
4490 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4491 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4493 if (is_highmem(zone
)) {
4494 managed_highpages
+= zone
->managed_pages
;
4495 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4498 val
->totalhigh
= managed_highpages
;
4499 val
->freehigh
= free_highpages
;
4501 val
->totalhigh
= managed_highpages
;
4502 val
->freehigh
= free_highpages
;
4504 val
->mem_unit
= PAGE_SIZE
;
4509 * Determine whether the node should be displayed or not, depending on whether
4510 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4512 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
4514 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4518 * no node mask - aka implicit memory numa policy. Do not bother with
4519 * the synchronization - read_mems_allowed_begin - because we do not
4520 * have to be precise here.
4523 nodemask
= &cpuset_current_mems_allowed
;
4525 return !node_isset(nid
, *nodemask
);
4528 #define K(x) ((x) << (PAGE_SHIFT-10))
4530 static void show_migration_types(unsigned char type
)
4532 static const char types
[MIGRATE_TYPES
] = {
4533 [MIGRATE_UNMOVABLE
] = 'U',
4534 [MIGRATE_MOVABLE
] = 'M',
4535 [MIGRATE_RECLAIMABLE
] = 'E',
4536 [MIGRATE_HIGHATOMIC
] = 'H',
4538 [MIGRATE_CMA
] = 'C',
4540 #ifdef CONFIG_MEMORY_ISOLATION
4541 [MIGRATE_ISOLATE
] = 'I',
4544 char tmp
[MIGRATE_TYPES
+ 1];
4548 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4549 if (type
& (1 << i
))
4554 printk(KERN_CONT
"(%s) ", tmp
);
4558 * Show free area list (used inside shift_scroll-lock stuff)
4559 * We also calculate the percentage fragmentation. We do this by counting the
4560 * memory on each free list with the exception of the first item on the list.
4563 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4566 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
4568 unsigned long free_pcp
= 0;
4573 for_each_populated_zone(zone
) {
4574 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4577 for_each_online_cpu(cpu
)
4578 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4581 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4582 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4583 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4584 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4585 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4586 " free:%lu free_pcp:%lu free_cma:%lu\n",
4587 global_node_page_state(NR_ACTIVE_ANON
),
4588 global_node_page_state(NR_INACTIVE_ANON
),
4589 global_node_page_state(NR_ISOLATED_ANON
),
4590 global_node_page_state(NR_ACTIVE_FILE
),
4591 global_node_page_state(NR_INACTIVE_FILE
),
4592 global_node_page_state(NR_ISOLATED_FILE
),
4593 global_node_page_state(NR_UNEVICTABLE
),
4594 global_node_page_state(NR_FILE_DIRTY
),
4595 global_node_page_state(NR_WRITEBACK
),
4596 global_node_page_state(NR_UNSTABLE_NFS
),
4597 global_page_state(NR_SLAB_RECLAIMABLE
),
4598 global_page_state(NR_SLAB_UNRECLAIMABLE
),
4599 global_node_page_state(NR_FILE_MAPPED
),
4600 global_node_page_state(NR_SHMEM
),
4601 global_page_state(NR_PAGETABLE
),
4602 global_page_state(NR_BOUNCE
),
4603 global_page_state(NR_FREE_PAGES
),
4605 global_page_state(NR_FREE_CMA_PAGES
));
4607 for_each_online_pgdat(pgdat
) {
4608 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
4612 " active_anon:%lukB"
4613 " inactive_anon:%lukB"
4614 " active_file:%lukB"
4615 " inactive_file:%lukB"
4616 " unevictable:%lukB"
4617 " isolated(anon):%lukB"
4618 " isolated(file):%lukB"
4623 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4625 " shmem_pmdmapped: %lukB"
4628 " writeback_tmp:%lukB"
4630 " all_unreclaimable? %s"
4633 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4634 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4635 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4636 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4637 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4638 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4639 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4640 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4641 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4642 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4643 K(node_page_state(pgdat
, NR_SHMEM
)),
4644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4645 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4646 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4648 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4650 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4651 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4652 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
4656 for_each_populated_zone(zone
) {
4659 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4663 for_each_online_cpu(cpu
)
4664 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4673 " active_anon:%lukB"
4674 " inactive_anon:%lukB"
4675 " active_file:%lukB"
4676 " inactive_file:%lukB"
4677 " unevictable:%lukB"
4678 " writepending:%lukB"
4682 " kernel_stack:%lukB"
4690 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4691 K(min_wmark_pages(zone
)),
4692 K(low_wmark_pages(zone
)),
4693 K(high_wmark_pages(zone
)),
4694 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4695 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4696 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4697 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4698 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4699 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4700 K(zone
->present_pages
),
4701 K(zone
->managed_pages
),
4702 K(zone_page_state(zone
, NR_MLOCK
)),
4703 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4704 K(zone_page_state(zone
, NR_PAGETABLE
)),
4705 K(zone_page_state(zone
, NR_BOUNCE
)),
4707 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4708 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4709 printk("lowmem_reserve[]:");
4710 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4711 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
4712 printk(KERN_CONT
"\n");
4715 for_each_populated_zone(zone
) {
4717 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
4718 unsigned char types
[MAX_ORDER
];
4720 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4723 printk(KERN_CONT
"%s: ", zone
->name
);
4725 spin_lock_irqsave(&zone
->lock
, flags
);
4726 for (order
= 0; order
< MAX_ORDER
; order
++) {
4727 struct free_area
*area
= &zone
->free_area
[order
];
4730 nr
[order
] = area
->nr_free
;
4731 total
+= nr
[order
] << order
;
4734 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
4735 if (!list_empty(&area
->free_list
[type
]))
4736 types
[order
] |= 1 << type
;
4739 spin_unlock_irqrestore(&zone
->lock
, flags
);
4740 for (order
= 0; order
< MAX_ORDER
; order
++) {
4741 printk(KERN_CONT
"%lu*%lukB ",
4742 nr
[order
], K(1UL) << order
);
4744 show_migration_types(types
[order
]);
4746 printk(KERN_CONT
"= %lukB\n", K(total
));
4749 hugetlb_show_meminfo();
4751 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
4753 show_swap_cache_info();
4756 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
4758 zoneref
->zone
= zone
;
4759 zoneref
->zone_idx
= zone_idx(zone
);
4763 * Builds allocation fallback zone lists.
4765 * Add all populated zones of a node to the zonelist.
4767 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
4771 enum zone_type zone_type
= MAX_NR_ZONES
;
4775 zone
= pgdat
->node_zones
+ zone_type
;
4776 if (managed_zone(zone
)) {
4777 zoneref_set_zone(zone
,
4778 &zonelist
->_zonerefs
[nr_zones
++]);
4779 check_highest_zone(zone_type
);
4781 } while (zone_type
);
4789 * 0 = automatic detection of better ordering.
4790 * 1 = order by ([node] distance, -zonetype)
4791 * 2 = order by (-zonetype, [node] distance)
4793 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4794 * the same zonelist. So only NUMA can configure this param.
4796 #define ZONELIST_ORDER_DEFAULT 0
4797 #define ZONELIST_ORDER_NODE 1
4798 #define ZONELIST_ORDER_ZONE 2
4800 /* zonelist order in the kernel.
4801 * set_zonelist_order() will set this to NODE or ZONE.
4803 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4804 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
4808 /* The value user specified ....changed by config */
4809 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4810 /* string for sysctl */
4811 #define NUMA_ZONELIST_ORDER_LEN 16
4812 char numa_zonelist_order
[16] = "default";
4815 * interface for configure zonelist ordering.
4816 * command line option "numa_zonelist_order"
4817 * = "[dD]efault - default, automatic configuration.
4818 * = "[nN]ode - order by node locality, then by zone within node
4819 * = "[zZ]one - order by zone, then by locality within zone
4822 static int __parse_numa_zonelist_order(char *s
)
4824 if (*s
== 'd' || *s
== 'D') {
4825 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4826 } else if (*s
== 'n' || *s
== 'N') {
4827 user_zonelist_order
= ZONELIST_ORDER_NODE
;
4828 } else if (*s
== 'z' || *s
== 'Z') {
4829 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
4831 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s
);
4837 static __init
int setup_numa_zonelist_order(char *s
)
4844 ret
= __parse_numa_zonelist_order(s
);
4846 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
4850 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4853 * sysctl handler for numa_zonelist_order
4855 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4856 void __user
*buffer
, size_t *length
,
4859 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
4861 static DEFINE_MUTEX(zl_order_mutex
);
4863 mutex_lock(&zl_order_mutex
);
4865 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
4869 strcpy(saved_string
, (char *)table
->data
);
4871 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
4875 int oldval
= user_zonelist_order
;
4877 ret
= __parse_numa_zonelist_order((char *)table
->data
);
4880 * bogus value. restore saved string
4882 strncpy((char *)table
->data
, saved_string
,
4883 NUMA_ZONELIST_ORDER_LEN
);
4884 user_zonelist_order
= oldval
;
4885 } else if (oldval
!= user_zonelist_order
) {
4886 mutex_lock(&zonelists_mutex
);
4887 build_all_zonelists(NULL
, NULL
);
4888 mutex_unlock(&zonelists_mutex
);
4892 mutex_unlock(&zl_order_mutex
);
4897 #define MAX_NODE_LOAD (nr_online_nodes)
4898 static int node_load
[MAX_NUMNODES
];
4901 * find_next_best_node - find the next node that should appear in a given node's fallback list
4902 * @node: node whose fallback list we're appending
4903 * @used_node_mask: nodemask_t of already used nodes
4905 * We use a number of factors to determine which is the next node that should
4906 * appear on a given node's fallback list. The node should not have appeared
4907 * already in @node's fallback list, and it should be the next closest node
4908 * according to the distance array (which contains arbitrary distance values
4909 * from each node to each node in the system), and should also prefer nodes
4910 * with no CPUs, since presumably they'll have very little allocation pressure
4911 * on them otherwise.
4912 * It returns -1 if no node is found.
4914 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4917 int min_val
= INT_MAX
;
4918 int best_node
= NUMA_NO_NODE
;
4919 const struct cpumask
*tmp
= cpumask_of_node(0);
4921 /* Use the local node if we haven't already */
4922 if (!node_isset(node
, *used_node_mask
)) {
4923 node_set(node
, *used_node_mask
);
4927 for_each_node_state(n
, N_MEMORY
) {
4929 /* Don't want a node to appear more than once */
4930 if (node_isset(n
, *used_node_mask
))
4933 /* Use the distance array to find the distance */
4934 val
= node_distance(node
, n
);
4936 /* Penalize nodes under us ("prefer the next node") */
4939 /* Give preference to headless and unused nodes */
4940 tmp
= cpumask_of_node(n
);
4941 if (!cpumask_empty(tmp
))
4942 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4944 /* Slight preference for less loaded node */
4945 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4946 val
+= node_load
[n
];
4948 if (val
< min_val
) {
4955 node_set(best_node
, *used_node_mask
);
4962 * Build zonelists ordered by node and zones within node.
4963 * This results in maximum locality--normal zone overflows into local
4964 * DMA zone, if any--but risks exhausting DMA zone.
4966 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
4969 struct zonelist
*zonelist
;
4971 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
4972 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
4974 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4975 zonelist
->_zonerefs
[j
].zone
= NULL
;
4976 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4980 * Build gfp_thisnode zonelists
4982 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
4985 struct zonelist
*zonelist
;
4987 zonelist
= &pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
];
4988 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4989 zonelist
->_zonerefs
[j
].zone
= NULL
;
4990 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4994 * Build zonelists ordered by zone and nodes within zones.
4995 * This results in conserving DMA zone[s] until all Normal memory is
4996 * exhausted, but results in overflowing to remote node while memory
4997 * may still exist in local DMA zone.
4999 static int node_order
[MAX_NUMNODES
];
5001 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
5004 int zone_type
; /* needs to be signed */
5006 struct zonelist
*zonelist
;
5008 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
5010 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
5011 for (j
= 0; j
< nr_nodes
; j
++) {
5012 node
= node_order
[j
];
5013 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
5014 if (managed_zone(z
)) {
5016 &zonelist
->_zonerefs
[pos
++]);
5017 check_highest_zone(zone_type
);
5021 zonelist
->_zonerefs
[pos
].zone
= NULL
;
5022 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
5025 #if defined(CONFIG_64BIT)
5027 * Devices that require DMA32/DMA are relatively rare and do not justify a
5028 * penalty to every machine in case the specialised case applies. Default
5029 * to Node-ordering on 64-bit NUMA machines
5031 static int default_zonelist_order(void)
5033 return ZONELIST_ORDER_NODE
;
5037 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
5038 * by the kernel. If processes running on node 0 deplete the low memory zone
5039 * then reclaim will occur more frequency increasing stalls and potentially
5040 * be easier to OOM if a large percentage of the zone is under writeback or
5041 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
5042 * Hence, default to zone ordering on 32-bit.
5044 static int default_zonelist_order(void)
5046 return ZONELIST_ORDER_ZONE
;
5048 #endif /* CONFIG_64BIT */
5050 static void set_zonelist_order(void)
5052 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
5053 current_zonelist_order
= default_zonelist_order();
5055 current_zonelist_order
= user_zonelist_order
;
5058 static void build_zonelists(pg_data_t
*pgdat
)
5061 nodemask_t used_mask
;
5062 int local_node
, prev_node
;
5063 struct zonelist
*zonelist
;
5064 unsigned int order
= current_zonelist_order
;
5066 /* initialize zonelists */
5067 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
5068 zonelist
= pgdat
->node_zonelists
+ i
;
5069 zonelist
->_zonerefs
[0].zone
= NULL
;
5070 zonelist
->_zonerefs
[0].zone_idx
= 0;
5073 /* NUMA-aware ordering of nodes */
5074 local_node
= pgdat
->node_id
;
5075 load
= nr_online_nodes
;
5076 prev_node
= local_node
;
5077 nodes_clear(used_mask
);
5079 memset(node_order
, 0, sizeof(node_order
));
5082 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5084 * We don't want to pressure a particular node.
5085 * So adding penalty to the first node in same
5086 * distance group to make it round-robin.
5088 if (node_distance(local_node
, node
) !=
5089 node_distance(local_node
, prev_node
))
5090 node_load
[node
] = load
;
5094 if (order
== ZONELIST_ORDER_NODE
)
5095 build_zonelists_in_node_order(pgdat
, node
);
5097 node_order
[i
++] = node
; /* remember order */
5100 if (order
== ZONELIST_ORDER_ZONE
) {
5101 /* calculate node order -- i.e., DMA last! */
5102 build_zonelists_in_zone_order(pgdat
, i
);
5105 build_thisnode_zonelists(pgdat
);
5108 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5110 * Return node id of node used for "local" allocations.
5111 * I.e., first node id of first zone in arg node's generic zonelist.
5112 * Used for initializing percpu 'numa_mem', which is used primarily
5113 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5115 int local_memory_node(int node
)
5119 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5120 gfp_zone(GFP_KERNEL
),
5122 return z
->zone
->node
;
5126 static void setup_min_unmapped_ratio(void);
5127 static void setup_min_slab_ratio(void);
5128 #else /* CONFIG_NUMA */
5130 static void set_zonelist_order(void)
5132 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
5135 static void build_zonelists(pg_data_t
*pgdat
)
5137 int node
, local_node
;
5139 struct zonelist
*zonelist
;
5141 local_node
= pgdat
->node_id
;
5143 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
5144 j
= build_zonelists_node(pgdat
, zonelist
, 0);
5147 * Now we build the zonelist so that it contains the zones
5148 * of all the other nodes.
5149 * We don't want to pressure a particular node, so when
5150 * building the zones for node N, we make sure that the
5151 * zones coming right after the local ones are those from
5152 * node N+1 (modulo N)
5154 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5155 if (!node_online(node
))
5157 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
5159 for (node
= 0; node
< local_node
; node
++) {
5160 if (!node_online(node
))
5162 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
5165 zonelist
->_zonerefs
[j
].zone
= NULL
;
5166 zonelist
->_zonerefs
[j
].zone_idx
= 0;
5169 #endif /* CONFIG_NUMA */
5172 * Boot pageset table. One per cpu which is going to be used for all
5173 * zones and all nodes. The parameters will be set in such a way
5174 * that an item put on a list will immediately be handed over to
5175 * the buddy list. This is safe since pageset manipulation is done
5176 * with interrupts disabled.
5178 * The boot_pagesets must be kept even after bootup is complete for
5179 * unused processors and/or zones. They do play a role for bootstrapping
5180 * hotplugged processors.
5182 * zoneinfo_show() and maybe other functions do
5183 * not check if the processor is online before following the pageset pointer.
5184 * Other parts of the kernel may not check if the zone is available.
5186 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5187 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5188 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5189 static void setup_zone_pageset(struct zone
*zone
);
5192 * Global mutex to protect against size modification of zonelists
5193 * as well as to serialize pageset setup for the new populated zone.
5195 DEFINE_MUTEX(zonelists_mutex
);
5197 /* return values int ....just for stop_machine() */
5198 static int __build_all_zonelists(void *data
)
5202 pg_data_t
*self
= data
;
5205 memset(node_load
, 0, sizeof(node_load
));
5208 if (self
&& !node_online(self
->node_id
)) {
5209 build_zonelists(self
);
5212 for_each_online_node(nid
) {
5213 pg_data_t
*pgdat
= NODE_DATA(nid
);
5215 build_zonelists(pgdat
);
5219 * Initialize the boot_pagesets that are going to be used
5220 * for bootstrapping processors. The real pagesets for
5221 * each zone will be allocated later when the per cpu
5222 * allocator is available.
5224 * boot_pagesets are used also for bootstrapping offline
5225 * cpus if the system is already booted because the pagesets
5226 * are needed to initialize allocators on a specific cpu too.
5227 * F.e. the percpu allocator needs the page allocator which
5228 * needs the percpu allocator in order to allocate its pagesets
5229 * (a chicken-egg dilemma).
5231 for_each_possible_cpu(cpu
) {
5232 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5234 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5236 * We now know the "local memory node" for each node--
5237 * i.e., the node of the first zone in the generic zonelist.
5238 * Set up numa_mem percpu variable for on-line cpus. During
5239 * boot, only the boot cpu should be on-line; we'll init the
5240 * secondary cpus' numa_mem as they come on-line. During
5241 * node/memory hotplug, we'll fixup all on-line cpus.
5243 if (cpu_online(cpu
))
5244 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5251 static noinline
void __init
5252 build_all_zonelists_init(void)
5254 __build_all_zonelists(NULL
);
5255 mminit_verify_zonelist();
5256 cpuset_init_current_mems_allowed();
5260 * Called with zonelists_mutex held always
5261 * unless system_state == SYSTEM_BOOTING.
5263 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5264 * [we're only called with non-NULL zone through __meminit paths] and
5265 * (2) call of __init annotated helper build_all_zonelists_init
5266 * [protected by SYSTEM_BOOTING].
5268 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
5270 set_zonelist_order();
5272 if (system_state
== SYSTEM_BOOTING
) {
5273 build_all_zonelists_init();
5275 #ifdef CONFIG_MEMORY_HOTPLUG
5277 setup_zone_pageset(zone
);
5279 /* we have to stop all cpus to guarantee there is no user
5281 stop_machine_cpuslocked(__build_all_zonelists
, pgdat
, NULL
);
5282 /* cpuset refresh routine should be here */
5284 vm_total_pages
= nr_free_pagecache_pages();
5286 * Disable grouping by mobility if the number of pages in the
5287 * system is too low to allow the mechanism to work. It would be
5288 * more accurate, but expensive to check per-zone. This check is
5289 * made on memory-hotadd so a system can start with mobility
5290 * disabled and enable it later
5292 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5293 page_group_by_mobility_disabled
= 1;
5295 page_group_by_mobility_disabled
= 0;
5297 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5299 zonelist_order_name
[current_zonelist_order
],
5300 page_group_by_mobility_disabled
? "off" : "on",
5303 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5308 * Initially all pages are reserved - free ones are freed
5309 * up by free_all_bootmem() once the early boot process is
5310 * done. Non-atomic initialization, single-pass.
5312 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5313 unsigned long start_pfn
, enum memmap_context context
)
5315 struct vmem_altmap
*altmap
= to_vmem_altmap(__pfn_to_phys(start_pfn
));
5316 unsigned long end_pfn
= start_pfn
+ size
;
5317 pg_data_t
*pgdat
= NODE_DATA(nid
);
5319 unsigned long nr_initialised
= 0;
5320 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5321 struct memblock_region
*r
= NULL
, *tmp
;
5324 if (highest_memmap_pfn
< end_pfn
- 1)
5325 highest_memmap_pfn
= end_pfn
- 1;
5328 * Honor reservation requested by the driver for this ZONE_DEVICE
5331 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5332 start_pfn
+= altmap
->reserve
;
5334 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5336 * There can be holes in boot-time mem_map[]s handed to this
5337 * function. They do not exist on hotplugged memory.
5339 if (context
!= MEMMAP_EARLY
)
5342 if (!early_pfn_valid(pfn
)) {
5343 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5345 * Skip to the pfn preceding the next valid one (or
5346 * end_pfn), such that we hit a valid pfn (or end_pfn)
5347 * on our next iteration of the loop.
5349 pfn
= memblock_next_valid_pfn(pfn
, end_pfn
) - 1;
5353 if (!early_pfn_in_nid(pfn
, nid
))
5355 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5358 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5360 * Check given memblock attribute by firmware which can affect
5361 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5362 * mirrored, it's an overlapped memmap init. skip it.
5364 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5365 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5366 for_each_memblock(memory
, tmp
)
5367 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5371 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5372 memblock_is_mirror(r
)) {
5373 /* already initialized as NORMAL */
5374 pfn
= memblock_region_memory_end_pfn(r
);
5382 * Mark the block movable so that blocks are reserved for
5383 * movable at startup. This will force kernel allocations
5384 * to reserve their blocks rather than leaking throughout
5385 * the address space during boot when many long-lived
5386 * kernel allocations are made.
5388 * bitmap is created for zone's valid pfn range. but memmap
5389 * can be created for invalid pages (for alignment)
5390 * check here not to call set_pageblock_migratetype() against
5393 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5394 struct page
*page
= pfn_to_page(pfn
);
5396 __init_single_page(page
, pfn
, zone
, nid
);
5397 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5399 __init_single_pfn(pfn
, zone
, nid
);
5404 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5406 unsigned int order
, t
;
5407 for_each_migratetype_order(order
, t
) {
5408 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5409 zone
->free_area
[order
].nr_free
= 0;
5413 #ifndef __HAVE_ARCH_MEMMAP_INIT
5414 #define memmap_init(size, nid, zone, start_pfn) \
5415 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5418 static int zone_batchsize(struct zone
*zone
)
5424 * The per-cpu-pages pools are set to around 1000th of the
5425 * size of the zone. But no more than 1/2 of a meg.
5427 * OK, so we don't know how big the cache is. So guess.
5429 batch
= zone
->managed_pages
/ 1024;
5430 if (batch
* PAGE_SIZE
> 512 * 1024)
5431 batch
= (512 * 1024) / PAGE_SIZE
;
5432 batch
/= 4; /* We effectively *= 4 below */
5437 * Clamp the batch to a 2^n - 1 value. Having a power
5438 * of 2 value was found to be more likely to have
5439 * suboptimal cache aliasing properties in some cases.
5441 * For example if 2 tasks are alternately allocating
5442 * batches of pages, one task can end up with a lot
5443 * of pages of one half of the possible page colors
5444 * and the other with pages of the other colors.
5446 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5451 /* The deferral and batching of frees should be suppressed under NOMMU
5454 * The problem is that NOMMU needs to be able to allocate large chunks
5455 * of contiguous memory as there's no hardware page translation to
5456 * assemble apparent contiguous memory from discontiguous pages.
5458 * Queueing large contiguous runs of pages for batching, however,
5459 * causes the pages to actually be freed in smaller chunks. As there
5460 * can be a significant delay between the individual batches being
5461 * recycled, this leads to the once large chunks of space being
5462 * fragmented and becoming unavailable for high-order allocations.
5469 * pcp->high and pcp->batch values are related and dependent on one another:
5470 * ->batch must never be higher then ->high.
5471 * The following function updates them in a safe manner without read side
5474 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5475 * those fields changing asynchronously (acording the the above rule).
5477 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5478 * outside of boot time (or some other assurance that no concurrent updaters
5481 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5482 unsigned long batch
)
5484 /* start with a fail safe value for batch */
5488 /* Update high, then batch, in order */
5495 /* a companion to pageset_set_high() */
5496 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5498 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5501 static void pageset_init(struct per_cpu_pageset
*p
)
5503 struct per_cpu_pages
*pcp
;
5506 memset(p
, 0, sizeof(*p
));
5510 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5511 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5514 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5517 pageset_set_batch(p
, batch
);
5521 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5522 * to the value high for the pageset p.
5524 static void pageset_set_high(struct per_cpu_pageset
*p
,
5527 unsigned long batch
= max(1UL, high
/ 4);
5528 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5529 batch
= PAGE_SHIFT
* 8;
5531 pageset_update(&p
->pcp
, high
, batch
);
5534 static void pageset_set_high_and_batch(struct zone
*zone
,
5535 struct per_cpu_pageset
*pcp
)
5537 if (percpu_pagelist_fraction
)
5538 pageset_set_high(pcp
,
5539 (zone
->managed_pages
/
5540 percpu_pagelist_fraction
));
5542 pageset_set_batch(pcp
, zone_batchsize(zone
));
5545 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5547 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5550 pageset_set_high_and_batch(zone
, pcp
);
5553 static void __meminit
setup_zone_pageset(struct zone
*zone
)
5556 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5557 for_each_possible_cpu(cpu
)
5558 zone_pageset_init(zone
, cpu
);
5562 * Allocate per cpu pagesets and initialize them.
5563 * Before this call only boot pagesets were available.
5565 void __init
setup_per_cpu_pageset(void)
5567 struct pglist_data
*pgdat
;
5570 for_each_populated_zone(zone
)
5571 setup_zone_pageset(zone
);
5573 for_each_online_pgdat(pgdat
)
5574 pgdat
->per_cpu_nodestats
=
5575 alloc_percpu(struct per_cpu_nodestat
);
5578 static __meminit
void zone_pcp_init(struct zone
*zone
)
5581 * per cpu subsystem is not up at this point. The following code
5582 * relies on the ability of the linker to provide the
5583 * offset of a (static) per cpu variable into the per cpu area.
5585 zone
->pageset
= &boot_pageset
;
5587 if (populated_zone(zone
))
5588 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5589 zone
->name
, zone
->present_pages
,
5590 zone_batchsize(zone
));
5593 void __meminit
init_currently_empty_zone(struct zone
*zone
,
5594 unsigned long zone_start_pfn
,
5597 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5599 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5601 zone
->zone_start_pfn
= zone_start_pfn
;
5603 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5604 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5606 (unsigned long)zone_idx(zone
),
5607 zone_start_pfn
, (zone_start_pfn
+ size
));
5609 zone_init_free_lists(zone
);
5610 zone
->initialized
= 1;
5613 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5614 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5617 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5619 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5620 struct mminit_pfnnid_cache
*state
)
5622 unsigned long start_pfn
, end_pfn
;
5625 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5626 return state
->last_nid
;
5628 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5630 state
->last_start
= start_pfn
;
5631 state
->last_end
= end_pfn
;
5632 state
->last_nid
= nid
;
5637 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5640 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5641 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5642 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5644 * If an architecture guarantees that all ranges registered contain no holes
5645 * and may be freed, this this function may be used instead of calling
5646 * memblock_free_early_nid() manually.
5648 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5650 unsigned long start_pfn
, end_pfn
;
5653 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5654 start_pfn
= min(start_pfn
, max_low_pfn
);
5655 end_pfn
= min(end_pfn
, max_low_pfn
);
5657 if (start_pfn
< end_pfn
)
5658 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5659 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5665 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5666 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5668 * If an architecture guarantees that all ranges registered contain no holes and may
5669 * be freed, this function may be used instead of calling memory_present() manually.
5671 void __init
sparse_memory_present_with_active_regions(int nid
)
5673 unsigned long start_pfn
, end_pfn
;
5676 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5677 memory_present(this_nid
, start_pfn
, end_pfn
);
5681 * get_pfn_range_for_nid - Return the start and end page frames for a node
5682 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5683 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5684 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5686 * It returns the start and end page frame of a node based on information
5687 * provided by memblock_set_node(). If called for a node
5688 * with no available memory, a warning is printed and the start and end
5691 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5692 unsigned long *start_pfn
, unsigned long *end_pfn
)
5694 unsigned long this_start_pfn
, this_end_pfn
;
5700 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5701 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5702 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5705 if (*start_pfn
== -1UL)
5710 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5711 * assumption is made that zones within a node are ordered in monotonic
5712 * increasing memory addresses so that the "highest" populated zone is used
5714 static void __init
find_usable_zone_for_movable(void)
5717 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5718 if (zone_index
== ZONE_MOVABLE
)
5721 if (arch_zone_highest_possible_pfn
[zone_index
] >
5722 arch_zone_lowest_possible_pfn
[zone_index
])
5726 VM_BUG_ON(zone_index
== -1);
5727 movable_zone
= zone_index
;
5731 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5732 * because it is sized independent of architecture. Unlike the other zones,
5733 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5734 * in each node depending on the size of each node and how evenly kernelcore
5735 * is distributed. This helper function adjusts the zone ranges
5736 * provided by the architecture for a given node by using the end of the
5737 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5738 * zones within a node are in order of monotonic increases memory addresses
5740 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5741 unsigned long zone_type
,
5742 unsigned long node_start_pfn
,
5743 unsigned long node_end_pfn
,
5744 unsigned long *zone_start_pfn
,
5745 unsigned long *zone_end_pfn
)
5747 /* Only adjust if ZONE_MOVABLE is on this node */
5748 if (zone_movable_pfn
[nid
]) {
5749 /* Size ZONE_MOVABLE */
5750 if (zone_type
== ZONE_MOVABLE
) {
5751 *zone_start_pfn
= zone_movable_pfn
[nid
];
5752 *zone_end_pfn
= min(node_end_pfn
,
5753 arch_zone_highest_possible_pfn
[movable_zone
]);
5755 /* Adjust for ZONE_MOVABLE starting within this range */
5756 } else if (!mirrored_kernelcore
&&
5757 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5758 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5759 *zone_end_pfn
= zone_movable_pfn
[nid
];
5761 /* Check if this whole range is within ZONE_MOVABLE */
5762 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5763 *zone_start_pfn
= *zone_end_pfn
;
5768 * Return the number of pages a zone spans in a node, including holes
5769 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5771 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5772 unsigned long zone_type
,
5773 unsigned long node_start_pfn
,
5774 unsigned long node_end_pfn
,
5775 unsigned long *zone_start_pfn
,
5776 unsigned long *zone_end_pfn
,
5777 unsigned long *ignored
)
5779 /* When hotadd a new node from cpu_up(), the node should be empty */
5780 if (!node_start_pfn
&& !node_end_pfn
)
5783 /* Get the start and end of the zone */
5784 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5785 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5786 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5787 node_start_pfn
, node_end_pfn
,
5788 zone_start_pfn
, zone_end_pfn
);
5790 /* Check that this node has pages within the zone's required range */
5791 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5794 /* Move the zone boundaries inside the node if necessary */
5795 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5796 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5798 /* Return the spanned pages */
5799 return *zone_end_pfn
- *zone_start_pfn
;
5803 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5804 * then all holes in the requested range will be accounted for.
5806 unsigned long __meminit
__absent_pages_in_range(int nid
,
5807 unsigned long range_start_pfn
,
5808 unsigned long range_end_pfn
)
5810 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5811 unsigned long start_pfn
, end_pfn
;
5814 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5815 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5816 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5817 nr_absent
-= end_pfn
- start_pfn
;
5823 * absent_pages_in_range - Return number of page frames in holes within a range
5824 * @start_pfn: The start PFN to start searching for holes
5825 * @end_pfn: The end PFN to stop searching for holes
5827 * It returns the number of pages frames in memory holes within a range.
5829 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5830 unsigned long end_pfn
)
5832 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5835 /* Return the number of page frames in holes in a zone on a node */
5836 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5837 unsigned long zone_type
,
5838 unsigned long node_start_pfn
,
5839 unsigned long node_end_pfn
,
5840 unsigned long *ignored
)
5842 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5843 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5844 unsigned long zone_start_pfn
, zone_end_pfn
;
5845 unsigned long nr_absent
;
5847 /* When hotadd a new node from cpu_up(), the node should be empty */
5848 if (!node_start_pfn
&& !node_end_pfn
)
5851 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5852 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5854 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5855 node_start_pfn
, node_end_pfn
,
5856 &zone_start_pfn
, &zone_end_pfn
);
5857 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5860 * ZONE_MOVABLE handling.
5861 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5864 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
5865 unsigned long start_pfn
, end_pfn
;
5866 struct memblock_region
*r
;
5868 for_each_memblock(memory
, r
) {
5869 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
5870 zone_start_pfn
, zone_end_pfn
);
5871 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
5872 zone_start_pfn
, zone_end_pfn
);
5874 if (zone_type
== ZONE_MOVABLE
&&
5875 memblock_is_mirror(r
))
5876 nr_absent
+= end_pfn
- start_pfn
;
5878 if (zone_type
== ZONE_NORMAL
&&
5879 !memblock_is_mirror(r
))
5880 nr_absent
+= end_pfn
- start_pfn
;
5887 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5888 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5889 unsigned long zone_type
,
5890 unsigned long node_start_pfn
,
5891 unsigned long node_end_pfn
,
5892 unsigned long *zone_start_pfn
,
5893 unsigned long *zone_end_pfn
,
5894 unsigned long *zones_size
)
5898 *zone_start_pfn
= node_start_pfn
;
5899 for (zone
= 0; zone
< zone_type
; zone
++)
5900 *zone_start_pfn
+= zones_size
[zone
];
5902 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
5904 return zones_size
[zone_type
];
5907 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5908 unsigned long zone_type
,
5909 unsigned long node_start_pfn
,
5910 unsigned long node_end_pfn
,
5911 unsigned long *zholes_size
)
5916 return zholes_size
[zone_type
];
5919 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5921 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5922 unsigned long node_start_pfn
,
5923 unsigned long node_end_pfn
,
5924 unsigned long *zones_size
,
5925 unsigned long *zholes_size
)
5927 unsigned long realtotalpages
= 0, totalpages
= 0;
5930 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5931 struct zone
*zone
= pgdat
->node_zones
+ i
;
5932 unsigned long zone_start_pfn
, zone_end_pfn
;
5933 unsigned long size
, real_size
;
5935 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5941 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5942 node_start_pfn
, node_end_pfn
,
5945 zone
->zone_start_pfn
= zone_start_pfn
;
5947 zone
->zone_start_pfn
= 0;
5948 zone
->spanned_pages
= size
;
5949 zone
->present_pages
= real_size
;
5952 realtotalpages
+= real_size
;
5955 pgdat
->node_spanned_pages
= totalpages
;
5956 pgdat
->node_present_pages
= realtotalpages
;
5957 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5961 #ifndef CONFIG_SPARSEMEM
5963 * Calculate the size of the zone->blockflags rounded to an unsigned long
5964 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5965 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5966 * round what is now in bits to nearest long in bits, then return it in
5969 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5971 unsigned long usemapsize
;
5973 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5974 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5975 usemapsize
= usemapsize
>> pageblock_order
;
5976 usemapsize
*= NR_PAGEBLOCK_BITS
;
5977 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5979 return usemapsize
/ 8;
5982 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5984 unsigned long zone_start_pfn
,
5985 unsigned long zonesize
)
5987 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5988 zone
->pageblock_flags
= NULL
;
5990 zone
->pageblock_flags
=
5991 memblock_virt_alloc_node_nopanic(usemapsize
,
5995 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5996 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5997 #endif /* CONFIG_SPARSEMEM */
5999 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6001 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6002 void __paginginit
set_pageblock_order(void)
6006 /* Check that pageblock_nr_pages has not already been setup */
6007 if (pageblock_order
)
6010 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6011 order
= HUGETLB_PAGE_ORDER
;
6013 order
= MAX_ORDER
- 1;
6016 * Assume the largest contiguous order of interest is a huge page.
6017 * This value may be variable depending on boot parameters on IA64 and
6020 pageblock_order
= order
;
6022 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6025 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6026 * is unused as pageblock_order is set at compile-time. See
6027 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6030 void __paginginit
set_pageblock_order(void)
6034 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6036 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
6037 unsigned long present_pages
)
6039 unsigned long pages
= spanned_pages
;
6042 * Provide a more accurate estimation if there are holes within
6043 * the zone and SPARSEMEM is in use. If there are holes within the
6044 * zone, each populated memory region may cost us one or two extra
6045 * memmap pages due to alignment because memmap pages for each
6046 * populated regions may not be naturally aligned on page boundary.
6047 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6049 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6050 IS_ENABLED(CONFIG_SPARSEMEM
))
6051 pages
= present_pages
;
6053 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6057 * Set up the zone data structures:
6058 * - mark all pages reserved
6059 * - mark all memory queues empty
6060 * - clear the memory bitmaps
6062 * NOTE: pgdat should get zeroed by caller.
6064 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
6067 int nid
= pgdat
->node_id
;
6069 pgdat_resize_init(pgdat
);
6070 #ifdef CONFIG_NUMA_BALANCING
6071 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
6072 pgdat
->numabalancing_migrate_nr_pages
= 0;
6073 pgdat
->numabalancing_migrate_next_window
= jiffies
;
6075 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6076 spin_lock_init(&pgdat
->split_queue_lock
);
6077 INIT_LIST_HEAD(&pgdat
->split_queue
);
6078 pgdat
->split_queue_len
= 0;
6080 init_waitqueue_head(&pgdat
->kswapd_wait
);
6081 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6082 #ifdef CONFIG_COMPACTION
6083 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6085 pgdat_page_ext_init(pgdat
);
6086 spin_lock_init(&pgdat
->lru_lock
);
6087 lruvec_init(node_lruvec(pgdat
));
6089 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6091 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6092 struct zone
*zone
= pgdat
->node_zones
+ j
;
6093 unsigned long size
, realsize
, freesize
, memmap_pages
;
6094 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6096 size
= zone
->spanned_pages
;
6097 realsize
= freesize
= zone
->present_pages
;
6100 * Adjust freesize so that it accounts for how much memory
6101 * is used by this zone for memmap. This affects the watermark
6102 * and per-cpu initialisations
6104 memmap_pages
= calc_memmap_size(size
, realsize
);
6105 if (!is_highmem_idx(j
)) {
6106 if (freesize
>= memmap_pages
) {
6107 freesize
-= memmap_pages
;
6110 " %s zone: %lu pages used for memmap\n",
6111 zone_names
[j
], memmap_pages
);
6113 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6114 zone_names
[j
], memmap_pages
, freesize
);
6117 /* Account for reserved pages */
6118 if (j
== 0 && freesize
> dma_reserve
) {
6119 freesize
-= dma_reserve
;
6120 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6121 zone_names
[0], dma_reserve
);
6124 if (!is_highmem_idx(j
))
6125 nr_kernel_pages
+= freesize
;
6126 /* Charge for highmem memmap if there are enough kernel pages */
6127 else if (nr_kernel_pages
> memmap_pages
* 2)
6128 nr_kernel_pages
-= memmap_pages
;
6129 nr_all_pages
+= freesize
;
6132 * Set an approximate value for lowmem here, it will be adjusted
6133 * when the bootmem allocator frees pages into the buddy system.
6134 * And all highmem pages will be managed by the buddy system.
6136 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
6140 zone
->name
= zone_names
[j
];
6141 zone
->zone_pgdat
= pgdat
;
6142 spin_lock_init(&zone
->lock
);
6143 zone_seqlock_init(zone
);
6144 zone_pcp_init(zone
);
6149 set_pageblock_order();
6150 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6151 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6152 memmap_init(size
, nid
, j
, zone_start_pfn
);
6156 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6158 unsigned long __maybe_unused start
= 0;
6159 unsigned long __maybe_unused offset
= 0;
6161 /* Skip empty nodes */
6162 if (!pgdat
->node_spanned_pages
)
6165 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6166 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6167 offset
= pgdat
->node_start_pfn
- start
;
6168 /* ia64 gets its own node_mem_map, before this, without bootmem */
6169 if (!pgdat
->node_mem_map
) {
6170 unsigned long size
, end
;
6174 * The zone's endpoints aren't required to be MAX_ORDER
6175 * aligned but the node_mem_map endpoints must be in order
6176 * for the buddy allocator to function correctly.
6178 end
= pgdat_end_pfn(pgdat
);
6179 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6180 size
= (end
- start
) * sizeof(struct page
);
6181 map
= alloc_remap(pgdat
->node_id
, size
);
6183 map
= memblock_virt_alloc_node_nopanic(size
,
6185 pgdat
->node_mem_map
= map
+ offset
;
6187 #ifndef CONFIG_NEED_MULTIPLE_NODES
6189 * With no DISCONTIG, the global mem_map is just set as node 0's
6191 if (pgdat
== NODE_DATA(0)) {
6192 mem_map
= NODE_DATA(0)->node_mem_map
;
6193 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6194 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6196 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6199 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6202 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
6203 unsigned long node_start_pfn
, unsigned long *zholes_size
)
6205 pg_data_t
*pgdat
= NODE_DATA(nid
);
6206 unsigned long start_pfn
= 0;
6207 unsigned long end_pfn
= 0;
6209 /* pg_data_t should be reset to zero when it's allocated */
6210 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6212 pgdat
->node_id
= nid
;
6213 pgdat
->node_start_pfn
= node_start_pfn
;
6214 pgdat
->per_cpu_nodestats
= NULL
;
6215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6216 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6217 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6218 (u64
)start_pfn
<< PAGE_SHIFT
,
6219 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6221 start_pfn
= node_start_pfn
;
6223 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6224 zones_size
, zholes_size
);
6226 alloc_node_mem_map(pgdat
);
6227 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6228 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6229 nid
, (unsigned long)pgdat
,
6230 (unsigned long)pgdat
->node_mem_map
);
6233 reset_deferred_meminit(pgdat
);
6234 free_area_init_core(pgdat
);
6237 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6239 #if MAX_NUMNODES > 1
6241 * Figure out the number of possible node ids.
6243 void __init
setup_nr_node_ids(void)
6245 unsigned int highest
;
6247 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6248 nr_node_ids
= highest
+ 1;
6253 * node_map_pfn_alignment - determine the maximum internode alignment
6255 * This function should be called after node map is populated and sorted.
6256 * It calculates the maximum power of two alignment which can distinguish
6259 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6260 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6261 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6262 * shifted, 1GiB is enough and this function will indicate so.
6264 * This is used to test whether pfn -> nid mapping of the chosen memory
6265 * model has fine enough granularity to avoid incorrect mapping for the
6266 * populated node map.
6268 * Returns the determined alignment in pfn's. 0 if there is no alignment
6269 * requirement (single node).
6271 unsigned long __init
node_map_pfn_alignment(void)
6273 unsigned long accl_mask
= 0, last_end
= 0;
6274 unsigned long start
, end
, mask
;
6278 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6279 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6286 * Start with a mask granular enough to pin-point to the
6287 * start pfn and tick off bits one-by-one until it becomes
6288 * too coarse to separate the current node from the last.
6290 mask
= ~((1 << __ffs(start
)) - 1);
6291 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6294 /* accumulate all internode masks */
6298 /* convert mask to number of pages */
6299 return ~accl_mask
+ 1;
6302 /* Find the lowest pfn for a node */
6303 static unsigned long __init
find_min_pfn_for_node(int nid
)
6305 unsigned long min_pfn
= ULONG_MAX
;
6306 unsigned long start_pfn
;
6309 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6310 min_pfn
= min(min_pfn
, start_pfn
);
6312 if (min_pfn
== ULONG_MAX
) {
6313 pr_warn("Could not find start_pfn for node %d\n", nid
);
6321 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6323 * It returns the minimum PFN based on information provided via
6324 * memblock_set_node().
6326 unsigned long __init
find_min_pfn_with_active_regions(void)
6328 return find_min_pfn_for_node(MAX_NUMNODES
);
6332 * early_calculate_totalpages()
6333 * Sum pages in active regions for movable zone.
6334 * Populate N_MEMORY for calculating usable_nodes.
6336 static unsigned long __init
early_calculate_totalpages(void)
6338 unsigned long totalpages
= 0;
6339 unsigned long start_pfn
, end_pfn
;
6342 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6343 unsigned long pages
= end_pfn
- start_pfn
;
6345 totalpages
+= pages
;
6347 node_set_state(nid
, N_MEMORY
);
6353 * Find the PFN the Movable zone begins in each node. Kernel memory
6354 * is spread evenly between nodes as long as the nodes have enough
6355 * memory. When they don't, some nodes will have more kernelcore than
6358 static void __init
find_zone_movable_pfns_for_nodes(void)
6361 unsigned long usable_startpfn
;
6362 unsigned long kernelcore_node
, kernelcore_remaining
;
6363 /* save the state before borrow the nodemask */
6364 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6365 unsigned long totalpages
= early_calculate_totalpages();
6366 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6367 struct memblock_region
*r
;
6369 /* Need to find movable_zone earlier when movable_node is specified. */
6370 find_usable_zone_for_movable();
6373 * If movable_node is specified, ignore kernelcore and movablecore
6376 if (movable_node_is_enabled()) {
6377 for_each_memblock(memory
, r
) {
6378 if (!memblock_is_hotpluggable(r
))
6383 usable_startpfn
= PFN_DOWN(r
->base
);
6384 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6385 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6393 * If kernelcore=mirror is specified, ignore movablecore option
6395 if (mirrored_kernelcore
) {
6396 bool mem_below_4gb_not_mirrored
= false;
6398 for_each_memblock(memory
, r
) {
6399 if (memblock_is_mirror(r
))
6404 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6406 if (usable_startpfn
< 0x100000) {
6407 mem_below_4gb_not_mirrored
= true;
6411 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6412 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6416 if (mem_below_4gb_not_mirrored
)
6417 pr_warn("This configuration results in unmirrored kernel memory.");
6423 * If movablecore=nn[KMG] was specified, calculate what size of
6424 * kernelcore that corresponds so that memory usable for
6425 * any allocation type is evenly spread. If both kernelcore
6426 * and movablecore are specified, then the value of kernelcore
6427 * will be used for required_kernelcore if it's greater than
6428 * what movablecore would have allowed.
6430 if (required_movablecore
) {
6431 unsigned long corepages
;
6434 * Round-up so that ZONE_MOVABLE is at least as large as what
6435 * was requested by the user
6437 required_movablecore
=
6438 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6439 required_movablecore
= min(totalpages
, required_movablecore
);
6440 corepages
= totalpages
- required_movablecore
;
6442 required_kernelcore
= max(required_kernelcore
, corepages
);
6446 * If kernelcore was not specified or kernelcore size is larger
6447 * than totalpages, there is no ZONE_MOVABLE.
6449 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6452 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6453 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6456 /* Spread kernelcore memory as evenly as possible throughout nodes */
6457 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6458 for_each_node_state(nid
, N_MEMORY
) {
6459 unsigned long start_pfn
, end_pfn
;
6462 * Recalculate kernelcore_node if the division per node
6463 * now exceeds what is necessary to satisfy the requested
6464 * amount of memory for the kernel
6466 if (required_kernelcore
< kernelcore_node
)
6467 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6470 * As the map is walked, we track how much memory is usable
6471 * by the kernel using kernelcore_remaining. When it is
6472 * 0, the rest of the node is usable by ZONE_MOVABLE
6474 kernelcore_remaining
= kernelcore_node
;
6476 /* Go through each range of PFNs within this node */
6477 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6478 unsigned long size_pages
;
6480 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6481 if (start_pfn
>= end_pfn
)
6484 /* Account for what is only usable for kernelcore */
6485 if (start_pfn
< usable_startpfn
) {
6486 unsigned long kernel_pages
;
6487 kernel_pages
= min(end_pfn
, usable_startpfn
)
6490 kernelcore_remaining
-= min(kernel_pages
,
6491 kernelcore_remaining
);
6492 required_kernelcore
-= min(kernel_pages
,
6493 required_kernelcore
);
6495 /* Continue if range is now fully accounted */
6496 if (end_pfn
<= usable_startpfn
) {
6499 * Push zone_movable_pfn to the end so
6500 * that if we have to rebalance
6501 * kernelcore across nodes, we will
6502 * not double account here
6504 zone_movable_pfn
[nid
] = end_pfn
;
6507 start_pfn
= usable_startpfn
;
6511 * The usable PFN range for ZONE_MOVABLE is from
6512 * start_pfn->end_pfn. Calculate size_pages as the
6513 * number of pages used as kernelcore
6515 size_pages
= end_pfn
- start_pfn
;
6516 if (size_pages
> kernelcore_remaining
)
6517 size_pages
= kernelcore_remaining
;
6518 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6521 * Some kernelcore has been met, update counts and
6522 * break if the kernelcore for this node has been
6525 required_kernelcore
-= min(required_kernelcore
,
6527 kernelcore_remaining
-= size_pages
;
6528 if (!kernelcore_remaining
)
6534 * If there is still required_kernelcore, we do another pass with one
6535 * less node in the count. This will push zone_movable_pfn[nid] further
6536 * along on the nodes that still have memory until kernelcore is
6540 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6544 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6545 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6546 zone_movable_pfn
[nid
] =
6547 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6550 /* restore the node_state */
6551 node_states
[N_MEMORY
] = saved_node_state
;
6554 /* Any regular or high memory on that node ? */
6555 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6557 enum zone_type zone_type
;
6559 if (N_MEMORY
== N_NORMAL_MEMORY
)
6562 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6563 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6564 if (populated_zone(zone
)) {
6565 node_set_state(nid
, N_HIGH_MEMORY
);
6566 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6567 zone_type
<= ZONE_NORMAL
)
6568 node_set_state(nid
, N_NORMAL_MEMORY
);
6575 * free_area_init_nodes - Initialise all pg_data_t and zone data
6576 * @max_zone_pfn: an array of max PFNs for each zone
6578 * This will call free_area_init_node() for each active node in the system.
6579 * Using the page ranges provided by memblock_set_node(), the size of each
6580 * zone in each node and their holes is calculated. If the maximum PFN
6581 * between two adjacent zones match, it is assumed that the zone is empty.
6582 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6583 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6584 * starts where the previous one ended. For example, ZONE_DMA32 starts
6585 * at arch_max_dma_pfn.
6587 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6589 unsigned long start_pfn
, end_pfn
;
6592 /* Record where the zone boundaries are */
6593 memset(arch_zone_lowest_possible_pfn
, 0,
6594 sizeof(arch_zone_lowest_possible_pfn
));
6595 memset(arch_zone_highest_possible_pfn
, 0,
6596 sizeof(arch_zone_highest_possible_pfn
));
6598 start_pfn
= find_min_pfn_with_active_regions();
6600 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6601 if (i
== ZONE_MOVABLE
)
6604 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6605 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6606 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6608 start_pfn
= end_pfn
;
6611 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6612 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6613 find_zone_movable_pfns_for_nodes();
6615 /* Print out the zone ranges */
6616 pr_info("Zone ranges:\n");
6617 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6618 if (i
== ZONE_MOVABLE
)
6620 pr_info(" %-8s ", zone_names
[i
]);
6621 if (arch_zone_lowest_possible_pfn
[i
] ==
6622 arch_zone_highest_possible_pfn
[i
])
6625 pr_cont("[mem %#018Lx-%#018Lx]\n",
6626 (u64
)arch_zone_lowest_possible_pfn
[i
]
6628 ((u64
)arch_zone_highest_possible_pfn
[i
]
6629 << PAGE_SHIFT
) - 1);
6632 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6633 pr_info("Movable zone start for each node\n");
6634 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6635 if (zone_movable_pfn
[i
])
6636 pr_info(" Node %d: %#018Lx\n", i
,
6637 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6640 /* Print out the early node map */
6641 pr_info("Early memory node ranges\n");
6642 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6643 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6644 (u64
)start_pfn
<< PAGE_SHIFT
,
6645 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6647 /* Initialise every node */
6648 mminit_verify_pageflags_layout();
6649 setup_nr_node_ids();
6650 for_each_online_node(nid
) {
6651 pg_data_t
*pgdat
= NODE_DATA(nid
);
6652 free_area_init_node(nid
, NULL
,
6653 find_min_pfn_for_node(nid
), NULL
);
6655 /* Any memory on that node */
6656 if (pgdat
->node_present_pages
)
6657 node_set_state(nid
, N_MEMORY
);
6658 check_for_memory(pgdat
, nid
);
6662 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
6664 unsigned long long coremem
;
6668 coremem
= memparse(p
, &p
);
6669 *core
= coremem
>> PAGE_SHIFT
;
6671 /* Paranoid check that UL is enough for the coremem value */
6672 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6678 * kernelcore=size sets the amount of memory for use for allocations that
6679 * cannot be reclaimed or migrated.
6681 static int __init
cmdline_parse_kernelcore(char *p
)
6683 /* parse kernelcore=mirror */
6684 if (parse_option_str(p
, "mirror")) {
6685 mirrored_kernelcore
= true;
6689 return cmdline_parse_core(p
, &required_kernelcore
);
6693 * movablecore=size sets the amount of memory for use for allocations that
6694 * can be reclaimed or migrated.
6696 static int __init
cmdline_parse_movablecore(char *p
)
6698 return cmdline_parse_core(p
, &required_movablecore
);
6701 early_param("kernelcore", cmdline_parse_kernelcore
);
6702 early_param("movablecore", cmdline_parse_movablecore
);
6704 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6706 void adjust_managed_page_count(struct page
*page
, long count
)
6708 spin_lock(&managed_page_count_lock
);
6709 page_zone(page
)->managed_pages
+= count
;
6710 totalram_pages
+= count
;
6711 #ifdef CONFIG_HIGHMEM
6712 if (PageHighMem(page
))
6713 totalhigh_pages
+= count
;
6715 spin_unlock(&managed_page_count_lock
);
6717 EXPORT_SYMBOL(adjust_managed_page_count
);
6719 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6722 unsigned long pages
= 0;
6724 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6725 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6726 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6727 if ((unsigned int)poison
<= 0xFF)
6728 memset(pos
, poison
, PAGE_SIZE
);
6729 free_reserved_page(virt_to_page(pos
));
6733 pr_info("Freeing %s memory: %ldK\n",
6734 s
, pages
<< (PAGE_SHIFT
- 10));
6738 EXPORT_SYMBOL(free_reserved_area
);
6740 #ifdef CONFIG_HIGHMEM
6741 void free_highmem_page(struct page
*page
)
6743 __free_reserved_page(page
);
6745 page_zone(page
)->managed_pages
++;
6751 void __init
mem_init_print_info(const char *str
)
6753 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6754 unsigned long init_code_size
, init_data_size
;
6756 physpages
= get_num_physpages();
6757 codesize
= _etext
- _stext
;
6758 datasize
= _edata
- _sdata
;
6759 rosize
= __end_rodata
- __start_rodata
;
6760 bss_size
= __bss_stop
- __bss_start
;
6761 init_data_size
= __init_end
- __init_begin
;
6762 init_code_size
= _einittext
- _sinittext
;
6765 * Detect special cases and adjust section sizes accordingly:
6766 * 1) .init.* may be embedded into .data sections
6767 * 2) .init.text.* may be out of [__init_begin, __init_end],
6768 * please refer to arch/tile/kernel/vmlinux.lds.S.
6769 * 3) .rodata.* may be embedded into .text or .data sections.
6771 #define adj_init_size(start, end, size, pos, adj) \
6773 if (start <= pos && pos < end && size > adj) \
6777 adj_init_size(__init_begin
, __init_end
, init_data_size
,
6778 _sinittext
, init_code_size
);
6779 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
6780 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
6781 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
6782 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
6784 #undef adj_init_size
6786 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6787 #ifdef CONFIG_HIGHMEM
6791 nr_free_pages() << (PAGE_SHIFT
- 10),
6792 physpages
<< (PAGE_SHIFT
- 10),
6793 codesize
>> 10, datasize
>> 10, rosize
>> 10,
6794 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
6795 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
6796 totalcma_pages
<< (PAGE_SHIFT
- 10),
6797 #ifdef CONFIG_HIGHMEM
6798 totalhigh_pages
<< (PAGE_SHIFT
- 10),
6800 str
? ", " : "", str
? str
: "");
6804 * set_dma_reserve - set the specified number of pages reserved in the first zone
6805 * @new_dma_reserve: The number of pages to mark reserved
6807 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6808 * In the DMA zone, a significant percentage may be consumed by kernel image
6809 * and other unfreeable allocations which can skew the watermarks badly. This
6810 * function may optionally be used to account for unfreeable pages in the
6811 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6812 * smaller per-cpu batchsize.
6814 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6816 dma_reserve
= new_dma_reserve
;
6819 void __init
free_area_init(unsigned long *zones_size
)
6821 free_area_init_node(0, zones_size
,
6822 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6825 static int page_alloc_cpu_dead(unsigned int cpu
)
6828 lru_add_drain_cpu(cpu
);
6832 * Spill the event counters of the dead processor
6833 * into the current processors event counters.
6834 * This artificially elevates the count of the current
6837 vm_events_fold_cpu(cpu
);
6840 * Zero the differential counters of the dead processor
6841 * so that the vm statistics are consistent.
6843 * This is only okay since the processor is dead and cannot
6844 * race with what we are doing.
6846 cpu_vm_stats_fold(cpu
);
6850 void __init
page_alloc_init(void)
6854 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
6855 "mm/page_alloc:dead", NULL
,
6856 page_alloc_cpu_dead
);
6861 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6862 * or min_free_kbytes changes.
6864 static void calculate_totalreserve_pages(void)
6866 struct pglist_data
*pgdat
;
6867 unsigned long reserve_pages
= 0;
6868 enum zone_type i
, j
;
6870 for_each_online_pgdat(pgdat
) {
6872 pgdat
->totalreserve_pages
= 0;
6874 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6875 struct zone
*zone
= pgdat
->node_zones
+ i
;
6878 /* Find valid and maximum lowmem_reserve in the zone */
6879 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6880 if (zone
->lowmem_reserve
[j
] > max
)
6881 max
= zone
->lowmem_reserve
[j
];
6884 /* we treat the high watermark as reserved pages. */
6885 max
+= high_wmark_pages(zone
);
6887 if (max
> zone
->managed_pages
)
6888 max
= zone
->managed_pages
;
6890 pgdat
->totalreserve_pages
+= max
;
6892 reserve_pages
+= max
;
6895 totalreserve_pages
= reserve_pages
;
6899 * setup_per_zone_lowmem_reserve - called whenever
6900 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6901 * has a correct pages reserved value, so an adequate number of
6902 * pages are left in the zone after a successful __alloc_pages().
6904 static void setup_per_zone_lowmem_reserve(void)
6906 struct pglist_data
*pgdat
;
6907 enum zone_type j
, idx
;
6909 for_each_online_pgdat(pgdat
) {
6910 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6911 struct zone
*zone
= pgdat
->node_zones
+ j
;
6912 unsigned long managed_pages
= zone
->managed_pages
;
6914 zone
->lowmem_reserve
[j
] = 0;
6918 struct zone
*lower_zone
;
6922 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6923 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6925 lower_zone
= pgdat
->node_zones
+ idx
;
6926 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6927 sysctl_lowmem_reserve_ratio
[idx
];
6928 managed_pages
+= lower_zone
->managed_pages
;
6933 /* update totalreserve_pages */
6934 calculate_totalreserve_pages();
6937 static void __setup_per_zone_wmarks(void)
6939 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6940 unsigned long lowmem_pages
= 0;
6942 unsigned long flags
;
6944 /* Calculate total number of !ZONE_HIGHMEM pages */
6945 for_each_zone(zone
) {
6946 if (!is_highmem(zone
))
6947 lowmem_pages
+= zone
->managed_pages
;
6950 for_each_zone(zone
) {
6953 spin_lock_irqsave(&zone
->lock
, flags
);
6954 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6955 do_div(tmp
, lowmem_pages
);
6956 if (is_highmem(zone
)) {
6958 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6959 * need highmem pages, so cap pages_min to a small
6962 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6963 * deltas control asynch page reclaim, and so should
6964 * not be capped for highmem.
6966 unsigned long min_pages
;
6968 min_pages
= zone
->managed_pages
/ 1024;
6969 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6970 zone
->watermark
[WMARK_MIN
] = min_pages
;
6973 * If it's a lowmem zone, reserve a number of pages
6974 * proportionate to the zone's size.
6976 zone
->watermark
[WMARK_MIN
] = tmp
;
6980 * Set the kswapd watermarks distance according to the
6981 * scale factor in proportion to available memory, but
6982 * ensure a minimum size on small systems.
6984 tmp
= max_t(u64
, tmp
>> 2,
6985 mult_frac(zone
->managed_pages
,
6986 watermark_scale_factor
, 10000));
6988 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
6989 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
6991 spin_unlock_irqrestore(&zone
->lock
, flags
);
6994 /* update totalreserve_pages */
6995 calculate_totalreserve_pages();
6999 * setup_per_zone_wmarks - called when min_free_kbytes changes
7000 * or when memory is hot-{added|removed}
7002 * Ensures that the watermark[min,low,high] values for each zone are set
7003 * correctly with respect to min_free_kbytes.
7005 void setup_per_zone_wmarks(void)
7007 mutex_lock(&zonelists_mutex
);
7008 __setup_per_zone_wmarks();
7009 mutex_unlock(&zonelists_mutex
);
7013 * Initialise min_free_kbytes.
7015 * For small machines we want it small (128k min). For large machines
7016 * we want it large (64MB max). But it is not linear, because network
7017 * bandwidth does not increase linearly with machine size. We use
7019 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7020 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7036 int __meminit
init_per_zone_wmark_min(void)
7038 unsigned long lowmem_kbytes
;
7039 int new_min_free_kbytes
;
7041 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7042 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7044 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7045 min_free_kbytes
= new_min_free_kbytes
;
7046 if (min_free_kbytes
< 128)
7047 min_free_kbytes
= 128;
7048 if (min_free_kbytes
> 65536)
7049 min_free_kbytes
= 65536;
7051 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7052 new_min_free_kbytes
, user_min_free_kbytes
);
7054 setup_per_zone_wmarks();
7055 refresh_zone_stat_thresholds();
7056 setup_per_zone_lowmem_reserve();
7059 setup_min_unmapped_ratio();
7060 setup_min_slab_ratio();
7065 core_initcall(init_per_zone_wmark_min
)
7068 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7069 * that we can call two helper functions whenever min_free_kbytes
7072 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7073 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7077 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7082 user_min_free_kbytes
= min_free_kbytes
;
7083 setup_per_zone_wmarks();
7088 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7089 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7093 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7098 setup_per_zone_wmarks();
7104 static void setup_min_unmapped_ratio(void)
7109 for_each_online_pgdat(pgdat
)
7110 pgdat
->min_unmapped_pages
= 0;
7113 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
7114 sysctl_min_unmapped_ratio
) / 100;
7118 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7119 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7123 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7127 setup_min_unmapped_ratio();
7132 static void setup_min_slab_ratio(void)
7137 for_each_online_pgdat(pgdat
)
7138 pgdat
->min_slab_pages
= 0;
7141 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
7142 sysctl_min_slab_ratio
) / 100;
7145 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7146 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7150 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7154 setup_min_slab_ratio();
7161 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7162 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7163 * whenever sysctl_lowmem_reserve_ratio changes.
7165 * The reserve ratio obviously has absolutely no relation with the
7166 * minimum watermarks. The lowmem reserve ratio can only make sense
7167 * if in function of the boot time zone sizes.
7169 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7170 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7172 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7173 setup_per_zone_lowmem_reserve();
7178 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7179 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7180 * pagelist can have before it gets flushed back to buddy allocator.
7182 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7183 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7186 int old_percpu_pagelist_fraction
;
7189 mutex_lock(&pcp_batch_high_lock
);
7190 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7192 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7193 if (!write
|| ret
< 0)
7196 /* Sanity checking to avoid pcp imbalance */
7197 if (percpu_pagelist_fraction
&&
7198 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7199 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7205 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7208 for_each_populated_zone(zone
) {
7211 for_each_possible_cpu(cpu
)
7212 pageset_set_high_and_batch(zone
,
7213 per_cpu_ptr(zone
->pageset
, cpu
));
7216 mutex_unlock(&pcp_batch_high_lock
);
7221 int hashdist
= HASHDIST_DEFAULT
;
7223 static int __init
set_hashdist(char *str
)
7227 hashdist
= simple_strtoul(str
, &str
, 0);
7230 __setup("hashdist=", set_hashdist
);
7233 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7235 * Returns the number of pages that arch has reserved but
7236 * is not known to alloc_large_system_hash().
7238 static unsigned long __init
arch_reserved_kernel_pages(void)
7245 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7246 * machines. As memory size is increased the scale is also increased but at
7247 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7248 * quadruples the scale is increased by one, which means the size of hash table
7249 * only doubles, instead of quadrupling as well.
7250 * Because 32-bit systems cannot have large physical memory, where this scaling
7251 * makes sense, it is disabled on such platforms.
7253 #if __BITS_PER_LONG > 32
7254 #define ADAPT_SCALE_BASE (64ul << 30)
7255 #define ADAPT_SCALE_SHIFT 2
7256 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7260 * allocate a large system hash table from bootmem
7261 * - it is assumed that the hash table must contain an exact power-of-2
7262 * quantity of entries
7263 * - limit is the number of hash buckets, not the total allocation size
7265 void *__init
alloc_large_system_hash(const char *tablename
,
7266 unsigned long bucketsize
,
7267 unsigned long numentries
,
7270 unsigned int *_hash_shift
,
7271 unsigned int *_hash_mask
,
7272 unsigned long low_limit
,
7273 unsigned long high_limit
)
7275 unsigned long long max
= high_limit
;
7276 unsigned long log2qty
, size
;
7280 /* allow the kernel cmdline to have a say */
7282 /* round applicable memory size up to nearest megabyte */
7283 numentries
= nr_kernel_pages
;
7284 numentries
-= arch_reserved_kernel_pages();
7286 /* It isn't necessary when PAGE_SIZE >= 1MB */
7287 if (PAGE_SHIFT
< 20)
7288 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7290 #if __BITS_PER_LONG > 32
7292 unsigned long adapt
;
7294 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
7295 adapt
<<= ADAPT_SCALE_SHIFT
)
7300 /* limit to 1 bucket per 2^scale bytes of low memory */
7301 if (scale
> PAGE_SHIFT
)
7302 numentries
>>= (scale
- PAGE_SHIFT
);
7304 numentries
<<= (PAGE_SHIFT
- scale
);
7306 /* Make sure we've got at least a 0-order allocation.. */
7307 if (unlikely(flags
& HASH_SMALL
)) {
7308 /* Makes no sense without HASH_EARLY */
7309 WARN_ON(!(flags
& HASH_EARLY
));
7310 if (!(numentries
>> *_hash_shift
)) {
7311 numentries
= 1UL << *_hash_shift
;
7312 BUG_ON(!numentries
);
7314 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7315 numentries
= PAGE_SIZE
/ bucketsize
;
7317 numentries
= roundup_pow_of_two(numentries
);
7319 /* limit allocation size to 1/16 total memory by default */
7321 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7322 do_div(max
, bucketsize
);
7324 max
= min(max
, 0x80000000ULL
);
7326 if (numentries
< low_limit
)
7327 numentries
= low_limit
;
7328 if (numentries
> max
)
7331 log2qty
= ilog2(numentries
);
7334 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7335 * currently not used when HASH_EARLY is specified.
7337 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
7339 size
= bucketsize
<< log2qty
;
7340 if (flags
& HASH_EARLY
)
7341 table
= memblock_virt_alloc_nopanic(size
, 0);
7343 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
7346 * If bucketsize is not a power-of-two, we may free
7347 * some pages at the end of hash table which
7348 * alloc_pages_exact() automatically does
7350 if (get_order(size
) < MAX_ORDER
) {
7351 table
= alloc_pages_exact(size
, gfp_flags
);
7352 kmemleak_alloc(table
, size
, 1, gfp_flags
);
7355 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7358 panic("Failed to allocate %s hash table\n", tablename
);
7360 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7361 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7364 *_hash_shift
= log2qty
;
7366 *_hash_mask
= (1 << log2qty
) - 1;
7372 * This function checks whether pageblock includes unmovable pages or not.
7373 * If @count is not zero, it is okay to include less @count unmovable pages
7375 * PageLRU check without isolation or lru_lock could race so that
7376 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7377 * check without lock_page also may miss some movable non-lru pages at
7378 * race condition. So you can't expect this function should be exact.
7380 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7381 bool skip_hwpoisoned_pages
)
7383 unsigned long pfn
, iter
, found
;
7387 * For avoiding noise data, lru_add_drain_all() should be called
7388 * If ZONE_MOVABLE, the zone never contains unmovable pages
7390 if (zone_idx(zone
) == ZONE_MOVABLE
)
7392 mt
= get_pageblock_migratetype(page
);
7393 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
7396 pfn
= page_to_pfn(page
);
7397 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7398 unsigned long check
= pfn
+ iter
;
7400 if (!pfn_valid_within(check
))
7403 page
= pfn_to_page(check
);
7406 * Hugepages are not in LRU lists, but they're movable.
7407 * We need not scan over tail pages bacause we don't
7408 * handle each tail page individually in migration.
7410 if (PageHuge(page
)) {
7411 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7416 * We can't use page_count without pin a page
7417 * because another CPU can free compound page.
7418 * This check already skips compound tails of THP
7419 * because their page->_refcount is zero at all time.
7421 if (!page_ref_count(page
)) {
7422 if (PageBuddy(page
))
7423 iter
+= (1 << page_order(page
)) - 1;
7428 * The HWPoisoned page may be not in buddy system, and
7429 * page_count() is not 0.
7431 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7434 if (__PageMovable(page
))
7440 * If there are RECLAIMABLE pages, we need to check
7441 * it. But now, memory offline itself doesn't call
7442 * shrink_node_slabs() and it still to be fixed.
7445 * If the page is not RAM, page_count()should be 0.
7446 * we don't need more check. This is an _used_ not-movable page.
7448 * The problematic thing here is PG_reserved pages. PG_reserved
7449 * is set to both of a memory hole page and a _used_ kernel
7458 bool is_pageblock_removable_nolock(struct page
*page
)
7464 * We have to be careful here because we are iterating over memory
7465 * sections which are not zone aware so we might end up outside of
7466 * the zone but still within the section.
7467 * We have to take care about the node as well. If the node is offline
7468 * its NODE_DATA will be NULL - see page_zone.
7470 if (!node_online(page_to_nid(page
)))
7473 zone
= page_zone(page
);
7474 pfn
= page_to_pfn(page
);
7475 if (!zone_spans_pfn(zone
, pfn
))
7478 return !has_unmovable_pages(zone
, page
, 0, true);
7481 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7483 static unsigned long pfn_max_align_down(unsigned long pfn
)
7485 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7486 pageblock_nr_pages
) - 1);
7489 static unsigned long pfn_max_align_up(unsigned long pfn
)
7491 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7492 pageblock_nr_pages
));
7495 /* [start, end) must belong to a single zone. */
7496 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7497 unsigned long start
, unsigned long end
)
7499 /* This function is based on compact_zone() from compaction.c. */
7500 unsigned long nr_reclaimed
;
7501 unsigned long pfn
= start
;
7502 unsigned int tries
= 0;
7507 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7508 if (fatal_signal_pending(current
)) {
7513 if (list_empty(&cc
->migratepages
)) {
7514 cc
->nr_migratepages
= 0;
7515 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7521 } else if (++tries
== 5) {
7522 ret
= ret
< 0 ? ret
: -EBUSY
;
7526 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7528 cc
->nr_migratepages
-= nr_reclaimed
;
7530 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7531 NULL
, 0, cc
->mode
, MR_CMA
);
7534 putback_movable_pages(&cc
->migratepages
);
7541 * alloc_contig_range() -- tries to allocate given range of pages
7542 * @start: start PFN to allocate
7543 * @end: one-past-the-last PFN to allocate
7544 * @migratetype: migratetype of the underlaying pageblocks (either
7545 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7546 * in range must have the same migratetype and it must
7547 * be either of the two.
7548 * @gfp_mask: GFP mask to use during compaction
7550 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7551 * aligned, however it's the caller's responsibility to guarantee that
7552 * we are the only thread that changes migrate type of pageblocks the
7555 * The PFN range must belong to a single zone.
7557 * Returns zero on success or negative error code. On success all
7558 * pages which PFN is in [start, end) are allocated for the caller and
7559 * need to be freed with free_contig_range().
7561 int alloc_contig_range(unsigned long start
, unsigned long end
,
7562 unsigned migratetype
, gfp_t gfp_mask
)
7564 unsigned long outer_start
, outer_end
;
7568 struct compact_control cc
= {
7569 .nr_migratepages
= 0,
7571 .zone
= page_zone(pfn_to_page(start
)),
7572 .mode
= MIGRATE_SYNC
,
7573 .ignore_skip_hint
= true,
7574 .gfp_mask
= current_gfp_context(gfp_mask
),
7576 INIT_LIST_HEAD(&cc
.migratepages
);
7579 * What we do here is we mark all pageblocks in range as
7580 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7581 * have different sizes, and due to the way page allocator
7582 * work, we align the range to biggest of the two pages so
7583 * that page allocator won't try to merge buddies from
7584 * different pageblocks and change MIGRATE_ISOLATE to some
7585 * other migration type.
7587 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7588 * migrate the pages from an unaligned range (ie. pages that
7589 * we are interested in). This will put all the pages in
7590 * range back to page allocator as MIGRATE_ISOLATE.
7592 * When this is done, we take the pages in range from page
7593 * allocator removing them from the buddy system. This way
7594 * page allocator will never consider using them.
7596 * This lets us mark the pageblocks back as
7597 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7598 * aligned range but not in the unaligned, original range are
7599 * put back to page allocator so that buddy can use them.
7602 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7603 pfn_max_align_up(end
), migratetype
,
7609 * In case of -EBUSY, we'd like to know which page causes problem.
7610 * So, just fall through. We will check it in test_pages_isolated().
7612 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7613 if (ret
&& ret
!= -EBUSY
)
7617 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7618 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7619 * more, all pages in [start, end) are free in page allocator.
7620 * What we are going to do is to allocate all pages from
7621 * [start, end) (that is remove them from page allocator).
7623 * The only problem is that pages at the beginning and at the
7624 * end of interesting range may be not aligned with pages that
7625 * page allocator holds, ie. they can be part of higher order
7626 * pages. Because of this, we reserve the bigger range and
7627 * once this is done free the pages we are not interested in.
7629 * We don't have to hold zone->lock here because the pages are
7630 * isolated thus they won't get removed from buddy.
7633 lru_add_drain_all();
7634 drain_all_pages(cc
.zone
);
7637 outer_start
= start
;
7638 while (!PageBuddy(pfn_to_page(outer_start
))) {
7639 if (++order
>= MAX_ORDER
) {
7640 outer_start
= start
;
7643 outer_start
&= ~0UL << order
;
7646 if (outer_start
!= start
) {
7647 order
= page_order(pfn_to_page(outer_start
));
7650 * outer_start page could be small order buddy page and
7651 * it doesn't include start page. Adjust outer_start
7652 * in this case to report failed page properly
7653 * on tracepoint in test_pages_isolated()
7655 if (outer_start
+ (1UL << order
) <= start
)
7656 outer_start
= start
;
7659 /* Make sure the range is really isolated. */
7660 if (test_pages_isolated(outer_start
, end
, false)) {
7661 pr_info("%s: [%lx, %lx) PFNs busy\n",
7662 __func__
, outer_start
, end
);
7667 /* Grab isolated pages from freelists. */
7668 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7674 /* Free head and tail (if any) */
7675 if (start
!= outer_start
)
7676 free_contig_range(outer_start
, start
- outer_start
);
7677 if (end
!= outer_end
)
7678 free_contig_range(end
, outer_end
- end
);
7681 undo_isolate_page_range(pfn_max_align_down(start
),
7682 pfn_max_align_up(end
), migratetype
);
7686 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7688 unsigned int count
= 0;
7690 for (; nr_pages
--; pfn
++) {
7691 struct page
*page
= pfn_to_page(pfn
);
7693 count
+= page_count(page
) != 1;
7696 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7700 #ifdef CONFIG_MEMORY_HOTPLUG
7702 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7703 * page high values need to be recalulated.
7705 void __meminit
zone_pcp_update(struct zone
*zone
)
7708 mutex_lock(&pcp_batch_high_lock
);
7709 for_each_possible_cpu(cpu
)
7710 pageset_set_high_and_batch(zone
,
7711 per_cpu_ptr(zone
->pageset
, cpu
));
7712 mutex_unlock(&pcp_batch_high_lock
);
7716 void zone_pcp_reset(struct zone
*zone
)
7718 unsigned long flags
;
7720 struct per_cpu_pageset
*pset
;
7722 /* avoid races with drain_pages() */
7723 local_irq_save(flags
);
7724 if (zone
->pageset
!= &boot_pageset
) {
7725 for_each_online_cpu(cpu
) {
7726 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7727 drain_zonestat(zone
, pset
);
7729 free_percpu(zone
->pageset
);
7730 zone
->pageset
= &boot_pageset
;
7732 local_irq_restore(flags
);
7735 #ifdef CONFIG_MEMORY_HOTREMOVE
7737 * All pages in the range must be in a single zone and isolated
7738 * before calling this.
7741 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7745 unsigned int order
, i
;
7747 unsigned long flags
;
7748 /* find the first valid pfn */
7749 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7754 offline_mem_sections(pfn
, end_pfn
);
7755 zone
= page_zone(pfn_to_page(pfn
));
7756 spin_lock_irqsave(&zone
->lock
, flags
);
7758 while (pfn
< end_pfn
) {
7759 if (!pfn_valid(pfn
)) {
7763 page
= pfn_to_page(pfn
);
7765 * The HWPoisoned page may be not in buddy system, and
7766 * page_count() is not 0.
7768 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
7770 SetPageReserved(page
);
7774 BUG_ON(page_count(page
));
7775 BUG_ON(!PageBuddy(page
));
7776 order
= page_order(page
);
7777 #ifdef CONFIG_DEBUG_VM
7778 pr_info("remove from free list %lx %d %lx\n",
7779 pfn
, 1 << order
, end_pfn
);
7781 list_del(&page
->lru
);
7782 rmv_page_order(page
);
7783 zone
->free_area
[order
].nr_free
--;
7784 for (i
= 0; i
< (1 << order
); i
++)
7785 SetPageReserved((page
+i
));
7786 pfn
+= (1 << order
);
7788 spin_unlock_irqrestore(&zone
->lock
, flags
);
7792 bool is_free_buddy_page(struct page
*page
)
7794 struct zone
*zone
= page_zone(page
);
7795 unsigned long pfn
= page_to_pfn(page
);
7796 unsigned long flags
;
7799 spin_lock_irqsave(&zone
->lock
, flags
);
7800 for (order
= 0; order
< MAX_ORDER
; order
++) {
7801 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7803 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7806 spin_unlock_irqrestore(&zone
->lock
, flags
);
7808 return order
< MAX_ORDER
;