Linux 3.16-rc2
[linux/fpc-iii.git] / fs / ocfs2 / aops.c
blob4a231a166cf88d6f76495ab9420e7406ba10307a
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #include <cluster/masklog.h>
34 #include "ocfs2.h"
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
79 fe = (struct ocfs2_dinode *) bh->b_data;
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 err = -ENOMEM;
84 mlog(ML_ERROR, "block offset is outside the allocated size: "
85 "%llu\n", (unsigned long long)iblock);
86 goto bail;
89 /* We don't use the page cache to create symlink data, so if
90 * need be, copy it over from the buffer cache. */
91 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
92 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
93 iblock;
94 buffer_cache_bh = sb_getblk(osb->sb, blkno);
95 if (!buffer_cache_bh) {
96 err = -ENOMEM;
97 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
98 goto bail;
101 /* we haven't locked out transactions, so a commit
102 * could've happened. Since we've got a reference on
103 * the bh, even if it commits while we're doing the
104 * copy, the data is still good. */
105 if (buffer_jbd(buffer_cache_bh)
106 && ocfs2_inode_is_new(inode)) {
107 kaddr = kmap_atomic(bh_result->b_page);
108 if (!kaddr) {
109 mlog(ML_ERROR, "couldn't kmap!\n");
110 goto bail;
112 memcpy(kaddr + (bh_result->b_size * iblock),
113 buffer_cache_bh->b_data,
114 bh_result->b_size);
115 kunmap_atomic(kaddr);
116 set_buffer_uptodate(bh_result);
118 brelse(buffer_cache_bh);
121 map_bh(bh_result, inode->i_sb,
122 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
124 err = 0;
126 bail:
127 brelse(bh);
129 return err;
132 int ocfs2_get_block(struct inode *inode, sector_t iblock,
133 struct buffer_head *bh_result, int create)
135 int err = 0;
136 unsigned int ext_flags;
137 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
138 u64 p_blkno, count, past_eof;
139 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
141 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
142 (unsigned long long)iblock, bh_result, create);
144 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
145 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
146 inode, inode->i_ino);
148 if (S_ISLNK(inode->i_mode)) {
149 /* this always does I/O for some reason. */
150 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
151 goto bail;
154 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
155 &ext_flags);
156 if (err) {
157 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
158 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
159 (unsigned long long)p_blkno);
160 goto bail;
163 if (max_blocks < count)
164 count = max_blocks;
167 * ocfs2 never allocates in this function - the only time we
168 * need to use BH_New is when we're extending i_size on a file
169 * system which doesn't support holes, in which case BH_New
170 * allows __block_write_begin() to zero.
172 * If we see this on a sparse file system, then a truncate has
173 * raced us and removed the cluster. In this case, we clear
174 * the buffers dirty and uptodate bits and let the buffer code
175 * ignore it as a hole.
177 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
178 clear_buffer_dirty(bh_result);
179 clear_buffer_uptodate(bh_result);
180 goto bail;
183 /* Treat the unwritten extent as a hole for zeroing purposes. */
184 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
185 map_bh(bh_result, inode->i_sb, p_blkno);
187 bh_result->b_size = count << inode->i_blkbits;
189 if (!ocfs2_sparse_alloc(osb)) {
190 if (p_blkno == 0) {
191 err = -EIO;
192 mlog(ML_ERROR,
193 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
194 (unsigned long long)iblock,
195 (unsigned long long)p_blkno,
196 (unsigned long long)OCFS2_I(inode)->ip_blkno);
197 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
198 dump_stack();
199 goto bail;
203 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
205 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
206 (unsigned long long)past_eof);
207 if (create && (iblock >= past_eof))
208 set_buffer_new(bh_result);
210 bail:
211 if (err < 0)
212 err = -EIO;
214 return err;
217 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
218 struct buffer_head *di_bh)
220 void *kaddr;
221 loff_t size;
222 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
224 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
225 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
226 (unsigned long long)OCFS2_I(inode)->ip_blkno);
227 return -EROFS;
230 size = i_size_read(inode);
232 if (size > PAGE_CACHE_SIZE ||
233 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
234 ocfs2_error(inode->i_sb,
235 "Inode %llu has with inline data has bad size: %Lu",
236 (unsigned long long)OCFS2_I(inode)->ip_blkno,
237 (unsigned long long)size);
238 return -EROFS;
241 kaddr = kmap_atomic(page);
242 if (size)
243 memcpy(kaddr, di->id2.i_data.id_data, size);
244 /* Clear the remaining part of the page */
245 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
246 flush_dcache_page(page);
247 kunmap_atomic(kaddr);
249 SetPageUptodate(page);
251 return 0;
254 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
256 int ret;
257 struct buffer_head *di_bh = NULL;
259 BUG_ON(!PageLocked(page));
260 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
262 ret = ocfs2_read_inode_block(inode, &di_bh);
263 if (ret) {
264 mlog_errno(ret);
265 goto out;
268 ret = ocfs2_read_inline_data(inode, page, di_bh);
269 out:
270 unlock_page(page);
272 brelse(di_bh);
273 return ret;
276 static int ocfs2_readpage(struct file *file, struct page *page)
278 struct inode *inode = page->mapping->host;
279 struct ocfs2_inode_info *oi = OCFS2_I(inode);
280 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
281 int ret, unlock = 1;
283 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
284 (page ? page->index : 0));
286 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
287 if (ret != 0) {
288 if (ret == AOP_TRUNCATED_PAGE)
289 unlock = 0;
290 mlog_errno(ret);
291 goto out;
294 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
296 * Unlock the page and cycle ip_alloc_sem so that we don't
297 * busyloop waiting for ip_alloc_sem to unlock
299 ret = AOP_TRUNCATED_PAGE;
300 unlock_page(page);
301 unlock = 0;
302 down_read(&oi->ip_alloc_sem);
303 up_read(&oi->ip_alloc_sem);
304 goto out_inode_unlock;
308 * i_size might have just been updated as we grabed the meta lock. We
309 * might now be discovering a truncate that hit on another node.
310 * block_read_full_page->get_block freaks out if it is asked to read
311 * beyond the end of a file, so we check here. Callers
312 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313 * and notice that the page they just read isn't needed.
315 * XXX sys_readahead() seems to get that wrong?
317 if (start >= i_size_read(inode)) {
318 zero_user(page, 0, PAGE_SIZE);
319 SetPageUptodate(page);
320 ret = 0;
321 goto out_alloc;
324 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325 ret = ocfs2_readpage_inline(inode, page);
326 else
327 ret = block_read_full_page(page, ocfs2_get_block);
328 unlock = 0;
330 out_alloc:
331 up_read(&OCFS2_I(inode)->ip_alloc_sem);
332 out_inode_unlock:
333 ocfs2_inode_unlock(inode, 0);
334 out:
335 if (unlock)
336 unlock_page(page);
337 return ret;
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
349 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350 struct list_head *pages, unsigned nr_pages)
352 int ret, err = -EIO;
353 struct inode *inode = mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355 loff_t start;
356 struct page *last;
359 * Use the nonblocking flag for the dlm code to avoid page
360 * lock inversion, but don't bother with retrying.
362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 if (ret)
364 return err;
366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367 ocfs2_inode_unlock(inode, 0);
368 return err;
372 * Don't bother with inline-data. There isn't anything
373 * to read-ahead in that case anyway...
375 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376 goto out_unlock;
379 * Check whether a remote node truncated this file - we just
380 * drop out in that case as it's not worth handling here.
382 last = list_entry(pages->prev, struct page, lru);
383 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384 if (start >= i_size_read(inode))
385 goto out_unlock;
387 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
389 out_unlock:
390 up_read(&oi->ip_alloc_sem);
391 ocfs2_inode_unlock(inode, 0);
393 return err;
396 /* Note: Because we don't support holes, our allocation has
397 * already happened (allocation writes zeros to the file data)
398 * so we don't have to worry about ordered writes in
399 * ocfs2_writepage.
401 * ->writepage is called during the process of invalidating the page cache
402 * during blocked lock processing. It can't block on any cluster locks
403 * to during block mapping. It's relying on the fact that the block
404 * mapping can't have disappeared under the dirty pages that it is
405 * being asked to write back.
407 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
409 trace_ocfs2_writepage(
410 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
411 page->index);
413 return block_write_full_page(page, ocfs2_get_block, wbc);
416 /* Taken from ext3. We don't necessarily need the full blown
417 * functionality yet, but IMHO it's better to cut and paste the whole
418 * thing so we can avoid introducing our own bugs (and easily pick up
419 * their fixes when they happen) --Mark */
420 int walk_page_buffers( handle_t *handle,
421 struct buffer_head *head,
422 unsigned from,
423 unsigned to,
424 int *partial,
425 int (*fn)( handle_t *handle,
426 struct buffer_head *bh))
428 struct buffer_head *bh;
429 unsigned block_start, block_end;
430 unsigned blocksize = head->b_size;
431 int err, ret = 0;
432 struct buffer_head *next;
434 for ( bh = head, block_start = 0;
435 ret == 0 && (bh != head || !block_start);
436 block_start = block_end, bh = next)
438 next = bh->b_this_page;
439 block_end = block_start + blocksize;
440 if (block_end <= from || block_start >= to) {
441 if (partial && !buffer_uptodate(bh))
442 *partial = 1;
443 continue;
445 err = (*fn)(handle, bh);
446 if (!ret)
447 ret = err;
449 return ret;
452 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
454 sector_t status;
455 u64 p_blkno = 0;
456 int err = 0;
457 struct inode *inode = mapping->host;
459 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
460 (unsigned long long)block);
462 /* We don't need to lock journal system files, since they aren't
463 * accessed concurrently from multiple nodes.
465 if (!INODE_JOURNAL(inode)) {
466 err = ocfs2_inode_lock(inode, NULL, 0);
467 if (err) {
468 if (err != -ENOENT)
469 mlog_errno(err);
470 goto bail;
472 down_read(&OCFS2_I(inode)->ip_alloc_sem);
475 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
476 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
477 NULL);
479 if (!INODE_JOURNAL(inode)) {
480 up_read(&OCFS2_I(inode)->ip_alloc_sem);
481 ocfs2_inode_unlock(inode, 0);
484 if (err) {
485 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
486 (unsigned long long)block);
487 mlog_errno(err);
488 goto bail;
491 bail:
492 status = err ? 0 : p_blkno;
494 return status;
498 * TODO: Make this into a generic get_blocks function.
500 * From do_direct_io in direct-io.c:
501 * "So what we do is to permit the ->get_blocks function to populate
502 * bh.b_size with the size of IO which is permitted at this offset and
503 * this i_blkbits."
505 * This function is called directly from get_more_blocks in direct-io.c.
507 * called like this: dio->get_blocks(dio->inode, fs_startblk,
508 * fs_count, map_bh, dio->rw == WRITE);
510 * Note that we never bother to allocate blocks here, and thus ignore the
511 * create argument.
513 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
514 struct buffer_head *bh_result, int create)
516 int ret;
517 u64 p_blkno, inode_blocks, contig_blocks;
518 unsigned int ext_flags;
519 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
520 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
522 /* This function won't even be called if the request isn't all
523 * nicely aligned and of the right size, so there's no need
524 * for us to check any of that. */
526 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
528 /* This figures out the size of the next contiguous block, and
529 * our logical offset */
530 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
531 &contig_blocks, &ext_flags);
532 if (ret) {
533 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
534 (unsigned long long)iblock);
535 ret = -EIO;
536 goto bail;
539 /* We should already CoW the refcounted extent in case of create. */
540 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
543 * get_more_blocks() expects us to describe a hole by clearing
544 * the mapped bit on bh_result().
546 * Consider an unwritten extent as a hole.
548 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
549 map_bh(bh_result, inode->i_sb, p_blkno);
550 else
551 clear_buffer_mapped(bh_result);
553 /* make sure we don't map more than max_blocks blocks here as
554 that's all the kernel will handle at this point. */
555 if (max_blocks < contig_blocks)
556 contig_blocks = max_blocks;
557 bh_result->b_size = contig_blocks << blocksize_bits;
558 bail:
559 return ret;
563 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
564 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
565 * to protect io on one node from truncation on another.
567 static void ocfs2_dio_end_io(struct kiocb *iocb,
568 loff_t offset,
569 ssize_t bytes,
570 void *private)
572 struct inode *inode = file_inode(iocb->ki_filp);
573 int level;
575 /* this io's submitter should not have unlocked this before we could */
576 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
578 if (ocfs2_iocb_is_sem_locked(iocb))
579 ocfs2_iocb_clear_sem_locked(iocb);
581 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
582 ocfs2_iocb_clear_unaligned_aio(iocb);
584 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
587 ocfs2_iocb_clear_rw_locked(iocb);
589 level = ocfs2_iocb_rw_locked_level(iocb);
590 ocfs2_rw_unlock(inode, level);
593 static int ocfs2_releasepage(struct page *page, gfp_t wait)
595 if (!page_has_buffers(page))
596 return 0;
597 return try_to_free_buffers(page);
600 static ssize_t ocfs2_direct_IO(int rw,
601 struct kiocb *iocb,
602 struct iov_iter *iter,
603 loff_t offset)
605 struct file *file = iocb->ki_filp;
606 struct inode *inode = file_inode(file)->i_mapping->host;
609 * Fallback to buffered I/O if we see an inode without
610 * extents.
612 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
613 return 0;
615 /* Fallback to buffered I/O if we are appending. */
616 if (i_size_read(inode) <= offset)
617 return 0;
619 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
620 iter, offset,
621 ocfs2_direct_IO_get_blocks,
622 ocfs2_dio_end_io, NULL, 0);
625 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
626 u32 cpos,
627 unsigned int *start,
628 unsigned int *end)
630 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
632 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
633 unsigned int cpp;
635 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
637 cluster_start = cpos % cpp;
638 cluster_start = cluster_start << osb->s_clustersize_bits;
640 cluster_end = cluster_start + osb->s_clustersize;
643 BUG_ON(cluster_start > PAGE_SIZE);
644 BUG_ON(cluster_end > PAGE_SIZE);
646 if (start)
647 *start = cluster_start;
648 if (end)
649 *end = cluster_end;
653 * 'from' and 'to' are the region in the page to avoid zeroing.
655 * If pagesize > clustersize, this function will avoid zeroing outside
656 * of the cluster boundary.
658 * from == to == 0 is code for "zero the entire cluster region"
660 static void ocfs2_clear_page_regions(struct page *page,
661 struct ocfs2_super *osb, u32 cpos,
662 unsigned from, unsigned to)
664 void *kaddr;
665 unsigned int cluster_start, cluster_end;
667 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
669 kaddr = kmap_atomic(page);
671 if (from || to) {
672 if (from > cluster_start)
673 memset(kaddr + cluster_start, 0, from - cluster_start);
674 if (to < cluster_end)
675 memset(kaddr + to, 0, cluster_end - to);
676 } else {
677 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
680 kunmap_atomic(kaddr);
684 * Nonsparse file systems fully allocate before we get to the write
685 * code. This prevents ocfs2_write() from tagging the write as an
686 * allocating one, which means ocfs2_map_page_blocks() might try to
687 * read-in the blocks at the tail of our file. Avoid reading them by
688 * testing i_size against each block offset.
690 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
691 unsigned int block_start)
693 u64 offset = page_offset(page) + block_start;
695 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
696 return 1;
698 if (i_size_read(inode) > offset)
699 return 1;
701 return 0;
705 * Some of this taken from __block_write_begin(). We already have our
706 * mapping by now though, and the entire write will be allocating or
707 * it won't, so not much need to use BH_New.
709 * This will also skip zeroing, which is handled externally.
711 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
712 struct inode *inode, unsigned int from,
713 unsigned int to, int new)
715 int ret = 0;
716 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
717 unsigned int block_end, block_start;
718 unsigned int bsize = 1 << inode->i_blkbits;
720 if (!page_has_buffers(page))
721 create_empty_buffers(page, bsize, 0);
723 head = page_buffers(page);
724 for (bh = head, block_start = 0; bh != head || !block_start;
725 bh = bh->b_this_page, block_start += bsize) {
726 block_end = block_start + bsize;
728 clear_buffer_new(bh);
731 * Ignore blocks outside of our i/o range -
732 * they may belong to unallocated clusters.
734 if (block_start >= to || block_end <= from) {
735 if (PageUptodate(page))
736 set_buffer_uptodate(bh);
737 continue;
741 * For an allocating write with cluster size >= page
742 * size, we always write the entire page.
744 if (new)
745 set_buffer_new(bh);
747 if (!buffer_mapped(bh)) {
748 map_bh(bh, inode->i_sb, *p_blkno);
749 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
752 if (PageUptodate(page)) {
753 if (!buffer_uptodate(bh))
754 set_buffer_uptodate(bh);
755 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
756 !buffer_new(bh) &&
757 ocfs2_should_read_blk(inode, page, block_start) &&
758 (block_start < from || block_end > to)) {
759 ll_rw_block(READ, 1, &bh);
760 *wait_bh++=bh;
763 *p_blkno = *p_blkno + 1;
767 * If we issued read requests - let them complete.
769 while(wait_bh > wait) {
770 wait_on_buffer(*--wait_bh);
771 if (!buffer_uptodate(*wait_bh))
772 ret = -EIO;
775 if (ret == 0 || !new)
776 return ret;
779 * If we get -EIO above, zero out any newly allocated blocks
780 * to avoid exposing stale data.
782 bh = head;
783 block_start = 0;
784 do {
785 block_end = block_start + bsize;
786 if (block_end <= from)
787 goto next_bh;
788 if (block_start >= to)
789 break;
791 zero_user(page, block_start, bh->b_size);
792 set_buffer_uptodate(bh);
793 mark_buffer_dirty(bh);
795 next_bh:
796 block_start = block_end;
797 bh = bh->b_this_page;
798 } while (bh != head);
800 return ret;
803 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
804 #define OCFS2_MAX_CTXT_PAGES 1
805 #else
806 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
807 #endif
809 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
812 * Describe the state of a single cluster to be written to.
814 struct ocfs2_write_cluster_desc {
815 u32 c_cpos;
816 u32 c_phys;
818 * Give this a unique field because c_phys eventually gets
819 * filled.
821 unsigned c_new;
822 unsigned c_unwritten;
823 unsigned c_needs_zero;
826 struct ocfs2_write_ctxt {
827 /* Logical cluster position / len of write */
828 u32 w_cpos;
829 u32 w_clen;
831 /* First cluster allocated in a nonsparse extend */
832 u32 w_first_new_cpos;
834 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
837 * This is true if page_size > cluster_size.
839 * It triggers a set of special cases during write which might
840 * have to deal with allocating writes to partial pages.
842 unsigned int w_large_pages;
845 * Pages involved in this write.
847 * w_target_page is the page being written to by the user.
849 * w_pages is an array of pages which always contains
850 * w_target_page, and in the case of an allocating write with
851 * page_size < cluster size, it will contain zero'd and mapped
852 * pages adjacent to w_target_page which need to be written
853 * out in so that future reads from that region will get
854 * zero's.
856 unsigned int w_num_pages;
857 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
858 struct page *w_target_page;
861 * w_target_locked is used for page_mkwrite path indicating no unlocking
862 * against w_target_page in ocfs2_write_end_nolock.
864 unsigned int w_target_locked:1;
867 * ocfs2_write_end() uses this to know what the real range to
868 * write in the target should be.
870 unsigned int w_target_from;
871 unsigned int w_target_to;
874 * We could use journal_current_handle() but this is cleaner,
875 * IMHO -Mark
877 handle_t *w_handle;
879 struct buffer_head *w_di_bh;
881 struct ocfs2_cached_dealloc_ctxt w_dealloc;
884 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
886 int i;
888 for(i = 0; i < num_pages; i++) {
889 if (pages[i]) {
890 unlock_page(pages[i]);
891 mark_page_accessed(pages[i]);
892 page_cache_release(pages[i]);
897 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
899 int i;
902 * w_target_locked is only set to true in the page_mkwrite() case.
903 * The intent is to allow us to lock the target page from write_begin()
904 * to write_end(). The caller must hold a ref on w_target_page.
906 if (wc->w_target_locked) {
907 BUG_ON(!wc->w_target_page);
908 for (i = 0; i < wc->w_num_pages; i++) {
909 if (wc->w_target_page == wc->w_pages[i]) {
910 wc->w_pages[i] = NULL;
911 break;
914 mark_page_accessed(wc->w_target_page);
915 page_cache_release(wc->w_target_page);
917 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
919 brelse(wc->w_di_bh);
920 kfree(wc);
923 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
924 struct ocfs2_super *osb, loff_t pos,
925 unsigned len, struct buffer_head *di_bh)
927 u32 cend;
928 struct ocfs2_write_ctxt *wc;
930 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
931 if (!wc)
932 return -ENOMEM;
934 wc->w_cpos = pos >> osb->s_clustersize_bits;
935 wc->w_first_new_cpos = UINT_MAX;
936 cend = (pos + len - 1) >> osb->s_clustersize_bits;
937 wc->w_clen = cend - wc->w_cpos + 1;
938 get_bh(di_bh);
939 wc->w_di_bh = di_bh;
941 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
942 wc->w_large_pages = 1;
943 else
944 wc->w_large_pages = 0;
946 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
948 *wcp = wc;
950 return 0;
954 * If a page has any new buffers, zero them out here, and mark them uptodate
955 * and dirty so they'll be written out (in order to prevent uninitialised
956 * block data from leaking). And clear the new bit.
958 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
960 unsigned int block_start, block_end;
961 struct buffer_head *head, *bh;
963 BUG_ON(!PageLocked(page));
964 if (!page_has_buffers(page))
965 return;
967 bh = head = page_buffers(page);
968 block_start = 0;
969 do {
970 block_end = block_start + bh->b_size;
972 if (buffer_new(bh)) {
973 if (block_end > from && block_start < to) {
974 if (!PageUptodate(page)) {
975 unsigned start, end;
977 start = max(from, block_start);
978 end = min(to, block_end);
980 zero_user_segment(page, start, end);
981 set_buffer_uptodate(bh);
984 clear_buffer_new(bh);
985 mark_buffer_dirty(bh);
989 block_start = block_end;
990 bh = bh->b_this_page;
991 } while (bh != head);
995 * Only called when we have a failure during allocating write to write
996 * zero's to the newly allocated region.
998 static void ocfs2_write_failure(struct inode *inode,
999 struct ocfs2_write_ctxt *wc,
1000 loff_t user_pos, unsigned user_len)
1002 int i;
1003 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1004 to = user_pos + user_len;
1005 struct page *tmppage;
1007 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1009 for(i = 0; i < wc->w_num_pages; i++) {
1010 tmppage = wc->w_pages[i];
1012 if (page_has_buffers(tmppage)) {
1013 if (ocfs2_should_order_data(inode))
1014 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1016 block_commit_write(tmppage, from, to);
1021 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1022 struct ocfs2_write_ctxt *wc,
1023 struct page *page, u32 cpos,
1024 loff_t user_pos, unsigned user_len,
1025 int new)
1027 int ret;
1028 unsigned int map_from = 0, map_to = 0;
1029 unsigned int cluster_start, cluster_end;
1030 unsigned int user_data_from = 0, user_data_to = 0;
1032 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1033 &cluster_start, &cluster_end);
1035 /* treat the write as new if the a hole/lseek spanned across
1036 * the page boundary.
1038 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1039 (page_offset(page) <= user_pos));
1041 if (page == wc->w_target_page) {
1042 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1043 map_to = map_from + user_len;
1045 if (new)
1046 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1047 cluster_start, cluster_end,
1048 new);
1049 else
1050 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1051 map_from, map_to, new);
1052 if (ret) {
1053 mlog_errno(ret);
1054 goto out;
1057 user_data_from = map_from;
1058 user_data_to = map_to;
1059 if (new) {
1060 map_from = cluster_start;
1061 map_to = cluster_end;
1063 } else {
1065 * If we haven't allocated the new page yet, we
1066 * shouldn't be writing it out without copying user
1067 * data. This is likely a math error from the caller.
1069 BUG_ON(!new);
1071 map_from = cluster_start;
1072 map_to = cluster_end;
1074 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1075 cluster_start, cluster_end, new);
1076 if (ret) {
1077 mlog_errno(ret);
1078 goto out;
1083 * Parts of newly allocated pages need to be zero'd.
1085 * Above, we have also rewritten 'to' and 'from' - as far as
1086 * the rest of the function is concerned, the entire cluster
1087 * range inside of a page needs to be written.
1089 * We can skip this if the page is up to date - it's already
1090 * been zero'd from being read in as a hole.
1092 if (new && !PageUptodate(page))
1093 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1094 cpos, user_data_from, user_data_to);
1096 flush_dcache_page(page);
1098 out:
1099 return ret;
1103 * This function will only grab one clusters worth of pages.
1105 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1106 struct ocfs2_write_ctxt *wc,
1107 u32 cpos, loff_t user_pos,
1108 unsigned user_len, int new,
1109 struct page *mmap_page)
1111 int ret = 0, i;
1112 unsigned long start, target_index, end_index, index;
1113 struct inode *inode = mapping->host;
1114 loff_t last_byte;
1116 target_index = user_pos >> PAGE_CACHE_SHIFT;
1119 * Figure out how many pages we'll be manipulating here. For
1120 * non allocating write, we just change the one
1121 * page. Otherwise, we'll need a whole clusters worth. If we're
1122 * writing past i_size, we only need enough pages to cover the
1123 * last page of the write.
1125 if (new) {
1126 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1127 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1129 * We need the index *past* the last page we could possibly
1130 * touch. This is the page past the end of the write or
1131 * i_size, whichever is greater.
1133 last_byte = max(user_pos + user_len, i_size_read(inode));
1134 BUG_ON(last_byte < 1);
1135 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1136 if ((start + wc->w_num_pages) > end_index)
1137 wc->w_num_pages = end_index - start;
1138 } else {
1139 wc->w_num_pages = 1;
1140 start = target_index;
1143 for(i = 0; i < wc->w_num_pages; i++) {
1144 index = start + i;
1146 if (index == target_index && mmap_page) {
1148 * ocfs2_pagemkwrite() is a little different
1149 * and wants us to directly use the page
1150 * passed in.
1152 lock_page(mmap_page);
1154 /* Exit and let the caller retry */
1155 if (mmap_page->mapping != mapping) {
1156 WARN_ON(mmap_page->mapping);
1157 unlock_page(mmap_page);
1158 ret = -EAGAIN;
1159 goto out;
1162 page_cache_get(mmap_page);
1163 wc->w_pages[i] = mmap_page;
1164 wc->w_target_locked = true;
1165 } else {
1166 wc->w_pages[i] = find_or_create_page(mapping, index,
1167 GFP_NOFS);
1168 if (!wc->w_pages[i]) {
1169 ret = -ENOMEM;
1170 mlog_errno(ret);
1171 goto out;
1174 wait_for_stable_page(wc->w_pages[i]);
1176 if (index == target_index)
1177 wc->w_target_page = wc->w_pages[i];
1179 out:
1180 if (ret)
1181 wc->w_target_locked = false;
1182 return ret;
1186 * Prepare a single cluster for write one cluster into the file.
1188 static int ocfs2_write_cluster(struct address_space *mapping,
1189 u32 phys, unsigned int unwritten,
1190 unsigned int should_zero,
1191 struct ocfs2_alloc_context *data_ac,
1192 struct ocfs2_alloc_context *meta_ac,
1193 struct ocfs2_write_ctxt *wc, u32 cpos,
1194 loff_t user_pos, unsigned user_len)
1196 int ret, i, new;
1197 u64 v_blkno, p_blkno;
1198 struct inode *inode = mapping->host;
1199 struct ocfs2_extent_tree et;
1201 new = phys == 0 ? 1 : 0;
1202 if (new) {
1203 u32 tmp_pos;
1206 * This is safe to call with the page locks - it won't take
1207 * any additional semaphores or cluster locks.
1209 tmp_pos = cpos;
1210 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1211 &tmp_pos, 1, 0, wc->w_di_bh,
1212 wc->w_handle, data_ac,
1213 meta_ac, NULL);
1215 * This shouldn't happen because we must have already
1216 * calculated the correct meta data allocation required. The
1217 * internal tree allocation code should know how to increase
1218 * transaction credits itself.
1220 * If need be, we could handle -EAGAIN for a
1221 * RESTART_TRANS here.
1223 mlog_bug_on_msg(ret == -EAGAIN,
1224 "Inode %llu: EAGAIN return during allocation.\n",
1225 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1226 if (ret < 0) {
1227 mlog_errno(ret);
1228 goto out;
1230 } else if (unwritten) {
1231 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1232 wc->w_di_bh);
1233 ret = ocfs2_mark_extent_written(inode, &et,
1234 wc->w_handle, cpos, 1, phys,
1235 meta_ac, &wc->w_dealloc);
1236 if (ret < 0) {
1237 mlog_errno(ret);
1238 goto out;
1242 if (should_zero)
1243 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1244 else
1245 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1248 * The only reason this should fail is due to an inability to
1249 * find the extent added.
1251 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1252 NULL);
1253 if (ret < 0) {
1254 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1255 "at logical block %llu",
1256 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1257 (unsigned long long)v_blkno);
1258 goto out;
1261 BUG_ON(p_blkno == 0);
1263 for(i = 0; i < wc->w_num_pages; i++) {
1264 int tmpret;
1266 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1267 wc->w_pages[i], cpos,
1268 user_pos, user_len,
1269 should_zero);
1270 if (tmpret) {
1271 mlog_errno(tmpret);
1272 if (ret == 0)
1273 ret = tmpret;
1278 * We only have cleanup to do in case of allocating write.
1280 if (ret && new)
1281 ocfs2_write_failure(inode, wc, user_pos, user_len);
1283 out:
1285 return ret;
1288 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1289 struct ocfs2_alloc_context *data_ac,
1290 struct ocfs2_alloc_context *meta_ac,
1291 struct ocfs2_write_ctxt *wc,
1292 loff_t pos, unsigned len)
1294 int ret, i;
1295 loff_t cluster_off;
1296 unsigned int local_len = len;
1297 struct ocfs2_write_cluster_desc *desc;
1298 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1300 for (i = 0; i < wc->w_clen; i++) {
1301 desc = &wc->w_desc[i];
1304 * We have to make sure that the total write passed in
1305 * doesn't extend past a single cluster.
1307 local_len = len;
1308 cluster_off = pos & (osb->s_clustersize - 1);
1309 if ((cluster_off + local_len) > osb->s_clustersize)
1310 local_len = osb->s_clustersize - cluster_off;
1312 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1313 desc->c_unwritten,
1314 desc->c_needs_zero,
1315 data_ac, meta_ac,
1316 wc, desc->c_cpos, pos, local_len);
1317 if (ret) {
1318 mlog_errno(ret);
1319 goto out;
1322 len -= local_len;
1323 pos += local_len;
1326 ret = 0;
1327 out:
1328 return ret;
1332 * ocfs2_write_end() wants to know which parts of the target page it
1333 * should complete the write on. It's easiest to compute them ahead of
1334 * time when a more complete view of the write is available.
1336 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1337 struct ocfs2_write_ctxt *wc,
1338 loff_t pos, unsigned len, int alloc)
1340 struct ocfs2_write_cluster_desc *desc;
1342 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1343 wc->w_target_to = wc->w_target_from + len;
1345 if (alloc == 0)
1346 return;
1349 * Allocating write - we may have different boundaries based
1350 * on page size and cluster size.
1352 * NOTE: We can no longer compute one value from the other as
1353 * the actual write length and user provided length may be
1354 * different.
1357 if (wc->w_large_pages) {
1359 * We only care about the 1st and last cluster within
1360 * our range and whether they should be zero'd or not. Either
1361 * value may be extended out to the start/end of a
1362 * newly allocated cluster.
1364 desc = &wc->w_desc[0];
1365 if (desc->c_needs_zero)
1366 ocfs2_figure_cluster_boundaries(osb,
1367 desc->c_cpos,
1368 &wc->w_target_from,
1369 NULL);
1371 desc = &wc->w_desc[wc->w_clen - 1];
1372 if (desc->c_needs_zero)
1373 ocfs2_figure_cluster_boundaries(osb,
1374 desc->c_cpos,
1375 NULL,
1376 &wc->w_target_to);
1377 } else {
1378 wc->w_target_from = 0;
1379 wc->w_target_to = PAGE_CACHE_SIZE;
1384 * Populate each single-cluster write descriptor in the write context
1385 * with information about the i/o to be done.
1387 * Returns the number of clusters that will have to be allocated, as
1388 * well as a worst case estimate of the number of extent records that
1389 * would have to be created during a write to an unwritten region.
1391 static int ocfs2_populate_write_desc(struct inode *inode,
1392 struct ocfs2_write_ctxt *wc,
1393 unsigned int *clusters_to_alloc,
1394 unsigned int *extents_to_split)
1396 int ret;
1397 struct ocfs2_write_cluster_desc *desc;
1398 unsigned int num_clusters = 0;
1399 unsigned int ext_flags = 0;
1400 u32 phys = 0;
1401 int i;
1403 *clusters_to_alloc = 0;
1404 *extents_to_split = 0;
1406 for (i = 0; i < wc->w_clen; i++) {
1407 desc = &wc->w_desc[i];
1408 desc->c_cpos = wc->w_cpos + i;
1410 if (num_clusters == 0) {
1412 * Need to look up the next extent record.
1414 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1415 &num_clusters, &ext_flags);
1416 if (ret) {
1417 mlog_errno(ret);
1418 goto out;
1421 /* We should already CoW the refcountd extent. */
1422 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1425 * Assume worst case - that we're writing in
1426 * the middle of the extent.
1428 * We can assume that the write proceeds from
1429 * left to right, in which case the extent
1430 * insert code is smart enough to coalesce the
1431 * next splits into the previous records created.
1433 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1434 *extents_to_split = *extents_to_split + 2;
1435 } else if (phys) {
1437 * Only increment phys if it doesn't describe
1438 * a hole.
1440 phys++;
1444 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1445 * file that got extended. w_first_new_cpos tells us
1446 * where the newly allocated clusters are so we can
1447 * zero them.
1449 if (desc->c_cpos >= wc->w_first_new_cpos) {
1450 BUG_ON(phys == 0);
1451 desc->c_needs_zero = 1;
1454 desc->c_phys = phys;
1455 if (phys == 0) {
1456 desc->c_new = 1;
1457 desc->c_needs_zero = 1;
1458 *clusters_to_alloc = *clusters_to_alloc + 1;
1461 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1462 desc->c_unwritten = 1;
1463 desc->c_needs_zero = 1;
1466 num_clusters--;
1469 ret = 0;
1470 out:
1471 return ret;
1474 static int ocfs2_write_begin_inline(struct address_space *mapping,
1475 struct inode *inode,
1476 struct ocfs2_write_ctxt *wc)
1478 int ret;
1479 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480 struct page *page;
1481 handle_t *handle;
1482 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1484 page = find_or_create_page(mapping, 0, GFP_NOFS);
1485 if (!page) {
1486 ret = -ENOMEM;
1487 mlog_errno(ret);
1488 goto out;
1491 * If we don't set w_num_pages then this page won't get unlocked
1492 * and freed on cleanup of the write context.
1494 wc->w_pages[0] = wc->w_target_page = page;
1495 wc->w_num_pages = 1;
1497 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1498 if (IS_ERR(handle)) {
1499 ret = PTR_ERR(handle);
1500 mlog_errno(ret);
1501 goto out;
1504 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1505 OCFS2_JOURNAL_ACCESS_WRITE);
1506 if (ret) {
1507 ocfs2_commit_trans(osb, handle);
1509 mlog_errno(ret);
1510 goto out;
1513 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1514 ocfs2_set_inode_data_inline(inode, di);
1516 if (!PageUptodate(page)) {
1517 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1518 if (ret) {
1519 ocfs2_commit_trans(osb, handle);
1521 goto out;
1525 wc->w_handle = handle;
1526 out:
1527 return ret;
1530 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1532 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1534 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1535 return 1;
1536 return 0;
1539 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1540 struct inode *inode, loff_t pos,
1541 unsigned len, struct page *mmap_page,
1542 struct ocfs2_write_ctxt *wc)
1544 int ret, written = 0;
1545 loff_t end = pos + len;
1546 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1547 struct ocfs2_dinode *di = NULL;
1549 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1550 len, (unsigned long long)pos,
1551 oi->ip_dyn_features);
1554 * Handle inodes which already have inline data 1st.
1556 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1557 if (mmap_page == NULL &&
1558 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1559 goto do_inline_write;
1562 * The write won't fit - we have to give this inode an
1563 * inline extent list now.
1565 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1566 if (ret)
1567 mlog_errno(ret);
1568 goto out;
1572 * Check whether the inode can accept inline data.
1574 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1575 return 0;
1578 * Check whether the write can fit.
1580 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1581 if (mmap_page ||
1582 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1583 return 0;
1585 do_inline_write:
1586 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1587 if (ret) {
1588 mlog_errno(ret);
1589 goto out;
1593 * This signals to the caller that the data can be written
1594 * inline.
1596 written = 1;
1597 out:
1598 return written ? written : ret;
1602 * This function only does anything for file systems which can't
1603 * handle sparse files.
1605 * What we want to do here is fill in any hole between the current end
1606 * of allocation and the end of our write. That way the rest of the
1607 * write path can treat it as an non-allocating write, which has no
1608 * special case code for sparse/nonsparse files.
1610 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1611 struct buffer_head *di_bh,
1612 loff_t pos, unsigned len,
1613 struct ocfs2_write_ctxt *wc)
1615 int ret;
1616 loff_t newsize = pos + len;
1618 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620 if (newsize <= i_size_read(inode))
1621 return 0;
1623 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1624 if (ret)
1625 mlog_errno(ret);
1627 wc->w_first_new_cpos =
1628 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1630 return ret;
1633 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1634 loff_t pos)
1636 int ret = 0;
1638 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1639 if (pos > i_size_read(inode))
1640 ret = ocfs2_zero_extend(inode, di_bh, pos);
1642 return ret;
1646 * Try to flush truncate logs if we can free enough clusters from it.
1647 * As for return value, "< 0" means error, "0" no space and "1" means
1648 * we have freed enough spaces and let the caller try to allocate again.
1650 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1651 unsigned int needed)
1653 tid_t target;
1654 int ret = 0;
1655 unsigned int truncated_clusters;
1657 mutex_lock(&osb->osb_tl_inode->i_mutex);
1658 truncated_clusters = osb->truncated_clusters;
1659 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1662 * Check whether we can succeed in allocating if we free
1663 * the truncate log.
1665 if (truncated_clusters < needed)
1666 goto out;
1668 ret = ocfs2_flush_truncate_log(osb);
1669 if (ret) {
1670 mlog_errno(ret);
1671 goto out;
1674 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1675 jbd2_log_wait_commit(osb->journal->j_journal, target);
1676 ret = 1;
1678 out:
1679 return ret;
1682 int ocfs2_write_begin_nolock(struct file *filp,
1683 struct address_space *mapping,
1684 loff_t pos, unsigned len, unsigned flags,
1685 struct page **pagep, void **fsdata,
1686 struct buffer_head *di_bh, struct page *mmap_page)
1688 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1689 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1690 struct ocfs2_write_ctxt *wc;
1691 struct inode *inode = mapping->host;
1692 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1693 struct ocfs2_dinode *di;
1694 struct ocfs2_alloc_context *data_ac = NULL;
1695 struct ocfs2_alloc_context *meta_ac = NULL;
1696 handle_t *handle;
1697 struct ocfs2_extent_tree et;
1698 int try_free = 1, ret1;
1700 try_again:
1701 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1702 if (ret) {
1703 mlog_errno(ret);
1704 return ret;
1707 if (ocfs2_supports_inline_data(osb)) {
1708 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1709 mmap_page, wc);
1710 if (ret == 1) {
1711 ret = 0;
1712 goto success;
1714 if (ret < 0) {
1715 mlog_errno(ret);
1716 goto out;
1720 if (ocfs2_sparse_alloc(osb))
1721 ret = ocfs2_zero_tail(inode, di_bh, pos);
1722 else
1723 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1724 wc);
1725 if (ret) {
1726 mlog_errno(ret);
1727 goto out;
1730 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1731 if (ret < 0) {
1732 mlog_errno(ret);
1733 goto out;
1734 } else if (ret == 1) {
1735 clusters_need = wc->w_clen;
1736 ret = ocfs2_refcount_cow(inode, di_bh,
1737 wc->w_cpos, wc->w_clen, UINT_MAX);
1738 if (ret) {
1739 mlog_errno(ret);
1740 goto out;
1744 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1745 &extents_to_split);
1746 if (ret) {
1747 mlog_errno(ret);
1748 goto out;
1750 clusters_need += clusters_to_alloc;
1752 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1754 trace_ocfs2_write_begin_nolock(
1755 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1756 (long long)i_size_read(inode),
1757 le32_to_cpu(di->i_clusters),
1758 pos, len, flags, mmap_page,
1759 clusters_to_alloc, extents_to_split);
1762 * We set w_target_from, w_target_to here so that
1763 * ocfs2_write_end() knows which range in the target page to
1764 * write out. An allocation requires that we write the entire
1765 * cluster range.
1767 if (clusters_to_alloc || extents_to_split) {
1769 * XXX: We are stretching the limits of
1770 * ocfs2_lock_allocators(). It greatly over-estimates
1771 * the work to be done.
1773 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1774 wc->w_di_bh);
1775 ret = ocfs2_lock_allocators(inode, &et,
1776 clusters_to_alloc, extents_to_split,
1777 &data_ac, &meta_ac);
1778 if (ret) {
1779 mlog_errno(ret);
1780 goto out;
1783 if (data_ac)
1784 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1786 credits = ocfs2_calc_extend_credits(inode->i_sb,
1787 &di->id2.i_list);
1792 * We have to zero sparse allocated clusters, unwritten extent clusters,
1793 * and non-sparse clusters we just extended. For non-sparse writes,
1794 * we know zeros will only be needed in the first and/or last cluster.
1796 if (clusters_to_alloc || extents_to_split ||
1797 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1798 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1799 cluster_of_pages = 1;
1800 else
1801 cluster_of_pages = 0;
1803 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1805 handle = ocfs2_start_trans(osb, credits);
1806 if (IS_ERR(handle)) {
1807 ret = PTR_ERR(handle);
1808 mlog_errno(ret);
1809 goto out;
1812 wc->w_handle = handle;
1814 if (clusters_to_alloc) {
1815 ret = dquot_alloc_space_nodirty(inode,
1816 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1817 if (ret)
1818 goto out_commit;
1821 * We don't want this to fail in ocfs2_write_end(), so do it
1822 * here.
1824 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1825 OCFS2_JOURNAL_ACCESS_WRITE);
1826 if (ret) {
1827 mlog_errno(ret);
1828 goto out_quota;
1832 * Fill our page array first. That way we've grabbed enough so
1833 * that we can zero and flush if we error after adding the
1834 * extent.
1836 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1837 cluster_of_pages, mmap_page);
1838 if (ret && ret != -EAGAIN) {
1839 mlog_errno(ret);
1840 goto out_quota;
1844 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1845 * the target page. In this case, we exit with no error and no target
1846 * page. This will trigger the caller, page_mkwrite(), to re-try
1847 * the operation.
1849 if (ret == -EAGAIN) {
1850 BUG_ON(wc->w_target_page);
1851 ret = 0;
1852 goto out_quota;
1855 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1856 len);
1857 if (ret) {
1858 mlog_errno(ret);
1859 goto out_quota;
1862 if (data_ac)
1863 ocfs2_free_alloc_context(data_ac);
1864 if (meta_ac)
1865 ocfs2_free_alloc_context(meta_ac);
1867 success:
1868 *pagep = wc->w_target_page;
1869 *fsdata = wc;
1870 return 0;
1871 out_quota:
1872 if (clusters_to_alloc)
1873 dquot_free_space(inode,
1874 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1875 out_commit:
1876 ocfs2_commit_trans(osb, handle);
1878 out:
1879 ocfs2_free_write_ctxt(wc);
1881 if (data_ac) {
1882 ocfs2_free_alloc_context(data_ac);
1883 data_ac = NULL;
1885 if (meta_ac) {
1886 ocfs2_free_alloc_context(meta_ac);
1887 meta_ac = NULL;
1890 if (ret == -ENOSPC && try_free) {
1892 * Try to free some truncate log so that we can have enough
1893 * clusters to allocate.
1895 try_free = 0;
1897 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1898 if (ret1 == 1)
1899 goto try_again;
1901 if (ret1 < 0)
1902 mlog_errno(ret1);
1905 return ret;
1908 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1909 loff_t pos, unsigned len, unsigned flags,
1910 struct page **pagep, void **fsdata)
1912 int ret;
1913 struct buffer_head *di_bh = NULL;
1914 struct inode *inode = mapping->host;
1916 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1917 if (ret) {
1918 mlog_errno(ret);
1919 return ret;
1923 * Take alloc sem here to prevent concurrent lookups. That way
1924 * the mapping, zeroing and tree manipulation within
1925 * ocfs2_write() will be safe against ->readpage(). This
1926 * should also serve to lock out allocation from a shared
1927 * writeable region.
1929 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1931 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1932 fsdata, di_bh, NULL);
1933 if (ret) {
1934 mlog_errno(ret);
1935 goto out_fail;
1938 brelse(di_bh);
1940 return 0;
1942 out_fail:
1943 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1945 brelse(di_bh);
1946 ocfs2_inode_unlock(inode, 1);
1948 return ret;
1951 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1952 unsigned len, unsigned *copied,
1953 struct ocfs2_dinode *di,
1954 struct ocfs2_write_ctxt *wc)
1956 void *kaddr;
1958 if (unlikely(*copied < len)) {
1959 if (!PageUptodate(wc->w_target_page)) {
1960 *copied = 0;
1961 return;
1965 kaddr = kmap_atomic(wc->w_target_page);
1966 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1967 kunmap_atomic(kaddr);
1969 trace_ocfs2_write_end_inline(
1970 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1971 (unsigned long long)pos, *copied,
1972 le16_to_cpu(di->id2.i_data.id_count),
1973 le16_to_cpu(di->i_dyn_features));
1976 int ocfs2_write_end_nolock(struct address_space *mapping,
1977 loff_t pos, unsigned len, unsigned copied,
1978 struct page *page, void *fsdata)
1980 int i;
1981 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1982 struct inode *inode = mapping->host;
1983 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1984 struct ocfs2_write_ctxt *wc = fsdata;
1985 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1986 handle_t *handle = wc->w_handle;
1987 struct page *tmppage;
1989 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1990 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1991 goto out_write_size;
1994 if (unlikely(copied < len)) {
1995 if (!PageUptodate(wc->w_target_page))
1996 copied = 0;
1998 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1999 start+len);
2001 flush_dcache_page(wc->w_target_page);
2003 for(i = 0; i < wc->w_num_pages; i++) {
2004 tmppage = wc->w_pages[i];
2006 if (tmppage == wc->w_target_page) {
2007 from = wc->w_target_from;
2008 to = wc->w_target_to;
2010 BUG_ON(from > PAGE_CACHE_SIZE ||
2011 to > PAGE_CACHE_SIZE ||
2012 to < from);
2013 } else {
2015 * Pages adjacent to the target (if any) imply
2016 * a hole-filling write in which case we want
2017 * to flush their entire range.
2019 from = 0;
2020 to = PAGE_CACHE_SIZE;
2023 if (page_has_buffers(tmppage)) {
2024 if (ocfs2_should_order_data(inode))
2025 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2026 block_commit_write(tmppage, from, to);
2030 out_write_size:
2031 pos += copied;
2032 if (pos > i_size_read(inode)) {
2033 i_size_write(inode, pos);
2034 mark_inode_dirty(inode);
2036 inode->i_blocks = ocfs2_inode_sector_count(inode);
2037 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2038 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2039 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2040 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2041 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2042 ocfs2_journal_dirty(handle, wc->w_di_bh);
2044 ocfs2_commit_trans(osb, handle);
2046 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2048 ocfs2_free_write_ctxt(wc);
2050 return copied;
2053 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2054 loff_t pos, unsigned len, unsigned copied,
2055 struct page *page, void *fsdata)
2057 int ret;
2058 struct inode *inode = mapping->host;
2060 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2062 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2063 ocfs2_inode_unlock(inode, 1);
2065 return ret;
2068 const struct address_space_operations ocfs2_aops = {
2069 .readpage = ocfs2_readpage,
2070 .readpages = ocfs2_readpages,
2071 .writepage = ocfs2_writepage,
2072 .write_begin = ocfs2_write_begin,
2073 .write_end = ocfs2_write_end,
2074 .bmap = ocfs2_bmap,
2075 .direct_IO = ocfs2_direct_IO,
2076 .invalidatepage = block_invalidatepage,
2077 .releasepage = ocfs2_releasepage,
2078 .migratepage = buffer_migrate_page,
2079 .is_partially_uptodate = block_is_partially_uptodate,
2080 .error_remove_page = generic_error_remove_page,