Merge master.kernel.org:/home/rmk/linux-2.6-arm
[linux/fpc-iii.git] / mm / page_alloc.c
blob123c605867404ecfc00ef0d19a8a65d852ed0be0
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
42 #include "internal.h"
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 unsigned long totalram_pages __read_mostly;
53 unsigned long totalhigh_pages __read_mostly;
54 unsigned long totalreserve_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
58 static void __free_pages_ok(struct page *page, unsigned int order);
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
73 EXPORT_SYMBOL(totalram_pages);
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
80 EXPORT_SYMBOL(zone_table);
82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes = 1024;
85 unsigned long __initdata nr_kernel_pages;
86 unsigned long __initdata nr_all_pages;
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
103 return ret;
106 static int page_is_consistent(struct zone *zone, struct page *page)
108 #ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
110 return 0;
111 #endif
112 if (zone != page_zone(page))
113 return 0;
115 return 1;
118 * Temporary debugging check for pages not lying within a given zone.
120 static int bad_range(struct zone *zone, struct page *page)
122 if (page_outside_zone_boundaries(zone, page))
123 return 1;
124 if (!page_is_consistent(zone, page))
125 return 1;
127 return 0;
130 #else
131 static inline int bad_range(struct zone *zone, struct page *page)
133 return 0;
135 #endif
137 static void bad_page(struct page *page)
139 printk(KERN_EMERG "Bad page state in process '%s'\n"
140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG "Backtrace:\n",
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
146 dump_stack();
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
149 1 << PG_locked |
150 1 << PG_active |
151 1 << PG_dirty |
152 1 << PG_reclaim |
153 1 << PG_slab |
154 1 << PG_swapcache |
155 1 << PG_writeback |
156 1 << PG_buddy );
157 set_page_count(page, 0);
158 reset_page_mapcount(page);
159 page->mapping = NULL;
160 add_taint(TAINT_BAD_PAGE);
164 * Higher-order pages are called "compound pages". They are structured thusly:
166 * The first PAGE_SIZE page is called the "head page".
168 * The remaining PAGE_SIZE pages are called "tail pages".
170 * All pages have PG_compound set. All pages have their ->private pointing at
171 * the head page (even the head page has this).
173 * The first tail page's ->lru.next holds the address of the compound page's
174 * put_page() function. Its ->lru.prev holds the order of allocation.
175 * This usage means that zero-order pages may not be compound.
178 static void free_compound_page(struct page *page)
180 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
183 static void prep_compound_page(struct page *page, unsigned long order)
185 int i;
186 int nr_pages = 1 << order;
188 page[1].lru.next = (void *)free_compound_page; /* set dtor */
189 page[1].lru.prev = (void *)order;
190 for (i = 0; i < nr_pages; i++) {
191 struct page *p = page + i;
193 __SetPageCompound(p);
194 set_page_private(p, (unsigned long)page);
198 static void destroy_compound_page(struct page *page, unsigned long order)
200 int i;
201 int nr_pages = 1 << order;
203 if (unlikely((unsigned long)page[1].lru.prev != order))
204 bad_page(page);
206 for (i = 0; i < nr_pages; i++) {
207 struct page *p = page + i;
209 if (unlikely(!PageCompound(p) |
210 (page_private(p) != (unsigned long)page)))
211 bad_page(page);
212 __ClearPageCompound(p);
216 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
218 int i;
220 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
222 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
223 * and __GFP_HIGHMEM from hard or soft interrupt context.
225 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
226 for (i = 0; i < (1 << order); i++)
227 clear_highpage(page + i);
231 * function for dealing with page's order in buddy system.
232 * zone->lock is already acquired when we use these.
233 * So, we don't need atomic page->flags operations here.
235 static inline unsigned long page_order(struct page *page)
237 return page_private(page);
240 static inline void set_page_order(struct page *page, int order)
242 set_page_private(page, order);
243 __SetPageBuddy(page);
246 static inline void rmv_page_order(struct page *page)
248 __ClearPageBuddy(page);
249 set_page_private(page, 0);
253 * Locate the struct page for both the matching buddy in our
254 * pair (buddy1) and the combined O(n+1) page they form (page).
256 * 1) Any buddy B1 will have an order O twin B2 which satisfies
257 * the following equation:
258 * B2 = B1 ^ (1 << O)
259 * For example, if the starting buddy (buddy2) is #8 its order
260 * 1 buddy is #10:
261 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
263 * 2) Any buddy B will have an order O+1 parent P which
264 * satisfies the following equation:
265 * P = B & ~(1 << O)
267 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
269 static inline struct page *
270 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
272 unsigned long buddy_idx = page_idx ^ (1 << order);
274 return page + (buddy_idx - page_idx);
277 static inline unsigned long
278 __find_combined_index(unsigned long page_idx, unsigned int order)
280 return (page_idx & ~(1 << order));
284 * This function checks whether a page is free && is the buddy
285 * we can do coalesce a page and its buddy if
286 * (a) the buddy is not in a hole &&
287 * (b) the buddy is in the buddy system &&
288 * (c) a page and its buddy have the same order.
290 * For recording whether a page is in the buddy system, we use PG_buddy.
291 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
293 * For recording page's order, we use page_private(page).
295 static inline int page_is_buddy(struct page *page, int order)
297 #ifdef CONFIG_HOLES_IN_ZONE
298 if (!pfn_valid(page_to_pfn(page)))
299 return 0;
300 #endif
302 if (PageBuddy(page) && page_order(page) == order) {
303 BUG_ON(page_count(page) != 0);
304 return 1;
306 return 0;
310 * Freeing function for a buddy system allocator.
312 * The concept of a buddy system is to maintain direct-mapped table
313 * (containing bit values) for memory blocks of various "orders".
314 * The bottom level table contains the map for the smallest allocatable
315 * units of memory (here, pages), and each level above it describes
316 * pairs of units from the levels below, hence, "buddies".
317 * At a high level, all that happens here is marking the table entry
318 * at the bottom level available, and propagating the changes upward
319 * as necessary, plus some accounting needed to play nicely with other
320 * parts of the VM system.
321 * At each level, we keep a list of pages, which are heads of continuous
322 * free pages of length of (1 << order) and marked with PG_buddy. Page's
323 * order is recorded in page_private(page) field.
324 * So when we are allocating or freeing one, we can derive the state of the
325 * other. That is, if we allocate a small block, and both were
326 * free, the remainder of the region must be split into blocks.
327 * If a block is freed, and its buddy is also free, then this
328 * triggers coalescing into a block of larger size.
330 * -- wli
333 static inline void __free_one_page(struct page *page,
334 struct zone *zone, unsigned int order)
336 unsigned long page_idx;
337 int order_size = 1 << order;
339 if (unlikely(PageCompound(page)))
340 destroy_compound_page(page, order);
342 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
344 BUG_ON(page_idx & (order_size - 1));
345 BUG_ON(bad_range(zone, page));
347 zone->free_pages += order_size;
348 while (order < MAX_ORDER-1) {
349 unsigned long combined_idx;
350 struct free_area *area;
351 struct page *buddy;
353 buddy = __page_find_buddy(page, page_idx, order);
354 if (!page_is_buddy(buddy, order))
355 break; /* Move the buddy up one level. */
357 list_del(&buddy->lru);
358 area = zone->free_area + order;
359 area->nr_free--;
360 rmv_page_order(buddy);
361 combined_idx = __find_combined_index(page_idx, order);
362 page = page + (combined_idx - page_idx);
363 page_idx = combined_idx;
364 order++;
366 set_page_order(page, order);
367 list_add(&page->lru, &zone->free_area[order].free_list);
368 zone->free_area[order].nr_free++;
371 static inline int free_pages_check(struct page *page)
373 if (unlikely(page_mapcount(page) |
374 (page->mapping != NULL) |
375 (page_count(page) != 0) |
376 (page->flags & (
377 1 << PG_lru |
378 1 << PG_private |
379 1 << PG_locked |
380 1 << PG_active |
381 1 << PG_reclaim |
382 1 << PG_slab |
383 1 << PG_swapcache |
384 1 << PG_writeback |
385 1 << PG_reserved |
386 1 << PG_buddy ))))
387 bad_page(page);
388 if (PageDirty(page))
389 __ClearPageDirty(page);
391 * For now, we report if PG_reserved was found set, but do not
392 * clear it, and do not free the page. But we shall soon need
393 * to do more, for when the ZERO_PAGE count wraps negative.
395 return PageReserved(page);
399 * Frees a list of pages.
400 * Assumes all pages on list are in same zone, and of same order.
401 * count is the number of pages to free.
403 * If the zone was previously in an "all pages pinned" state then look to
404 * see if this freeing clears that state.
406 * And clear the zone's pages_scanned counter, to hold off the "all pages are
407 * pinned" detection logic.
409 static void free_pages_bulk(struct zone *zone, int count,
410 struct list_head *list, int order)
412 spin_lock(&zone->lock);
413 zone->all_unreclaimable = 0;
414 zone->pages_scanned = 0;
415 while (count--) {
416 struct page *page;
418 BUG_ON(list_empty(list));
419 page = list_entry(list->prev, struct page, lru);
420 /* have to delete it as __free_one_page list manipulates */
421 list_del(&page->lru);
422 __free_one_page(page, zone, order);
424 spin_unlock(&zone->lock);
427 static void free_one_page(struct zone *zone, struct page *page, int order)
429 LIST_HEAD(list);
430 list_add(&page->lru, &list);
431 free_pages_bulk(zone, 1, &list, order);
434 static void __free_pages_ok(struct page *page, unsigned int order)
436 unsigned long flags;
437 int i;
438 int reserved = 0;
440 arch_free_page(page, order);
441 if (!PageHighMem(page))
442 mutex_debug_check_no_locks_freed(page_address(page),
443 PAGE_SIZE<<order);
445 for (i = 0 ; i < (1 << order) ; ++i)
446 reserved += free_pages_check(page + i);
447 if (reserved)
448 return;
450 kernel_map_pages(page, 1 << order, 0);
451 local_irq_save(flags);
452 __mod_page_state(pgfree, 1 << order);
453 free_one_page(page_zone(page), page, order);
454 local_irq_restore(flags);
458 * permit the bootmem allocator to evade page validation on high-order frees
460 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
462 if (order == 0) {
463 __ClearPageReserved(page);
464 set_page_count(page, 0);
465 set_page_refcounted(page);
466 __free_page(page);
467 } else {
468 int loop;
470 prefetchw(page);
471 for (loop = 0; loop < BITS_PER_LONG; loop++) {
472 struct page *p = &page[loop];
474 if (loop + 1 < BITS_PER_LONG)
475 prefetchw(p + 1);
476 __ClearPageReserved(p);
477 set_page_count(p, 0);
480 set_page_refcounted(page);
481 __free_pages(page, order);
487 * The order of subdivision here is critical for the IO subsystem.
488 * Please do not alter this order without good reasons and regression
489 * testing. Specifically, as large blocks of memory are subdivided,
490 * the order in which smaller blocks are delivered depends on the order
491 * they're subdivided in this function. This is the primary factor
492 * influencing the order in which pages are delivered to the IO
493 * subsystem according to empirical testing, and this is also justified
494 * by considering the behavior of a buddy system containing a single
495 * large block of memory acted on by a series of small allocations.
496 * This behavior is a critical factor in sglist merging's success.
498 * -- wli
500 static inline void expand(struct zone *zone, struct page *page,
501 int low, int high, struct free_area *area)
503 unsigned long size = 1 << high;
505 while (high > low) {
506 area--;
507 high--;
508 size >>= 1;
509 BUG_ON(bad_range(zone, &page[size]));
510 list_add(&page[size].lru, &area->free_list);
511 area->nr_free++;
512 set_page_order(&page[size], high);
517 * This page is about to be returned from the page allocator
519 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
521 if (unlikely(page_mapcount(page) |
522 (page->mapping != NULL) |
523 (page_count(page) != 0) |
524 (page->flags & (
525 1 << PG_lru |
526 1 << PG_private |
527 1 << PG_locked |
528 1 << PG_active |
529 1 << PG_dirty |
530 1 << PG_reclaim |
531 1 << PG_slab |
532 1 << PG_swapcache |
533 1 << PG_writeback |
534 1 << PG_reserved |
535 1 << PG_buddy ))))
536 bad_page(page);
539 * For now, we report if PG_reserved was found set, but do not
540 * clear it, and do not allocate the page: as a safety net.
542 if (PageReserved(page))
543 return 1;
545 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
546 1 << PG_referenced | 1 << PG_arch_1 |
547 1 << PG_checked | 1 << PG_mappedtodisk);
548 set_page_private(page, 0);
549 set_page_refcounted(page);
550 kernel_map_pages(page, 1 << order, 1);
552 if (gfp_flags & __GFP_ZERO)
553 prep_zero_page(page, order, gfp_flags);
555 if (order && (gfp_flags & __GFP_COMP))
556 prep_compound_page(page, order);
558 return 0;
562 * Do the hard work of removing an element from the buddy allocator.
563 * Call me with the zone->lock already held.
565 static struct page *__rmqueue(struct zone *zone, unsigned int order)
567 struct free_area * area;
568 unsigned int current_order;
569 struct page *page;
571 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
572 area = zone->free_area + current_order;
573 if (list_empty(&area->free_list))
574 continue;
576 page = list_entry(area->free_list.next, struct page, lru);
577 list_del(&page->lru);
578 rmv_page_order(page);
579 area->nr_free--;
580 zone->free_pages -= 1UL << order;
581 expand(zone, page, order, current_order, area);
582 return page;
585 return NULL;
589 * Obtain a specified number of elements from the buddy allocator, all under
590 * a single hold of the lock, for efficiency. Add them to the supplied list.
591 * Returns the number of new pages which were placed at *list.
593 static int rmqueue_bulk(struct zone *zone, unsigned int order,
594 unsigned long count, struct list_head *list)
596 int i;
598 spin_lock(&zone->lock);
599 for (i = 0; i < count; ++i) {
600 struct page *page = __rmqueue(zone, order);
601 if (unlikely(page == NULL))
602 break;
603 list_add_tail(&page->lru, list);
605 spin_unlock(&zone->lock);
606 return i;
609 #ifdef CONFIG_NUMA
611 * Called from the slab reaper to drain pagesets on a particular node that
612 * belong to the currently executing processor.
613 * Note that this function must be called with the thread pinned to
614 * a single processor.
616 void drain_node_pages(int nodeid)
618 int i, z;
619 unsigned long flags;
621 for (z = 0; z < MAX_NR_ZONES; z++) {
622 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
623 struct per_cpu_pageset *pset;
625 pset = zone_pcp(zone, smp_processor_id());
626 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
627 struct per_cpu_pages *pcp;
629 pcp = &pset->pcp[i];
630 if (pcp->count) {
631 local_irq_save(flags);
632 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
633 pcp->count = 0;
634 local_irq_restore(flags);
639 #endif
641 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
642 static void __drain_pages(unsigned int cpu)
644 unsigned long flags;
645 struct zone *zone;
646 int i;
648 for_each_zone(zone) {
649 struct per_cpu_pageset *pset;
651 pset = zone_pcp(zone, cpu);
652 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
653 struct per_cpu_pages *pcp;
655 pcp = &pset->pcp[i];
656 local_irq_save(flags);
657 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
658 pcp->count = 0;
659 local_irq_restore(flags);
663 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
665 #ifdef CONFIG_PM
667 void mark_free_pages(struct zone *zone)
669 unsigned long zone_pfn, flags;
670 int order;
671 struct list_head *curr;
673 if (!zone->spanned_pages)
674 return;
676 spin_lock_irqsave(&zone->lock, flags);
677 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
678 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
680 for (order = MAX_ORDER - 1; order >= 0; --order)
681 list_for_each(curr, &zone->free_area[order].free_list) {
682 unsigned long start_pfn, i;
684 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
686 for (i=0; i < (1<<order); i++)
687 SetPageNosaveFree(pfn_to_page(start_pfn+i));
689 spin_unlock_irqrestore(&zone->lock, flags);
693 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
695 void drain_local_pages(void)
697 unsigned long flags;
699 local_irq_save(flags);
700 __drain_pages(smp_processor_id());
701 local_irq_restore(flags);
703 #endif /* CONFIG_PM */
705 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
707 #ifdef CONFIG_NUMA
708 pg_data_t *pg = z->zone_pgdat;
709 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
710 struct per_cpu_pageset *p;
712 p = zone_pcp(z, cpu);
713 if (pg == orig) {
714 p->numa_hit++;
715 } else {
716 p->numa_miss++;
717 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
719 if (pg == NODE_DATA(numa_node_id()))
720 p->local_node++;
721 else
722 p->other_node++;
723 #endif
727 * Free a 0-order page
729 static void fastcall free_hot_cold_page(struct page *page, int cold)
731 struct zone *zone = page_zone(page);
732 struct per_cpu_pages *pcp;
733 unsigned long flags;
735 arch_free_page(page, 0);
737 if (PageAnon(page))
738 page->mapping = NULL;
739 if (free_pages_check(page))
740 return;
742 kernel_map_pages(page, 1, 0);
744 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
745 local_irq_save(flags);
746 __inc_page_state(pgfree);
747 list_add(&page->lru, &pcp->list);
748 pcp->count++;
749 if (pcp->count >= pcp->high) {
750 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
751 pcp->count -= pcp->batch;
753 local_irq_restore(flags);
754 put_cpu();
757 void fastcall free_hot_page(struct page *page)
759 free_hot_cold_page(page, 0);
762 void fastcall free_cold_page(struct page *page)
764 free_hot_cold_page(page, 1);
768 * split_page takes a non-compound higher-order page, and splits it into
769 * n (1<<order) sub-pages: page[0..n]
770 * Each sub-page must be freed individually.
772 * Note: this is probably too low level an operation for use in drivers.
773 * Please consult with lkml before using this in your driver.
775 void split_page(struct page *page, unsigned int order)
777 int i;
779 BUG_ON(PageCompound(page));
780 BUG_ON(!page_count(page));
781 for (i = 1; i < (1 << order); i++)
782 set_page_refcounted(page + i);
786 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
787 * we cheat by calling it from here, in the order > 0 path. Saves a branch
788 * or two.
790 static struct page *buffered_rmqueue(struct zonelist *zonelist,
791 struct zone *zone, int order, gfp_t gfp_flags)
793 unsigned long flags;
794 struct page *page;
795 int cold = !!(gfp_flags & __GFP_COLD);
796 int cpu;
798 again:
799 cpu = get_cpu();
800 if (likely(order == 0)) {
801 struct per_cpu_pages *pcp;
803 pcp = &zone_pcp(zone, cpu)->pcp[cold];
804 local_irq_save(flags);
805 if (!pcp->count) {
806 pcp->count += rmqueue_bulk(zone, 0,
807 pcp->batch, &pcp->list);
808 if (unlikely(!pcp->count))
809 goto failed;
811 page = list_entry(pcp->list.next, struct page, lru);
812 list_del(&page->lru);
813 pcp->count--;
814 } else {
815 spin_lock_irqsave(&zone->lock, flags);
816 page = __rmqueue(zone, order);
817 spin_unlock(&zone->lock);
818 if (!page)
819 goto failed;
822 __mod_page_state_zone(zone, pgalloc, 1 << order);
823 zone_statistics(zonelist, zone, cpu);
824 local_irq_restore(flags);
825 put_cpu();
827 BUG_ON(bad_range(zone, page));
828 if (prep_new_page(page, order, gfp_flags))
829 goto again;
830 return page;
832 failed:
833 local_irq_restore(flags);
834 put_cpu();
835 return NULL;
838 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
839 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
840 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
841 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
842 #define ALLOC_HARDER 0x10 /* try to alloc harder */
843 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
844 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
847 * Return 1 if free pages are above 'mark'. This takes into account the order
848 * of the allocation.
850 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
851 int classzone_idx, int alloc_flags)
853 /* free_pages my go negative - that's OK */
854 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
855 int o;
857 if (alloc_flags & ALLOC_HIGH)
858 min -= min / 2;
859 if (alloc_flags & ALLOC_HARDER)
860 min -= min / 4;
862 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
863 return 0;
864 for (o = 0; o < order; o++) {
865 /* At the next order, this order's pages become unavailable */
866 free_pages -= z->free_area[o].nr_free << o;
868 /* Require fewer higher order pages to be free */
869 min >>= 1;
871 if (free_pages <= min)
872 return 0;
874 return 1;
878 * get_page_from_freeliest goes through the zonelist trying to allocate
879 * a page.
881 static struct page *
882 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
883 struct zonelist *zonelist, int alloc_flags)
885 struct zone **z = zonelist->zones;
886 struct page *page = NULL;
887 int classzone_idx = zone_idx(*z);
890 * Go through the zonelist once, looking for a zone with enough free.
891 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
893 do {
894 if ((alloc_flags & ALLOC_CPUSET) &&
895 !cpuset_zone_allowed(*z, gfp_mask))
896 continue;
898 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
899 unsigned long mark;
900 if (alloc_flags & ALLOC_WMARK_MIN)
901 mark = (*z)->pages_min;
902 else if (alloc_flags & ALLOC_WMARK_LOW)
903 mark = (*z)->pages_low;
904 else
905 mark = (*z)->pages_high;
906 if (!zone_watermark_ok(*z, order, mark,
907 classzone_idx, alloc_flags))
908 if (!zone_reclaim_mode ||
909 !zone_reclaim(*z, gfp_mask, order))
910 continue;
913 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
914 if (page) {
915 break;
917 } while (*(++z) != NULL);
918 return page;
922 * This is the 'heart' of the zoned buddy allocator.
924 struct page * fastcall
925 __alloc_pages(gfp_t gfp_mask, unsigned int order,
926 struct zonelist *zonelist)
928 const gfp_t wait = gfp_mask & __GFP_WAIT;
929 struct zone **z;
930 struct page *page;
931 struct reclaim_state reclaim_state;
932 struct task_struct *p = current;
933 int do_retry;
934 int alloc_flags;
935 int did_some_progress;
937 might_sleep_if(wait);
939 restart:
940 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
942 if (unlikely(*z == NULL)) {
943 /* Should this ever happen?? */
944 return NULL;
947 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
948 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
949 if (page)
950 goto got_pg;
952 do {
953 if (cpuset_zone_allowed(*z, gfp_mask))
954 wakeup_kswapd(*z, order);
955 } while (*(++z));
958 * OK, we're below the kswapd watermark and have kicked background
959 * reclaim. Now things get more complex, so set up alloc_flags according
960 * to how we want to proceed.
962 * The caller may dip into page reserves a bit more if the caller
963 * cannot run direct reclaim, or if the caller has realtime scheduling
964 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
965 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
967 alloc_flags = ALLOC_WMARK_MIN;
968 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
969 alloc_flags |= ALLOC_HARDER;
970 if (gfp_mask & __GFP_HIGH)
971 alloc_flags |= ALLOC_HIGH;
972 alloc_flags |= ALLOC_CPUSET;
975 * Go through the zonelist again. Let __GFP_HIGH and allocations
976 * coming from realtime tasks go deeper into reserves.
978 * This is the last chance, in general, before the goto nopage.
979 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
980 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
982 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
983 if (page)
984 goto got_pg;
986 /* This allocation should allow future memory freeing. */
988 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
989 && !in_interrupt()) {
990 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
991 nofail_alloc:
992 /* go through the zonelist yet again, ignoring mins */
993 page = get_page_from_freelist(gfp_mask, order,
994 zonelist, ALLOC_NO_WATERMARKS);
995 if (page)
996 goto got_pg;
997 if (gfp_mask & __GFP_NOFAIL) {
998 blk_congestion_wait(WRITE, HZ/50);
999 goto nofail_alloc;
1002 goto nopage;
1005 /* Atomic allocations - we can't balance anything */
1006 if (!wait)
1007 goto nopage;
1009 rebalance:
1010 cond_resched();
1012 /* We now go into synchronous reclaim */
1013 cpuset_memory_pressure_bump();
1014 p->flags |= PF_MEMALLOC;
1015 reclaim_state.reclaimed_slab = 0;
1016 p->reclaim_state = &reclaim_state;
1018 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1020 p->reclaim_state = NULL;
1021 p->flags &= ~PF_MEMALLOC;
1023 cond_resched();
1025 if (likely(did_some_progress)) {
1026 page = get_page_from_freelist(gfp_mask, order,
1027 zonelist, alloc_flags);
1028 if (page)
1029 goto got_pg;
1030 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1032 * Go through the zonelist yet one more time, keep
1033 * very high watermark here, this is only to catch
1034 * a parallel oom killing, we must fail if we're still
1035 * under heavy pressure.
1037 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1038 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1039 if (page)
1040 goto got_pg;
1042 out_of_memory(zonelist, gfp_mask, order);
1043 goto restart;
1047 * Don't let big-order allocations loop unless the caller explicitly
1048 * requests that. Wait for some write requests to complete then retry.
1050 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1051 * <= 3, but that may not be true in other implementations.
1053 do_retry = 0;
1054 if (!(gfp_mask & __GFP_NORETRY)) {
1055 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1056 do_retry = 1;
1057 if (gfp_mask & __GFP_NOFAIL)
1058 do_retry = 1;
1060 if (do_retry) {
1061 blk_congestion_wait(WRITE, HZ/50);
1062 goto rebalance;
1065 nopage:
1066 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1067 printk(KERN_WARNING "%s: page allocation failure."
1068 " order:%d, mode:0x%x\n",
1069 p->comm, order, gfp_mask);
1070 dump_stack();
1071 show_mem();
1073 got_pg:
1074 return page;
1077 EXPORT_SYMBOL(__alloc_pages);
1080 * Common helper functions.
1082 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1084 struct page * page;
1085 page = alloc_pages(gfp_mask, order);
1086 if (!page)
1087 return 0;
1088 return (unsigned long) page_address(page);
1091 EXPORT_SYMBOL(__get_free_pages);
1093 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1095 struct page * page;
1098 * get_zeroed_page() returns a 32-bit address, which cannot represent
1099 * a highmem page
1101 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1103 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1104 if (page)
1105 return (unsigned long) page_address(page);
1106 return 0;
1109 EXPORT_SYMBOL(get_zeroed_page);
1111 void __pagevec_free(struct pagevec *pvec)
1113 int i = pagevec_count(pvec);
1115 while (--i >= 0)
1116 free_hot_cold_page(pvec->pages[i], pvec->cold);
1119 fastcall void __free_pages(struct page *page, unsigned int order)
1121 if (put_page_testzero(page)) {
1122 if (order == 0)
1123 free_hot_page(page);
1124 else
1125 __free_pages_ok(page, order);
1129 EXPORT_SYMBOL(__free_pages);
1131 fastcall void free_pages(unsigned long addr, unsigned int order)
1133 if (addr != 0) {
1134 BUG_ON(!virt_addr_valid((void *)addr));
1135 __free_pages(virt_to_page((void *)addr), order);
1139 EXPORT_SYMBOL(free_pages);
1142 * Total amount of free (allocatable) RAM:
1144 unsigned int nr_free_pages(void)
1146 unsigned int sum = 0;
1147 struct zone *zone;
1149 for_each_zone(zone)
1150 sum += zone->free_pages;
1152 return sum;
1155 EXPORT_SYMBOL(nr_free_pages);
1157 #ifdef CONFIG_NUMA
1158 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1160 unsigned int i, sum = 0;
1162 for (i = 0; i < MAX_NR_ZONES; i++)
1163 sum += pgdat->node_zones[i].free_pages;
1165 return sum;
1167 #endif
1169 static unsigned int nr_free_zone_pages(int offset)
1171 /* Just pick one node, since fallback list is circular */
1172 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1173 unsigned int sum = 0;
1175 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1176 struct zone **zonep = zonelist->zones;
1177 struct zone *zone;
1179 for (zone = *zonep++; zone; zone = *zonep++) {
1180 unsigned long size = zone->present_pages;
1181 unsigned long high = zone->pages_high;
1182 if (size > high)
1183 sum += size - high;
1186 return sum;
1190 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1192 unsigned int nr_free_buffer_pages(void)
1194 return nr_free_zone_pages(gfp_zone(GFP_USER));
1198 * Amount of free RAM allocatable within all zones
1200 unsigned int nr_free_pagecache_pages(void)
1202 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1205 #ifdef CONFIG_HIGHMEM
1206 unsigned int nr_free_highpages (void)
1208 pg_data_t *pgdat;
1209 unsigned int pages = 0;
1211 for_each_online_pgdat(pgdat)
1212 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1214 return pages;
1216 #endif
1218 #ifdef CONFIG_NUMA
1219 static void show_node(struct zone *zone)
1221 printk("Node %d ", zone->zone_pgdat->node_id);
1223 #else
1224 #define show_node(zone) do { } while (0)
1225 #endif
1228 * Accumulate the page_state information across all CPUs.
1229 * The result is unavoidably approximate - it can change
1230 * during and after execution of this function.
1232 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1234 atomic_t nr_pagecache = ATOMIC_INIT(0);
1235 EXPORT_SYMBOL(nr_pagecache);
1236 #ifdef CONFIG_SMP
1237 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1238 #endif
1240 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1242 unsigned cpu;
1244 memset(ret, 0, nr * sizeof(unsigned long));
1245 cpus_and(*cpumask, *cpumask, cpu_online_map);
1247 for_each_cpu_mask(cpu, *cpumask) {
1248 unsigned long *in;
1249 unsigned long *out;
1250 unsigned off;
1251 unsigned next_cpu;
1253 in = (unsigned long *)&per_cpu(page_states, cpu);
1255 next_cpu = next_cpu(cpu, *cpumask);
1256 if (likely(next_cpu < NR_CPUS))
1257 prefetch(&per_cpu(page_states, next_cpu));
1259 out = (unsigned long *)ret;
1260 for (off = 0; off < nr; off++)
1261 *out++ += *in++;
1265 void get_page_state_node(struct page_state *ret, int node)
1267 int nr;
1268 cpumask_t mask = node_to_cpumask(node);
1270 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1271 nr /= sizeof(unsigned long);
1273 __get_page_state(ret, nr+1, &mask);
1276 void get_page_state(struct page_state *ret)
1278 int nr;
1279 cpumask_t mask = CPU_MASK_ALL;
1281 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1282 nr /= sizeof(unsigned long);
1284 __get_page_state(ret, nr + 1, &mask);
1287 void get_full_page_state(struct page_state *ret)
1289 cpumask_t mask = CPU_MASK_ALL;
1291 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1294 unsigned long read_page_state_offset(unsigned long offset)
1296 unsigned long ret = 0;
1297 int cpu;
1299 for_each_online_cpu(cpu) {
1300 unsigned long in;
1302 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1303 ret += *((unsigned long *)in);
1305 return ret;
1308 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1310 void *ptr;
1312 ptr = &__get_cpu_var(page_states);
1313 *(unsigned long *)(ptr + offset) += delta;
1315 EXPORT_SYMBOL(__mod_page_state_offset);
1317 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1319 unsigned long flags;
1320 void *ptr;
1322 local_irq_save(flags);
1323 ptr = &__get_cpu_var(page_states);
1324 *(unsigned long *)(ptr + offset) += delta;
1325 local_irq_restore(flags);
1327 EXPORT_SYMBOL(mod_page_state_offset);
1329 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1330 unsigned long *free, struct pglist_data *pgdat)
1332 struct zone *zones = pgdat->node_zones;
1333 int i;
1335 *active = 0;
1336 *inactive = 0;
1337 *free = 0;
1338 for (i = 0; i < MAX_NR_ZONES; i++) {
1339 *active += zones[i].nr_active;
1340 *inactive += zones[i].nr_inactive;
1341 *free += zones[i].free_pages;
1345 void get_zone_counts(unsigned long *active,
1346 unsigned long *inactive, unsigned long *free)
1348 struct pglist_data *pgdat;
1350 *active = 0;
1351 *inactive = 0;
1352 *free = 0;
1353 for_each_online_pgdat(pgdat) {
1354 unsigned long l, m, n;
1355 __get_zone_counts(&l, &m, &n, pgdat);
1356 *active += l;
1357 *inactive += m;
1358 *free += n;
1362 void si_meminfo(struct sysinfo *val)
1364 val->totalram = totalram_pages;
1365 val->sharedram = 0;
1366 val->freeram = nr_free_pages();
1367 val->bufferram = nr_blockdev_pages();
1368 #ifdef CONFIG_HIGHMEM
1369 val->totalhigh = totalhigh_pages;
1370 val->freehigh = nr_free_highpages();
1371 #else
1372 val->totalhigh = 0;
1373 val->freehigh = 0;
1374 #endif
1375 val->mem_unit = PAGE_SIZE;
1378 EXPORT_SYMBOL(si_meminfo);
1380 #ifdef CONFIG_NUMA
1381 void si_meminfo_node(struct sysinfo *val, int nid)
1383 pg_data_t *pgdat = NODE_DATA(nid);
1385 val->totalram = pgdat->node_present_pages;
1386 val->freeram = nr_free_pages_pgdat(pgdat);
1387 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1388 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1389 val->mem_unit = PAGE_SIZE;
1391 #endif
1393 #define K(x) ((x) << (PAGE_SHIFT-10))
1396 * Show free area list (used inside shift_scroll-lock stuff)
1397 * We also calculate the percentage fragmentation. We do this by counting the
1398 * memory on each free list with the exception of the first item on the list.
1400 void show_free_areas(void)
1402 struct page_state ps;
1403 int cpu, temperature;
1404 unsigned long active;
1405 unsigned long inactive;
1406 unsigned long free;
1407 struct zone *zone;
1409 for_each_zone(zone) {
1410 show_node(zone);
1411 printk("%s per-cpu:", zone->name);
1413 if (!populated_zone(zone)) {
1414 printk(" empty\n");
1415 continue;
1416 } else
1417 printk("\n");
1419 for_each_online_cpu(cpu) {
1420 struct per_cpu_pageset *pageset;
1422 pageset = zone_pcp(zone, cpu);
1424 for (temperature = 0; temperature < 2; temperature++)
1425 printk("cpu %d %s: high %d, batch %d used:%d\n",
1426 cpu,
1427 temperature ? "cold" : "hot",
1428 pageset->pcp[temperature].high,
1429 pageset->pcp[temperature].batch,
1430 pageset->pcp[temperature].count);
1434 get_page_state(&ps);
1435 get_zone_counts(&active, &inactive, &free);
1437 printk("Free pages: %11ukB (%ukB HighMem)\n",
1438 K(nr_free_pages()),
1439 K(nr_free_highpages()));
1441 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1442 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1443 active,
1444 inactive,
1445 ps.nr_dirty,
1446 ps.nr_writeback,
1447 ps.nr_unstable,
1448 nr_free_pages(),
1449 ps.nr_slab,
1450 ps.nr_mapped,
1451 ps.nr_page_table_pages);
1453 for_each_zone(zone) {
1454 int i;
1456 show_node(zone);
1457 printk("%s"
1458 " free:%lukB"
1459 " min:%lukB"
1460 " low:%lukB"
1461 " high:%lukB"
1462 " active:%lukB"
1463 " inactive:%lukB"
1464 " present:%lukB"
1465 " pages_scanned:%lu"
1466 " all_unreclaimable? %s"
1467 "\n",
1468 zone->name,
1469 K(zone->free_pages),
1470 K(zone->pages_min),
1471 K(zone->pages_low),
1472 K(zone->pages_high),
1473 K(zone->nr_active),
1474 K(zone->nr_inactive),
1475 K(zone->present_pages),
1476 zone->pages_scanned,
1477 (zone->all_unreclaimable ? "yes" : "no")
1479 printk("lowmem_reserve[]:");
1480 for (i = 0; i < MAX_NR_ZONES; i++)
1481 printk(" %lu", zone->lowmem_reserve[i]);
1482 printk("\n");
1485 for_each_zone(zone) {
1486 unsigned long nr, flags, order, total = 0;
1488 show_node(zone);
1489 printk("%s: ", zone->name);
1490 if (!populated_zone(zone)) {
1491 printk("empty\n");
1492 continue;
1495 spin_lock_irqsave(&zone->lock, flags);
1496 for (order = 0; order < MAX_ORDER; order++) {
1497 nr = zone->free_area[order].nr_free;
1498 total += nr << order;
1499 printk("%lu*%lukB ", nr, K(1UL) << order);
1501 spin_unlock_irqrestore(&zone->lock, flags);
1502 printk("= %lukB\n", K(total));
1505 show_swap_cache_info();
1509 * Builds allocation fallback zone lists.
1511 * Add all populated zones of a node to the zonelist.
1513 static int __init build_zonelists_node(pg_data_t *pgdat,
1514 struct zonelist *zonelist, int nr_zones, int zone_type)
1516 struct zone *zone;
1518 BUG_ON(zone_type > ZONE_HIGHMEM);
1520 do {
1521 zone = pgdat->node_zones + zone_type;
1522 if (populated_zone(zone)) {
1523 #ifndef CONFIG_HIGHMEM
1524 BUG_ON(zone_type > ZONE_NORMAL);
1525 #endif
1526 zonelist->zones[nr_zones++] = zone;
1527 check_highest_zone(zone_type);
1529 zone_type--;
1531 } while (zone_type >= 0);
1532 return nr_zones;
1535 static inline int highest_zone(int zone_bits)
1537 int res = ZONE_NORMAL;
1538 if (zone_bits & (__force int)__GFP_HIGHMEM)
1539 res = ZONE_HIGHMEM;
1540 if (zone_bits & (__force int)__GFP_DMA32)
1541 res = ZONE_DMA32;
1542 if (zone_bits & (__force int)__GFP_DMA)
1543 res = ZONE_DMA;
1544 return res;
1547 #ifdef CONFIG_NUMA
1548 #define MAX_NODE_LOAD (num_online_nodes())
1549 static int __initdata node_load[MAX_NUMNODES];
1551 * find_next_best_node - find the next node that should appear in a given node's fallback list
1552 * @node: node whose fallback list we're appending
1553 * @used_node_mask: nodemask_t of already used nodes
1555 * We use a number of factors to determine which is the next node that should
1556 * appear on a given node's fallback list. The node should not have appeared
1557 * already in @node's fallback list, and it should be the next closest node
1558 * according to the distance array (which contains arbitrary distance values
1559 * from each node to each node in the system), and should also prefer nodes
1560 * with no CPUs, since presumably they'll have very little allocation pressure
1561 * on them otherwise.
1562 * It returns -1 if no node is found.
1564 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1566 int n, val;
1567 int min_val = INT_MAX;
1568 int best_node = -1;
1570 /* Use the local node if we haven't already */
1571 if (!node_isset(node, *used_node_mask)) {
1572 node_set(node, *used_node_mask);
1573 return node;
1576 for_each_online_node(n) {
1577 cpumask_t tmp;
1579 /* Don't want a node to appear more than once */
1580 if (node_isset(n, *used_node_mask))
1581 continue;
1583 /* Use the distance array to find the distance */
1584 val = node_distance(node, n);
1586 /* Penalize nodes under us ("prefer the next node") */
1587 val += (n < node);
1589 /* Give preference to headless and unused nodes */
1590 tmp = node_to_cpumask(n);
1591 if (!cpus_empty(tmp))
1592 val += PENALTY_FOR_NODE_WITH_CPUS;
1594 /* Slight preference for less loaded node */
1595 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1596 val += node_load[n];
1598 if (val < min_val) {
1599 min_val = val;
1600 best_node = n;
1604 if (best_node >= 0)
1605 node_set(best_node, *used_node_mask);
1607 return best_node;
1610 static void __init build_zonelists(pg_data_t *pgdat)
1612 int i, j, k, node, local_node;
1613 int prev_node, load;
1614 struct zonelist *zonelist;
1615 nodemask_t used_mask;
1617 /* initialize zonelists */
1618 for (i = 0; i < GFP_ZONETYPES; i++) {
1619 zonelist = pgdat->node_zonelists + i;
1620 zonelist->zones[0] = NULL;
1623 /* NUMA-aware ordering of nodes */
1624 local_node = pgdat->node_id;
1625 load = num_online_nodes();
1626 prev_node = local_node;
1627 nodes_clear(used_mask);
1628 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1629 int distance = node_distance(local_node, node);
1632 * If another node is sufficiently far away then it is better
1633 * to reclaim pages in a zone before going off node.
1635 if (distance > RECLAIM_DISTANCE)
1636 zone_reclaim_mode = 1;
1639 * We don't want to pressure a particular node.
1640 * So adding penalty to the first node in same
1641 * distance group to make it round-robin.
1644 if (distance != node_distance(local_node, prev_node))
1645 node_load[node] += load;
1646 prev_node = node;
1647 load--;
1648 for (i = 0; i < GFP_ZONETYPES; i++) {
1649 zonelist = pgdat->node_zonelists + i;
1650 for (j = 0; zonelist->zones[j] != NULL; j++);
1652 k = highest_zone(i);
1654 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1655 zonelist->zones[j] = NULL;
1660 #else /* CONFIG_NUMA */
1662 static void __init build_zonelists(pg_data_t *pgdat)
1664 int i, j, k, node, local_node;
1666 local_node = pgdat->node_id;
1667 for (i = 0; i < GFP_ZONETYPES; i++) {
1668 struct zonelist *zonelist;
1670 zonelist = pgdat->node_zonelists + i;
1672 j = 0;
1673 k = highest_zone(i);
1674 j = build_zonelists_node(pgdat, zonelist, j, k);
1676 * Now we build the zonelist so that it contains the zones
1677 * of all the other nodes.
1678 * We don't want to pressure a particular node, so when
1679 * building the zones for node N, we make sure that the
1680 * zones coming right after the local ones are those from
1681 * node N+1 (modulo N)
1683 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1684 if (!node_online(node))
1685 continue;
1686 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1688 for (node = 0; node < local_node; node++) {
1689 if (!node_online(node))
1690 continue;
1691 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1694 zonelist->zones[j] = NULL;
1698 #endif /* CONFIG_NUMA */
1700 void __init build_all_zonelists(void)
1702 int i;
1704 for_each_online_node(i)
1705 build_zonelists(NODE_DATA(i));
1706 printk("Built %i zonelists\n", num_online_nodes());
1707 cpuset_init_current_mems_allowed();
1711 * Helper functions to size the waitqueue hash table.
1712 * Essentially these want to choose hash table sizes sufficiently
1713 * large so that collisions trying to wait on pages are rare.
1714 * But in fact, the number of active page waitqueues on typical
1715 * systems is ridiculously low, less than 200. So this is even
1716 * conservative, even though it seems large.
1718 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1719 * waitqueues, i.e. the size of the waitq table given the number of pages.
1721 #define PAGES_PER_WAITQUEUE 256
1723 static inline unsigned long wait_table_size(unsigned long pages)
1725 unsigned long size = 1;
1727 pages /= PAGES_PER_WAITQUEUE;
1729 while (size < pages)
1730 size <<= 1;
1733 * Once we have dozens or even hundreds of threads sleeping
1734 * on IO we've got bigger problems than wait queue collision.
1735 * Limit the size of the wait table to a reasonable size.
1737 size = min(size, 4096UL);
1739 return max(size, 4UL);
1743 * This is an integer logarithm so that shifts can be used later
1744 * to extract the more random high bits from the multiplicative
1745 * hash function before the remainder is taken.
1747 static inline unsigned long wait_table_bits(unsigned long size)
1749 return ffz(~size);
1752 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1754 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1755 unsigned long *zones_size, unsigned long *zholes_size)
1757 unsigned long realtotalpages, totalpages = 0;
1758 int i;
1760 for (i = 0; i < MAX_NR_ZONES; i++)
1761 totalpages += zones_size[i];
1762 pgdat->node_spanned_pages = totalpages;
1764 realtotalpages = totalpages;
1765 if (zholes_size)
1766 for (i = 0; i < MAX_NR_ZONES; i++)
1767 realtotalpages -= zholes_size[i];
1768 pgdat->node_present_pages = realtotalpages;
1769 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1774 * Initially all pages are reserved - free ones are freed
1775 * up by free_all_bootmem() once the early boot process is
1776 * done. Non-atomic initialization, single-pass.
1778 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1779 unsigned long start_pfn)
1781 struct page *page;
1782 unsigned long end_pfn = start_pfn + size;
1783 unsigned long pfn;
1785 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1786 if (!early_pfn_valid(pfn))
1787 continue;
1788 page = pfn_to_page(pfn);
1789 set_page_links(page, zone, nid, pfn);
1790 init_page_count(page);
1791 reset_page_mapcount(page);
1792 SetPageReserved(page);
1793 INIT_LIST_HEAD(&page->lru);
1794 #ifdef WANT_PAGE_VIRTUAL
1795 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1796 if (!is_highmem_idx(zone))
1797 set_page_address(page, __va(pfn << PAGE_SHIFT));
1798 #endif
1802 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1803 unsigned long size)
1805 int order;
1806 for (order = 0; order < MAX_ORDER ; order++) {
1807 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1808 zone->free_area[order].nr_free = 0;
1812 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1813 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1814 unsigned long size)
1816 unsigned long snum = pfn_to_section_nr(pfn);
1817 unsigned long end = pfn_to_section_nr(pfn + size);
1819 if (FLAGS_HAS_NODE)
1820 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1821 else
1822 for (; snum <= end; snum++)
1823 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1826 #ifndef __HAVE_ARCH_MEMMAP_INIT
1827 #define memmap_init(size, nid, zone, start_pfn) \
1828 memmap_init_zone((size), (nid), (zone), (start_pfn))
1829 #endif
1831 static int __cpuinit zone_batchsize(struct zone *zone)
1833 int batch;
1836 * The per-cpu-pages pools are set to around 1000th of the
1837 * size of the zone. But no more than 1/2 of a meg.
1839 * OK, so we don't know how big the cache is. So guess.
1841 batch = zone->present_pages / 1024;
1842 if (batch * PAGE_SIZE > 512 * 1024)
1843 batch = (512 * 1024) / PAGE_SIZE;
1844 batch /= 4; /* We effectively *= 4 below */
1845 if (batch < 1)
1846 batch = 1;
1849 * Clamp the batch to a 2^n - 1 value. Having a power
1850 * of 2 value was found to be more likely to have
1851 * suboptimal cache aliasing properties in some cases.
1853 * For example if 2 tasks are alternately allocating
1854 * batches of pages, one task can end up with a lot
1855 * of pages of one half of the possible page colors
1856 * and the other with pages of the other colors.
1858 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1860 return batch;
1863 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1865 struct per_cpu_pages *pcp;
1867 memset(p, 0, sizeof(*p));
1869 pcp = &p->pcp[0]; /* hot */
1870 pcp->count = 0;
1871 pcp->high = 6 * batch;
1872 pcp->batch = max(1UL, 1 * batch);
1873 INIT_LIST_HEAD(&pcp->list);
1875 pcp = &p->pcp[1]; /* cold*/
1876 pcp->count = 0;
1877 pcp->high = 2 * batch;
1878 pcp->batch = max(1UL, batch/2);
1879 INIT_LIST_HEAD(&pcp->list);
1883 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1884 * to the value high for the pageset p.
1887 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1888 unsigned long high)
1890 struct per_cpu_pages *pcp;
1892 pcp = &p->pcp[0]; /* hot list */
1893 pcp->high = high;
1894 pcp->batch = max(1UL, high/4);
1895 if ((high/4) > (PAGE_SHIFT * 8))
1896 pcp->batch = PAGE_SHIFT * 8;
1900 #ifdef CONFIG_NUMA
1902 * Boot pageset table. One per cpu which is going to be used for all
1903 * zones and all nodes. The parameters will be set in such a way
1904 * that an item put on a list will immediately be handed over to
1905 * the buddy list. This is safe since pageset manipulation is done
1906 * with interrupts disabled.
1908 * Some NUMA counter updates may also be caught by the boot pagesets.
1910 * The boot_pagesets must be kept even after bootup is complete for
1911 * unused processors and/or zones. They do play a role for bootstrapping
1912 * hotplugged processors.
1914 * zoneinfo_show() and maybe other functions do
1915 * not check if the processor is online before following the pageset pointer.
1916 * Other parts of the kernel may not check if the zone is available.
1918 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1921 * Dynamically allocate memory for the
1922 * per cpu pageset array in struct zone.
1924 static int __cpuinit process_zones(int cpu)
1926 struct zone *zone, *dzone;
1928 for_each_zone(zone) {
1930 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1931 GFP_KERNEL, cpu_to_node(cpu));
1932 if (!zone_pcp(zone, cpu))
1933 goto bad;
1935 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1937 if (percpu_pagelist_fraction)
1938 setup_pagelist_highmark(zone_pcp(zone, cpu),
1939 (zone->present_pages / percpu_pagelist_fraction));
1942 return 0;
1943 bad:
1944 for_each_zone(dzone) {
1945 if (dzone == zone)
1946 break;
1947 kfree(zone_pcp(dzone, cpu));
1948 zone_pcp(dzone, cpu) = NULL;
1950 return -ENOMEM;
1953 static inline void free_zone_pagesets(int cpu)
1955 struct zone *zone;
1957 for_each_zone(zone) {
1958 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1960 zone_pcp(zone, cpu) = NULL;
1961 kfree(pset);
1965 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1966 unsigned long action,
1967 void *hcpu)
1969 int cpu = (long)hcpu;
1970 int ret = NOTIFY_OK;
1972 switch (action) {
1973 case CPU_UP_PREPARE:
1974 if (process_zones(cpu))
1975 ret = NOTIFY_BAD;
1976 break;
1977 case CPU_UP_CANCELED:
1978 case CPU_DEAD:
1979 free_zone_pagesets(cpu);
1980 break;
1981 default:
1982 break;
1984 return ret;
1987 static struct notifier_block pageset_notifier =
1988 { &pageset_cpuup_callback, NULL, 0 };
1990 void __init setup_per_cpu_pageset(void)
1992 int err;
1994 /* Initialize per_cpu_pageset for cpu 0.
1995 * A cpuup callback will do this for every cpu
1996 * as it comes online
1998 err = process_zones(smp_processor_id());
1999 BUG_ON(err);
2000 register_cpu_notifier(&pageset_notifier);
2003 #endif
2005 static __meminit
2006 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2008 int i;
2009 struct pglist_data *pgdat = zone->zone_pgdat;
2012 * The per-page waitqueue mechanism uses hashed waitqueues
2013 * per zone.
2015 zone->wait_table_size = wait_table_size(zone_size_pages);
2016 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
2017 zone->wait_table = (wait_queue_head_t *)
2018 alloc_bootmem_node(pgdat, zone->wait_table_size
2019 * sizeof(wait_queue_head_t));
2021 for(i = 0; i < zone->wait_table_size; ++i)
2022 init_waitqueue_head(zone->wait_table + i);
2025 static __meminit void zone_pcp_init(struct zone *zone)
2027 int cpu;
2028 unsigned long batch = zone_batchsize(zone);
2030 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2031 #ifdef CONFIG_NUMA
2032 /* Early boot. Slab allocator not functional yet */
2033 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2034 setup_pageset(&boot_pageset[cpu],0);
2035 #else
2036 setup_pageset(zone_pcp(zone,cpu), batch);
2037 #endif
2039 if (zone->present_pages)
2040 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2041 zone->name, zone->present_pages, batch);
2044 static __meminit void init_currently_empty_zone(struct zone *zone,
2045 unsigned long zone_start_pfn, unsigned long size)
2047 struct pglist_data *pgdat = zone->zone_pgdat;
2049 zone_wait_table_init(zone, size);
2050 pgdat->nr_zones = zone_idx(zone) + 1;
2052 zone->zone_start_pfn = zone_start_pfn;
2054 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2056 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2060 * Set up the zone data structures:
2061 * - mark all pages reserved
2062 * - mark all memory queues empty
2063 * - clear the memory bitmaps
2065 static void __init free_area_init_core(struct pglist_data *pgdat,
2066 unsigned long *zones_size, unsigned long *zholes_size)
2068 unsigned long j;
2069 int nid = pgdat->node_id;
2070 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2072 pgdat_resize_init(pgdat);
2073 pgdat->nr_zones = 0;
2074 init_waitqueue_head(&pgdat->kswapd_wait);
2075 pgdat->kswapd_max_order = 0;
2077 for (j = 0; j < MAX_NR_ZONES; j++) {
2078 struct zone *zone = pgdat->node_zones + j;
2079 unsigned long size, realsize;
2081 realsize = size = zones_size[j];
2082 if (zholes_size)
2083 realsize -= zholes_size[j];
2085 if (j < ZONE_HIGHMEM)
2086 nr_kernel_pages += realsize;
2087 nr_all_pages += realsize;
2089 zone->spanned_pages = size;
2090 zone->present_pages = realsize;
2091 zone->name = zone_names[j];
2092 spin_lock_init(&zone->lock);
2093 spin_lock_init(&zone->lru_lock);
2094 zone_seqlock_init(zone);
2095 zone->zone_pgdat = pgdat;
2096 zone->free_pages = 0;
2098 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2100 zone_pcp_init(zone);
2101 INIT_LIST_HEAD(&zone->active_list);
2102 INIT_LIST_HEAD(&zone->inactive_list);
2103 zone->nr_scan_active = 0;
2104 zone->nr_scan_inactive = 0;
2105 zone->nr_active = 0;
2106 zone->nr_inactive = 0;
2107 atomic_set(&zone->reclaim_in_progress, 0);
2108 if (!size)
2109 continue;
2111 zonetable_add(zone, nid, j, zone_start_pfn, size);
2112 init_currently_empty_zone(zone, zone_start_pfn, size);
2113 zone_start_pfn += size;
2117 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2119 /* Skip empty nodes */
2120 if (!pgdat->node_spanned_pages)
2121 return;
2123 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2124 /* ia64 gets its own node_mem_map, before this, without bootmem */
2125 if (!pgdat->node_mem_map) {
2126 unsigned long size;
2127 struct page *map;
2129 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2130 map = alloc_remap(pgdat->node_id, size);
2131 if (!map)
2132 map = alloc_bootmem_node(pgdat, size);
2133 pgdat->node_mem_map = map;
2135 #ifdef CONFIG_FLATMEM
2137 * With no DISCONTIG, the global mem_map is just set as node 0's
2139 if (pgdat == NODE_DATA(0))
2140 mem_map = NODE_DATA(0)->node_mem_map;
2141 #endif
2142 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2145 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2146 unsigned long *zones_size, unsigned long node_start_pfn,
2147 unsigned long *zholes_size)
2149 pgdat->node_id = nid;
2150 pgdat->node_start_pfn = node_start_pfn;
2151 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2153 alloc_node_mem_map(pgdat);
2155 free_area_init_core(pgdat, zones_size, zholes_size);
2158 #ifndef CONFIG_NEED_MULTIPLE_NODES
2159 static bootmem_data_t contig_bootmem_data;
2160 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2162 EXPORT_SYMBOL(contig_page_data);
2163 #endif
2165 void __init free_area_init(unsigned long *zones_size)
2167 free_area_init_node(0, NODE_DATA(0), zones_size,
2168 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2171 #ifdef CONFIG_PROC_FS
2173 #include <linux/seq_file.h>
2175 static void *frag_start(struct seq_file *m, loff_t *pos)
2177 pg_data_t *pgdat;
2178 loff_t node = *pos;
2179 for (pgdat = first_online_pgdat();
2180 pgdat && node;
2181 pgdat = next_online_pgdat(pgdat))
2182 --node;
2184 return pgdat;
2187 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2189 pg_data_t *pgdat = (pg_data_t *)arg;
2191 (*pos)++;
2192 return next_online_pgdat(pgdat);
2195 static void frag_stop(struct seq_file *m, void *arg)
2200 * This walks the free areas for each zone.
2202 static int frag_show(struct seq_file *m, void *arg)
2204 pg_data_t *pgdat = (pg_data_t *)arg;
2205 struct zone *zone;
2206 struct zone *node_zones = pgdat->node_zones;
2207 unsigned long flags;
2208 int order;
2210 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2211 if (!populated_zone(zone))
2212 continue;
2214 spin_lock_irqsave(&zone->lock, flags);
2215 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2216 for (order = 0; order < MAX_ORDER; ++order)
2217 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2218 spin_unlock_irqrestore(&zone->lock, flags);
2219 seq_putc(m, '\n');
2221 return 0;
2224 struct seq_operations fragmentation_op = {
2225 .start = frag_start,
2226 .next = frag_next,
2227 .stop = frag_stop,
2228 .show = frag_show,
2232 * Output information about zones in @pgdat.
2234 static int zoneinfo_show(struct seq_file *m, void *arg)
2236 pg_data_t *pgdat = arg;
2237 struct zone *zone;
2238 struct zone *node_zones = pgdat->node_zones;
2239 unsigned long flags;
2241 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2242 int i;
2244 if (!populated_zone(zone))
2245 continue;
2247 spin_lock_irqsave(&zone->lock, flags);
2248 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2249 seq_printf(m,
2250 "\n pages free %lu"
2251 "\n min %lu"
2252 "\n low %lu"
2253 "\n high %lu"
2254 "\n active %lu"
2255 "\n inactive %lu"
2256 "\n scanned %lu (a: %lu i: %lu)"
2257 "\n spanned %lu"
2258 "\n present %lu",
2259 zone->free_pages,
2260 zone->pages_min,
2261 zone->pages_low,
2262 zone->pages_high,
2263 zone->nr_active,
2264 zone->nr_inactive,
2265 zone->pages_scanned,
2266 zone->nr_scan_active, zone->nr_scan_inactive,
2267 zone->spanned_pages,
2268 zone->present_pages);
2269 seq_printf(m,
2270 "\n protection: (%lu",
2271 zone->lowmem_reserve[0]);
2272 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2273 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2274 seq_printf(m,
2276 "\n pagesets");
2277 for_each_online_cpu(i) {
2278 struct per_cpu_pageset *pageset;
2279 int j;
2281 pageset = zone_pcp(zone, i);
2282 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2283 if (pageset->pcp[j].count)
2284 break;
2286 if (j == ARRAY_SIZE(pageset->pcp))
2287 continue;
2288 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2289 seq_printf(m,
2290 "\n cpu: %i pcp: %i"
2291 "\n count: %i"
2292 "\n high: %i"
2293 "\n batch: %i",
2294 i, j,
2295 pageset->pcp[j].count,
2296 pageset->pcp[j].high,
2297 pageset->pcp[j].batch);
2299 #ifdef CONFIG_NUMA
2300 seq_printf(m,
2301 "\n numa_hit: %lu"
2302 "\n numa_miss: %lu"
2303 "\n numa_foreign: %lu"
2304 "\n interleave_hit: %lu"
2305 "\n local_node: %lu"
2306 "\n other_node: %lu",
2307 pageset->numa_hit,
2308 pageset->numa_miss,
2309 pageset->numa_foreign,
2310 pageset->interleave_hit,
2311 pageset->local_node,
2312 pageset->other_node);
2313 #endif
2315 seq_printf(m,
2316 "\n all_unreclaimable: %u"
2317 "\n prev_priority: %i"
2318 "\n temp_priority: %i"
2319 "\n start_pfn: %lu",
2320 zone->all_unreclaimable,
2321 zone->prev_priority,
2322 zone->temp_priority,
2323 zone->zone_start_pfn);
2324 spin_unlock_irqrestore(&zone->lock, flags);
2325 seq_putc(m, '\n');
2327 return 0;
2330 struct seq_operations zoneinfo_op = {
2331 .start = frag_start, /* iterate over all zones. The same as in
2332 * fragmentation. */
2333 .next = frag_next,
2334 .stop = frag_stop,
2335 .show = zoneinfo_show,
2338 static char *vmstat_text[] = {
2339 "nr_dirty",
2340 "nr_writeback",
2341 "nr_unstable",
2342 "nr_page_table_pages",
2343 "nr_mapped",
2344 "nr_slab",
2346 "pgpgin",
2347 "pgpgout",
2348 "pswpin",
2349 "pswpout",
2351 "pgalloc_high",
2352 "pgalloc_normal",
2353 "pgalloc_dma32",
2354 "pgalloc_dma",
2356 "pgfree",
2357 "pgactivate",
2358 "pgdeactivate",
2360 "pgfault",
2361 "pgmajfault",
2363 "pgrefill_high",
2364 "pgrefill_normal",
2365 "pgrefill_dma32",
2366 "pgrefill_dma",
2368 "pgsteal_high",
2369 "pgsteal_normal",
2370 "pgsteal_dma32",
2371 "pgsteal_dma",
2373 "pgscan_kswapd_high",
2374 "pgscan_kswapd_normal",
2375 "pgscan_kswapd_dma32",
2376 "pgscan_kswapd_dma",
2378 "pgscan_direct_high",
2379 "pgscan_direct_normal",
2380 "pgscan_direct_dma32",
2381 "pgscan_direct_dma",
2383 "pginodesteal",
2384 "slabs_scanned",
2385 "kswapd_steal",
2386 "kswapd_inodesteal",
2387 "pageoutrun",
2388 "allocstall",
2390 "pgrotated",
2391 "nr_bounce",
2394 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2396 struct page_state *ps;
2398 if (*pos >= ARRAY_SIZE(vmstat_text))
2399 return NULL;
2401 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2402 m->private = ps;
2403 if (!ps)
2404 return ERR_PTR(-ENOMEM);
2405 get_full_page_state(ps);
2406 ps->pgpgin /= 2; /* sectors -> kbytes */
2407 ps->pgpgout /= 2;
2408 return (unsigned long *)ps + *pos;
2411 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2413 (*pos)++;
2414 if (*pos >= ARRAY_SIZE(vmstat_text))
2415 return NULL;
2416 return (unsigned long *)m->private + *pos;
2419 static int vmstat_show(struct seq_file *m, void *arg)
2421 unsigned long *l = arg;
2422 unsigned long off = l - (unsigned long *)m->private;
2424 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2425 return 0;
2428 static void vmstat_stop(struct seq_file *m, void *arg)
2430 kfree(m->private);
2431 m->private = NULL;
2434 struct seq_operations vmstat_op = {
2435 .start = vmstat_start,
2436 .next = vmstat_next,
2437 .stop = vmstat_stop,
2438 .show = vmstat_show,
2441 #endif /* CONFIG_PROC_FS */
2443 #ifdef CONFIG_HOTPLUG_CPU
2444 static int page_alloc_cpu_notify(struct notifier_block *self,
2445 unsigned long action, void *hcpu)
2447 int cpu = (unsigned long)hcpu;
2448 long *count;
2449 unsigned long *src, *dest;
2451 if (action == CPU_DEAD) {
2452 int i;
2454 /* Drain local pagecache count. */
2455 count = &per_cpu(nr_pagecache_local, cpu);
2456 atomic_add(*count, &nr_pagecache);
2457 *count = 0;
2458 local_irq_disable();
2459 __drain_pages(cpu);
2461 /* Add dead cpu's page_states to our own. */
2462 dest = (unsigned long *)&__get_cpu_var(page_states);
2463 src = (unsigned long *)&per_cpu(page_states, cpu);
2465 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2466 i++) {
2467 dest[i] += src[i];
2468 src[i] = 0;
2471 local_irq_enable();
2473 return NOTIFY_OK;
2475 #endif /* CONFIG_HOTPLUG_CPU */
2477 void __init page_alloc_init(void)
2479 hotcpu_notifier(page_alloc_cpu_notify, 0);
2483 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2484 * or min_free_kbytes changes.
2486 static void calculate_totalreserve_pages(void)
2488 struct pglist_data *pgdat;
2489 unsigned long reserve_pages = 0;
2490 int i, j;
2492 for_each_online_pgdat(pgdat) {
2493 for (i = 0; i < MAX_NR_ZONES; i++) {
2494 struct zone *zone = pgdat->node_zones + i;
2495 unsigned long max = 0;
2497 /* Find valid and maximum lowmem_reserve in the zone */
2498 for (j = i; j < MAX_NR_ZONES; j++) {
2499 if (zone->lowmem_reserve[j] > max)
2500 max = zone->lowmem_reserve[j];
2503 /* we treat pages_high as reserved pages. */
2504 max += zone->pages_high;
2506 if (max > zone->present_pages)
2507 max = zone->present_pages;
2508 reserve_pages += max;
2511 totalreserve_pages = reserve_pages;
2515 * setup_per_zone_lowmem_reserve - called whenever
2516 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2517 * has a correct pages reserved value, so an adequate number of
2518 * pages are left in the zone after a successful __alloc_pages().
2520 static void setup_per_zone_lowmem_reserve(void)
2522 struct pglist_data *pgdat;
2523 int j, idx;
2525 for_each_online_pgdat(pgdat) {
2526 for (j = 0; j < MAX_NR_ZONES; j++) {
2527 struct zone *zone = pgdat->node_zones + j;
2528 unsigned long present_pages = zone->present_pages;
2530 zone->lowmem_reserve[j] = 0;
2532 for (idx = j-1; idx >= 0; idx--) {
2533 struct zone *lower_zone;
2535 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2536 sysctl_lowmem_reserve_ratio[idx] = 1;
2538 lower_zone = pgdat->node_zones + idx;
2539 lower_zone->lowmem_reserve[j] = present_pages /
2540 sysctl_lowmem_reserve_ratio[idx];
2541 present_pages += lower_zone->present_pages;
2546 /* update totalreserve_pages */
2547 calculate_totalreserve_pages();
2551 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2552 * that the pages_{min,low,high} values for each zone are set correctly
2553 * with respect to min_free_kbytes.
2555 void setup_per_zone_pages_min(void)
2557 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2558 unsigned long lowmem_pages = 0;
2559 struct zone *zone;
2560 unsigned long flags;
2562 /* Calculate total number of !ZONE_HIGHMEM pages */
2563 for_each_zone(zone) {
2564 if (!is_highmem(zone))
2565 lowmem_pages += zone->present_pages;
2568 for_each_zone(zone) {
2569 unsigned long tmp;
2570 spin_lock_irqsave(&zone->lru_lock, flags);
2571 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2572 if (is_highmem(zone)) {
2574 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2575 * need highmem pages, so cap pages_min to a small
2576 * value here.
2578 * The (pages_high-pages_low) and (pages_low-pages_min)
2579 * deltas controls asynch page reclaim, and so should
2580 * not be capped for highmem.
2582 int min_pages;
2584 min_pages = zone->present_pages / 1024;
2585 if (min_pages < SWAP_CLUSTER_MAX)
2586 min_pages = SWAP_CLUSTER_MAX;
2587 if (min_pages > 128)
2588 min_pages = 128;
2589 zone->pages_min = min_pages;
2590 } else {
2592 * If it's a lowmem zone, reserve a number of pages
2593 * proportionate to the zone's size.
2595 zone->pages_min = tmp;
2598 zone->pages_low = zone->pages_min + tmp / 4;
2599 zone->pages_high = zone->pages_min + tmp / 2;
2600 spin_unlock_irqrestore(&zone->lru_lock, flags);
2603 /* update totalreserve_pages */
2604 calculate_totalreserve_pages();
2608 * Initialise min_free_kbytes.
2610 * For small machines we want it small (128k min). For large machines
2611 * we want it large (64MB max). But it is not linear, because network
2612 * bandwidth does not increase linearly with machine size. We use
2614 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2615 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2617 * which yields
2619 * 16MB: 512k
2620 * 32MB: 724k
2621 * 64MB: 1024k
2622 * 128MB: 1448k
2623 * 256MB: 2048k
2624 * 512MB: 2896k
2625 * 1024MB: 4096k
2626 * 2048MB: 5792k
2627 * 4096MB: 8192k
2628 * 8192MB: 11584k
2629 * 16384MB: 16384k
2631 static int __init init_per_zone_pages_min(void)
2633 unsigned long lowmem_kbytes;
2635 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2637 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2638 if (min_free_kbytes < 128)
2639 min_free_kbytes = 128;
2640 if (min_free_kbytes > 65536)
2641 min_free_kbytes = 65536;
2642 setup_per_zone_pages_min();
2643 setup_per_zone_lowmem_reserve();
2644 return 0;
2646 module_init(init_per_zone_pages_min)
2649 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2650 * that we can call two helper functions whenever min_free_kbytes
2651 * changes.
2653 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2654 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2656 proc_dointvec(table, write, file, buffer, length, ppos);
2657 setup_per_zone_pages_min();
2658 return 0;
2662 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2663 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2664 * whenever sysctl_lowmem_reserve_ratio changes.
2666 * The reserve ratio obviously has absolutely no relation with the
2667 * pages_min watermarks. The lowmem reserve ratio can only make sense
2668 * if in function of the boot time zone sizes.
2670 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2671 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2673 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2674 setup_per_zone_lowmem_reserve();
2675 return 0;
2679 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2680 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2681 * can have before it gets flushed back to buddy allocator.
2684 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2685 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2687 struct zone *zone;
2688 unsigned int cpu;
2689 int ret;
2691 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2692 if (!write || (ret == -EINVAL))
2693 return ret;
2694 for_each_zone(zone) {
2695 for_each_online_cpu(cpu) {
2696 unsigned long high;
2697 high = zone->present_pages / percpu_pagelist_fraction;
2698 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2701 return 0;
2704 __initdata int hashdist = HASHDIST_DEFAULT;
2706 #ifdef CONFIG_NUMA
2707 static int __init set_hashdist(char *str)
2709 if (!str)
2710 return 0;
2711 hashdist = simple_strtoul(str, &str, 0);
2712 return 1;
2714 __setup("hashdist=", set_hashdist);
2715 #endif
2718 * allocate a large system hash table from bootmem
2719 * - it is assumed that the hash table must contain an exact power-of-2
2720 * quantity of entries
2721 * - limit is the number of hash buckets, not the total allocation size
2723 void *__init alloc_large_system_hash(const char *tablename,
2724 unsigned long bucketsize,
2725 unsigned long numentries,
2726 int scale,
2727 int flags,
2728 unsigned int *_hash_shift,
2729 unsigned int *_hash_mask,
2730 unsigned long limit)
2732 unsigned long long max = limit;
2733 unsigned long log2qty, size;
2734 void *table = NULL;
2736 /* allow the kernel cmdline to have a say */
2737 if (!numentries) {
2738 /* round applicable memory size up to nearest megabyte */
2739 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2740 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2741 numentries >>= 20 - PAGE_SHIFT;
2742 numentries <<= 20 - PAGE_SHIFT;
2744 /* limit to 1 bucket per 2^scale bytes of low memory */
2745 if (scale > PAGE_SHIFT)
2746 numentries >>= (scale - PAGE_SHIFT);
2747 else
2748 numentries <<= (PAGE_SHIFT - scale);
2750 numentries = roundup_pow_of_two(numentries);
2752 /* limit allocation size to 1/16 total memory by default */
2753 if (max == 0) {
2754 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2755 do_div(max, bucketsize);
2758 if (numentries > max)
2759 numentries = max;
2761 log2qty = long_log2(numentries);
2763 do {
2764 size = bucketsize << log2qty;
2765 if (flags & HASH_EARLY)
2766 table = alloc_bootmem(size);
2767 else if (hashdist)
2768 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2769 else {
2770 unsigned long order;
2771 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2773 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2775 } while (!table && size > PAGE_SIZE && --log2qty);
2777 if (!table)
2778 panic("Failed to allocate %s hash table\n", tablename);
2780 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2781 tablename,
2782 (1U << log2qty),
2783 long_log2(size) - PAGE_SHIFT,
2784 size);
2786 if (_hash_shift)
2787 *_hash_shift = log2qty;
2788 if (_hash_mask)
2789 *_hash_mask = (1 << log2qty) - 1;
2791 return table;
2794 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2796 * pfn <-> page translation. out-of-line version.
2797 * (see asm-generic/memory_model.h)
2799 #if defined(CONFIG_FLATMEM)
2800 struct page *pfn_to_page(unsigned long pfn)
2802 return mem_map + (pfn - ARCH_PFN_OFFSET);
2804 unsigned long page_to_pfn(struct page *page)
2806 return (page - mem_map) + ARCH_PFN_OFFSET;
2808 #elif defined(CONFIG_DISCONTIGMEM)
2809 struct page *pfn_to_page(unsigned long pfn)
2811 int nid = arch_pfn_to_nid(pfn);
2812 return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid);
2814 unsigned long page_to_pfn(struct page *page)
2816 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
2817 return (page - pgdat->node_mem_map) + pgdat->node_start_pfn;
2819 #elif defined(CONFIG_SPARSEMEM)
2820 struct page *pfn_to_page(unsigned long pfn)
2822 return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn;
2825 unsigned long page_to_pfn(struct page *page)
2827 long section_id = page_to_section(page);
2828 return page - __section_mem_map_addr(__nr_to_section(section_id));
2830 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2831 EXPORT_SYMBOL(pfn_to_page);
2832 EXPORT_SYMBOL(page_to_pfn);
2833 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */