2 * linux/kernel/posix-timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 #include <linux/compat.h>
54 #include "timekeeping.h"
55 #include "posix-timers.h"
58 * Management arrays for POSIX timers. Timers are now kept in static hash table
60 * Timer ids are allocated by local routine, which selects proper hash head by
61 * key, constructed from current->signal address and per signal struct counter.
62 * This keeps timer ids unique per process, but now they can intersect between
67 * Lets keep our timers in a slab cache :-)
69 static struct kmem_cache
*posix_timers_cache
;
71 static DEFINE_HASHTABLE(posix_timers_hashtable
, 9);
72 static DEFINE_SPINLOCK(hash_lock
);
74 static const struct k_clock
* const posix_clocks
[];
75 static const struct k_clock
*clockid_to_kclock(const clockid_t id
);
76 static const struct k_clock clock_realtime
, clock_monotonic
;
79 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
80 * SIGEV values. Here we put out an error if this assumption fails.
82 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
83 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
84 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
88 * parisc wants ENOTSUP instead of EOPNOTSUPP
91 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
93 # define ENANOSLEEP_NOTSUP ENOTSUP
97 * The timer ID is turned into a timer address by idr_find().
98 * Verifying a valid ID consists of:
100 * a) checking that idr_find() returns other than -1.
101 * b) checking that the timer id matches the one in the timer itself.
102 * c) that the timer owner is in the callers thread group.
106 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
107 * to implement others. This structure defines the various
110 * RESOLUTION: Clock resolution is used to round up timer and interval
111 * times, NOT to report clock times, which are reported with as
112 * much resolution as the system can muster. In some cases this
113 * resolution may depend on the underlying clock hardware and
114 * may not be quantifiable until run time, and only then is the
115 * necessary code is written. The standard says we should say
116 * something about this issue in the documentation...
118 * FUNCTIONS: The CLOCKs structure defines possible functions to
119 * handle various clock functions.
121 * The standard POSIX timer management code assumes the
122 * following: 1.) The k_itimer struct (sched.h) is used for
123 * the timer. 2.) The list, it_lock, it_clock, it_id and
124 * it_pid fields are not modified by timer code.
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
133 static struct k_itimer
*__lock_timer(timer_t timer_id
, unsigned long *flags
);
135 #define lock_timer(tid, flags) \
136 ({ struct k_itimer *__timr; \
137 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
141 static int hash(struct signal_struct
*sig
, unsigned int nr
)
143 return hash_32(hash32_ptr(sig
) ^ nr
, HASH_BITS(posix_timers_hashtable
));
146 static struct k_itimer
*__posix_timers_find(struct hlist_head
*head
,
147 struct signal_struct
*sig
,
150 struct k_itimer
*timer
;
152 hlist_for_each_entry_rcu(timer
, head
, t_hash
) {
153 if ((timer
->it_signal
== sig
) && (timer
->it_id
== id
))
159 static struct k_itimer
*posix_timer_by_id(timer_t id
)
161 struct signal_struct
*sig
= current
->signal
;
162 struct hlist_head
*head
= &posix_timers_hashtable
[hash(sig
, id
)];
164 return __posix_timers_find(head
, sig
, id
);
167 static int posix_timer_add(struct k_itimer
*timer
)
169 struct signal_struct
*sig
= current
->signal
;
170 int first_free_id
= sig
->posix_timer_id
;
171 struct hlist_head
*head
;
175 spin_lock(&hash_lock
);
176 head
= &posix_timers_hashtable
[hash(sig
, sig
->posix_timer_id
)];
177 if (!__posix_timers_find(head
, sig
, sig
->posix_timer_id
)) {
178 hlist_add_head_rcu(&timer
->t_hash
, head
);
179 ret
= sig
->posix_timer_id
;
181 if (++sig
->posix_timer_id
< 0)
182 sig
->posix_timer_id
= 0;
183 if ((sig
->posix_timer_id
== first_free_id
) && (ret
== -ENOENT
))
184 /* Loop over all possible ids completed */
186 spin_unlock(&hash_lock
);
187 } while (ret
== -ENOENT
);
191 static inline void unlock_timer(struct k_itimer
*timr
, unsigned long flags
)
193 spin_unlock_irqrestore(&timr
->it_lock
, flags
);
196 /* Get clock_realtime */
197 static int posix_clock_realtime_get(clockid_t which_clock
, struct timespec64
*tp
)
199 ktime_get_real_ts64(tp
);
203 /* Set clock_realtime */
204 static int posix_clock_realtime_set(const clockid_t which_clock
,
205 const struct timespec64
*tp
)
207 return do_sys_settimeofday64(tp
, NULL
);
210 static int posix_clock_realtime_adj(const clockid_t which_clock
,
213 return do_adjtimex(t
);
217 * Get monotonic time for posix timers
219 static int posix_ktime_get_ts(clockid_t which_clock
, struct timespec64
*tp
)
226 * Get monotonic-raw time for posix timers
228 static int posix_get_monotonic_raw(clockid_t which_clock
, struct timespec64
*tp
)
230 getrawmonotonic64(tp
);
235 static int posix_get_realtime_coarse(clockid_t which_clock
, struct timespec64
*tp
)
237 *tp
= current_kernel_time64();
241 static int posix_get_monotonic_coarse(clockid_t which_clock
,
242 struct timespec64
*tp
)
244 *tp
= get_monotonic_coarse64();
248 static int posix_get_coarse_res(const clockid_t which_clock
, struct timespec64
*tp
)
250 *tp
= ktime_to_timespec64(KTIME_LOW_RES
);
254 static int posix_get_boottime(const clockid_t which_clock
, struct timespec64
*tp
)
256 get_monotonic_boottime64(tp
);
260 static int posix_get_tai(clockid_t which_clock
, struct timespec64
*tp
)
262 timekeeping_clocktai64(tp
);
266 static int posix_get_hrtimer_res(clockid_t which_clock
, struct timespec64
*tp
)
269 tp
->tv_nsec
= hrtimer_resolution
;
274 * Initialize everything, well, just everything in Posix clocks/timers ;)
276 static __init
int init_posix_timers(void)
278 posix_timers_cache
= kmem_cache_create("posix_timers_cache",
279 sizeof (struct k_itimer
), 0, SLAB_PANIC
,
283 __initcall(init_posix_timers
);
285 static void common_hrtimer_rearm(struct k_itimer
*timr
)
287 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
289 if (!timr
->it_interval
)
292 timr
->it_overrun
+= (unsigned int) hrtimer_forward(timer
,
293 timer
->base
->get_time(),
295 hrtimer_restart(timer
);
299 * This function is exported for use by the signal deliver code. It is
300 * called just prior to the info block being released and passes that
301 * block to us. It's function is to update the overrun entry AND to
302 * restart the timer. It should only be called if the timer is to be
303 * restarted (i.e. we have flagged this in the sys_private entry of the
306 * To protect against the timer going away while the interrupt is queued,
307 * we require that the it_requeue_pending flag be set.
309 void posixtimer_rearm(struct siginfo
*info
)
311 struct k_itimer
*timr
;
314 timr
= lock_timer(info
->si_tid
, &flags
);
318 if (timr
->it_requeue_pending
== info
->si_sys_private
) {
319 timr
->kclock
->timer_rearm(timr
);
322 timr
->it_overrun_last
= timr
->it_overrun
;
323 timr
->it_overrun
= -1;
324 ++timr
->it_requeue_pending
;
326 info
->si_overrun
+= timr
->it_overrun_last
;
329 unlock_timer(timr
, flags
);
332 int posix_timer_event(struct k_itimer
*timr
, int si_private
)
334 struct task_struct
*task
;
335 int shared
, ret
= -1;
337 * FIXME: if ->sigq is queued we can race with
338 * dequeue_signal()->posixtimer_rearm().
340 * If dequeue_signal() sees the "right" value of
341 * si_sys_private it calls posixtimer_rearm().
342 * We re-queue ->sigq and drop ->it_lock().
343 * posixtimer_rearm() locks the timer
344 * and re-schedules it while ->sigq is pending.
345 * Not really bad, but not that we want.
347 timr
->sigq
->info
.si_sys_private
= si_private
;
350 task
= pid_task(timr
->it_pid
, PIDTYPE_PID
);
352 shared
= !(timr
->it_sigev_notify
& SIGEV_THREAD_ID
);
353 ret
= send_sigqueue(timr
->sigq
, task
, shared
);
356 /* If we failed to send the signal the timer stops. */
361 * This function gets called when a POSIX.1b interval timer expires. It
362 * is used as a callback from the kernel internal timer. The
363 * run_timer_list code ALWAYS calls with interrupts on.
365 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
367 static enum hrtimer_restart
posix_timer_fn(struct hrtimer
*timer
)
369 struct k_itimer
*timr
;
372 enum hrtimer_restart ret
= HRTIMER_NORESTART
;
374 timr
= container_of(timer
, struct k_itimer
, it
.real
.timer
);
375 spin_lock_irqsave(&timr
->it_lock
, flags
);
378 if (timr
->it_interval
!= 0)
379 si_private
= ++timr
->it_requeue_pending
;
381 if (posix_timer_event(timr
, si_private
)) {
383 * signal was not sent because of sig_ignor
384 * we will not get a call back to restart it AND
385 * it should be restarted.
387 if (timr
->it_interval
!= 0) {
388 ktime_t now
= hrtimer_cb_get_time(timer
);
391 * FIXME: What we really want, is to stop this
392 * timer completely and restart it in case the
393 * SIG_IGN is removed. This is a non trivial
394 * change which involves sighand locking
395 * (sigh !), which we don't want to do late in
398 * For now we just let timers with an interval
399 * less than a jiffie expire every jiffie to
400 * avoid softirq starvation in case of SIG_IGN
401 * and a very small interval, which would put
402 * the timer right back on the softirq pending
403 * list. By moving now ahead of time we trick
404 * hrtimer_forward() to expire the timer
405 * later, while we still maintain the overrun
406 * accuracy, but have some inconsistency in
407 * the timer_gettime() case. This is at least
408 * better than a starved softirq. A more
409 * complex fix which solves also another related
410 * inconsistency is already in the pipeline.
412 #ifdef CONFIG_HIGH_RES_TIMERS
414 ktime_t kj
= NSEC_PER_SEC
/ HZ
;
416 if (timr
->it_interval
< kj
)
417 now
= ktime_add(now
, kj
);
420 timr
->it_overrun
+= (unsigned int)
421 hrtimer_forward(timer
, now
,
423 ret
= HRTIMER_RESTART
;
424 ++timr
->it_requeue_pending
;
429 unlock_timer(timr
, flags
);
433 static struct pid
*good_sigevent(sigevent_t
* event
)
435 struct task_struct
*rtn
= current
->group_leader
;
437 switch (event
->sigev_notify
) {
438 case SIGEV_SIGNAL
| SIGEV_THREAD_ID
:
439 rtn
= find_task_by_vpid(event
->sigev_notify_thread_id
);
440 if (!rtn
|| !same_thread_group(rtn
, current
))
445 if (event
->sigev_signo
<= 0 || event
->sigev_signo
> SIGRTMAX
)
449 return task_pid(rtn
);
455 static struct k_itimer
* alloc_posix_timer(void)
457 struct k_itimer
*tmr
;
458 tmr
= kmem_cache_zalloc(posix_timers_cache
, GFP_KERNEL
);
461 if (unlikely(!(tmr
->sigq
= sigqueue_alloc()))) {
462 kmem_cache_free(posix_timers_cache
, tmr
);
465 memset(&tmr
->sigq
->info
, 0, sizeof(siginfo_t
));
469 static void k_itimer_rcu_free(struct rcu_head
*head
)
471 struct k_itimer
*tmr
= container_of(head
, struct k_itimer
, it
.rcu
);
473 kmem_cache_free(posix_timers_cache
, tmr
);
477 #define IT_ID_NOT_SET 0
478 static void release_posix_timer(struct k_itimer
*tmr
, int it_id_set
)
482 spin_lock_irqsave(&hash_lock
, flags
);
483 hlist_del_rcu(&tmr
->t_hash
);
484 spin_unlock_irqrestore(&hash_lock
, flags
);
486 put_pid(tmr
->it_pid
);
487 sigqueue_free(tmr
->sigq
);
488 call_rcu(&tmr
->it
.rcu
, k_itimer_rcu_free
);
491 static int common_timer_create(struct k_itimer
*new_timer
)
493 hrtimer_init(&new_timer
->it
.real
.timer
, new_timer
->it_clock
, 0);
497 /* Create a POSIX.1b interval timer. */
498 static int do_timer_create(clockid_t which_clock
, struct sigevent
*event
,
499 timer_t __user
*created_timer_id
)
501 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
502 struct k_itimer
*new_timer
;
503 int error
, new_timer_id
;
504 int it_id_set
= IT_ID_NOT_SET
;
508 if (!kc
->timer_create
)
511 new_timer
= alloc_posix_timer();
512 if (unlikely(!new_timer
))
515 spin_lock_init(&new_timer
->it_lock
);
516 new_timer_id
= posix_timer_add(new_timer
);
517 if (new_timer_id
< 0) {
518 error
= new_timer_id
;
522 it_id_set
= IT_ID_SET
;
523 new_timer
->it_id
= (timer_t
) new_timer_id
;
524 new_timer
->it_clock
= which_clock
;
525 new_timer
->kclock
= kc
;
526 new_timer
->it_overrun
= -1;
530 new_timer
->it_pid
= get_pid(good_sigevent(event
));
532 if (!new_timer
->it_pid
) {
536 new_timer
->it_sigev_notify
= event
->sigev_notify
;
537 new_timer
->sigq
->info
.si_signo
= event
->sigev_signo
;
538 new_timer
->sigq
->info
.si_value
= event
->sigev_value
;
540 new_timer
->it_sigev_notify
= SIGEV_SIGNAL
;
541 new_timer
->sigq
->info
.si_signo
= SIGALRM
;
542 memset(&new_timer
->sigq
->info
.si_value
, 0, sizeof(sigval_t
));
543 new_timer
->sigq
->info
.si_value
.sival_int
= new_timer
->it_id
;
544 new_timer
->it_pid
= get_pid(task_tgid(current
));
547 new_timer
->sigq
->info
.si_tid
= new_timer
->it_id
;
548 new_timer
->sigq
->info
.si_code
= SI_TIMER
;
550 if (copy_to_user(created_timer_id
,
551 &new_timer_id
, sizeof (new_timer_id
))) {
556 error
= kc
->timer_create(new_timer
);
560 spin_lock_irq(¤t
->sighand
->siglock
);
561 new_timer
->it_signal
= current
->signal
;
562 list_add(&new_timer
->list
, ¤t
->signal
->posix_timers
);
563 spin_unlock_irq(¤t
->sighand
->siglock
);
567 * In the case of the timer belonging to another task, after
568 * the task is unlocked, the timer is owned by the other task
569 * and may cease to exist at any time. Don't use or modify
570 * new_timer after the unlock call.
573 release_posix_timer(new_timer
, it_id_set
);
577 SYSCALL_DEFINE3(timer_create
, const clockid_t
, which_clock
,
578 struct sigevent __user
*, timer_event_spec
,
579 timer_t __user
*, created_timer_id
)
581 if (timer_event_spec
) {
584 if (copy_from_user(&event
, timer_event_spec
, sizeof (event
)))
586 return do_timer_create(which_clock
, &event
, created_timer_id
);
588 return do_timer_create(which_clock
, NULL
, created_timer_id
);
592 COMPAT_SYSCALL_DEFINE3(timer_create
, clockid_t
, which_clock
,
593 struct compat_sigevent __user
*, timer_event_spec
,
594 timer_t __user
*, created_timer_id
)
596 if (timer_event_spec
) {
599 if (get_compat_sigevent(&event
, timer_event_spec
))
601 return do_timer_create(which_clock
, &event
, created_timer_id
);
603 return do_timer_create(which_clock
, NULL
, created_timer_id
);
608 * Locking issues: We need to protect the result of the id look up until
609 * we get the timer locked down so it is not deleted under us. The
610 * removal is done under the idr spinlock so we use that here to bridge
611 * the find to the timer lock. To avoid a dead lock, the timer id MUST
612 * be release with out holding the timer lock.
614 static struct k_itimer
*__lock_timer(timer_t timer_id
, unsigned long *flags
)
616 struct k_itimer
*timr
;
619 * timer_t could be any type >= int and we want to make sure any
620 * @timer_id outside positive int range fails lookup.
622 if ((unsigned long long)timer_id
> INT_MAX
)
626 timr
= posix_timer_by_id(timer_id
);
628 spin_lock_irqsave(&timr
->it_lock
, *flags
);
629 if (timr
->it_signal
== current
->signal
) {
633 spin_unlock_irqrestore(&timr
->it_lock
, *flags
);
640 static ktime_t
common_hrtimer_remaining(struct k_itimer
*timr
, ktime_t now
)
642 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
644 return __hrtimer_expires_remaining_adjusted(timer
, now
);
647 static int common_hrtimer_forward(struct k_itimer
*timr
, ktime_t now
)
649 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
651 return (int)hrtimer_forward(timer
, now
, timr
->it_interval
);
655 * Get the time remaining on a POSIX.1b interval timer. This function
656 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
659 * We have a couple of messes to clean up here. First there is the case
660 * of a timer that has a requeue pending. These timers should appear to
661 * be in the timer list with an expiry as if we were to requeue them
664 * The second issue is the SIGEV_NONE timer which may be active but is
665 * not really ever put in the timer list (to save system resources).
666 * This timer may be expired, and if so, we will do it here. Otherwise
667 * it is the same as a requeue pending timer WRT to what we should
670 void common_timer_get(struct k_itimer
*timr
, struct itimerspec64
*cur_setting
)
672 const struct k_clock
*kc
= timr
->kclock
;
673 ktime_t now
, remaining
, iv
;
674 struct timespec64 ts64
;
677 sig_none
= timr
->it_sigev_notify
== SIGEV_NONE
;
678 iv
= timr
->it_interval
;
680 /* interval timer ? */
682 cur_setting
->it_interval
= ktime_to_timespec64(iv
);
683 } else if (!timr
->it_active
) {
685 * SIGEV_NONE oneshot timers are never queued. Check them
693 * The timespec64 based conversion is suboptimal, but it's not
694 * worth to implement yet another callback.
696 kc
->clock_get(timr
->it_clock
, &ts64
);
697 now
= timespec64_to_ktime(ts64
);
700 * When a requeue is pending or this is a SIGEV_NONE timer move the
701 * expiry time forward by intervals, so expiry is > now.
703 if (iv
&& (timr
->it_requeue_pending
& REQUEUE_PENDING
|| sig_none
))
704 timr
->it_overrun
+= kc
->timer_forward(timr
, now
);
706 remaining
= kc
->timer_remaining(timr
, now
);
707 /* Return 0 only, when the timer is expired and not pending */
708 if (remaining
<= 0) {
710 * A single shot SIGEV_NONE timer must return 0, when
714 cur_setting
->it_value
.tv_nsec
= 1;
716 cur_setting
->it_value
= ktime_to_timespec64(remaining
);
720 /* Get the time remaining on a POSIX.1b interval timer. */
721 static int do_timer_gettime(timer_t timer_id
, struct itimerspec64
*setting
)
723 struct k_itimer
*timr
;
724 const struct k_clock
*kc
;
728 timr
= lock_timer(timer_id
, &flags
);
732 memset(setting
, 0, sizeof(*setting
));
734 if (WARN_ON_ONCE(!kc
|| !kc
->timer_get
))
737 kc
->timer_get(timr
, setting
);
739 unlock_timer(timr
, flags
);
743 /* Get the time remaining on a POSIX.1b interval timer. */
744 SYSCALL_DEFINE2(timer_gettime
, timer_t
, timer_id
,
745 struct itimerspec __user
*, setting
)
747 struct itimerspec64 cur_setting
;
749 int ret
= do_timer_gettime(timer_id
, &cur_setting
);
751 if (put_itimerspec64(&cur_setting
, setting
))
758 COMPAT_SYSCALL_DEFINE2(timer_gettime
, timer_t
, timer_id
,
759 struct compat_itimerspec __user
*, setting
)
761 struct itimerspec64 cur_setting
;
763 int ret
= do_timer_gettime(timer_id
, &cur_setting
);
765 if (put_compat_itimerspec64(&cur_setting
, setting
))
773 * Get the number of overruns of a POSIX.1b interval timer. This is to
774 * be the overrun of the timer last delivered. At the same time we are
775 * accumulating overruns on the next timer. The overrun is frozen when
776 * the signal is delivered, either at the notify time (if the info block
777 * is not queued) or at the actual delivery time (as we are informed by
778 * the call back to posixtimer_rearm(). So all we need to do is
779 * to pick up the frozen overrun.
781 SYSCALL_DEFINE1(timer_getoverrun
, timer_t
, timer_id
)
783 struct k_itimer
*timr
;
787 timr
= lock_timer(timer_id
, &flags
);
791 overrun
= timr
->it_overrun_last
;
792 unlock_timer(timr
, flags
);
797 static void common_hrtimer_arm(struct k_itimer
*timr
, ktime_t expires
,
798 bool absolute
, bool sigev_none
)
800 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
801 enum hrtimer_mode mode
;
803 mode
= absolute
? HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
;
805 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
806 * clock modifications, so they become CLOCK_MONOTONIC based under the
807 * hood. See hrtimer_init(). Update timr->kclock, so the generic
808 * functions which use timr->kclock->clock_get() work.
810 * Note: it_clock stays unmodified, because the next timer_set() might
811 * use ABSTIME, so it needs to switch back.
813 if (timr
->it_clock
== CLOCK_REALTIME
)
814 timr
->kclock
= absolute
? &clock_realtime
: &clock_monotonic
;
816 hrtimer_init(&timr
->it
.real
.timer
, timr
->it_clock
, mode
);
817 timr
->it
.real
.timer
.function
= posix_timer_fn
;
820 expires
= ktime_add_safe(expires
, timer
->base
->get_time());
821 hrtimer_set_expires(timer
, expires
);
824 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS
);
827 static int common_hrtimer_try_to_cancel(struct k_itimer
*timr
)
829 return hrtimer_try_to_cancel(&timr
->it
.real
.timer
);
832 /* Set a POSIX.1b interval timer. */
833 int common_timer_set(struct k_itimer
*timr
, int flags
,
834 struct itimerspec64
*new_setting
,
835 struct itimerspec64
*old_setting
)
837 const struct k_clock
*kc
= timr
->kclock
;
842 common_timer_get(timr
, old_setting
);
844 /* Prevent rearming by clearing the interval */
845 timr
->it_interval
= 0;
847 * Careful here. On SMP systems the timer expiry function could be
848 * active and spinning on timr->it_lock.
850 if (kc
->timer_try_to_cancel(timr
) < 0)
854 timr
->it_requeue_pending
= (timr
->it_requeue_pending
+ 2) &
856 timr
->it_overrun_last
= 0;
858 /* Switch off the timer when it_value is zero */
859 if (!new_setting
->it_value
.tv_sec
&& !new_setting
->it_value
.tv_nsec
)
862 timr
->it_interval
= timespec64_to_ktime(new_setting
->it_interval
);
863 expires
= timespec64_to_ktime(new_setting
->it_value
);
864 sigev_none
= timr
->it_sigev_notify
== SIGEV_NONE
;
866 kc
->timer_arm(timr
, expires
, flags
& TIMER_ABSTIME
, sigev_none
);
867 timr
->it_active
= !sigev_none
;
871 static int do_timer_settime(timer_t timer_id
, int flags
,
872 struct itimerspec64
*new_spec64
,
873 struct itimerspec64
*old_spec64
)
875 const struct k_clock
*kc
;
876 struct k_itimer
*timr
;
880 if (!timespec64_valid(&new_spec64
->it_interval
) ||
881 !timespec64_valid(&new_spec64
->it_value
))
885 memset(old_spec64
, 0, sizeof(*old_spec64
));
887 timr
= lock_timer(timer_id
, &flag
);
892 if (WARN_ON_ONCE(!kc
|| !kc
->timer_set
))
895 error
= kc
->timer_set(timr
, flags
, new_spec64
, old_spec64
);
897 unlock_timer(timr
, flag
);
898 if (error
== TIMER_RETRY
) {
899 old_spec64
= NULL
; // We already got the old time...
906 /* Set a POSIX.1b interval timer */
907 SYSCALL_DEFINE4(timer_settime
, timer_t
, timer_id
, int, flags
,
908 const struct itimerspec __user
*, new_setting
,
909 struct itimerspec __user
*, old_setting
)
911 struct itimerspec64 new_spec
, old_spec
;
912 struct itimerspec64
*rtn
= old_setting
? &old_spec
: NULL
;
918 if (get_itimerspec64(&new_spec
, new_setting
))
921 error
= do_timer_settime(timer_id
, flags
, &new_spec
, rtn
);
922 if (!error
&& old_setting
) {
923 if (put_itimerspec64(&old_spec
, old_setting
))
930 COMPAT_SYSCALL_DEFINE4(timer_settime
, timer_t
, timer_id
, int, flags
,
931 struct compat_itimerspec __user
*, new,
932 struct compat_itimerspec __user
*, old
)
934 struct itimerspec64 new_spec
, old_spec
;
935 struct itimerspec64
*rtn
= old
? &old_spec
: NULL
;
940 if (get_compat_itimerspec64(&new_spec
, new))
943 error
= do_timer_settime(timer_id
, flags
, &new_spec
, rtn
);
945 if (put_compat_itimerspec64(&old_spec
, old
))
952 int common_timer_del(struct k_itimer
*timer
)
954 const struct k_clock
*kc
= timer
->kclock
;
956 timer
->it_interval
= 0;
957 if (kc
->timer_try_to_cancel(timer
) < 0)
959 timer
->it_active
= 0;
963 static inline int timer_delete_hook(struct k_itimer
*timer
)
965 const struct k_clock
*kc
= timer
->kclock
;
967 if (WARN_ON_ONCE(!kc
|| !kc
->timer_del
))
969 return kc
->timer_del(timer
);
972 /* Delete a POSIX.1b interval timer. */
973 SYSCALL_DEFINE1(timer_delete
, timer_t
, timer_id
)
975 struct k_itimer
*timer
;
979 timer
= lock_timer(timer_id
, &flags
);
983 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
984 unlock_timer(timer
, flags
);
988 spin_lock(¤t
->sighand
->siglock
);
989 list_del(&timer
->list
);
990 spin_unlock(¤t
->sighand
->siglock
);
992 * This keeps any tasks waiting on the spin lock from thinking
993 * they got something (see the lock code above).
995 timer
->it_signal
= NULL
;
997 unlock_timer(timer
, flags
);
998 release_posix_timer(timer
, IT_ID_SET
);
1003 * return timer owned by the process, used by exit_itimers
1005 static void itimer_delete(struct k_itimer
*timer
)
1007 unsigned long flags
;
1010 spin_lock_irqsave(&timer
->it_lock
, flags
);
1012 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
1013 unlock_timer(timer
, flags
);
1016 list_del(&timer
->list
);
1018 * This keeps any tasks waiting on the spin lock from thinking
1019 * they got something (see the lock code above).
1021 timer
->it_signal
= NULL
;
1023 unlock_timer(timer
, flags
);
1024 release_posix_timer(timer
, IT_ID_SET
);
1028 * This is called by do_exit or de_thread, only when there are no more
1029 * references to the shared signal_struct.
1031 void exit_itimers(struct signal_struct
*sig
)
1033 struct k_itimer
*tmr
;
1035 while (!list_empty(&sig
->posix_timers
)) {
1036 tmr
= list_entry(sig
->posix_timers
.next
, struct k_itimer
, list
);
1041 SYSCALL_DEFINE2(clock_settime
, const clockid_t
, which_clock
,
1042 const struct timespec __user
*, tp
)
1044 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1045 struct timespec64 new_tp
;
1047 if (!kc
|| !kc
->clock_set
)
1050 if (get_timespec64(&new_tp
, tp
))
1053 return kc
->clock_set(which_clock
, &new_tp
);
1056 SYSCALL_DEFINE2(clock_gettime
, const clockid_t
, which_clock
,
1057 struct timespec __user
*,tp
)
1059 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1060 struct timespec64 kernel_tp
;
1066 error
= kc
->clock_get(which_clock
, &kernel_tp
);
1068 if (!error
&& put_timespec64(&kernel_tp
, tp
))
1074 SYSCALL_DEFINE2(clock_adjtime
, const clockid_t
, which_clock
,
1075 struct timex __user
*, utx
)
1077 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1086 if (copy_from_user(&ktx
, utx
, sizeof(ktx
)))
1089 err
= kc
->clock_adj(which_clock
, &ktx
);
1091 if (err
>= 0 && copy_to_user(utx
, &ktx
, sizeof(ktx
)))
1097 SYSCALL_DEFINE2(clock_getres
, const clockid_t
, which_clock
,
1098 struct timespec __user
*, tp
)
1100 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1101 struct timespec64 rtn_tp
;
1107 error
= kc
->clock_getres(which_clock
, &rtn_tp
);
1109 if (!error
&& tp
&& put_timespec64(&rtn_tp
, tp
))
1115 #ifdef CONFIG_COMPAT
1117 COMPAT_SYSCALL_DEFINE2(clock_settime
, clockid_t
, which_clock
,
1118 struct compat_timespec __user
*, tp
)
1120 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1121 struct timespec64 ts
;
1123 if (!kc
|| !kc
->clock_set
)
1126 if (compat_get_timespec64(&ts
, tp
))
1129 return kc
->clock_set(which_clock
, &ts
);
1132 COMPAT_SYSCALL_DEFINE2(clock_gettime
, clockid_t
, which_clock
,
1133 struct compat_timespec __user
*, tp
)
1135 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1136 struct timespec64 ts
;
1142 err
= kc
->clock_get(which_clock
, &ts
);
1144 if (!err
&& compat_put_timespec64(&ts
, tp
))
1150 COMPAT_SYSCALL_DEFINE2(clock_adjtime
, clockid_t
, which_clock
,
1151 struct compat_timex __user
*, utp
)
1153 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1162 err
= compat_get_timex(&ktx
, utp
);
1166 err
= kc
->clock_adj(which_clock
, &ktx
);
1169 err
= compat_put_timex(utp
, &ktx
);
1174 COMPAT_SYSCALL_DEFINE2(clock_getres
, clockid_t
, which_clock
,
1175 struct compat_timespec __user
*, tp
)
1177 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1178 struct timespec64 ts
;
1184 err
= kc
->clock_getres(which_clock
, &ts
);
1185 if (!err
&& tp
&& compat_put_timespec64(&ts
, tp
))
1194 * nanosleep for monotonic and realtime clocks
1196 static int common_nsleep(const clockid_t which_clock
, int flags
,
1197 const struct timespec64
*rqtp
)
1199 return hrtimer_nanosleep(rqtp
, flags
& TIMER_ABSTIME
?
1200 HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
,
1204 SYSCALL_DEFINE4(clock_nanosleep
, const clockid_t
, which_clock
, int, flags
,
1205 const struct timespec __user
*, rqtp
,
1206 struct timespec __user
*, rmtp
)
1208 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1209 struct timespec64 t
;
1214 return -ENANOSLEEP_NOTSUP
;
1216 if (get_timespec64(&t
, rqtp
))
1219 if (!timespec64_valid(&t
))
1221 if (flags
& TIMER_ABSTIME
)
1223 current
->restart_block
.nanosleep
.type
= rmtp
? TT_NATIVE
: TT_NONE
;
1224 current
->restart_block
.nanosleep
.rmtp
= rmtp
;
1226 return kc
->nsleep(which_clock
, flags
, &t
);
1229 #ifdef CONFIG_COMPAT
1230 COMPAT_SYSCALL_DEFINE4(clock_nanosleep
, clockid_t
, which_clock
, int, flags
,
1231 struct compat_timespec __user
*, rqtp
,
1232 struct compat_timespec __user
*, rmtp
)
1234 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1235 struct timespec64 t
;
1240 return -ENANOSLEEP_NOTSUP
;
1242 if (compat_get_timespec64(&t
, rqtp
))
1245 if (!timespec64_valid(&t
))
1247 if (flags
& TIMER_ABSTIME
)
1249 current
->restart_block
.nanosleep
.type
= rmtp
? TT_COMPAT
: TT_NONE
;
1250 current
->restart_block
.nanosleep
.compat_rmtp
= rmtp
;
1252 return kc
->nsleep(which_clock
, flags
, &t
);
1256 static const struct k_clock clock_realtime
= {
1257 .clock_getres
= posix_get_hrtimer_res
,
1258 .clock_get
= posix_clock_realtime_get
,
1259 .clock_set
= posix_clock_realtime_set
,
1260 .clock_adj
= posix_clock_realtime_adj
,
1261 .nsleep
= common_nsleep
,
1262 .timer_create
= common_timer_create
,
1263 .timer_set
= common_timer_set
,
1264 .timer_get
= common_timer_get
,
1265 .timer_del
= common_timer_del
,
1266 .timer_rearm
= common_hrtimer_rearm
,
1267 .timer_forward
= common_hrtimer_forward
,
1268 .timer_remaining
= common_hrtimer_remaining
,
1269 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1270 .timer_arm
= common_hrtimer_arm
,
1273 static const struct k_clock clock_monotonic
= {
1274 .clock_getres
= posix_get_hrtimer_res
,
1275 .clock_get
= posix_ktime_get_ts
,
1276 .nsleep
= common_nsleep
,
1277 .timer_create
= common_timer_create
,
1278 .timer_set
= common_timer_set
,
1279 .timer_get
= common_timer_get
,
1280 .timer_del
= common_timer_del
,
1281 .timer_rearm
= common_hrtimer_rearm
,
1282 .timer_forward
= common_hrtimer_forward
,
1283 .timer_remaining
= common_hrtimer_remaining
,
1284 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1285 .timer_arm
= common_hrtimer_arm
,
1288 static const struct k_clock clock_monotonic_raw
= {
1289 .clock_getres
= posix_get_hrtimer_res
,
1290 .clock_get
= posix_get_monotonic_raw
,
1293 static const struct k_clock clock_realtime_coarse
= {
1294 .clock_getres
= posix_get_coarse_res
,
1295 .clock_get
= posix_get_realtime_coarse
,
1298 static const struct k_clock clock_monotonic_coarse
= {
1299 .clock_getres
= posix_get_coarse_res
,
1300 .clock_get
= posix_get_monotonic_coarse
,
1303 static const struct k_clock clock_tai
= {
1304 .clock_getres
= posix_get_hrtimer_res
,
1305 .clock_get
= posix_get_tai
,
1306 .nsleep
= common_nsleep
,
1307 .timer_create
= common_timer_create
,
1308 .timer_set
= common_timer_set
,
1309 .timer_get
= common_timer_get
,
1310 .timer_del
= common_timer_del
,
1311 .timer_rearm
= common_hrtimer_rearm
,
1312 .timer_forward
= common_hrtimer_forward
,
1313 .timer_remaining
= common_hrtimer_remaining
,
1314 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1315 .timer_arm
= common_hrtimer_arm
,
1318 static const struct k_clock clock_boottime
= {
1319 .clock_getres
= posix_get_hrtimer_res
,
1320 .clock_get
= posix_get_boottime
,
1321 .nsleep
= common_nsleep
,
1322 .timer_create
= common_timer_create
,
1323 .timer_set
= common_timer_set
,
1324 .timer_get
= common_timer_get
,
1325 .timer_del
= common_timer_del
,
1326 .timer_rearm
= common_hrtimer_rearm
,
1327 .timer_forward
= common_hrtimer_forward
,
1328 .timer_remaining
= common_hrtimer_remaining
,
1329 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1330 .timer_arm
= common_hrtimer_arm
,
1333 static const struct k_clock
* const posix_clocks
[] = {
1334 [CLOCK_REALTIME
] = &clock_realtime
,
1335 [CLOCK_MONOTONIC
] = &clock_monotonic
,
1336 [CLOCK_PROCESS_CPUTIME_ID
] = &clock_process
,
1337 [CLOCK_THREAD_CPUTIME_ID
] = &clock_thread
,
1338 [CLOCK_MONOTONIC_RAW
] = &clock_monotonic_raw
,
1339 [CLOCK_REALTIME_COARSE
] = &clock_realtime_coarse
,
1340 [CLOCK_MONOTONIC_COARSE
] = &clock_monotonic_coarse
,
1341 [CLOCK_BOOTTIME
] = &clock_boottime
,
1342 [CLOCK_REALTIME_ALARM
] = &alarm_clock
,
1343 [CLOCK_BOOTTIME_ALARM
] = &alarm_clock
,
1344 [CLOCK_TAI
] = &clock_tai
,
1347 static const struct k_clock
*clockid_to_kclock(const clockid_t id
)
1350 return (id
& CLOCKFD_MASK
) == CLOCKFD
?
1351 &clock_posix_dynamic
: &clock_posix_cpu
;
1353 if (id
>= ARRAY_SIZE(posix_clocks
) || !posix_clocks
[id
])
1355 return posix_clocks
[id
];