io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / dma / ste_dma40.c
blob4256e55bbf25ff15ad7027796aa98738b4f62138
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Ericsson AB 2007-2008
4 * Copyright (C) ST-Ericsson SA 2008-2010
5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
7 */
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
30 #define D40_NAME "dma40"
32 #define D40_PHY_CHAN -1
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan) (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
41 /* Milliseconds */
42 #define DMA40_AUTOSUSPEND_DELAY 100
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE BIT(31)
59 #define D40_ALLOC_PHY BIT(30)
60 #define D40_ALLOC_LOG_FREE 0
62 #define D40_MEMCPY_MAX_CHANS 8
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0 51
66 #define DB8500_DMA_MEMCPY_EV_1 56
67 #define DB8500_DMA_MEMCPY_EV_2 57
68 #define DB8500_DMA_MEMCPY_EV_3 58
69 #define DB8500_DMA_MEMCPY_EV_4 59
70 #define DB8500_DMA_MEMCPY_EV_5 60
72 static int dma40_memcpy_channels[] = {
73 DB8500_DMA_MEMCPY_EV_0,
74 DB8500_DMA_MEMCPY_EV_1,
75 DB8500_DMA_MEMCPY_EV_2,
76 DB8500_DMA_MEMCPY_EV_3,
77 DB8500_DMA_MEMCPY_EV_4,
78 DB8500_DMA_MEMCPY_EV_5,
81 /* Default configuration for physcial memcpy */
82 static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83 .mode = STEDMA40_MODE_PHYSICAL,
84 .dir = DMA_MEM_TO_MEM,
86 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87 .src_info.psize = STEDMA40_PSIZE_PHY_1,
88 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
90 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91 .dst_info.psize = STEDMA40_PSIZE_PHY_1,
92 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
95 /* Default configuration for logical memcpy */
96 static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97 .mode = STEDMA40_MODE_LOGICAL,
98 .dir = DMA_MEM_TO_MEM,
100 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101 .src_info.psize = STEDMA40_PSIZE_LOG_1,
102 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
104 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105 .dst_info.psize = STEDMA40_PSIZE_LOG_1,
106 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
110 * enum 40_command - The different commands and/or statuses.
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
117 enum d40_command {
118 D40_DMA_STOP = 0,
119 D40_DMA_RUN = 1,
120 D40_DMA_SUSPEND_REQ = 2,
121 D40_DMA_SUSPENDED = 3
125 * enum d40_events - The different Event Enables for the event lines.
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
133 enum d40_events {
134 D40_DEACTIVATE_EVENTLINE = 0,
135 D40_ACTIVATE_EVENTLINE = 1,
136 D40_SUSPEND_REQ_EVENTLINE = 2,
137 D40_ROUND_EVENTLINE = 3
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
145 static __maybe_unused u32 d40_backup_regs[] = {
146 D40_DREG_LCPA,
147 D40_DREG_LCLA,
148 D40_DREG_PRMSE,
149 D40_DREG_PRMSO,
150 D40_DREG_PRMOE,
151 D40_DREG_PRMOO,
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
160 * HW revision:
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
168 static u32 d40_backup_regs_v4a[] = {
169 D40_DREG_PSEG1,
170 D40_DREG_PSEG2,
171 D40_DREG_PSEG3,
172 D40_DREG_PSEG4,
173 D40_DREG_PCEG1,
174 D40_DREG_PCEG2,
175 D40_DREG_PCEG3,
176 D40_DREG_PCEG4,
177 D40_DREG_RSEG1,
178 D40_DREG_RSEG2,
179 D40_DREG_RSEG3,
180 D40_DREG_RSEG4,
181 D40_DREG_RCEG1,
182 D40_DREG_RCEG2,
183 D40_DREG_RCEG3,
184 D40_DREG_RCEG4,
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
189 static u32 d40_backup_regs_v4b[] = {
190 D40_DREG_CPSEG1,
191 D40_DREG_CPSEG2,
192 D40_DREG_CPSEG3,
193 D40_DREG_CPSEG4,
194 D40_DREG_CPSEG5,
195 D40_DREG_CPCEG1,
196 D40_DREG_CPCEG2,
197 D40_DREG_CPCEG3,
198 D40_DREG_CPCEG4,
199 D40_DREG_CPCEG5,
200 D40_DREG_CRSEG1,
201 D40_DREG_CRSEG2,
202 D40_DREG_CRSEG3,
203 D40_DREG_CRSEG4,
204 D40_DREG_CRSEG5,
205 D40_DREG_CRCEG1,
206 D40_DREG_CRCEG2,
207 D40_DREG_CRCEG3,
208 D40_DREG_CRCEG4,
209 D40_DREG_CRCEG5,
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
214 static __maybe_unused u32 d40_backup_regs_chan[] = {
215 D40_CHAN_REG_SSCFG,
216 D40_CHAN_REG_SSELT,
217 D40_CHAN_REG_SSPTR,
218 D40_CHAN_REG_SSLNK,
219 D40_CHAN_REG_SDCFG,
220 D40_CHAN_REG_SDELT,
221 D40_CHAN_REG_SDPTR,
222 D40_CHAN_REG_SDLNK,
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
237 struct d40_interrupt_lookup {
238 u32 src;
239 u32 clr;
240 bool is_error;
241 int offset;
245 static struct d40_interrupt_lookup il_v4a[] = {
246 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
247 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
251 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
252 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
253 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
254 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
255 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
258 static struct d40_interrupt_lookup il_v4b[] = {
259 {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
260 {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261 {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262 {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263 {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264 {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
265 {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
266 {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
267 {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
268 {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
269 {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
270 {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
274 * struct d40_reg_val - simple lookup struct
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
279 struct d40_reg_val {
280 unsigned int reg;
281 unsigned int val;
284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285 /* Clock every part of the DMA block from start */
286 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
288 /* Interrupts on all logical channels */
289 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303 /* Clock every part of the DMA block from start */
304 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
306 /* Interrupts on all logical channels */
307 { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308 { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309 { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310 { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311 { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312 { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313 { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314 { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315 { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316 { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317 { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318 { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319 { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320 { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321 { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
335 struct d40_lli_pool {
336 void *base;
337 int size;
338 dma_addr_t dma_addr;
339 /* Space for dst and src, plus an extra for padding */
340 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
344 * struct d40_desc - A descriptor is one DMA job.
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
355 * during a transfer.
356 * @node: List entry.
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
360 * This descriptor is used for both logical and physical transfers.
362 struct d40_desc {
363 /* LLI physical */
364 struct d40_phy_lli_bidir lli_phy;
365 /* LLI logical */
366 struct d40_log_lli_bidir lli_log;
368 struct d40_lli_pool lli_pool;
369 int lli_len;
370 int lli_current;
371 int lcla_alloc;
373 struct dma_async_tx_descriptor txd;
374 struct list_head node;
376 bool is_in_client_list;
377 bool cyclic;
381 * struct d40_lcla_pool - LCLA pool settings and data.
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @dma_addr: DMA address, if mapped
385 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
386 * This pointer is only there for clean-up on error.
387 * @pages: The number of pages needed for all physical channels.
388 * Only used later for clean-up on error
389 * @lock: Lock to protect the content in this struct.
390 * @alloc_map: big map over which LCLA entry is own by which job.
392 struct d40_lcla_pool {
393 void *base;
394 dma_addr_t dma_addr;
395 void *base_unaligned;
396 int pages;
397 spinlock_t lock;
398 struct d40_desc **alloc_map;
402 * struct d40_phy_res - struct for handling eventlines mapped to physical
403 * channels.
405 * @lock: A lock protection this entity.
406 * @reserved: True if used by secure world or otherwise.
407 * @num: The physical channel number of this entity.
408 * @allocated_src: Bit mapped to show which src event line's are mapped to
409 * this physical channel. Can also be free or physically allocated.
410 * @allocated_dst: Same as for src but is dst.
411 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
412 * event line number.
413 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
415 struct d40_phy_res {
416 spinlock_t lock;
417 bool reserved;
418 int num;
419 u32 allocated_src;
420 u32 allocated_dst;
421 bool use_soft_lli;
424 struct d40_base;
427 * struct d40_chan - Struct that describes a channel.
429 * @lock: A spinlock to protect this struct.
430 * @log_num: The logical number, if any of this channel.
431 * @pending_tx: The number of pending transfers. Used between interrupt handler
432 * and tasklet.
433 * @busy: Set to true when transfer is ongoing on this channel.
434 * @phy_chan: Pointer to physical channel which this instance runs on. If this
435 * point is NULL, then the channel is not allocated.
436 * @chan: DMA engine handle.
437 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
438 * transfer and call client callback.
439 * @client: Cliented owned descriptor list.
440 * @pending_queue: Submitted jobs, to be issued by issue_pending()
441 * @active: Active descriptor.
442 * @done: Completed jobs
443 * @queue: Queued jobs.
444 * @prepare_queue: Prepared jobs.
445 * @dma_cfg: The client configuration of this dma channel.
446 * @slave_config: DMA slave configuration.
447 * @configured: whether the dma_cfg configuration is valid
448 * @base: Pointer to the device instance struct.
449 * @src_def_cfg: Default cfg register setting for src.
450 * @dst_def_cfg: Default cfg register setting for dst.
451 * @log_def: Default logical channel settings.
452 * @lcpa: Pointer to dst and src lcpa settings.
453 * @runtime_addr: runtime configured address.
454 * @runtime_direction: runtime configured direction.
456 * This struct can either "be" a logical or a physical channel.
458 struct d40_chan {
459 spinlock_t lock;
460 int log_num;
461 int pending_tx;
462 bool busy;
463 struct d40_phy_res *phy_chan;
464 struct dma_chan chan;
465 struct tasklet_struct tasklet;
466 struct list_head client;
467 struct list_head pending_queue;
468 struct list_head active;
469 struct list_head done;
470 struct list_head queue;
471 struct list_head prepare_queue;
472 struct stedma40_chan_cfg dma_cfg;
473 struct dma_slave_config slave_config;
474 bool configured;
475 struct d40_base *base;
476 /* Default register configurations */
477 u32 src_def_cfg;
478 u32 dst_def_cfg;
479 struct d40_def_lcsp log_def;
480 struct d40_log_lli_full *lcpa;
481 /* Runtime reconfiguration */
482 dma_addr_t runtime_addr;
483 enum dma_transfer_direction runtime_direction;
487 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
488 * controller
490 * @backup: the pointer to the registers address array for backup
491 * @backup_size: the size of the registers address array for backup
492 * @realtime_en: the realtime enable register
493 * @realtime_clear: the realtime clear register
494 * @high_prio_en: the high priority enable register
495 * @high_prio_clear: the high priority clear register
496 * @interrupt_en: the interrupt enable register
497 * @interrupt_clear: the interrupt clear register
498 * @il: the pointer to struct d40_interrupt_lookup
499 * @il_size: the size of d40_interrupt_lookup array
500 * @init_reg: the pointer to the struct d40_reg_val
501 * @init_reg_size: the size of d40_reg_val array
503 struct d40_gen_dmac {
504 u32 *backup;
505 u32 backup_size;
506 u32 realtime_en;
507 u32 realtime_clear;
508 u32 high_prio_en;
509 u32 high_prio_clear;
510 u32 interrupt_en;
511 u32 interrupt_clear;
512 struct d40_interrupt_lookup *il;
513 u32 il_size;
514 struct d40_reg_val *init_reg;
515 u32 init_reg_size;
519 * struct d40_base - The big global struct, one for each probe'd instance.
521 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
522 * @execmd_lock: Lock for execute command usage since several channels share
523 * the same physical register.
524 * @dev: The device structure.
525 * @virtbase: The virtual base address of the DMA's register.
526 * @rev: silicon revision detected.
527 * @clk: Pointer to the DMA clock structure.
528 * @phy_start: Physical memory start of the DMA registers.
529 * @phy_size: Size of the DMA register map.
530 * @irq: The IRQ number.
531 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
532 * transfers).
533 * @num_phy_chans: The number of physical channels. Read from HW. This
534 * is the number of available channels for this driver, not counting "Secure
535 * mode" allocated physical channels.
536 * @num_log_chans: The number of logical channels. Calculated from
537 * num_phy_chans.
538 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
539 * @dma_slave: dma_device channels that can do only do slave transfers.
540 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
541 * @phy_chans: Room for all possible physical channels in system.
542 * @log_chans: Room for all possible logical channels in system.
543 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
544 * to log_chans entries.
545 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
546 * to phy_chans entries.
547 * @plat_data: Pointer to provided platform_data which is the driver
548 * configuration.
549 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
550 * @phy_res: Vector containing all physical channels.
551 * @lcla_pool: lcla pool settings and data.
552 * @lcpa_base: The virtual mapped address of LCPA.
553 * @phy_lcpa: The physical address of the LCPA.
554 * @lcpa_size: The size of the LCPA area.
555 * @desc_slab: cache for descriptors.
556 * @reg_val_backup: Here the values of some hardware registers are stored
557 * before the DMA is powered off. They are restored when the power is back on.
558 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
559 * later
560 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
561 * @regs_interrupt: Scratch space for registers during interrupt.
562 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
563 * @gen_dmac: the struct for generic registers values to represent u8500/8540
564 * DMA controller
566 struct d40_base {
567 spinlock_t interrupt_lock;
568 spinlock_t execmd_lock;
569 struct device *dev;
570 void __iomem *virtbase;
571 u8 rev:4;
572 struct clk *clk;
573 phys_addr_t phy_start;
574 resource_size_t phy_size;
575 int irq;
576 int num_memcpy_chans;
577 int num_phy_chans;
578 int num_log_chans;
579 struct dma_device dma_both;
580 struct dma_device dma_slave;
581 struct dma_device dma_memcpy;
582 struct d40_chan *phy_chans;
583 struct d40_chan *log_chans;
584 struct d40_chan **lookup_log_chans;
585 struct d40_chan **lookup_phy_chans;
586 struct stedma40_platform_data *plat_data;
587 struct regulator *lcpa_regulator;
588 /* Physical half channels */
589 struct d40_phy_res *phy_res;
590 struct d40_lcla_pool lcla_pool;
591 void *lcpa_base;
592 dma_addr_t phy_lcpa;
593 resource_size_t lcpa_size;
594 struct kmem_cache *desc_slab;
595 u32 reg_val_backup[BACKUP_REGS_SZ];
596 u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
597 u32 *reg_val_backup_chan;
598 u32 *regs_interrupt;
599 u16 gcc_pwr_off_mask;
600 struct d40_gen_dmac gen_dmac;
603 static struct device *chan2dev(struct d40_chan *d40c)
605 return &d40c->chan.dev->device;
608 static bool chan_is_physical(struct d40_chan *chan)
610 return chan->log_num == D40_PHY_CHAN;
613 static bool chan_is_logical(struct d40_chan *chan)
615 return !chan_is_physical(chan);
618 static void __iomem *chan_base(struct d40_chan *chan)
620 return chan->base->virtbase + D40_DREG_PCBASE +
621 chan->phy_chan->num * D40_DREG_PCDELTA;
624 #define d40_err(dev, format, arg...) \
625 dev_err(dev, "[%s] " format, __func__, ## arg)
627 #define chan_err(d40c, format, arg...) \
628 d40_err(chan2dev(d40c), format, ## arg)
630 static int d40_set_runtime_config_write(struct dma_chan *chan,
631 struct dma_slave_config *config,
632 enum dma_transfer_direction direction);
634 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
635 int lli_len)
637 bool is_log = chan_is_logical(d40c);
638 u32 align;
639 void *base;
641 if (is_log)
642 align = sizeof(struct d40_log_lli);
643 else
644 align = sizeof(struct d40_phy_lli);
646 if (lli_len == 1) {
647 base = d40d->lli_pool.pre_alloc_lli;
648 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
649 d40d->lli_pool.base = NULL;
650 } else {
651 d40d->lli_pool.size = lli_len * 2 * align;
653 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
654 d40d->lli_pool.base = base;
656 if (d40d->lli_pool.base == NULL)
657 return -ENOMEM;
660 if (is_log) {
661 d40d->lli_log.src = PTR_ALIGN(base, align);
662 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
664 d40d->lli_pool.dma_addr = 0;
665 } else {
666 d40d->lli_phy.src = PTR_ALIGN(base, align);
667 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
669 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
670 d40d->lli_phy.src,
671 d40d->lli_pool.size,
672 DMA_TO_DEVICE);
674 if (dma_mapping_error(d40c->base->dev,
675 d40d->lli_pool.dma_addr)) {
676 kfree(d40d->lli_pool.base);
677 d40d->lli_pool.base = NULL;
678 d40d->lli_pool.dma_addr = 0;
679 return -ENOMEM;
683 return 0;
686 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
688 if (d40d->lli_pool.dma_addr)
689 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
690 d40d->lli_pool.size, DMA_TO_DEVICE);
692 kfree(d40d->lli_pool.base);
693 d40d->lli_pool.base = NULL;
694 d40d->lli_pool.size = 0;
695 d40d->lli_log.src = NULL;
696 d40d->lli_log.dst = NULL;
697 d40d->lli_phy.src = NULL;
698 d40d->lli_phy.dst = NULL;
701 static int d40_lcla_alloc_one(struct d40_chan *d40c,
702 struct d40_desc *d40d)
704 unsigned long flags;
705 int i;
706 int ret = -EINVAL;
708 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
711 * Allocate both src and dst at the same time, therefore the half
712 * start on 1 since 0 can't be used since zero is used as end marker.
714 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
715 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
717 if (!d40c->base->lcla_pool.alloc_map[idx]) {
718 d40c->base->lcla_pool.alloc_map[idx] = d40d;
719 d40d->lcla_alloc++;
720 ret = i;
721 break;
725 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
727 return ret;
730 static int d40_lcla_free_all(struct d40_chan *d40c,
731 struct d40_desc *d40d)
733 unsigned long flags;
734 int i;
735 int ret = -EINVAL;
737 if (chan_is_physical(d40c))
738 return 0;
740 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
742 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
743 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
745 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
746 d40c->base->lcla_pool.alloc_map[idx] = NULL;
747 d40d->lcla_alloc--;
748 if (d40d->lcla_alloc == 0) {
749 ret = 0;
750 break;
755 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
757 return ret;
761 static void d40_desc_remove(struct d40_desc *d40d)
763 list_del(&d40d->node);
766 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
768 struct d40_desc *desc = NULL;
770 if (!list_empty(&d40c->client)) {
771 struct d40_desc *d;
772 struct d40_desc *_d;
774 list_for_each_entry_safe(d, _d, &d40c->client, node) {
775 if (async_tx_test_ack(&d->txd)) {
776 d40_desc_remove(d);
777 desc = d;
778 memset(desc, 0, sizeof(*desc));
779 break;
784 if (!desc)
785 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
787 if (desc)
788 INIT_LIST_HEAD(&desc->node);
790 return desc;
793 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
796 d40_pool_lli_free(d40c, d40d);
797 d40_lcla_free_all(d40c, d40d);
798 kmem_cache_free(d40c->base->desc_slab, d40d);
801 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
803 list_add_tail(&desc->node, &d40c->active);
806 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
808 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
809 struct d40_phy_lli *lli_src = desc->lli_phy.src;
810 void __iomem *base = chan_base(chan);
812 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
813 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
814 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
815 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
817 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
818 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
819 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
820 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
823 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
825 list_add_tail(&desc->node, &d40c->done);
828 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
830 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
831 struct d40_log_lli_bidir *lli = &desc->lli_log;
832 int lli_current = desc->lli_current;
833 int lli_len = desc->lli_len;
834 bool cyclic = desc->cyclic;
835 int curr_lcla = -EINVAL;
836 int first_lcla = 0;
837 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
838 bool linkback;
841 * We may have partially running cyclic transfers, in case we did't get
842 * enough LCLA entries.
844 linkback = cyclic && lli_current == 0;
847 * For linkback, we need one LCLA even with only one link, because we
848 * can't link back to the one in LCPA space
850 if (linkback || (lli_len - lli_current > 1)) {
852 * If the channel is expected to use only soft_lli don't
853 * allocate a lcla. This is to avoid a HW issue that exists
854 * in some controller during a peripheral to memory transfer
855 * that uses linked lists.
857 if (!(chan->phy_chan->use_soft_lli &&
858 chan->dma_cfg.dir == DMA_DEV_TO_MEM))
859 curr_lcla = d40_lcla_alloc_one(chan, desc);
861 first_lcla = curr_lcla;
865 * For linkback, we normally load the LCPA in the loop since we need to
866 * link it to the second LCLA and not the first. However, if we
867 * couldn't even get a first LCLA, then we have to run in LCPA and
868 * reload manually.
870 if (!linkback || curr_lcla == -EINVAL) {
871 unsigned int flags = 0;
873 if (curr_lcla == -EINVAL)
874 flags |= LLI_TERM_INT;
876 d40_log_lli_lcpa_write(chan->lcpa,
877 &lli->dst[lli_current],
878 &lli->src[lli_current],
879 curr_lcla,
880 flags);
881 lli_current++;
884 if (curr_lcla < 0)
885 goto set_current;
887 for (; lli_current < lli_len; lli_current++) {
888 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
889 8 * curr_lcla * 2;
890 struct d40_log_lli *lcla = pool->base + lcla_offset;
891 unsigned int flags = 0;
892 int next_lcla;
894 if (lli_current + 1 < lli_len)
895 next_lcla = d40_lcla_alloc_one(chan, desc);
896 else
897 next_lcla = linkback ? first_lcla : -EINVAL;
899 if (cyclic || next_lcla == -EINVAL)
900 flags |= LLI_TERM_INT;
902 if (linkback && curr_lcla == first_lcla) {
903 /* First link goes in both LCPA and LCLA */
904 d40_log_lli_lcpa_write(chan->lcpa,
905 &lli->dst[lli_current],
906 &lli->src[lli_current],
907 next_lcla, flags);
911 * One unused LCLA in the cyclic case if the very first
912 * next_lcla fails...
914 d40_log_lli_lcla_write(lcla,
915 &lli->dst[lli_current],
916 &lli->src[lli_current],
917 next_lcla, flags);
920 * Cache maintenance is not needed if lcla is
921 * mapped in esram
923 if (!use_esram_lcla) {
924 dma_sync_single_range_for_device(chan->base->dev,
925 pool->dma_addr, lcla_offset,
926 2 * sizeof(struct d40_log_lli),
927 DMA_TO_DEVICE);
929 curr_lcla = next_lcla;
931 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
932 lli_current++;
933 break;
936 set_current:
937 desc->lli_current = lli_current;
940 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
942 if (chan_is_physical(d40c)) {
943 d40_phy_lli_load(d40c, d40d);
944 d40d->lli_current = d40d->lli_len;
945 } else
946 d40_log_lli_to_lcxa(d40c, d40d);
949 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
951 return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
954 /* remove desc from current queue and add it to the pending_queue */
955 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
957 d40_desc_remove(desc);
958 desc->is_in_client_list = false;
959 list_add_tail(&desc->node, &d40c->pending_queue);
962 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
964 return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
965 node);
968 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
970 return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
973 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
975 return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
978 static int d40_psize_2_burst_size(bool is_log, int psize)
980 if (is_log) {
981 if (psize == STEDMA40_PSIZE_LOG_1)
982 return 1;
983 } else {
984 if (psize == STEDMA40_PSIZE_PHY_1)
985 return 1;
988 return 2 << psize;
992 * The dma only supports transmitting packages up to
993 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
995 * Calculate the total number of dma elements required to send the entire sg list.
997 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
999 int dmalen;
1000 u32 max_w = max(data_width1, data_width2);
1001 u32 min_w = min(data_width1, data_width2);
1002 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1004 if (seg_max > STEDMA40_MAX_SEG_SIZE)
1005 seg_max -= max_w;
1007 if (!IS_ALIGNED(size, max_w))
1008 return -EINVAL;
1010 if (size <= seg_max)
1011 dmalen = 1;
1012 else {
1013 dmalen = size / seg_max;
1014 if (dmalen * seg_max < size)
1015 dmalen++;
1017 return dmalen;
1020 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1021 u32 data_width1, u32 data_width2)
1023 struct scatterlist *sg;
1024 int i;
1025 int len = 0;
1026 int ret;
1028 for_each_sg(sgl, sg, sg_len, i) {
1029 ret = d40_size_2_dmalen(sg_dma_len(sg),
1030 data_width1, data_width2);
1031 if (ret < 0)
1032 return ret;
1033 len += ret;
1035 return len;
1038 static int __d40_execute_command_phy(struct d40_chan *d40c,
1039 enum d40_command command)
1041 u32 status;
1042 int i;
1043 void __iomem *active_reg;
1044 int ret = 0;
1045 unsigned long flags;
1046 u32 wmask;
1048 if (command == D40_DMA_STOP) {
1049 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1050 if (ret)
1051 return ret;
1054 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1056 if (d40c->phy_chan->num % 2 == 0)
1057 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1058 else
1059 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1061 if (command == D40_DMA_SUSPEND_REQ) {
1062 status = (readl(active_reg) &
1063 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1064 D40_CHAN_POS(d40c->phy_chan->num);
1066 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1067 goto unlock;
1070 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1071 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1072 active_reg);
1074 if (command == D40_DMA_SUSPEND_REQ) {
1076 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1077 status = (readl(active_reg) &
1078 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1079 D40_CHAN_POS(d40c->phy_chan->num);
1081 cpu_relax();
1083 * Reduce the number of bus accesses while
1084 * waiting for the DMA to suspend.
1086 udelay(3);
1088 if (status == D40_DMA_STOP ||
1089 status == D40_DMA_SUSPENDED)
1090 break;
1093 if (i == D40_SUSPEND_MAX_IT) {
1094 chan_err(d40c,
1095 "unable to suspend the chl %d (log: %d) status %x\n",
1096 d40c->phy_chan->num, d40c->log_num,
1097 status);
1098 dump_stack();
1099 ret = -EBUSY;
1103 unlock:
1104 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1105 return ret;
1108 static void d40_term_all(struct d40_chan *d40c)
1110 struct d40_desc *d40d;
1111 struct d40_desc *_d;
1113 /* Release completed descriptors */
1114 while ((d40d = d40_first_done(d40c))) {
1115 d40_desc_remove(d40d);
1116 d40_desc_free(d40c, d40d);
1119 /* Release active descriptors */
1120 while ((d40d = d40_first_active_get(d40c))) {
1121 d40_desc_remove(d40d);
1122 d40_desc_free(d40c, d40d);
1125 /* Release queued descriptors waiting for transfer */
1126 while ((d40d = d40_first_queued(d40c))) {
1127 d40_desc_remove(d40d);
1128 d40_desc_free(d40c, d40d);
1131 /* Release pending descriptors */
1132 while ((d40d = d40_first_pending(d40c))) {
1133 d40_desc_remove(d40d);
1134 d40_desc_free(d40c, d40d);
1137 /* Release client owned descriptors */
1138 if (!list_empty(&d40c->client))
1139 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1140 d40_desc_remove(d40d);
1141 d40_desc_free(d40c, d40d);
1144 /* Release descriptors in prepare queue */
1145 if (!list_empty(&d40c->prepare_queue))
1146 list_for_each_entry_safe(d40d, _d,
1147 &d40c->prepare_queue, node) {
1148 d40_desc_remove(d40d);
1149 d40_desc_free(d40c, d40d);
1152 d40c->pending_tx = 0;
1155 static void __d40_config_set_event(struct d40_chan *d40c,
1156 enum d40_events event_type, u32 event,
1157 int reg)
1159 void __iomem *addr = chan_base(d40c) + reg;
1160 int tries;
1161 u32 status;
1163 switch (event_type) {
1165 case D40_DEACTIVATE_EVENTLINE:
1167 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1168 | ~D40_EVENTLINE_MASK(event), addr);
1169 break;
1171 case D40_SUSPEND_REQ_EVENTLINE:
1172 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1173 D40_EVENTLINE_POS(event);
1175 if (status == D40_DEACTIVATE_EVENTLINE ||
1176 status == D40_SUSPEND_REQ_EVENTLINE)
1177 break;
1179 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1180 | ~D40_EVENTLINE_MASK(event), addr);
1182 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1184 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1185 D40_EVENTLINE_POS(event);
1187 cpu_relax();
1189 * Reduce the number of bus accesses while
1190 * waiting for the DMA to suspend.
1192 udelay(3);
1194 if (status == D40_DEACTIVATE_EVENTLINE)
1195 break;
1198 if (tries == D40_SUSPEND_MAX_IT) {
1199 chan_err(d40c,
1200 "unable to stop the event_line chl %d (log: %d)"
1201 "status %x\n", d40c->phy_chan->num,
1202 d40c->log_num, status);
1204 break;
1206 case D40_ACTIVATE_EVENTLINE:
1208 * The hardware sometimes doesn't register the enable when src and dst
1209 * event lines are active on the same logical channel. Retry to ensure
1210 * it does. Usually only one retry is sufficient.
1212 tries = 100;
1213 while (--tries) {
1214 writel((D40_ACTIVATE_EVENTLINE <<
1215 D40_EVENTLINE_POS(event)) |
1216 ~D40_EVENTLINE_MASK(event), addr);
1218 if (readl(addr) & D40_EVENTLINE_MASK(event))
1219 break;
1222 if (tries != 99)
1223 dev_dbg(chan2dev(d40c),
1224 "[%s] workaround enable S%cLNK (%d tries)\n",
1225 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1226 100 - tries);
1228 WARN_ON(!tries);
1229 break;
1231 case D40_ROUND_EVENTLINE:
1232 BUG();
1233 break;
1238 static void d40_config_set_event(struct d40_chan *d40c,
1239 enum d40_events event_type)
1241 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1243 /* Enable event line connected to device (or memcpy) */
1244 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1245 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1246 __d40_config_set_event(d40c, event_type, event,
1247 D40_CHAN_REG_SSLNK);
1249 if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM)
1250 __d40_config_set_event(d40c, event_type, event,
1251 D40_CHAN_REG_SDLNK);
1254 static u32 d40_chan_has_events(struct d40_chan *d40c)
1256 void __iomem *chanbase = chan_base(d40c);
1257 u32 val;
1259 val = readl(chanbase + D40_CHAN_REG_SSLNK);
1260 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1262 return val;
1265 static int
1266 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1268 unsigned long flags;
1269 int ret = 0;
1270 u32 active_status;
1271 void __iomem *active_reg;
1273 if (d40c->phy_chan->num % 2 == 0)
1274 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1275 else
1276 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1279 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1281 switch (command) {
1282 case D40_DMA_STOP:
1283 case D40_DMA_SUSPEND_REQ:
1285 active_status = (readl(active_reg) &
1286 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1287 D40_CHAN_POS(d40c->phy_chan->num);
1289 if (active_status == D40_DMA_RUN)
1290 d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1291 else
1292 d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1294 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1295 ret = __d40_execute_command_phy(d40c, command);
1297 break;
1299 case D40_DMA_RUN:
1301 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1302 ret = __d40_execute_command_phy(d40c, command);
1303 break;
1305 case D40_DMA_SUSPENDED:
1306 BUG();
1307 break;
1310 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1311 return ret;
1314 static int d40_channel_execute_command(struct d40_chan *d40c,
1315 enum d40_command command)
1317 if (chan_is_logical(d40c))
1318 return __d40_execute_command_log(d40c, command);
1319 else
1320 return __d40_execute_command_phy(d40c, command);
1323 static u32 d40_get_prmo(struct d40_chan *d40c)
1325 static const unsigned int phy_map[] = {
1326 [STEDMA40_PCHAN_BASIC_MODE]
1327 = D40_DREG_PRMO_PCHAN_BASIC,
1328 [STEDMA40_PCHAN_MODULO_MODE]
1329 = D40_DREG_PRMO_PCHAN_MODULO,
1330 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1331 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1333 static const unsigned int log_map[] = {
1334 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1335 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1336 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1337 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1338 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1339 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1342 if (chan_is_physical(d40c))
1343 return phy_map[d40c->dma_cfg.mode_opt];
1344 else
1345 return log_map[d40c->dma_cfg.mode_opt];
1348 static void d40_config_write(struct d40_chan *d40c)
1350 u32 addr_base;
1351 u32 var;
1353 /* Odd addresses are even addresses + 4 */
1354 addr_base = (d40c->phy_chan->num % 2) * 4;
1355 /* Setup channel mode to logical or physical */
1356 var = ((u32)(chan_is_logical(d40c)) + 1) <<
1357 D40_CHAN_POS(d40c->phy_chan->num);
1358 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1360 /* Setup operational mode option register */
1361 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1363 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1365 if (chan_is_logical(d40c)) {
1366 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1367 & D40_SREG_ELEM_LOG_LIDX_MASK;
1368 void __iomem *chanbase = chan_base(d40c);
1370 /* Set default config for CFG reg */
1371 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1372 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1374 /* Set LIDX for lcla */
1375 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1376 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1378 /* Clear LNK which will be used by d40_chan_has_events() */
1379 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1380 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1384 static u32 d40_residue(struct d40_chan *d40c)
1386 u32 num_elt;
1388 if (chan_is_logical(d40c))
1389 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1390 >> D40_MEM_LCSP2_ECNT_POS;
1391 else {
1392 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1393 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1394 >> D40_SREG_ELEM_PHY_ECNT_POS;
1397 return num_elt * d40c->dma_cfg.dst_info.data_width;
1400 static bool d40_tx_is_linked(struct d40_chan *d40c)
1402 bool is_link;
1404 if (chan_is_logical(d40c))
1405 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1406 else
1407 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1408 & D40_SREG_LNK_PHYS_LNK_MASK;
1410 return is_link;
1413 static int d40_pause(struct dma_chan *chan)
1415 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1416 int res = 0;
1417 unsigned long flags;
1419 if (d40c->phy_chan == NULL) {
1420 chan_err(d40c, "Channel is not allocated!\n");
1421 return -EINVAL;
1424 if (!d40c->busy)
1425 return 0;
1427 spin_lock_irqsave(&d40c->lock, flags);
1428 pm_runtime_get_sync(d40c->base->dev);
1430 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1432 pm_runtime_mark_last_busy(d40c->base->dev);
1433 pm_runtime_put_autosuspend(d40c->base->dev);
1434 spin_unlock_irqrestore(&d40c->lock, flags);
1435 return res;
1438 static int d40_resume(struct dma_chan *chan)
1440 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1441 int res = 0;
1442 unsigned long flags;
1444 if (d40c->phy_chan == NULL) {
1445 chan_err(d40c, "Channel is not allocated!\n");
1446 return -EINVAL;
1449 if (!d40c->busy)
1450 return 0;
1452 spin_lock_irqsave(&d40c->lock, flags);
1453 pm_runtime_get_sync(d40c->base->dev);
1455 /* If bytes left to transfer or linked tx resume job */
1456 if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1457 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1459 pm_runtime_mark_last_busy(d40c->base->dev);
1460 pm_runtime_put_autosuspend(d40c->base->dev);
1461 spin_unlock_irqrestore(&d40c->lock, flags);
1462 return res;
1465 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1467 struct d40_chan *d40c = container_of(tx->chan,
1468 struct d40_chan,
1469 chan);
1470 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1471 unsigned long flags;
1472 dma_cookie_t cookie;
1474 spin_lock_irqsave(&d40c->lock, flags);
1475 cookie = dma_cookie_assign(tx);
1476 d40_desc_queue(d40c, d40d);
1477 spin_unlock_irqrestore(&d40c->lock, flags);
1479 return cookie;
1482 static int d40_start(struct d40_chan *d40c)
1484 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1487 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1489 struct d40_desc *d40d;
1490 int err;
1492 /* Start queued jobs, if any */
1493 d40d = d40_first_queued(d40c);
1495 if (d40d != NULL) {
1496 if (!d40c->busy) {
1497 d40c->busy = true;
1498 pm_runtime_get_sync(d40c->base->dev);
1501 /* Remove from queue */
1502 d40_desc_remove(d40d);
1504 /* Add to active queue */
1505 d40_desc_submit(d40c, d40d);
1507 /* Initiate DMA job */
1508 d40_desc_load(d40c, d40d);
1510 /* Start dma job */
1511 err = d40_start(d40c);
1513 if (err)
1514 return NULL;
1517 return d40d;
1520 /* called from interrupt context */
1521 static void dma_tc_handle(struct d40_chan *d40c)
1523 struct d40_desc *d40d;
1525 /* Get first active entry from list */
1526 d40d = d40_first_active_get(d40c);
1528 if (d40d == NULL)
1529 return;
1531 if (d40d->cyclic) {
1533 * If this was a paritially loaded list, we need to reloaded
1534 * it, and only when the list is completed. We need to check
1535 * for done because the interrupt will hit for every link, and
1536 * not just the last one.
1538 if (d40d->lli_current < d40d->lli_len
1539 && !d40_tx_is_linked(d40c)
1540 && !d40_residue(d40c)) {
1541 d40_lcla_free_all(d40c, d40d);
1542 d40_desc_load(d40c, d40d);
1543 (void) d40_start(d40c);
1545 if (d40d->lli_current == d40d->lli_len)
1546 d40d->lli_current = 0;
1548 } else {
1549 d40_lcla_free_all(d40c, d40d);
1551 if (d40d->lli_current < d40d->lli_len) {
1552 d40_desc_load(d40c, d40d);
1553 /* Start dma job */
1554 (void) d40_start(d40c);
1555 return;
1558 if (d40_queue_start(d40c) == NULL) {
1559 d40c->busy = false;
1561 pm_runtime_mark_last_busy(d40c->base->dev);
1562 pm_runtime_put_autosuspend(d40c->base->dev);
1565 d40_desc_remove(d40d);
1566 d40_desc_done(d40c, d40d);
1569 d40c->pending_tx++;
1570 tasklet_schedule(&d40c->tasklet);
1574 static void dma_tasklet(struct tasklet_struct *t)
1576 struct d40_chan *d40c = from_tasklet(d40c, t, tasklet);
1577 struct d40_desc *d40d;
1578 unsigned long flags;
1579 bool callback_active;
1580 struct dmaengine_desc_callback cb;
1582 spin_lock_irqsave(&d40c->lock, flags);
1584 /* Get first entry from the done list */
1585 d40d = d40_first_done(d40c);
1586 if (d40d == NULL) {
1587 /* Check if we have reached here for cyclic job */
1588 d40d = d40_first_active_get(d40c);
1589 if (d40d == NULL || !d40d->cyclic)
1590 goto check_pending_tx;
1593 if (!d40d->cyclic)
1594 dma_cookie_complete(&d40d->txd);
1597 * If terminating a channel pending_tx is set to zero.
1598 * This prevents any finished active jobs to return to the client.
1600 if (d40c->pending_tx == 0) {
1601 spin_unlock_irqrestore(&d40c->lock, flags);
1602 return;
1605 /* Callback to client */
1606 callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1607 dmaengine_desc_get_callback(&d40d->txd, &cb);
1609 if (!d40d->cyclic) {
1610 if (async_tx_test_ack(&d40d->txd)) {
1611 d40_desc_remove(d40d);
1612 d40_desc_free(d40c, d40d);
1613 } else if (!d40d->is_in_client_list) {
1614 d40_desc_remove(d40d);
1615 d40_lcla_free_all(d40c, d40d);
1616 list_add_tail(&d40d->node, &d40c->client);
1617 d40d->is_in_client_list = true;
1621 d40c->pending_tx--;
1623 if (d40c->pending_tx)
1624 tasklet_schedule(&d40c->tasklet);
1626 spin_unlock_irqrestore(&d40c->lock, flags);
1628 if (callback_active)
1629 dmaengine_desc_callback_invoke(&cb, NULL);
1631 return;
1632 check_pending_tx:
1633 /* Rescue manouver if receiving double interrupts */
1634 if (d40c->pending_tx > 0)
1635 d40c->pending_tx--;
1636 spin_unlock_irqrestore(&d40c->lock, flags);
1639 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1641 int i;
1642 u32 idx;
1643 u32 row;
1644 long chan = -1;
1645 struct d40_chan *d40c;
1646 struct d40_base *base = data;
1647 u32 *regs = base->regs_interrupt;
1648 struct d40_interrupt_lookup *il = base->gen_dmac.il;
1649 u32 il_size = base->gen_dmac.il_size;
1651 spin_lock(&base->interrupt_lock);
1653 /* Read interrupt status of both logical and physical channels */
1654 for (i = 0; i < il_size; i++)
1655 regs[i] = readl(base->virtbase + il[i].src);
1657 for (;;) {
1659 chan = find_next_bit((unsigned long *)regs,
1660 BITS_PER_LONG * il_size, chan + 1);
1662 /* No more set bits found? */
1663 if (chan == BITS_PER_LONG * il_size)
1664 break;
1666 row = chan / BITS_PER_LONG;
1667 idx = chan & (BITS_PER_LONG - 1);
1669 if (il[row].offset == D40_PHY_CHAN)
1670 d40c = base->lookup_phy_chans[idx];
1671 else
1672 d40c = base->lookup_log_chans[il[row].offset + idx];
1674 if (!d40c) {
1676 * No error because this can happen if something else
1677 * in the system is using the channel.
1679 continue;
1682 /* ACK interrupt */
1683 writel(BIT(idx), base->virtbase + il[row].clr);
1685 spin_lock(&d40c->lock);
1687 if (!il[row].is_error)
1688 dma_tc_handle(d40c);
1689 else
1690 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1691 chan, il[row].offset, idx);
1693 spin_unlock(&d40c->lock);
1696 spin_unlock(&base->interrupt_lock);
1698 return IRQ_HANDLED;
1701 static int d40_validate_conf(struct d40_chan *d40c,
1702 struct stedma40_chan_cfg *conf)
1704 int res = 0;
1705 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1707 if (!conf->dir) {
1708 chan_err(d40c, "Invalid direction.\n");
1709 res = -EINVAL;
1712 if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
1713 (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1714 (conf->dev_type < 0)) {
1715 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1716 res = -EINVAL;
1719 if (conf->dir == DMA_DEV_TO_DEV) {
1721 * DMAC HW supports it. Will be added to this driver,
1722 * in case any dma client requires it.
1724 chan_err(d40c, "periph to periph not supported\n");
1725 res = -EINVAL;
1728 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1729 conf->src_info.data_width !=
1730 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1731 conf->dst_info.data_width) {
1733 * The DMAC hardware only supports
1734 * src (burst x width) == dst (burst x width)
1737 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1738 res = -EINVAL;
1741 return res;
1744 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1745 bool is_src, int log_event_line, bool is_log,
1746 bool *first_user)
1748 unsigned long flags;
1749 spin_lock_irqsave(&phy->lock, flags);
1751 *first_user = ((phy->allocated_src | phy->allocated_dst)
1752 == D40_ALLOC_FREE);
1754 if (!is_log) {
1755 /* Physical interrupts are masked per physical full channel */
1756 if (phy->allocated_src == D40_ALLOC_FREE &&
1757 phy->allocated_dst == D40_ALLOC_FREE) {
1758 phy->allocated_dst = D40_ALLOC_PHY;
1759 phy->allocated_src = D40_ALLOC_PHY;
1760 goto found_unlock;
1761 } else
1762 goto not_found_unlock;
1765 /* Logical channel */
1766 if (is_src) {
1767 if (phy->allocated_src == D40_ALLOC_PHY)
1768 goto not_found_unlock;
1770 if (phy->allocated_src == D40_ALLOC_FREE)
1771 phy->allocated_src = D40_ALLOC_LOG_FREE;
1773 if (!(phy->allocated_src & BIT(log_event_line))) {
1774 phy->allocated_src |= BIT(log_event_line);
1775 goto found_unlock;
1776 } else
1777 goto not_found_unlock;
1778 } else {
1779 if (phy->allocated_dst == D40_ALLOC_PHY)
1780 goto not_found_unlock;
1782 if (phy->allocated_dst == D40_ALLOC_FREE)
1783 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1785 if (!(phy->allocated_dst & BIT(log_event_line))) {
1786 phy->allocated_dst |= BIT(log_event_line);
1787 goto found_unlock;
1790 not_found_unlock:
1791 spin_unlock_irqrestore(&phy->lock, flags);
1792 return false;
1793 found_unlock:
1794 spin_unlock_irqrestore(&phy->lock, flags);
1795 return true;
1798 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1799 int log_event_line)
1801 unsigned long flags;
1802 bool is_free = false;
1804 spin_lock_irqsave(&phy->lock, flags);
1805 if (!log_event_line) {
1806 phy->allocated_dst = D40_ALLOC_FREE;
1807 phy->allocated_src = D40_ALLOC_FREE;
1808 is_free = true;
1809 goto unlock;
1812 /* Logical channel */
1813 if (is_src) {
1814 phy->allocated_src &= ~BIT(log_event_line);
1815 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1816 phy->allocated_src = D40_ALLOC_FREE;
1817 } else {
1818 phy->allocated_dst &= ~BIT(log_event_line);
1819 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1820 phy->allocated_dst = D40_ALLOC_FREE;
1823 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1824 D40_ALLOC_FREE);
1825 unlock:
1826 spin_unlock_irqrestore(&phy->lock, flags);
1828 return is_free;
1831 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1833 int dev_type = d40c->dma_cfg.dev_type;
1834 int event_group;
1835 int event_line;
1836 struct d40_phy_res *phys;
1837 int i;
1838 int j;
1839 int log_num;
1840 int num_phy_chans;
1841 bool is_src;
1842 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1844 phys = d40c->base->phy_res;
1845 num_phy_chans = d40c->base->num_phy_chans;
1847 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1848 log_num = 2 * dev_type;
1849 is_src = true;
1850 } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1851 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1852 /* dst event lines are used for logical memcpy */
1853 log_num = 2 * dev_type + 1;
1854 is_src = false;
1855 } else
1856 return -EINVAL;
1858 event_group = D40_TYPE_TO_GROUP(dev_type);
1859 event_line = D40_TYPE_TO_EVENT(dev_type);
1861 if (!is_log) {
1862 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1863 /* Find physical half channel */
1864 if (d40c->dma_cfg.use_fixed_channel) {
1865 i = d40c->dma_cfg.phy_channel;
1866 if (d40_alloc_mask_set(&phys[i], is_src,
1867 0, is_log,
1868 first_phy_user))
1869 goto found_phy;
1870 } else {
1871 for (i = 0; i < num_phy_chans; i++) {
1872 if (d40_alloc_mask_set(&phys[i], is_src,
1873 0, is_log,
1874 first_phy_user))
1875 goto found_phy;
1878 } else
1879 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1880 int phy_num = j + event_group * 2;
1881 for (i = phy_num; i < phy_num + 2; i++) {
1882 if (d40_alloc_mask_set(&phys[i],
1883 is_src,
1885 is_log,
1886 first_phy_user))
1887 goto found_phy;
1890 return -EINVAL;
1891 found_phy:
1892 d40c->phy_chan = &phys[i];
1893 d40c->log_num = D40_PHY_CHAN;
1894 goto out;
1896 if (dev_type == -1)
1897 return -EINVAL;
1899 /* Find logical channel */
1900 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1901 int phy_num = j + event_group * 2;
1903 if (d40c->dma_cfg.use_fixed_channel) {
1904 i = d40c->dma_cfg.phy_channel;
1906 if ((i != phy_num) && (i != phy_num + 1)) {
1907 dev_err(chan2dev(d40c),
1908 "invalid fixed phy channel %d\n", i);
1909 return -EINVAL;
1912 if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1913 is_log, first_phy_user))
1914 goto found_log;
1916 dev_err(chan2dev(d40c),
1917 "could not allocate fixed phy channel %d\n", i);
1918 return -EINVAL;
1922 * Spread logical channels across all available physical rather
1923 * than pack every logical channel at the first available phy
1924 * channels.
1926 if (is_src) {
1927 for (i = phy_num; i < phy_num + 2; i++) {
1928 if (d40_alloc_mask_set(&phys[i], is_src,
1929 event_line, is_log,
1930 first_phy_user))
1931 goto found_log;
1933 } else {
1934 for (i = phy_num + 1; i >= phy_num; i--) {
1935 if (d40_alloc_mask_set(&phys[i], is_src,
1936 event_line, is_log,
1937 first_phy_user))
1938 goto found_log;
1942 return -EINVAL;
1944 found_log:
1945 d40c->phy_chan = &phys[i];
1946 d40c->log_num = log_num;
1947 out:
1949 if (is_log)
1950 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1951 else
1952 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1954 return 0;
1958 static int d40_config_memcpy(struct d40_chan *d40c)
1960 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1962 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1963 d40c->dma_cfg = dma40_memcpy_conf_log;
1964 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1966 d40_log_cfg(&d40c->dma_cfg,
1967 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1969 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1970 dma_has_cap(DMA_SLAVE, cap)) {
1971 d40c->dma_cfg = dma40_memcpy_conf_phy;
1973 /* Generate interrrupt at end of transfer or relink. */
1974 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1976 /* Generate interrupt on error. */
1977 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1978 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1980 } else {
1981 chan_err(d40c, "No memcpy\n");
1982 return -EINVAL;
1985 return 0;
1988 static int d40_free_dma(struct d40_chan *d40c)
1991 int res = 0;
1992 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1993 struct d40_phy_res *phy = d40c->phy_chan;
1994 bool is_src;
1996 /* Terminate all queued and active transfers */
1997 d40_term_all(d40c);
1999 if (phy == NULL) {
2000 chan_err(d40c, "phy == null\n");
2001 return -EINVAL;
2004 if (phy->allocated_src == D40_ALLOC_FREE &&
2005 phy->allocated_dst == D40_ALLOC_FREE) {
2006 chan_err(d40c, "channel already free\n");
2007 return -EINVAL;
2010 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2011 d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2012 is_src = false;
2013 else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2014 is_src = true;
2015 else {
2016 chan_err(d40c, "Unknown direction\n");
2017 return -EINVAL;
2020 pm_runtime_get_sync(d40c->base->dev);
2021 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2022 if (res) {
2023 chan_err(d40c, "stop failed\n");
2024 goto mark_last_busy;
2027 d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2029 if (chan_is_logical(d40c))
2030 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2031 else
2032 d40c->base->lookup_phy_chans[phy->num] = NULL;
2034 if (d40c->busy) {
2035 pm_runtime_mark_last_busy(d40c->base->dev);
2036 pm_runtime_put_autosuspend(d40c->base->dev);
2039 d40c->busy = false;
2040 d40c->phy_chan = NULL;
2041 d40c->configured = false;
2042 mark_last_busy:
2043 pm_runtime_mark_last_busy(d40c->base->dev);
2044 pm_runtime_put_autosuspend(d40c->base->dev);
2045 return res;
2048 static bool d40_is_paused(struct d40_chan *d40c)
2050 void __iomem *chanbase = chan_base(d40c);
2051 bool is_paused = false;
2052 unsigned long flags;
2053 void __iomem *active_reg;
2054 u32 status;
2055 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2057 spin_lock_irqsave(&d40c->lock, flags);
2059 if (chan_is_physical(d40c)) {
2060 if (d40c->phy_chan->num % 2 == 0)
2061 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2062 else
2063 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2065 status = (readl(active_reg) &
2066 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2067 D40_CHAN_POS(d40c->phy_chan->num);
2068 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2069 is_paused = true;
2070 goto unlock;
2073 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2074 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2075 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2076 } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2077 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2078 } else {
2079 chan_err(d40c, "Unknown direction\n");
2080 goto unlock;
2083 status = (status & D40_EVENTLINE_MASK(event)) >>
2084 D40_EVENTLINE_POS(event);
2086 if (status != D40_DMA_RUN)
2087 is_paused = true;
2088 unlock:
2089 spin_unlock_irqrestore(&d40c->lock, flags);
2090 return is_paused;
2094 static u32 stedma40_residue(struct dma_chan *chan)
2096 struct d40_chan *d40c =
2097 container_of(chan, struct d40_chan, chan);
2098 u32 bytes_left;
2099 unsigned long flags;
2101 spin_lock_irqsave(&d40c->lock, flags);
2102 bytes_left = d40_residue(d40c);
2103 spin_unlock_irqrestore(&d40c->lock, flags);
2105 return bytes_left;
2108 static int
2109 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2110 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2111 unsigned int sg_len, dma_addr_t src_dev_addr,
2112 dma_addr_t dst_dev_addr)
2114 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2115 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2116 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2117 int ret;
2119 ret = d40_log_sg_to_lli(sg_src, sg_len,
2120 src_dev_addr,
2121 desc->lli_log.src,
2122 chan->log_def.lcsp1,
2123 src_info->data_width,
2124 dst_info->data_width);
2126 ret = d40_log_sg_to_lli(sg_dst, sg_len,
2127 dst_dev_addr,
2128 desc->lli_log.dst,
2129 chan->log_def.lcsp3,
2130 dst_info->data_width,
2131 src_info->data_width);
2133 return ret < 0 ? ret : 0;
2136 static int
2137 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2138 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2139 unsigned int sg_len, dma_addr_t src_dev_addr,
2140 dma_addr_t dst_dev_addr)
2142 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2143 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2144 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2145 unsigned long flags = 0;
2146 int ret;
2148 if (desc->cyclic)
2149 flags |= LLI_CYCLIC | LLI_TERM_INT;
2151 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2152 desc->lli_phy.src,
2153 virt_to_phys(desc->lli_phy.src),
2154 chan->src_def_cfg,
2155 src_info, dst_info, flags);
2157 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2158 desc->lli_phy.dst,
2159 virt_to_phys(desc->lli_phy.dst),
2160 chan->dst_def_cfg,
2161 dst_info, src_info, flags);
2163 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2164 desc->lli_pool.size, DMA_TO_DEVICE);
2166 return ret < 0 ? ret : 0;
2169 static struct d40_desc *
2170 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2171 unsigned int sg_len, unsigned long dma_flags)
2173 struct stedma40_chan_cfg *cfg;
2174 struct d40_desc *desc;
2175 int ret;
2177 desc = d40_desc_get(chan);
2178 if (!desc)
2179 return NULL;
2181 cfg = &chan->dma_cfg;
2182 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2183 cfg->dst_info.data_width);
2184 if (desc->lli_len < 0) {
2185 chan_err(chan, "Unaligned size\n");
2186 goto free_desc;
2189 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2190 if (ret < 0) {
2191 chan_err(chan, "Could not allocate lli\n");
2192 goto free_desc;
2195 desc->lli_current = 0;
2196 desc->txd.flags = dma_flags;
2197 desc->txd.tx_submit = d40_tx_submit;
2199 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2201 return desc;
2202 free_desc:
2203 d40_desc_free(chan, desc);
2204 return NULL;
2207 static struct dma_async_tx_descriptor *
2208 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2209 struct scatterlist *sg_dst, unsigned int sg_len,
2210 enum dma_transfer_direction direction, unsigned long dma_flags)
2212 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2213 dma_addr_t src_dev_addr;
2214 dma_addr_t dst_dev_addr;
2215 struct d40_desc *desc;
2216 unsigned long flags;
2217 int ret;
2219 if (!chan->phy_chan) {
2220 chan_err(chan, "Cannot prepare unallocated channel\n");
2221 return NULL;
2224 d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2226 spin_lock_irqsave(&chan->lock, flags);
2228 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2229 if (desc == NULL)
2230 goto unlock;
2232 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2233 desc->cyclic = true;
2235 src_dev_addr = 0;
2236 dst_dev_addr = 0;
2237 if (direction == DMA_DEV_TO_MEM)
2238 src_dev_addr = chan->runtime_addr;
2239 else if (direction == DMA_MEM_TO_DEV)
2240 dst_dev_addr = chan->runtime_addr;
2242 if (chan_is_logical(chan))
2243 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2244 sg_len, src_dev_addr, dst_dev_addr);
2245 else
2246 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2247 sg_len, src_dev_addr, dst_dev_addr);
2249 if (ret) {
2250 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2251 chan_is_logical(chan) ? "log" : "phy", ret);
2252 goto free_desc;
2256 * add descriptor to the prepare queue in order to be able
2257 * to free them later in terminate_all
2259 list_add_tail(&desc->node, &chan->prepare_queue);
2261 spin_unlock_irqrestore(&chan->lock, flags);
2263 return &desc->txd;
2264 free_desc:
2265 d40_desc_free(chan, desc);
2266 unlock:
2267 spin_unlock_irqrestore(&chan->lock, flags);
2268 return NULL;
2271 bool stedma40_filter(struct dma_chan *chan, void *data)
2273 struct stedma40_chan_cfg *info = data;
2274 struct d40_chan *d40c =
2275 container_of(chan, struct d40_chan, chan);
2276 int err;
2278 if (data) {
2279 err = d40_validate_conf(d40c, info);
2280 if (!err)
2281 d40c->dma_cfg = *info;
2282 } else
2283 err = d40_config_memcpy(d40c);
2285 if (!err)
2286 d40c->configured = true;
2288 return err == 0;
2290 EXPORT_SYMBOL(stedma40_filter);
2292 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2294 bool realtime = d40c->dma_cfg.realtime;
2295 bool highprio = d40c->dma_cfg.high_priority;
2296 u32 rtreg;
2297 u32 event = D40_TYPE_TO_EVENT(dev_type);
2298 u32 group = D40_TYPE_TO_GROUP(dev_type);
2299 u32 bit = BIT(event);
2300 u32 prioreg;
2301 struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2303 rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2305 * Due to a hardware bug, in some cases a logical channel triggered by
2306 * a high priority destination event line can generate extra packet
2307 * transactions.
2309 * The workaround is to not set the high priority level for the
2310 * destination event lines that trigger logical channels.
2312 if (!src && chan_is_logical(d40c))
2313 highprio = false;
2315 prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2317 /* Destination event lines are stored in the upper halfword */
2318 if (!src)
2319 bit <<= 16;
2321 writel(bit, d40c->base->virtbase + prioreg + group * 4);
2322 writel(bit, d40c->base->virtbase + rtreg + group * 4);
2325 static void d40_set_prio_realtime(struct d40_chan *d40c)
2327 if (d40c->base->rev < 3)
2328 return;
2330 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
2331 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2332 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2334 if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) ||
2335 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2336 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2339 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2340 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2341 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2342 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2343 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2345 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2346 struct of_dma *ofdma)
2348 struct stedma40_chan_cfg cfg;
2349 dma_cap_mask_t cap;
2350 u32 flags;
2352 memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2354 dma_cap_zero(cap);
2355 dma_cap_set(DMA_SLAVE, cap);
2357 cfg.dev_type = dma_spec->args[0];
2358 flags = dma_spec->args[2];
2360 switch (D40_DT_FLAGS_MODE(flags)) {
2361 case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2362 case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2365 switch (D40_DT_FLAGS_DIR(flags)) {
2366 case 0:
2367 cfg.dir = DMA_MEM_TO_DEV;
2368 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2369 break;
2370 case 1:
2371 cfg.dir = DMA_DEV_TO_MEM;
2372 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2373 break;
2376 if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2377 cfg.phy_channel = dma_spec->args[1];
2378 cfg.use_fixed_channel = true;
2381 if (D40_DT_FLAGS_HIGH_PRIO(flags))
2382 cfg.high_priority = true;
2384 return dma_request_channel(cap, stedma40_filter, &cfg);
2387 /* DMA ENGINE functions */
2388 static int d40_alloc_chan_resources(struct dma_chan *chan)
2390 int err;
2391 unsigned long flags;
2392 struct d40_chan *d40c =
2393 container_of(chan, struct d40_chan, chan);
2394 bool is_free_phy;
2395 spin_lock_irqsave(&d40c->lock, flags);
2397 dma_cookie_init(chan);
2399 /* If no dma configuration is set use default configuration (memcpy) */
2400 if (!d40c->configured) {
2401 err = d40_config_memcpy(d40c);
2402 if (err) {
2403 chan_err(d40c, "Failed to configure memcpy channel\n");
2404 goto mark_last_busy;
2408 err = d40_allocate_channel(d40c, &is_free_phy);
2409 if (err) {
2410 chan_err(d40c, "Failed to allocate channel\n");
2411 d40c->configured = false;
2412 goto mark_last_busy;
2415 pm_runtime_get_sync(d40c->base->dev);
2417 d40_set_prio_realtime(d40c);
2419 if (chan_is_logical(d40c)) {
2420 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2421 d40c->lcpa = d40c->base->lcpa_base +
2422 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2423 else
2424 d40c->lcpa = d40c->base->lcpa_base +
2425 d40c->dma_cfg.dev_type *
2426 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2428 /* Unmask the Global Interrupt Mask. */
2429 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2430 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2433 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2434 chan_is_logical(d40c) ? "logical" : "physical",
2435 d40c->phy_chan->num,
2436 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2440 * Only write channel configuration to the DMA if the physical
2441 * resource is free. In case of multiple logical channels
2442 * on the same physical resource, only the first write is necessary.
2444 if (is_free_phy)
2445 d40_config_write(d40c);
2446 mark_last_busy:
2447 pm_runtime_mark_last_busy(d40c->base->dev);
2448 pm_runtime_put_autosuspend(d40c->base->dev);
2449 spin_unlock_irqrestore(&d40c->lock, flags);
2450 return err;
2453 static void d40_free_chan_resources(struct dma_chan *chan)
2455 struct d40_chan *d40c =
2456 container_of(chan, struct d40_chan, chan);
2457 int err;
2458 unsigned long flags;
2460 if (d40c->phy_chan == NULL) {
2461 chan_err(d40c, "Cannot free unallocated channel\n");
2462 return;
2465 spin_lock_irqsave(&d40c->lock, flags);
2467 err = d40_free_dma(d40c);
2469 if (err)
2470 chan_err(d40c, "Failed to free channel\n");
2471 spin_unlock_irqrestore(&d40c->lock, flags);
2474 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2475 dma_addr_t dst,
2476 dma_addr_t src,
2477 size_t size,
2478 unsigned long dma_flags)
2480 struct scatterlist dst_sg;
2481 struct scatterlist src_sg;
2483 sg_init_table(&dst_sg, 1);
2484 sg_init_table(&src_sg, 1);
2486 sg_dma_address(&dst_sg) = dst;
2487 sg_dma_address(&src_sg) = src;
2489 sg_dma_len(&dst_sg) = size;
2490 sg_dma_len(&src_sg) = size;
2492 return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2493 DMA_MEM_TO_MEM, dma_flags);
2496 static struct dma_async_tx_descriptor *
2497 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2498 unsigned int sg_len, enum dma_transfer_direction direction,
2499 unsigned long dma_flags, void *context)
2501 if (!is_slave_direction(direction))
2502 return NULL;
2504 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2507 static struct dma_async_tx_descriptor *
2508 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2509 size_t buf_len, size_t period_len,
2510 enum dma_transfer_direction direction, unsigned long flags)
2512 unsigned int periods = buf_len / period_len;
2513 struct dma_async_tx_descriptor *txd;
2514 struct scatterlist *sg;
2515 int i;
2517 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2518 if (!sg)
2519 return NULL;
2521 for (i = 0; i < periods; i++) {
2522 sg_dma_address(&sg[i]) = dma_addr;
2523 sg_dma_len(&sg[i]) = period_len;
2524 dma_addr += period_len;
2527 sg_chain(sg, periods + 1, sg);
2529 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2530 DMA_PREP_INTERRUPT);
2532 kfree(sg);
2534 return txd;
2537 static enum dma_status d40_tx_status(struct dma_chan *chan,
2538 dma_cookie_t cookie,
2539 struct dma_tx_state *txstate)
2541 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2542 enum dma_status ret;
2544 if (d40c->phy_chan == NULL) {
2545 chan_err(d40c, "Cannot read status of unallocated channel\n");
2546 return -EINVAL;
2549 ret = dma_cookie_status(chan, cookie, txstate);
2550 if (ret != DMA_COMPLETE && txstate)
2551 dma_set_residue(txstate, stedma40_residue(chan));
2553 if (d40_is_paused(d40c))
2554 ret = DMA_PAUSED;
2556 return ret;
2559 static void d40_issue_pending(struct dma_chan *chan)
2561 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2562 unsigned long flags;
2564 if (d40c->phy_chan == NULL) {
2565 chan_err(d40c, "Channel is not allocated!\n");
2566 return;
2569 spin_lock_irqsave(&d40c->lock, flags);
2571 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2573 /* Busy means that queued jobs are already being processed */
2574 if (!d40c->busy)
2575 (void) d40_queue_start(d40c);
2577 spin_unlock_irqrestore(&d40c->lock, flags);
2580 static int d40_terminate_all(struct dma_chan *chan)
2582 unsigned long flags;
2583 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2584 int ret;
2586 if (d40c->phy_chan == NULL) {
2587 chan_err(d40c, "Channel is not allocated!\n");
2588 return -EINVAL;
2591 spin_lock_irqsave(&d40c->lock, flags);
2593 pm_runtime_get_sync(d40c->base->dev);
2594 ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2595 if (ret)
2596 chan_err(d40c, "Failed to stop channel\n");
2598 d40_term_all(d40c);
2599 pm_runtime_mark_last_busy(d40c->base->dev);
2600 pm_runtime_put_autosuspend(d40c->base->dev);
2601 if (d40c->busy) {
2602 pm_runtime_mark_last_busy(d40c->base->dev);
2603 pm_runtime_put_autosuspend(d40c->base->dev);
2605 d40c->busy = false;
2607 spin_unlock_irqrestore(&d40c->lock, flags);
2608 return 0;
2611 static int
2612 dma40_config_to_halfchannel(struct d40_chan *d40c,
2613 struct stedma40_half_channel_info *info,
2614 u32 maxburst)
2616 int psize;
2618 if (chan_is_logical(d40c)) {
2619 if (maxburst >= 16)
2620 psize = STEDMA40_PSIZE_LOG_16;
2621 else if (maxburst >= 8)
2622 psize = STEDMA40_PSIZE_LOG_8;
2623 else if (maxburst >= 4)
2624 psize = STEDMA40_PSIZE_LOG_4;
2625 else
2626 psize = STEDMA40_PSIZE_LOG_1;
2627 } else {
2628 if (maxburst >= 16)
2629 psize = STEDMA40_PSIZE_PHY_16;
2630 else if (maxburst >= 8)
2631 psize = STEDMA40_PSIZE_PHY_8;
2632 else if (maxburst >= 4)
2633 psize = STEDMA40_PSIZE_PHY_4;
2634 else
2635 psize = STEDMA40_PSIZE_PHY_1;
2638 info->psize = psize;
2639 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2641 return 0;
2644 static int d40_set_runtime_config(struct dma_chan *chan,
2645 struct dma_slave_config *config)
2647 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2649 memcpy(&d40c->slave_config, config, sizeof(*config));
2651 return 0;
2654 /* Runtime reconfiguration extension */
2655 static int d40_set_runtime_config_write(struct dma_chan *chan,
2656 struct dma_slave_config *config,
2657 enum dma_transfer_direction direction)
2659 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2660 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2661 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2662 dma_addr_t config_addr;
2663 u32 src_maxburst, dst_maxburst;
2664 int ret;
2666 if (d40c->phy_chan == NULL) {
2667 chan_err(d40c, "Channel is not allocated!\n");
2668 return -EINVAL;
2671 src_addr_width = config->src_addr_width;
2672 src_maxburst = config->src_maxburst;
2673 dst_addr_width = config->dst_addr_width;
2674 dst_maxburst = config->dst_maxburst;
2676 if (direction == DMA_DEV_TO_MEM) {
2677 config_addr = config->src_addr;
2679 if (cfg->dir != DMA_DEV_TO_MEM)
2680 dev_dbg(d40c->base->dev,
2681 "channel was not configured for peripheral "
2682 "to memory transfer (%d) overriding\n",
2683 cfg->dir);
2684 cfg->dir = DMA_DEV_TO_MEM;
2686 /* Configure the memory side */
2687 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2688 dst_addr_width = src_addr_width;
2689 if (dst_maxburst == 0)
2690 dst_maxburst = src_maxburst;
2692 } else if (direction == DMA_MEM_TO_DEV) {
2693 config_addr = config->dst_addr;
2695 if (cfg->dir != DMA_MEM_TO_DEV)
2696 dev_dbg(d40c->base->dev,
2697 "channel was not configured for memory "
2698 "to peripheral transfer (%d) overriding\n",
2699 cfg->dir);
2700 cfg->dir = DMA_MEM_TO_DEV;
2702 /* Configure the memory side */
2703 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2704 src_addr_width = dst_addr_width;
2705 if (src_maxburst == 0)
2706 src_maxburst = dst_maxburst;
2707 } else {
2708 dev_err(d40c->base->dev,
2709 "unrecognized channel direction %d\n",
2710 direction);
2711 return -EINVAL;
2714 if (config_addr <= 0) {
2715 dev_err(d40c->base->dev, "no address supplied\n");
2716 return -EINVAL;
2719 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2720 dev_err(d40c->base->dev,
2721 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2722 src_maxburst,
2723 src_addr_width,
2724 dst_maxburst,
2725 dst_addr_width);
2726 return -EINVAL;
2729 if (src_maxburst > 16) {
2730 src_maxburst = 16;
2731 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2732 } else if (dst_maxburst > 16) {
2733 dst_maxburst = 16;
2734 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2737 /* Only valid widths are; 1, 2, 4 and 8. */
2738 if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2739 src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2740 dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2741 dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2742 !is_power_of_2(src_addr_width) ||
2743 !is_power_of_2(dst_addr_width))
2744 return -EINVAL;
2746 cfg->src_info.data_width = src_addr_width;
2747 cfg->dst_info.data_width = dst_addr_width;
2749 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2750 src_maxburst);
2751 if (ret)
2752 return ret;
2754 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2755 dst_maxburst);
2756 if (ret)
2757 return ret;
2759 /* Fill in register values */
2760 if (chan_is_logical(d40c))
2761 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2762 else
2763 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2765 /* These settings will take precedence later */
2766 d40c->runtime_addr = config_addr;
2767 d40c->runtime_direction = direction;
2768 dev_dbg(d40c->base->dev,
2769 "configured channel %s for %s, data width %d/%d, "
2770 "maxburst %d/%d elements, LE, no flow control\n",
2771 dma_chan_name(chan),
2772 (direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2773 src_addr_width, dst_addr_width,
2774 src_maxburst, dst_maxburst);
2776 return 0;
2779 /* Initialization functions */
2781 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2782 struct d40_chan *chans, int offset,
2783 int num_chans)
2785 int i = 0;
2786 struct d40_chan *d40c;
2788 INIT_LIST_HEAD(&dma->channels);
2790 for (i = offset; i < offset + num_chans; i++) {
2791 d40c = &chans[i];
2792 d40c->base = base;
2793 d40c->chan.device = dma;
2795 spin_lock_init(&d40c->lock);
2797 d40c->log_num = D40_PHY_CHAN;
2799 INIT_LIST_HEAD(&d40c->done);
2800 INIT_LIST_HEAD(&d40c->active);
2801 INIT_LIST_HEAD(&d40c->queue);
2802 INIT_LIST_HEAD(&d40c->pending_queue);
2803 INIT_LIST_HEAD(&d40c->client);
2804 INIT_LIST_HEAD(&d40c->prepare_queue);
2806 tasklet_setup(&d40c->tasklet, dma_tasklet);
2808 list_add_tail(&d40c->chan.device_node,
2809 &dma->channels);
2813 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2815 if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2816 dev->device_prep_slave_sg = d40_prep_slave_sg;
2817 dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2820 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2821 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2822 dev->directions = BIT(DMA_MEM_TO_MEM);
2824 * This controller can only access address at even
2825 * 32bit boundaries, i.e. 2^2
2827 dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2830 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2831 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2833 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2834 dev->device_free_chan_resources = d40_free_chan_resources;
2835 dev->device_issue_pending = d40_issue_pending;
2836 dev->device_tx_status = d40_tx_status;
2837 dev->device_config = d40_set_runtime_config;
2838 dev->device_pause = d40_pause;
2839 dev->device_resume = d40_resume;
2840 dev->device_terminate_all = d40_terminate_all;
2841 dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2842 dev->dev = base->dev;
2845 static int __init d40_dmaengine_init(struct d40_base *base,
2846 int num_reserved_chans)
2848 int err ;
2850 d40_chan_init(base, &base->dma_slave, base->log_chans,
2851 0, base->num_log_chans);
2853 dma_cap_zero(base->dma_slave.cap_mask);
2854 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2855 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2857 d40_ops_init(base, &base->dma_slave);
2859 err = dmaenginem_async_device_register(&base->dma_slave);
2861 if (err) {
2862 d40_err(base->dev, "Failed to register slave channels\n");
2863 goto exit;
2866 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2867 base->num_log_chans, base->num_memcpy_chans);
2869 dma_cap_zero(base->dma_memcpy.cap_mask);
2870 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2872 d40_ops_init(base, &base->dma_memcpy);
2874 err = dmaenginem_async_device_register(&base->dma_memcpy);
2876 if (err) {
2877 d40_err(base->dev,
2878 "Failed to register memcpy only channels\n");
2879 goto exit;
2882 d40_chan_init(base, &base->dma_both, base->phy_chans,
2883 0, num_reserved_chans);
2885 dma_cap_zero(base->dma_both.cap_mask);
2886 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2887 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2888 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2890 d40_ops_init(base, &base->dma_both);
2891 err = dmaenginem_async_device_register(&base->dma_both);
2893 if (err) {
2894 d40_err(base->dev,
2895 "Failed to register logical and physical capable channels\n");
2896 goto exit;
2898 return 0;
2899 exit:
2900 return err;
2903 /* Suspend resume functionality */
2904 #ifdef CONFIG_PM_SLEEP
2905 static int dma40_suspend(struct device *dev)
2907 struct d40_base *base = dev_get_drvdata(dev);
2908 int ret;
2910 ret = pm_runtime_force_suspend(dev);
2911 if (ret)
2912 return ret;
2914 if (base->lcpa_regulator)
2915 ret = regulator_disable(base->lcpa_regulator);
2916 return ret;
2919 static int dma40_resume(struct device *dev)
2921 struct d40_base *base = dev_get_drvdata(dev);
2922 int ret = 0;
2924 if (base->lcpa_regulator) {
2925 ret = regulator_enable(base->lcpa_regulator);
2926 if (ret)
2927 return ret;
2930 return pm_runtime_force_resume(dev);
2932 #endif
2934 #ifdef CONFIG_PM
2935 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2936 u32 *regaddr, int num, bool save)
2938 int i;
2940 for (i = 0; i < num; i++) {
2941 void __iomem *addr = baseaddr + regaddr[i];
2943 if (save)
2944 backup[i] = readl_relaxed(addr);
2945 else
2946 writel_relaxed(backup[i], addr);
2950 static void d40_save_restore_registers(struct d40_base *base, bool save)
2952 int i;
2954 /* Save/Restore channel specific registers */
2955 for (i = 0; i < base->num_phy_chans; i++) {
2956 void __iomem *addr;
2957 int idx;
2959 if (base->phy_res[i].reserved)
2960 continue;
2962 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2963 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2965 dma40_backup(addr, &base->reg_val_backup_chan[idx],
2966 d40_backup_regs_chan,
2967 ARRAY_SIZE(d40_backup_regs_chan),
2968 save);
2971 /* Save/Restore global registers */
2972 dma40_backup(base->virtbase, base->reg_val_backup,
2973 d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2974 save);
2976 /* Save/Restore registers only existing on dma40 v3 and later */
2977 if (base->gen_dmac.backup)
2978 dma40_backup(base->virtbase, base->reg_val_backup_v4,
2979 base->gen_dmac.backup,
2980 base->gen_dmac.backup_size,
2981 save);
2984 static int dma40_runtime_suspend(struct device *dev)
2986 struct d40_base *base = dev_get_drvdata(dev);
2988 d40_save_restore_registers(base, true);
2990 /* Don't disable/enable clocks for v1 due to HW bugs */
2991 if (base->rev != 1)
2992 writel_relaxed(base->gcc_pwr_off_mask,
2993 base->virtbase + D40_DREG_GCC);
2995 return 0;
2998 static int dma40_runtime_resume(struct device *dev)
3000 struct d40_base *base = dev_get_drvdata(dev);
3002 d40_save_restore_registers(base, false);
3004 writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3005 base->virtbase + D40_DREG_GCC);
3006 return 0;
3008 #endif
3010 static const struct dev_pm_ops dma40_pm_ops = {
3011 SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3012 SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3013 dma40_runtime_resume,
3014 NULL)
3017 /* Initialization functions. */
3019 static int __init d40_phy_res_init(struct d40_base *base)
3021 int i;
3022 int num_phy_chans_avail = 0;
3023 u32 val[2];
3024 int odd_even_bit = -2;
3025 int gcc = D40_DREG_GCC_ENA;
3027 val[0] = readl(base->virtbase + D40_DREG_PRSME);
3028 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3030 for (i = 0; i < base->num_phy_chans; i++) {
3031 base->phy_res[i].num = i;
3032 odd_even_bit += 2 * ((i % 2) == 0);
3033 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3034 /* Mark security only channels as occupied */
3035 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3036 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3037 base->phy_res[i].reserved = true;
3038 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3039 D40_DREG_GCC_SRC);
3040 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3041 D40_DREG_GCC_DST);
3044 } else {
3045 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3046 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3047 base->phy_res[i].reserved = false;
3048 num_phy_chans_avail++;
3050 spin_lock_init(&base->phy_res[i].lock);
3053 /* Mark disabled channels as occupied */
3054 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3055 int chan = base->plat_data->disabled_channels[i];
3057 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3058 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3059 base->phy_res[chan].reserved = true;
3060 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3061 D40_DREG_GCC_SRC);
3062 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3063 D40_DREG_GCC_DST);
3064 num_phy_chans_avail--;
3067 /* Mark soft_lli channels */
3068 for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3069 int chan = base->plat_data->soft_lli_chans[i];
3071 base->phy_res[chan].use_soft_lli = true;
3074 dev_info(base->dev, "%d of %d physical DMA channels available\n",
3075 num_phy_chans_avail, base->num_phy_chans);
3077 /* Verify settings extended vs standard */
3078 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3080 for (i = 0; i < base->num_phy_chans; i++) {
3082 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3083 (val[0] & 0x3) != 1)
3084 dev_info(base->dev,
3085 "[%s] INFO: channel %d is misconfigured (%d)\n",
3086 __func__, i, val[0] & 0x3);
3088 val[0] = val[0] >> 2;
3092 * To keep things simple, Enable all clocks initially.
3093 * The clocks will get managed later post channel allocation.
3094 * The clocks for the event lines on which reserved channels exists
3095 * are not managed here.
3097 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3098 base->gcc_pwr_off_mask = gcc;
3100 return num_phy_chans_avail;
3103 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3105 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3106 struct clk *clk;
3107 void __iomem *virtbase;
3108 struct resource *res;
3109 struct d40_base *base;
3110 int num_log_chans;
3111 int num_phy_chans;
3112 int num_memcpy_chans;
3113 int clk_ret = -EINVAL;
3114 int i;
3115 u32 pid;
3116 u32 cid;
3117 u8 rev;
3119 clk = clk_get(&pdev->dev, NULL);
3120 if (IS_ERR(clk)) {
3121 d40_err(&pdev->dev, "No matching clock found\n");
3122 goto check_prepare_enabled;
3125 clk_ret = clk_prepare_enable(clk);
3126 if (clk_ret) {
3127 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3128 goto disable_unprepare;
3131 /* Get IO for DMAC base address */
3132 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3133 if (!res)
3134 goto disable_unprepare;
3136 if (request_mem_region(res->start, resource_size(res),
3137 D40_NAME " I/O base") == NULL)
3138 goto release_region;
3140 virtbase = ioremap(res->start, resource_size(res));
3141 if (!virtbase)
3142 goto release_region;
3144 /* This is just a regular AMBA PrimeCell ID actually */
3145 for (pid = 0, i = 0; i < 4; i++)
3146 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3147 & 255) << (i * 8);
3148 for (cid = 0, i = 0; i < 4; i++)
3149 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3150 & 255) << (i * 8);
3152 if (cid != AMBA_CID) {
3153 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3154 goto unmap_io;
3156 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3157 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3158 AMBA_MANF_BITS(pid),
3159 AMBA_VENDOR_ST);
3160 goto unmap_io;
3163 * HW revision:
3164 * DB8500ed has revision 0
3165 * ? has revision 1
3166 * DB8500v1 has revision 2
3167 * DB8500v2 has revision 3
3168 * AP9540v1 has revision 4
3169 * DB8540v1 has revision 4
3171 rev = AMBA_REV_BITS(pid);
3172 if (rev < 2) {
3173 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3174 goto unmap_io;
3177 /* The number of physical channels on this HW */
3178 if (plat_data->num_of_phy_chans)
3179 num_phy_chans = plat_data->num_of_phy_chans;
3180 else
3181 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3183 /* The number of channels used for memcpy */
3184 if (plat_data->num_of_memcpy_chans)
3185 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3186 else
3187 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3189 num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3191 dev_info(&pdev->dev,
3192 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3193 rev, &res->start, num_phy_chans, num_log_chans);
3195 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3196 (num_phy_chans + num_log_chans + num_memcpy_chans) *
3197 sizeof(struct d40_chan), GFP_KERNEL);
3199 if (base == NULL)
3200 goto unmap_io;
3202 base->rev = rev;
3203 base->clk = clk;
3204 base->num_memcpy_chans = num_memcpy_chans;
3205 base->num_phy_chans = num_phy_chans;
3206 base->num_log_chans = num_log_chans;
3207 base->phy_start = res->start;
3208 base->phy_size = resource_size(res);
3209 base->virtbase = virtbase;
3210 base->plat_data = plat_data;
3211 base->dev = &pdev->dev;
3212 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3213 base->log_chans = &base->phy_chans[num_phy_chans];
3215 if (base->plat_data->num_of_phy_chans == 14) {
3216 base->gen_dmac.backup = d40_backup_regs_v4b;
3217 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3218 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3219 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3220 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3221 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3222 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3223 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3224 base->gen_dmac.il = il_v4b;
3225 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3226 base->gen_dmac.init_reg = dma_init_reg_v4b;
3227 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3228 } else {
3229 if (base->rev >= 3) {
3230 base->gen_dmac.backup = d40_backup_regs_v4a;
3231 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3233 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3234 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3235 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3236 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3237 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3238 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3239 base->gen_dmac.il = il_v4a;
3240 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3241 base->gen_dmac.init_reg = dma_init_reg_v4a;
3242 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3245 base->phy_res = kcalloc(num_phy_chans,
3246 sizeof(*base->phy_res),
3247 GFP_KERNEL);
3248 if (!base->phy_res)
3249 goto free_base;
3251 base->lookup_phy_chans = kcalloc(num_phy_chans,
3252 sizeof(*base->lookup_phy_chans),
3253 GFP_KERNEL);
3254 if (!base->lookup_phy_chans)
3255 goto free_phy_res;
3257 base->lookup_log_chans = kcalloc(num_log_chans,
3258 sizeof(*base->lookup_log_chans),
3259 GFP_KERNEL);
3260 if (!base->lookup_log_chans)
3261 goto free_phy_chans;
3263 base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3264 sizeof(d40_backup_regs_chan),
3265 GFP_KERNEL);
3266 if (!base->reg_val_backup_chan)
3267 goto free_log_chans;
3269 base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3270 * D40_LCLA_LINK_PER_EVENT_GRP,
3271 sizeof(*base->lcla_pool.alloc_map),
3272 GFP_KERNEL);
3273 if (!base->lcla_pool.alloc_map)
3274 goto free_backup_chan;
3276 base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
3277 sizeof(*base->regs_interrupt),
3278 GFP_KERNEL);
3279 if (!base->regs_interrupt)
3280 goto free_map;
3282 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3283 0, SLAB_HWCACHE_ALIGN,
3284 NULL);
3285 if (base->desc_slab == NULL)
3286 goto free_regs;
3289 return base;
3290 free_regs:
3291 kfree(base->regs_interrupt);
3292 free_map:
3293 kfree(base->lcla_pool.alloc_map);
3294 free_backup_chan:
3295 kfree(base->reg_val_backup_chan);
3296 free_log_chans:
3297 kfree(base->lookup_log_chans);
3298 free_phy_chans:
3299 kfree(base->lookup_phy_chans);
3300 free_phy_res:
3301 kfree(base->phy_res);
3302 free_base:
3303 kfree(base);
3304 unmap_io:
3305 iounmap(virtbase);
3306 release_region:
3307 release_mem_region(res->start, resource_size(res));
3308 check_prepare_enabled:
3309 if (!clk_ret)
3310 disable_unprepare:
3311 clk_disable_unprepare(clk);
3312 if (!IS_ERR(clk))
3313 clk_put(clk);
3314 return NULL;
3317 static void __init d40_hw_init(struct d40_base *base)
3320 int i;
3321 u32 prmseo[2] = {0, 0};
3322 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3323 u32 pcmis = 0;
3324 u32 pcicr = 0;
3325 struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3326 u32 reg_size = base->gen_dmac.init_reg_size;
3328 for (i = 0; i < reg_size; i++)
3329 writel(dma_init_reg[i].val,
3330 base->virtbase + dma_init_reg[i].reg);
3332 /* Configure all our dma channels to default settings */
3333 for (i = 0; i < base->num_phy_chans; i++) {
3335 activeo[i % 2] = activeo[i % 2] << 2;
3337 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3338 == D40_ALLOC_PHY) {
3339 activeo[i % 2] |= 3;
3340 continue;
3343 /* Enable interrupt # */
3344 pcmis = (pcmis << 1) | 1;
3346 /* Clear interrupt # */
3347 pcicr = (pcicr << 1) | 1;
3349 /* Set channel to physical mode */
3350 prmseo[i % 2] = prmseo[i % 2] << 2;
3351 prmseo[i % 2] |= 1;
3355 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3356 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3357 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3358 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3360 /* Write which interrupt to enable */
3361 writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3363 /* Write which interrupt to clear */
3364 writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3366 /* These are __initdata and cannot be accessed after init */
3367 base->gen_dmac.init_reg = NULL;
3368 base->gen_dmac.init_reg_size = 0;
3371 static int __init d40_lcla_allocate(struct d40_base *base)
3373 struct d40_lcla_pool *pool = &base->lcla_pool;
3374 unsigned long *page_list;
3375 int i, j;
3376 int ret;
3379 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3380 * To full fill this hardware requirement without wasting 256 kb
3381 * we allocate pages until we get an aligned one.
3383 page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3384 sizeof(*page_list),
3385 GFP_KERNEL);
3386 if (!page_list)
3387 return -ENOMEM;
3389 /* Calculating how many pages that are required */
3390 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3392 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3393 page_list[i] = __get_free_pages(GFP_KERNEL,
3394 base->lcla_pool.pages);
3395 if (!page_list[i]) {
3397 d40_err(base->dev, "Failed to allocate %d pages.\n",
3398 base->lcla_pool.pages);
3399 ret = -ENOMEM;
3401 for (j = 0; j < i; j++)
3402 free_pages(page_list[j], base->lcla_pool.pages);
3403 goto free_page_list;
3406 if ((virt_to_phys((void *)page_list[i]) &
3407 (LCLA_ALIGNMENT - 1)) == 0)
3408 break;
3411 for (j = 0; j < i; j++)
3412 free_pages(page_list[j], base->lcla_pool.pages);
3414 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3415 base->lcla_pool.base = (void *)page_list[i];
3416 } else {
3418 * After many attempts and no succees with finding the correct
3419 * alignment, try with allocating a big buffer.
3421 dev_warn(base->dev,
3422 "[%s] Failed to get %d pages @ 18 bit align.\n",
3423 __func__, base->lcla_pool.pages);
3424 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3425 base->num_phy_chans +
3426 LCLA_ALIGNMENT,
3427 GFP_KERNEL);
3428 if (!base->lcla_pool.base_unaligned) {
3429 ret = -ENOMEM;
3430 goto free_page_list;
3433 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3434 LCLA_ALIGNMENT);
3437 pool->dma_addr = dma_map_single(base->dev, pool->base,
3438 SZ_1K * base->num_phy_chans,
3439 DMA_TO_DEVICE);
3440 if (dma_mapping_error(base->dev, pool->dma_addr)) {
3441 pool->dma_addr = 0;
3442 ret = -ENOMEM;
3443 goto free_page_list;
3446 writel(virt_to_phys(base->lcla_pool.base),
3447 base->virtbase + D40_DREG_LCLA);
3448 ret = 0;
3449 free_page_list:
3450 kfree(page_list);
3451 return ret;
3454 static int __init d40_of_probe(struct platform_device *pdev,
3455 struct device_node *np)
3457 struct stedma40_platform_data *pdata;
3458 int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3459 const __be32 *list;
3461 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3462 if (!pdata)
3463 return -ENOMEM;
3465 /* If absent this value will be obtained from h/w. */
3466 of_property_read_u32(np, "dma-channels", &num_phy);
3467 if (num_phy > 0)
3468 pdata->num_of_phy_chans = num_phy;
3470 list = of_get_property(np, "memcpy-channels", &num_memcpy);
3471 num_memcpy /= sizeof(*list);
3473 if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3474 d40_err(&pdev->dev,
3475 "Invalid number of memcpy channels specified (%d)\n",
3476 num_memcpy);
3477 return -EINVAL;
3479 pdata->num_of_memcpy_chans = num_memcpy;
3481 of_property_read_u32_array(np, "memcpy-channels",
3482 dma40_memcpy_channels,
3483 num_memcpy);
3485 list = of_get_property(np, "disabled-channels", &num_disabled);
3486 num_disabled /= sizeof(*list);
3488 if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3489 d40_err(&pdev->dev,
3490 "Invalid number of disabled channels specified (%d)\n",
3491 num_disabled);
3492 return -EINVAL;
3495 of_property_read_u32_array(np, "disabled-channels",
3496 pdata->disabled_channels,
3497 num_disabled);
3498 pdata->disabled_channels[num_disabled] = -1;
3500 pdev->dev.platform_data = pdata;
3502 return 0;
3505 static int __init d40_probe(struct platform_device *pdev)
3507 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3508 struct device_node *np = pdev->dev.of_node;
3509 int ret = -ENOENT;
3510 struct d40_base *base;
3511 struct resource *res;
3512 int num_reserved_chans;
3513 u32 val;
3515 if (!plat_data) {
3516 if (np) {
3517 if (d40_of_probe(pdev, np)) {
3518 ret = -ENOMEM;
3519 goto report_failure;
3521 } else {
3522 d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3523 goto report_failure;
3527 base = d40_hw_detect_init(pdev);
3528 if (!base)
3529 goto report_failure;
3531 num_reserved_chans = d40_phy_res_init(base);
3533 platform_set_drvdata(pdev, base);
3535 spin_lock_init(&base->interrupt_lock);
3536 spin_lock_init(&base->execmd_lock);
3538 /* Get IO for logical channel parameter address */
3539 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3540 if (!res) {
3541 ret = -ENOENT;
3542 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3543 goto destroy_cache;
3545 base->lcpa_size = resource_size(res);
3546 base->phy_lcpa = res->start;
3548 if (request_mem_region(res->start, resource_size(res),
3549 D40_NAME " I/O lcpa") == NULL) {
3550 ret = -EBUSY;
3551 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3552 goto destroy_cache;
3555 /* We make use of ESRAM memory for this. */
3556 val = readl(base->virtbase + D40_DREG_LCPA);
3557 if (res->start != val && val != 0) {
3558 dev_warn(&pdev->dev,
3559 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3560 __func__, val, &res->start);
3561 } else
3562 writel(res->start, base->virtbase + D40_DREG_LCPA);
3564 base->lcpa_base = ioremap(res->start, resource_size(res));
3565 if (!base->lcpa_base) {
3566 ret = -ENOMEM;
3567 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3568 goto destroy_cache;
3570 /* If lcla has to be located in ESRAM we don't need to allocate */
3571 if (base->plat_data->use_esram_lcla) {
3572 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3573 "lcla_esram");
3574 if (!res) {
3575 ret = -ENOENT;
3576 d40_err(&pdev->dev,
3577 "No \"lcla_esram\" memory resource\n");
3578 goto destroy_cache;
3580 base->lcla_pool.base = ioremap(res->start,
3581 resource_size(res));
3582 if (!base->lcla_pool.base) {
3583 ret = -ENOMEM;
3584 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3585 goto destroy_cache;
3587 writel(res->start, base->virtbase + D40_DREG_LCLA);
3589 } else {
3590 ret = d40_lcla_allocate(base);
3591 if (ret) {
3592 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3593 goto destroy_cache;
3597 spin_lock_init(&base->lcla_pool.lock);
3599 base->irq = platform_get_irq(pdev, 0);
3601 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3602 if (ret) {
3603 d40_err(&pdev->dev, "No IRQ defined\n");
3604 goto destroy_cache;
3607 if (base->plat_data->use_esram_lcla) {
3609 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3610 if (IS_ERR(base->lcpa_regulator)) {
3611 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3612 ret = PTR_ERR(base->lcpa_regulator);
3613 base->lcpa_regulator = NULL;
3614 goto destroy_cache;
3617 ret = regulator_enable(base->lcpa_regulator);
3618 if (ret) {
3619 d40_err(&pdev->dev,
3620 "Failed to enable lcpa_regulator\n");
3621 regulator_put(base->lcpa_regulator);
3622 base->lcpa_regulator = NULL;
3623 goto destroy_cache;
3627 writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3629 pm_runtime_irq_safe(base->dev);
3630 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3631 pm_runtime_use_autosuspend(base->dev);
3632 pm_runtime_mark_last_busy(base->dev);
3633 pm_runtime_set_active(base->dev);
3634 pm_runtime_enable(base->dev);
3636 ret = d40_dmaengine_init(base, num_reserved_chans);
3637 if (ret)
3638 goto destroy_cache;
3640 ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3641 if (ret) {
3642 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3643 goto destroy_cache;
3646 d40_hw_init(base);
3648 if (np) {
3649 ret = of_dma_controller_register(np, d40_xlate, NULL);
3650 if (ret)
3651 dev_err(&pdev->dev,
3652 "could not register of_dma_controller\n");
3655 dev_info(base->dev, "initialized\n");
3656 return 0;
3657 destroy_cache:
3658 kmem_cache_destroy(base->desc_slab);
3659 if (base->virtbase)
3660 iounmap(base->virtbase);
3662 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3663 iounmap(base->lcla_pool.base);
3664 base->lcla_pool.base = NULL;
3667 if (base->lcla_pool.dma_addr)
3668 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3669 SZ_1K * base->num_phy_chans,
3670 DMA_TO_DEVICE);
3672 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3673 free_pages((unsigned long)base->lcla_pool.base,
3674 base->lcla_pool.pages);
3676 kfree(base->lcla_pool.base_unaligned);
3678 if (base->phy_lcpa)
3679 release_mem_region(base->phy_lcpa,
3680 base->lcpa_size);
3681 if (base->phy_start)
3682 release_mem_region(base->phy_start,
3683 base->phy_size);
3684 if (base->clk) {
3685 clk_disable_unprepare(base->clk);
3686 clk_put(base->clk);
3689 if (base->lcpa_regulator) {
3690 regulator_disable(base->lcpa_regulator);
3691 regulator_put(base->lcpa_regulator);
3694 kfree(base->lcla_pool.alloc_map);
3695 kfree(base->lookup_log_chans);
3696 kfree(base->lookup_phy_chans);
3697 kfree(base->phy_res);
3698 kfree(base);
3699 report_failure:
3700 d40_err(&pdev->dev, "probe failed\n");
3701 return ret;
3704 static const struct of_device_id d40_match[] = {
3705 { .compatible = "stericsson,dma40", },
3709 static struct platform_driver d40_driver = {
3710 .driver = {
3711 .name = D40_NAME,
3712 .pm = &dma40_pm_ops,
3713 .of_match_table = d40_match,
3717 static int __init stedma40_init(void)
3719 return platform_driver_probe(&d40_driver, d40_probe);
3721 subsys_initcall(stedma40_init);