of/platform: Initialise default DMA masks
[linux/fpc-iii.git] / drivers / block / zram / zram_drv.c
blob7436b2d27fa38513602207c6b4bc9213c97af436
1 /*
2 * Compressed RAM block device
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
37 #include "zram_drv.h"
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
43 static int zram_major;
44 static const char *default_compressor = "lzo";
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
49 * Pages that compress to sizes equals or greater than this are stored
50 * uncompressed in memory.
52 static size_t huge_class_size;
54 static void zram_free_page(struct zram *zram, size_t index);
56 static void zram_slot_lock(struct zram *zram, u32 index)
58 bit_spin_lock(ZRAM_LOCK, &zram->table[index].value);
61 static void zram_slot_unlock(struct zram *zram, u32 index)
63 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].value);
66 static inline bool init_done(struct zram *zram)
68 return zram->disksize;
71 static inline bool zram_allocated(struct zram *zram, u32 index)
74 return (zram->table[index].value >> (ZRAM_FLAG_SHIFT + 1)) ||
75 zram->table[index].handle;
78 static inline struct zram *dev_to_zram(struct device *dev)
80 return (struct zram *)dev_to_disk(dev)->private_data;
83 static unsigned long zram_get_handle(struct zram *zram, u32 index)
85 return zram->table[index].handle;
88 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
90 zram->table[index].handle = handle;
93 /* flag operations require table entry bit_spin_lock() being held */
94 static bool zram_test_flag(struct zram *zram, u32 index,
95 enum zram_pageflags flag)
97 return zram->table[index].value & BIT(flag);
100 static void zram_set_flag(struct zram *zram, u32 index,
101 enum zram_pageflags flag)
103 zram->table[index].value |= BIT(flag);
106 static void zram_clear_flag(struct zram *zram, u32 index,
107 enum zram_pageflags flag)
109 zram->table[index].value &= ~BIT(flag);
112 static inline void zram_set_element(struct zram *zram, u32 index,
113 unsigned long element)
115 zram->table[index].element = element;
118 static unsigned long zram_get_element(struct zram *zram, u32 index)
120 return zram->table[index].element;
123 static size_t zram_get_obj_size(struct zram *zram, u32 index)
125 return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
128 static void zram_set_obj_size(struct zram *zram,
129 u32 index, size_t size)
131 unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
133 zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
136 #if PAGE_SIZE != 4096
137 static inline bool is_partial_io(struct bio_vec *bvec)
139 return bvec->bv_len != PAGE_SIZE;
141 #else
142 static inline bool is_partial_io(struct bio_vec *bvec)
144 return false;
146 #endif
149 * Check if request is within bounds and aligned on zram logical blocks.
151 static inline bool valid_io_request(struct zram *zram,
152 sector_t start, unsigned int size)
154 u64 end, bound;
156 /* unaligned request */
157 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
158 return false;
159 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
160 return false;
162 end = start + (size >> SECTOR_SHIFT);
163 bound = zram->disksize >> SECTOR_SHIFT;
164 /* out of range range */
165 if (unlikely(start >= bound || end > bound || start > end))
166 return false;
168 /* I/O request is valid */
169 return true;
172 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
174 *index += (*offset + bvec->bv_len) / PAGE_SIZE;
175 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
178 static inline void update_used_max(struct zram *zram,
179 const unsigned long pages)
181 unsigned long old_max, cur_max;
183 old_max = atomic_long_read(&zram->stats.max_used_pages);
185 do {
186 cur_max = old_max;
187 if (pages > cur_max)
188 old_max = atomic_long_cmpxchg(
189 &zram->stats.max_used_pages, cur_max, pages);
190 } while (old_max != cur_max);
193 static inline void zram_fill_page(void *ptr, unsigned long len,
194 unsigned long value)
196 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
197 memset_l(ptr, value, len / sizeof(unsigned long));
200 static bool page_same_filled(void *ptr, unsigned long *element)
202 unsigned int pos;
203 unsigned long *page;
204 unsigned long val;
206 page = (unsigned long *)ptr;
207 val = page[0];
209 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
210 if (val != page[pos])
211 return false;
214 *element = val;
216 return true;
219 static ssize_t initstate_show(struct device *dev,
220 struct device_attribute *attr, char *buf)
222 u32 val;
223 struct zram *zram = dev_to_zram(dev);
225 down_read(&zram->init_lock);
226 val = init_done(zram);
227 up_read(&zram->init_lock);
229 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
232 static ssize_t disksize_show(struct device *dev,
233 struct device_attribute *attr, char *buf)
235 struct zram *zram = dev_to_zram(dev);
237 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
240 static ssize_t mem_limit_store(struct device *dev,
241 struct device_attribute *attr, const char *buf, size_t len)
243 u64 limit;
244 char *tmp;
245 struct zram *zram = dev_to_zram(dev);
247 limit = memparse(buf, &tmp);
248 if (buf == tmp) /* no chars parsed, invalid input */
249 return -EINVAL;
251 down_write(&zram->init_lock);
252 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
253 up_write(&zram->init_lock);
255 return len;
258 static ssize_t mem_used_max_store(struct device *dev,
259 struct device_attribute *attr, const char *buf, size_t len)
261 int err;
262 unsigned long val;
263 struct zram *zram = dev_to_zram(dev);
265 err = kstrtoul(buf, 10, &val);
266 if (err || val != 0)
267 return -EINVAL;
269 down_read(&zram->init_lock);
270 if (init_done(zram)) {
271 atomic_long_set(&zram->stats.max_used_pages,
272 zs_get_total_pages(zram->mem_pool));
274 up_read(&zram->init_lock);
276 return len;
279 #ifdef CONFIG_ZRAM_WRITEBACK
280 static bool zram_wb_enabled(struct zram *zram)
282 return zram->backing_dev;
285 static void reset_bdev(struct zram *zram)
287 struct block_device *bdev;
289 if (!zram_wb_enabled(zram))
290 return;
292 bdev = zram->bdev;
293 if (zram->old_block_size)
294 set_blocksize(bdev, zram->old_block_size);
295 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
296 /* hope filp_close flush all of IO */
297 filp_close(zram->backing_dev, NULL);
298 zram->backing_dev = NULL;
299 zram->old_block_size = 0;
300 zram->bdev = NULL;
302 kvfree(zram->bitmap);
303 zram->bitmap = NULL;
306 static ssize_t backing_dev_show(struct device *dev,
307 struct device_attribute *attr, char *buf)
309 struct zram *zram = dev_to_zram(dev);
310 struct file *file = zram->backing_dev;
311 char *p;
312 ssize_t ret;
314 down_read(&zram->init_lock);
315 if (!zram_wb_enabled(zram)) {
316 memcpy(buf, "none\n", 5);
317 up_read(&zram->init_lock);
318 return 5;
321 p = file_path(file, buf, PAGE_SIZE - 1);
322 if (IS_ERR(p)) {
323 ret = PTR_ERR(p);
324 goto out;
327 ret = strlen(p);
328 memmove(buf, p, ret);
329 buf[ret++] = '\n';
330 out:
331 up_read(&zram->init_lock);
332 return ret;
335 static ssize_t backing_dev_store(struct device *dev,
336 struct device_attribute *attr, const char *buf, size_t len)
338 char *file_name;
339 struct file *backing_dev = NULL;
340 struct inode *inode;
341 struct address_space *mapping;
342 unsigned int bitmap_sz, old_block_size = 0;
343 unsigned long nr_pages, *bitmap = NULL;
344 struct block_device *bdev = NULL;
345 int err;
346 struct zram *zram = dev_to_zram(dev);
348 file_name = kmalloc(PATH_MAX, GFP_KERNEL);
349 if (!file_name)
350 return -ENOMEM;
352 down_write(&zram->init_lock);
353 if (init_done(zram)) {
354 pr_info("Can't setup backing device for initialized device\n");
355 err = -EBUSY;
356 goto out;
359 strlcpy(file_name, buf, len);
361 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
362 if (IS_ERR(backing_dev)) {
363 err = PTR_ERR(backing_dev);
364 backing_dev = NULL;
365 goto out;
368 mapping = backing_dev->f_mapping;
369 inode = mapping->host;
371 /* Support only block device in this moment */
372 if (!S_ISBLK(inode->i_mode)) {
373 err = -ENOTBLK;
374 goto out;
377 bdev = bdgrab(I_BDEV(inode));
378 err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
379 if (err < 0)
380 goto out;
382 nr_pages = i_size_read(inode) >> PAGE_SHIFT;
383 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
384 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
385 if (!bitmap) {
386 err = -ENOMEM;
387 goto out;
390 old_block_size = block_size(bdev);
391 err = set_blocksize(bdev, PAGE_SIZE);
392 if (err)
393 goto out;
395 reset_bdev(zram);
396 spin_lock_init(&zram->bitmap_lock);
398 zram->old_block_size = old_block_size;
399 zram->bdev = bdev;
400 zram->backing_dev = backing_dev;
401 zram->bitmap = bitmap;
402 zram->nr_pages = nr_pages;
403 up_write(&zram->init_lock);
405 pr_info("setup backing device %s\n", file_name);
406 kfree(file_name);
408 return len;
409 out:
410 if (bitmap)
411 kvfree(bitmap);
413 if (bdev)
414 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
416 if (backing_dev)
417 filp_close(backing_dev, NULL);
419 up_write(&zram->init_lock);
421 kfree(file_name);
423 return err;
426 static unsigned long get_entry_bdev(struct zram *zram)
428 unsigned long entry;
430 spin_lock(&zram->bitmap_lock);
431 /* skip 0 bit to confuse zram.handle = 0 */
432 entry = find_next_zero_bit(zram->bitmap, zram->nr_pages, 1);
433 if (entry == zram->nr_pages) {
434 spin_unlock(&zram->bitmap_lock);
435 return 0;
438 set_bit(entry, zram->bitmap);
439 spin_unlock(&zram->bitmap_lock);
441 return entry;
444 static void put_entry_bdev(struct zram *zram, unsigned long entry)
446 int was_set;
448 spin_lock(&zram->bitmap_lock);
449 was_set = test_and_clear_bit(entry, zram->bitmap);
450 spin_unlock(&zram->bitmap_lock);
451 WARN_ON_ONCE(!was_set);
454 static void zram_page_end_io(struct bio *bio)
456 struct page *page = bio_first_page_all(bio);
458 page_endio(page, op_is_write(bio_op(bio)),
459 blk_status_to_errno(bio->bi_status));
460 bio_put(bio);
464 * Returns 1 if the submission is successful.
466 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
467 unsigned long entry, struct bio *parent)
469 struct bio *bio;
471 bio = bio_alloc(GFP_ATOMIC, 1);
472 if (!bio)
473 return -ENOMEM;
475 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
476 bio_set_dev(bio, zram->bdev);
477 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
478 bio_put(bio);
479 return -EIO;
482 if (!parent) {
483 bio->bi_opf = REQ_OP_READ;
484 bio->bi_end_io = zram_page_end_io;
485 } else {
486 bio->bi_opf = parent->bi_opf;
487 bio_chain(bio, parent);
490 submit_bio(bio);
491 return 1;
494 struct zram_work {
495 struct work_struct work;
496 struct zram *zram;
497 unsigned long entry;
498 struct bio *bio;
501 #if PAGE_SIZE != 4096
502 static void zram_sync_read(struct work_struct *work)
504 struct bio_vec bvec;
505 struct zram_work *zw = container_of(work, struct zram_work, work);
506 struct zram *zram = zw->zram;
507 unsigned long entry = zw->entry;
508 struct bio *bio = zw->bio;
510 read_from_bdev_async(zram, &bvec, entry, bio);
514 * Block layer want one ->make_request_fn to be active at a time
515 * so if we use chained IO with parent IO in same context,
516 * it's a deadlock. To avoid, it, it uses worker thread context.
518 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
519 unsigned long entry, struct bio *bio)
521 struct zram_work work;
523 work.zram = zram;
524 work.entry = entry;
525 work.bio = bio;
527 INIT_WORK_ONSTACK(&work.work, zram_sync_read);
528 queue_work(system_unbound_wq, &work.work);
529 flush_work(&work.work);
530 destroy_work_on_stack(&work.work);
532 return 1;
534 #else
535 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
536 unsigned long entry, struct bio *bio)
538 WARN_ON(1);
539 return -EIO;
541 #endif
543 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
544 unsigned long entry, struct bio *parent, bool sync)
546 if (sync)
547 return read_from_bdev_sync(zram, bvec, entry, parent);
548 else
549 return read_from_bdev_async(zram, bvec, entry, parent);
552 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
553 u32 index, struct bio *parent,
554 unsigned long *pentry)
556 struct bio *bio;
557 unsigned long entry;
559 bio = bio_alloc(GFP_ATOMIC, 1);
560 if (!bio)
561 return -ENOMEM;
563 entry = get_entry_bdev(zram);
564 if (!entry) {
565 bio_put(bio);
566 return -ENOSPC;
569 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
570 bio_set_dev(bio, zram->bdev);
571 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len,
572 bvec->bv_offset)) {
573 bio_put(bio);
574 put_entry_bdev(zram, entry);
575 return -EIO;
578 if (!parent) {
579 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
580 bio->bi_end_io = zram_page_end_io;
581 } else {
582 bio->bi_opf = parent->bi_opf;
583 bio_chain(bio, parent);
586 submit_bio(bio);
587 *pentry = entry;
589 return 0;
592 static void zram_wb_clear(struct zram *zram, u32 index)
594 unsigned long entry;
596 zram_clear_flag(zram, index, ZRAM_WB);
597 entry = zram_get_element(zram, index);
598 zram_set_element(zram, index, 0);
599 put_entry_bdev(zram, entry);
602 #else
603 static bool zram_wb_enabled(struct zram *zram) { return false; }
604 static inline void reset_bdev(struct zram *zram) {};
605 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
606 u32 index, struct bio *parent,
607 unsigned long *pentry)
610 return -EIO;
613 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
614 unsigned long entry, struct bio *parent, bool sync)
616 return -EIO;
618 static void zram_wb_clear(struct zram *zram, u32 index) {}
619 #endif
621 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
623 static struct dentry *zram_debugfs_root;
625 static void zram_debugfs_create(void)
627 zram_debugfs_root = debugfs_create_dir("zram", NULL);
630 static void zram_debugfs_destroy(void)
632 debugfs_remove_recursive(zram_debugfs_root);
635 static void zram_accessed(struct zram *zram, u32 index)
637 zram->table[index].ac_time = ktime_get_boottime();
640 static void zram_reset_access(struct zram *zram, u32 index)
642 zram->table[index].ac_time = 0;
645 static ssize_t read_block_state(struct file *file, char __user *buf,
646 size_t count, loff_t *ppos)
648 char *kbuf;
649 ssize_t index, written = 0;
650 struct zram *zram = file->private_data;
651 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
652 struct timespec64 ts;
654 kbuf = kvmalloc(count, GFP_KERNEL);
655 if (!kbuf)
656 return -ENOMEM;
658 down_read(&zram->init_lock);
659 if (!init_done(zram)) {
660 up_read(&zram->init_lock);
661 kvfree(kbuf);
662 return -EINVAL;
665 for (index = *ppos; index < nr_pages; index++) {
666 int copied;
668 zram_slot_lock(zram, index);
669 if (!zram_allocated(zram, index))
670 goto next;
672 ts = ktime_to_timespec64(zram->table[index].ac_time);
673 copied = snprintf(kbuf + written, count,
674 "%12zd %12lld.%06lu %c%c%c\n",
675 index, (s64)ts.tv_sec,
676 ts.tv_nsec / NSEC_PER_USEC,
677 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
678 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
679 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.');
681 if (count < copied) {
682 zram_slot_unlock(zram, index);
683 break;
685 written += copied;
686 count -= copied;
687 next:
688 zram_slot_unlock(zram, index);
689 *ppos += 1;
692 up_read(&zram->init_lock);
693 if (copy_to_user(buf, kbuf, written))
694 written = -EFAULT;
695 kvfree(kbuf);
697 return written;
700 static const struct file_operations proc_zram_block_state_op = {
701 .open = simple_open,
702 .read = read_block_state,
703 .llseek = default_llseek,
706 static void zram_debugfs_register(struct zram *zram)
708 if (!zram_debugfs_root)
709 return;
711 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
712 zram_debugfs_root);
713 debugfs_create_file("block_state", 0400, zram->debugfs_dir,
714 zram, &proc_zram_block_state_op);
717 static void zram_debugfs_unregister(struct zram *zram)
719 debugfs_remove_recursive(zram->debugfs_dir);
721 #else
722 static void zram_debugfs_create(void) {};
723 static void zram_debugfs_destroy(void) {};
724 static void zram_accessed(struct zram *zram, u32 index) {};
725 static void zram_reset_access(struct zram *zram, u32 index) {};
726 static void zram_debugfs_register(struct zram *zram) {};
727 static void zram_debugfs_unregister(struct zram *zram) {};
728 #endif
731 * We switched to per-cpu streams and this attr is not needed anymore.
732 * However, we will keep it around for some time, because:
733 * a) we may revert per-cpu streams in the future
734 * b) it's visible to user space and we need to follow our 2 years
735 * retirement rule; but we already have a number of 'soon to be
736 * altered' attrs, so max_comp_streams need to wait for the next
737 * layoff cycle.
739 static ssize_t max_comp_streams_show(struct device *dev,
740 struct device_attribute *attr, char *buf)
742 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
745 static ssize_t max_comp_streams_store(struct device *dev,
746 struct device_attribute *attr, const char *buf, size_t len)
748 return len;
751 static ssize_t comp_algorithm_show(struct device *dev,
752 struct device_attribute *attr, char *buf)
754 size_t sz;
755 struct zram *zram = dev_to_zram(dev);
757 down_read(&zram->init_lock);
758 sz = zcomp_available_show(zram->compressor, buf);
759 up_read(&zram->init_lock);
761 return sz;
764 static ssize_t comp_algorithm_store(struct device *dev,
765 struct device_attribute *attr, const char *buf, size_t len)
767 struct zram *zram = dev_to_zram(dev);
768 char compressor[ARRAY_SIZE(zram->compressor)];
769 size_t sz;
771 strlcpy(compressor, buf, sizeof(compressor));
772 /* ignore trailing newline */
773 sz = strlen(compressor);
774 if (sz > 0 && compressor[sz - 1] == '\n')
775 compressor[sz - 1] = 0x00;
777 if (!zcomp_available_algorithm(compressor))
778 return -EINVAL;
780 down_write(&zram->init_lock);
781 if (init_done(zram)) {
782 up_write(&zram->init_lock);
783 pr_info("Can't change algorithm for initialized device\n");
784 return -EBUSY;
787 strcpy(zram->compressor, compressor);
788 up_write(&zram->init_lock);
789 return len;
792 static ssize_t compact_store(struct device *dev,
793 struct device_attribute *attr, const char *buf, size_t len)
795 struct zram *zram = dev_to_zram(dev);
797 down_read(&zram->init_lock);
798 if (!init_done(zram)) {
799 up_read(&zram->init_lock);
800 return -EINVAL;
803 zs_compact(zram->mem_pool);
804 up_read(&zram->init_lock);
806 return len;
809 static ssize_t io_stat_show(struct device *dev,
810 struct device_attribute *attr, char *buf)
812 struct zram *zram = dev_to_zram(dev);
813 ssize_t ret;
815 down_read(&zram->init_lock);
816 ret = scnprintf(buf, PAGE_SIZE,
817 "%8llu %8llu %8llu %8llu\n",
818 (u64)atomic64_read(&zram->stats.failed_reads),
819 (u64)atomic64_read(&zram->stats.failed_writes),
820 (u64)atomic64_read(&zram->stats.invalid_io),
821 (u64)atomic64_read(&zram->stats.notify_free));
822 up_read(&zram->init_lock);
824 return ret;
827 static ssize_t mm_stat_show(struct device *dev,
828 struct device_attribute *attr, char *buf)
830 struct zram *zram = dev_to_zram(dev);
831 struct zs_pool_stats pool_stats;
832 u64 orig_size, mem_used = 0;
833 long max_used;
834 ssize_t ret;
836 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
838 down_read(&zram->init_lock);
839 if (init_done(zram)) {
840 mem_used = zs_get_total_pages(zram->mem_pool);
841 zs_pool_stats(zram->mem_pool, &pool_stats);
844 orig_size = atomic64_read(&zram->stats.pages_stored);
845 max_used = atomic_long_read(&zram->stats.max_used_pages);
847 ret = scnprintf(buf, PAGE_SIZE,
848 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
849 orig_size << PAGE_SHIFT,
850 (u64)atomic64_read(&zram->stats.compr_data_size),
851 mem_used << PAGE_SHIFT,
852 zram->limit_pages << PAGE_SHIFT,
853 max_used << PAGE_SHIFT,
854 (u64)atomic64_read(&zram->stats.same_pages),
855 pool_stats.pages_compacted,
856 (u64)atomic64_read(&zram->stats.huge_pages));
857 up_read(&zram->init_lock);
859 return ret;
862 static ssize_t debug_stat_show(struct device *dev,
863 struct device_attribute *attr, char *buf)
865 int version = 1;
866 struct zram *zram = dev_to_zram(dev);
867 ssize_t ret;
869 down_read(&zram->init_lock);
870 ret = scnprintf(buf, PAGE_SIZE,
871 "version: %d\n%8llu\n",
872 version,
873 (u64)atomic64_read(&zram->stats.writestall));
874 up_read(&zram->init_lock);
876 return ret;
879 static DEVICE_ATTR_RO(io_stat);
880 static DEVICE_ATTR_RO(mm_stat);
881 static DEVICE_ATTR_RO(debug_stat);
883 static void zram_meta_free(struct zram *zram, u64 disksize)
885 size_t num_pages = disksize >> PAGE_SHIFT;
886 size_t index;
888 /* Free all pages that are still in this zram device */
889 for (index = 0; index < num_pages; index++)
890 zram_free_page(zram, index);
892 zs_destroy_pool(zram->mem_pool);
893 vfree(zram->table);
896 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
898 size_t num_pages;
900 num_pages = disksize >> PAGE_SHIFT;
901 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
902 if (!zram->table)
903 return false;
905 zram->mem_pool = zs_create_pool(zram->disk->disk_name);
906 if (!zram->mem_pool) {
907 vfree(zram->table);
908 return false;
911 if (!huge_class_size)
912 huge_class_size = zs_huge_class_size(zram->mem_pool);
913 return true;
917 * To protect concurrent access to the same index entry,
918 * caller should hold this table index entry's bit_spinlock to
919 * indicate this index entry is accessing.
921 static void zram_free_page(struct zram *zram, size_t index)
923 unsigned long handle;
925 zram_reset_access(zram, index);
927 if (zram_test_flag(zram, index, ZRAM_HUGE)) {
928 zram_clear_flag(zram, index, ZRAM_HUGE);
929 atomic64_dec(&zram->stats.huge_pages);
932 if (zram_wb_enabled(zram) && zram_test_flag(zram, index, ZRAM_WB)) {
933 zram_wb_clear(zram, index);
934 atomic64_dec(&zram->stats.pages_stored);
935 return;
939 * No memory is allocated for same element filled pages.
940 * Simply clear same page flag.
942 if (zram_test_flag(zram, index, ZRAM_SAME)) {
943 zram_clear_flag(zram, index, ZRAM_SAME);
944 zram_set_element(zram, index, 0);
945 atomic64_dec(&zram->stats.same_pages);
946 atomic64_dec(&zram->stats.pages_stored);
947 return;
950 handle = zram_get_handle(zram, index);
951 if (!handle)
952 return;
954 zs_free(zram->mem_pool, handle);
956 atomic64_sub(zram_get_obj_size(zram, index),
957 &zram->stats.compr_data_size);
958 atomic64_dec(&zram->stats.pages_stored);
960 zram_set_handle(zram, index, 0);
961 zram_set_obj_size(zram, index, 0);
964 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
965 struct bio *bio, bool partial_io)
967 int ret;
968 unsigned long handle;
969 unsigned int size;
970 void *src, *dst;
972 if (zram_wb_enabled(zram)) {
973 zram_slot_lock(zram, index);
974 if (zram_test_flag(zram, index, ZRAM_WB)) {
975 struct bio_vec bvec;
977 zram_slot_unlock(zram, index);
979 bvec.bv_page = page;
980 bvec.bv_len = PAGE_SIZE;
981 bvec.bv_offset = 0;
982 return read_from_bdev(zram, &bvec,
983 zram_get_element(zram, index),
984 bio, partial_io);
986 zram_slot_unlock(zram, index);
989 zram_slot_lock(zram, index);
990 handle = zram_get_handle(zram, index);
991 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
992 unsigned long value;
993 void *mem;
995 value = handle ? zram_get_element(zram, index) : 0;
996 mem = kmap_atomic(page);
997 zram_fill_page(mem, PAGE_SIZE, value);
998 kunmap_atomic(mem);
999 zram_slot_unlock(zram, index);
1000 return 0;
1003 size = zram_get_obj_size(zram, index);
1005 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1006 if (size == PAGE_SIZE) {
1007 dst = kmap_atomic(page);
1008 memcpy(dst, src, PAGE_SIZE);
1009 kunmap_atomic(dst);
1010 ret = 0;
1011 } else {
1012 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1014 dst = kmap_atomic(page);
1015 ret = zcomp_decompress(zstrm, src, size, dst);
1016 kunmap_atomic(dst);
1017 zcomp_stream_put(zram->comp);
1019 zs_unmap_object(zram->mem_pool, handle);
1020 zram_slot_unlock(zram, index);
1022 /* Should NEVER happen. Return bio error if it does. */
1023 if (unlikely(ret))
1024 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1026 return ret;
1029 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1030 u32 index, int offset, struct bio *bio)
1032 int ret;
1033 struct page *page;
1035 page = bvec->bv_page;
1036 if (is_partial_io(bvec)) {
1037 /* Use a temporary buffer to decompress the page */
1038 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1039 if (!page)
1040 return -ENOMEM;
1043 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1044 if (unlikely(ret))
1045 goto out;
1047 if (is_partial_io(bvec)) {
1048 void *dst = kmap_atomic(bvec->bv_page);
1049 void *src = kmap_atomic(page);
1051 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1052 kunmap_atomic(src);
1053 kunmap_atomic(dst);
1055 out:
1056 if (is_partial_io(bvec))
1057 __free_page(page);
1059 return ret;
1062 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1063 u32 index, struct bio *bio)
1065 int ret = 0;
1066 unsigned long alloced_pages;
1067 unsigned long handle = 0;
1068 unsigned int comp_len = 0;
1069 void *src, *dst, *mem;
1070 struct zcomp_strm *zstrm;
1071 struct page *page = bvec->bv_page;
1072 unsigned long element = 0;
1073 enum zram_pageflags flags = 0;
1074 bool allow_wb = true;
1076 mem = kmap_atomic(page);
1077 if (page_same_filled(mem, &element)) {
1078 kunmap_atomic(mem);
1079 /* Free memory associated with this sector now. */
1080 flags = ZRAM_SAME;
1081 atomic64_inc(&zram->stats.same_pages);
1082 goto out;
1084 kunmap_atomic(mem);
1086 compress_again:
1087 zstrm = zcomp_stream_get(zram->comp);
1088 src = kmap_atomic(page);
1089 ret = zcomp_compress(zstrm, src, &comp_len);
1090 kunmap_atomic(src);
1092 if (unlikely(ret)) {
1093 zcomp_stream_put(zram->comp);
1094 pr_err("Compression failed! err=%d\n", ret);
1095 zs_free(zram->mem_pool, handle);
1096 return ret;
1099 if (unlikely(comp_len >= huge_class_size)) {
1100 comp_len = PAGE_SIZE;
1101 if (zram_wb_enabled(zram) && allow_wb) {
1102 zcomp_stream_put(zram->comp);
1103 ret = write_to_bdev(zram, bvec, index, bio, &element);
1104 if (!ret) {
1105 flags = ZRAM_WB;
1106 ret = 1;
1107 goto out;
1109 allow_wb = false;
1110 goto compress_again;
1115 * handle allocation has 2 paths:
1116 * a) fast path is executed with preemption disabled (for
1117 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1118 * since we can't sleep;
1119 * b) slow path enables preemption and attempts to allocate
1120 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
1121 * put per-cpu compression stream and, thus, to re-do
1122 * the compression once handle is allocated.
1124 * if we have a 'non-null' handle here then we are coming
1125 * from the slow path and handle has already been allocated.
1127 if (!handle)
1128 handle = zs_malloc(zram->mem_pool, comp_len,
1129 __GFP_KSWAPD_RECLAIM |
1130 __GFP_NOWARN |
1131 __GFP_HIGHMEM |
1132 __GFP_MOVABLE);
1133 if (!handle) {
1134 zcomp_stream_put(zram->comp);
1135 atomic64_inc(&zram->stats.writestall);
1136 handle = zs_malloc(zram->mem_pool, comp_len,
1137 GFP_NOIO | __GFP_HIGHMEM |
1138 __GFP_MOVABLE);
1139 if (handle)
1140 goto compress_again;
1141 return -ENOMEM;
1144 alloced_pages = zs_get_total_pages(zram->mem_pool);
1145 update_used_max(zram, alloced_pages);
1147 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1148 zcomp_stream_put(zram->comp);
1149 zs_free(zram->mem_pool, handle);
1150 return -ENOMEM;
1153 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1155 src = zstrm->buffer;
1156 if (comp_len == PAGE_SIZE)
1157 src = kmap_atomic(page);
1158 memcpy(dst, src, comp_len);
1159 if (comp_len == PAGE_SIZE)
1160 kunmap_atomic(src);
1162 zcomp_stream_put(zram->comp);
1163 zs_unmap_object(zram->mem_pool, handle);
1164 atomic64_add(comp_len, &zram->stats.compr_data_size);
1165 out:
1167 * Free memory associated with this sector
1168 * before overwriting unused sectors.
1170 zram_slot_lock(zram, index);
1171 zram_free_page(zram, index);
1173 if (comp_len == PAGE_SIZE) {
1174 zram_set_flag(zram, index, ZRAM_HUGE);
1175 atomic64_inc(&zram->stats.huge_pages);
1178 if (flags) {
1179 zram_set_flag(zram, index, flags);
1180 zram_set_element(zram, index, element);
1181 } else {
1182 zram_set_handle(zram, index, handle);
1183 zram_set_obj_size(zram, index, comp_len);
1185 zram_slot_unlock(zram, index);
1187 /* Update stats */
1188 atomic64_inc(&zram->stats.pages_stored);
1189 return ret;
1192 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1193 u32 index, int offset, struct bio *bio)
1195 int ret;
1196 struct page *page = NULL;
1197 void *src;
1198 struct bio_vec vec;
1200 vec = *bvec;
1201 if (is_partial_io(bvec)) {
1202 void *dst;
1204 * This is a partial IO. We need to read the full page
1205 * before to write the changes.
1207 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1208 if (!page)
1209 return -ENOMEM;
1211 ret = __zram_bvec_read(zram, page, index, bio, true);
1212 if (ret)
1213 goto out;
1215 src = kmap_atomic(bvec->bv_page);
1216 dst = kmap_atomic(page);
1217 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1218 kunmap_atomic(dst);
1219 kunmap_atomic(src);
1221 vec.bv_page = page;
1222 vec.bv_len = PAGE_SIZE;
1223 vec.bv_offset = 0;
1226 ret = __zram_bvec_write(zram, &vec, index, bio);
1227 out:
1228 if (is_partial_io(bvec))
1229 __free_page(page);
1230 return ret;
1234 * zram_bio_discard - handler on discard request
1235 * @index: physical block index in PAGE_SIZE units
1236 * @offset: byte offset within physical block
1238 static void zram_bio_discard(struct zram *zram, u32 index,
1239 int offset, struct bio *bio)
1241 size_t n = bio->bi_iter.bi_size;
1244 * zram manages data in physical block size units. Because logical block
1245 * size isn't identical with physical block size on some arch, we
1246 * could get a discard request pointing to a specific offset within a
1247 * certain physical block. Although we can handle this request by
1248 * reading that physiclal block and decompressing and partially zeroing
1249 * and re-compressing and then re-storing it, this isn't reasonable
1250 * because our intent with a discard request is to save memory. So
1251 * skipping this logical block is appropriate here.
1253 if (offset) {
1254 if (n <= (PAGE_SIZE - offset))
1255 return;
1257 n -= (PAGE_SIZE - offset);
1258 index++;
1261 while (n >= PAGE_SIZE) {
1262 zram_slot_lock(zram, index);
1263 zram_free_page(zram, index);
1264 zram_slot_unlock(zram, index);
1265 atomic64_inc(&zram->stats.notify_free);
1266 index++;
1267 n -= PAGE_SIZE;
1272 * Returns errno if it has some problem. Otherwise return 0 or 1.
1273 * Returns 0 if IO request was done synchronously
1274 * Returns 1 if IO request was successfully submitted.
1276 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1277 int offset, bool is_write, struct bio *bio)
1279 unsigned long start_time = jiffies;
1280 int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
1281 struct request_queue *q = zram->disk->queue;
1282 int ret;
1284 generic_start_io_acct(q, rw_acct, bvec->bv_len >> SECTOR_SHIFT,
1285 &zram->disk->part0);
1287 if (!is_write) {
1288 atomic64_inc(&zram->stats.num_reads);
1289 ret = zram_bvec_read(zram, bvec, index, offset, bio);
1290 flush_dcache_page(bvec->bv_page);
1291 } else {
1292 atomic64_inc(&zram->stats.num_writes);
1293 ret = zram_bvec_write(zram, bvec, index, offset, bio);
1296 generic_end_io_acct(q, rw_acct, &zram->disk->part0, start_time);
1298 zram_slot_lock(zram, index);
1299 zram_accessed(zram, index);
1300 zram_slot_unlock(zram, index);
1302 if (unlikely(ret < 0)) {
1303 if (!is_write)
1304 atomic64_inc(&zram->stats.failed_reads);
1305 else
1306 atomic64_inc(&zram->stats.failed_writes);
1309 return ret;
1312 static void __zram_make_request(struct zram *zram, struct bio *bio)
1314 int offset;
1315 u32 index;
1316 struct bio_vec bvec;
1317 struct bvec_iter iter;
1319 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1320 offset = (bio->bi_iter.bi_sector &
1321 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1323 switch (bio_op(bio)) {
1324 case REQ_OP_DISCARD:
1325 case REQ_OP_WRITE_ZEROES:
1326 zram_bio_discard(zram, index, offset, bio);
1327 bio_endio(bio);
1328 return;
1329 default:
1330 break;
1333 bio_for_each_segment(bvec, bio, iter) {
1334 struct bio_vec bv = bvec;
1335 unsigned int unwritten = bvec.bv_len;
1337 do {
1338 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1339 unwritten);
1340 if (zram_bvec_rw(zram, &bv, index, offset,
1341 op_is_write(bio_op(bio)), bio) < 0)
1342 goto out;
1344 bv.bv_offset += bv.bv_len;
1345 unwritten -= bv.bv_len;
1347 update_position(&index, &offset, &bv);
1348 } while (unwritten);
1351 bio_endio(bio);
1352 return;
1354 out:
1355 bio_io_error(bio);
1359 * Handler function for all zram I/O requests.
1361 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1363 struct zram *zram = queue->queuedata;
1365 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1366 bio->bi_iter.bi_size)) {
1367 atomic64_inc(&zram->stats.invalid_io);
1368 goto error;
1371 __zram_make_request(zram, bio);
1372 return BLK_QC_T_NONE;
1374 error:
1375 bio_io_error(bio);
1376 return BLK_QC_T_NONE;
1379 static void zram_slot_free_notify(struct block_device *bdev,
1380 unsigned long index)
1382 struct zram *zram;
1384 zram = bdev->bd_disk->private_data;
1386 zram_slot_lock(zram, index);
1387 zram_free_page(zram, index);
1388 zram_slot_unlock(zram, index);
1389 atomic64_inc(&zram->stats.notify_free);
1392 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1393 struct page *page, bool is_write)
1395 int offset, ret;
1396 u32 index;
1397 struct zram *zram;
1398 struct bio_vec bv;
1400 if (PageTransHuge(page))
1401 return -ENOTSUPP;
1402 zram = bdev->bd_disk->private_data;
1404 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1405 atomic64_inc(&zram->stats.invalid_io);
1406 ret = -EINVAL;
1407 goto out;
1410 index = sector >> SECTORS_PER_PAGE_SHIFT;
1411 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1413 bv.bv_page = page;
1414 bv.bv_len = PAGE_SIZE;
1415 bv.bv_offset = 0;
1417 ret = zram_bvec_rw(zram, &bv, index, offset, is_write, NULL);
1418 out:
1420 * If I/O fails, just return error(ie, non-zero) without
1421 * calling page_endio.
1422 * It causes resubmit the I/O with bio request by upper functions
1423 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1424 * bio->bi_end_io does things to handle the error
1425 * (e.g., SetPageError, set_page_dirty and extra works).
1427 if (unlikely(ret < 0))
1428 return ret;
1430 switch (ret) {
1431 case 0:
1432 page_endio(page, is_write, 0);
1433 break;
1434 case 1:
1435 ret = 0;
1436 break;
1437 default:
1438 WARN_ON(1);
1440 return ret;
1443 static void zram_reset_device(struct zram *zram)
1445 struct zcomp *comp;
1446 u64 disksize;
1448 down_write(&zram->init_lock);
1450 zram->limit_pages = 0;
1452 if (!init_done(zram)) {
1453 up_write(&zram->init_lock);
1454 return;
1457 comp = zram->comp;
1458 disksize = zram->disksize;
1459 zram->disksize = 0;
1461 set_capacity(zram->disk, 0);
1462 part_stat_set_all(&zram->disk->part0, 0);
1464 up_write(&zram->init_lock);
1465 /* I/O operation under all of CPU are done so let's free */
1466 zram_meta_free(zram, disksize);
1467 memset(&zram->stats, 0, sizeof(zram->stats));
1468 zcomp_destroy(comp);
1469 reset_bdev(zram);
1472 static ssize_t disksize_store(struct device *dev,
1473 struct device_attribute *attr, const char *buf, size_t len)
1475 u64 disksize;
1476 struct zcomp *comp;
1477 struct zram *zram = dev_to_zram(dev);
1478 int err;
1480 disksize = memparse(buf, NULL);
1481 if (!disksize)
1482 return -EINVAL;
1484 down_write(&zram->init_lock);
1485 if (init_done(zram)) {
1486 pr_info("Cannot change disksize for initialized device\n");
1487 err = -EBUSY;
1488 goto out_unlock;
1491 disksize = PAGE_ALIGN(disksize);
1492 if (!zram_meta_alloc(zram, disksize)) {
1493 err = -ENOMEM;
1494 goto out_unlock;
1497 comp = zcomp_create(zram->compressor);
1498 if (IS_ERR(comp)) {
1499 pr_err("Cannot initialise %s compressing backend\n",
1500 zram->compressor);
1501 err = PTR_ERR(comp);
1502 goto out_free_meta;
1505 zram->comp = comp;
1506 zram->disksize = disksize;
1507 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1509 revalidate_disk(zram->disk);
1510 up_write(&zram->init_lock);
1512 return len;
1514 out_free_meta:
1515 zram_meta_free(zram, disksize);
1516 out_unlock:
1517 up_write(&zram->init_lock);
1518 return err;
1521 static ssize_t reset_store(struct device *dev,
1522 struct device_attribute *attr, const char *buf, size_t len)
1524 int ret;
1525 unsigned short do_reset;
1526 struct zram *zram;
1527 struct block_device *bdev;
1529 ret = kstrtou16(buf, 10, &do_reset);
1530 if (ret)
1531 return ret;
1533 if (!do_reset)
1534 return -EINVAL;
1536 zram = dev_to_zram(dev);
1537 bdev = bdget_disk(zram->disk, 0);
1538 if (!bdev)
1539 return -ENOMEM;
1541 mutex_lock(&bdev->bd_mutex);
1542 /* Do not reset an active device or claimed device */
1543 if (bdev->bd_openers || zram->claim) {
1544 mutex_unlock(&bdev->bd_mutex);
1545 bdput(bdev);
1546 return -EBUSY;
1549 /* From now on, anyone can't open /dev/zram[0-9] */
1550 zram->claim = true;
1551 mutex_unlock(&bdev->bd_mutex);
1553 /* Make sure all the pending I/O are finished */
1554 fsync_bdev(bdev);
1555 zram_reset_device(zram);
1556 revalidate_disk(zram->disk);
1557 bdput(bdev);
1559 mutex_lock(&bdev->bd_mutex);
1560 zram->claim = false;
1561 mutex_unlock(&bdev->bd_mutex);
1563 return len;
1566 static int zram_open(struct block_device *bdev, fmode_t mode)
1568 int ret = 0;
1569 struct zram *zram;
1571 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1573 zram = bdev->bd_disk->private_data;
1574 /* zram was claimed to reset so open request fails */
1575 if (zram->claim)
1576 ret = -EBUSY;
1578 return ret;
1581 static const struct block_device_operations zram_devops = {
1582 .open = zram_open,
1583 .swap_slot_free_notify = zram_slot_free_notify,
1584 .rw_page = zram_rw_page,
1585 .owner = THIS_MODULE
1588 static DEVICE_ATTR_WO(compact);
1589 static DEVICE_ATTR_RW(disksize);
1590 static DEVICE_ATTR_RO(initstate);
1591 static DEVICE_ATTR_WO(reset);
1592 static DEVICE_ATTR_WO(mem_limit);
1593 static DEVICE_ATTR_WO(mem_used_max);
1594 static DEVICE_ATTR_RW(max_comp_streams);
1595 static DEVICE_ATTR_RW(comp_algorithm);
1596 #ifdef CONFIG_ZRAM_WRITEBACK
1597 static DEVICE_ATTR_RW(backing_dev);
1598 #endif
1600 static struct attribute *zram_disk_attrs[] = {
1601 &dev_attr_disksize.attr,
1602 &dev_attr_initstate.attr,
1603 &dev_attr_reset.attr,
1604 &dev_attr_compact.attr,
1605 &dev_attr_mem_limit.attr,
1606 &dev_attr_mem_used_max.attr,
1607 &dev_attr_max_comp_streams.attr,
1608 &dev_attr_comp_algorithm.attr,
1609 #ifdef CONFIG_ZRAM_WRITEBACK
1610 &dev_attr_backing_dev.attr,
1611 #endif
1612 &dev_attr_io_stat.attr,
1613 &dev_attr_mm_stat.attr,
1614 &dev_attr_debug_stat.attr,
1615 NULL,
1618 static const struct attribute_group zram_disk_attr_group = {
1619 .attrs = zram_disk_attrs,
1623 * Allocate and initialize new zram device. the function returns
1624 * '>= 0' device_id upon success, and negative value otherwise.
1626 static int zram_add(void)
1628 struct zram *zram;
1629 struct request_queue *queue;
1630 int ret, device_id;
1632 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1633 if (!zram)
1634 return -ENOMEM;
1636 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1637 if (ret < 0)
1638 goto out_free_dev;
1639 device_id = ret;
1641 init_rwsem(&zram->init_lock);
1643 queue = blk_alloc_queue(GFP_KERNEL);
1644 if (!queue) {
1645 pr_err("Error allocating disk queue for device %d\n",
1646 device_id);
1647 ret = -ENOMEM;
1648 goto out_free_idr;
1651 blk_queue_make_request(queue, zram_make_request);
1653 /* gendisk structure */
1654 zram->disk = alloc_disk(1);
1655 if (!zram->disk) {
1656 pr_err("Error allocating disk structure for device %d\n",
1657 device_id);
1658 ret = -ENOMEM;
1659 goto out_free_queue;
1662 zram->disk->major = zram_major;
1663 zram->disk->first_minor = device_id;
1664 zram->disk->fops = &zram_devops;
1665 zram->disk->queue = queue;
1666 zram->disk->queue->queuedata = zram;
1667 zram->disk->private_data = zram;
1668 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1670 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1671 set_capacity(zram->disk, 0);
1672 /* zram devices sort of resembles non-rotational disks */
1673 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1674 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1677 * To ensure that we always get PAGE_SIZE aligned
1678 * and n*PAGE_SIZED sized I/O requests.
1680 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1681 blk_queue_logical_block_size(zram->disk->queue,
1682 ZRAM_LOGICAL_BLOCK_SIZE);
1683 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1684 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1685 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1686 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1687 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1690 * zram_bio_discard() will clear all logical blocks if logical block
1691 * size is identical with physical block size(PAGE_SIZE). But if it is
1692 * different, we will skip discarding some parts of logical blocks in
1693 * the part of the request range which isn't aligned to physical block
1694 * size. So we can't ensure that all discarded logical blocks are
1695 * zeroed.
1697 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1698 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1700 zram->disk->queue->backing_dev_info->capabilities |=
1701 (BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1702 add_disk(zram->disk);
1704 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1705 &zram_disk_attr_group);
1706 if (ret < 0) {
1707 pr_err("Error creating sysfs group for device %d\n",
1708 device_id);
1709 goto out_free_disk;
1711 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1713 zram_debugfs_register(zram);
1714 pr_info("Added device: %s\n", zram->disk->disk_name);
1715 return device_id;
1717 out_free_disk:
1718 del_gendisk(zram->disk);
1719 put_disk(zram->disk);
1720 out_free_queue:
1721 blk_cleanup_queue(queue);
1722 out_free_idr:
1723 idr_remove(&zram_index_idr, device_id);
1724 out_free_dev:
1725 kfree(zram);
1726 return ret;
1729 static int zram_remove(struct zram *zram)
1731 struct block_device *bdev;
1733 bdev = bdget_disk(zram->disk, 0);
1734 if (!bdev)
1735 return -ENOMEM;
1737 mutex_lock(&bdev->bd_mutex);
1738 if (bdev->bd_openers || zram->claim) {
1739 mutex_unlock(&bdev->bd_mutex);
1740 bdput(bdev);
1741 return -EBUSY;
1744 zram->claim = true;
1745 mutex_unlock(&bdev->bd_mutex);
1747 zram_debugfs_unregister(zram);
1749 * Remove sysfs first, so no one will perform a disksize
1750 * store while we destroy the devices. This also helps during
1751 * hot_remove -- zram_reset_device() is the last holder of
1752 * ->init_lock, no later/concurrent disksize_store() or any
1753 * other sysfs handlers are possible.
1755 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1756 &zram_disk_attr_group);
1758 /* Make sure all the pending I/O are finished */
1759 fsync_bdev(bdev);
1760 zram_reset_device(zram);
1761 bdput(bdev);
1763 pr_info("Removed device: %s\n", zram->disk->disk_name);
1765 del_gendisk(zram->disk);
1766 blk_cleanup_queue(zram->disk->queue);
1767 put_disk(zram->disk);
1768 kfree(zram);
1769 return 0;
1772 /* zram-control sysfs attributes */
1775 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1776 * sense that reading from this file does alter the state of your system -- it
1777 * creates a new un-initialized zram device and returns back this device's
1778 * device_id (or an error code if it fails to create a new device).
1780 static ssize_t hot_add_show(struct class *class,
1781 struct class_attribute *attr,
1782 char *buf)
1784 int ret;
1786 mutex_lock(&zram_index_mutex);
1787 ret = zram_add();
1788 mutex_unlock(&zram_index_mutex);
1790 if (ret < 0)
1791 return ret;
1792 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1794 static CLASS_ATTR_RO(hot_add);
1796 static ssize_t hot_remove_store(struct class *class,
1797 struct class_attribute *attr,
1798 const char *buf,
1799 size_t count)
1801 struct zram *zram;
1802 int ret, dev_id;
1804 /* dev_id is gendisk->first_minor, which is `int' */
1805 ret = kstrtoint(buf, 10, &dev_id);
1806 if (ret)
1807 return ret;
1808 if (dev_id < 0)
1809 return -EINVAL;
1811 mutex_lock(&zram_index_mutex);
1813 zram = idr_find(&zram_index_idr, dev_id);
1814 if (zram) {
1815 ret = zram_remove(zram);
1816 if (!ret)
1817 idr_remove(&zram_index_idr, dev_id);
1818 } else {
1819 ret = -ENODEV;
1822 mutex_unlock(&zram_index_mutex);
1823 return ret ? ret : count;
1825 static CLASS_ATTR_WO(hot_remove);
1827 static struct attribute *zram_control_class_attrs[] = {
1828 &class_attr_hot_add.attr,
1829 &class_attr_hot_remove.attr,
1830 NULL,
1832 ATTRIBUTE_GROUPS(zram_control_class);
1834 static struct class zram_control_class = {
1835 .name = "zram-control",
1836 .owner = THIS_MODULE,
1837 .class_groups = zram_control_class_groups,
1840 static int zram_remove_cb(int id, void *ptr, void *data)
1842 zram_remove(ptr);
1843 return 0;
1846 static void destroy_devices(void)
1848 class_unregister(&zram_control_class);
1849 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1850 zram_debugfs_destroy();
1851 idr_destroy(&zram_index_idr);
1852 unregister_blkdev(zram_major, "zram");
1853 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1856 static int __init zram_init(void)
1858 int ret;
1860 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1861 zcomp_cpu_up_prepare, zcomp_cpu_dead);
1862 if (ret < 0)
1863 return ret;
1865 ret = class_register(&zram_control_class);
1866 if (ret) {
1867 pr_err("Unable to register zram-control class\n");
1868 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1869 return ret;
1872 zram_debugfs_create();
1873 zram_major = register_blkdev(0, "zram");
1874 if (zram_major <= 0) {
1875 pr_err("Unable to get major number\n");
1876 class_unregister(&zram_control_class);
1877 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1878 return -EBUSY;
1881 while (num_devices != 0) {
1882 mutex_lock(&zram_index_mutex);
1883 ret = zram_add();
1884 mutex_unlock(&zram_index_mutex);
1885 if (ret < 0)
1886 goto out_error;
1887 num_devices--;
1890 return 0;
1892 out_error:
1893 destroy_devices();
1894 return ret;
1897 static void __exit zram_exit(void)
1899 destroy_devices();
1902 module_init(zram_init);
1903 module_exit(zram_exit);
1905 module_param(num_devices, uint, 0);
1906 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1908 MODULE_LICENSE("Dual BSD/GPL");
1909 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1910 MODULE_DESCRIPTION("Compressed RAM Block Device");