io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / md / bcache / super.c
bloba4752ac410dc4e93ed3095a37e1cd9e4a3958977
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
18 #include <linux/blkdev.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
32 static const char bcache_magic[] = {
33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
37 static const char invalid_uuid[] = {
38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_journal_wq;
55 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
56 /* limitation of partitions number on single bcache device */
57 #define BCACHE_MINORS 128
58 /* limitation of bcache devices number on single system */
59 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
61 /* Superblock */
63 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES &&
68 bch_has_feature_large_bucket(sb))
69 bucket_size |= le16_to_cpu(s->bucket_size_hi) << 16;
71 return bucket_size;
74 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev,
75 struct cache_sb_disk *s)
77 const char *err;
78 unsigned int i;
80 sb->first_bucket= le16_to_cpu(s->first_bucket);
81 sb->nbuckets = le64_to_cpu(s->nbuckets);
82 sb->bucket_size = get_bucket_size(sb, s);
84 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
85 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
87 err = "Too many journal buckets";
88 if (sb->keys > SB_JOURNAL_BUCKETS)
89 goto err;
91 err = "Too many buckets";
92 if (sb->nbuckets > LONG_MAX)
93 goto err;
95 err = "Not enough buckets";
96 if (sb->nbuckets < 1 << 7)
97 goto err;
99 err = "Bad block size (not power of 2)";
100 if (!is_power_of_2(sb->block_size))
101 goto err;
103 err = "Bad block size (larger than page size)";
104 if (sb->block_size > PAGE_SECTORS)
105 goto err;
107 err = "Bad bucket size (not power of 2)";
108 if (!is_power_of_2(sb->bucket_size))
109 goto err;
111 err = "Bad bucket size (smaller than page size)";
112 if (sb->bucket_size < PAGE_SECTORS)
113 goto err;
115 err = "Invalid superblock: device too small";
116 if (get_capacity(bdev->bd_disk) <
117 sb->bucket_size * sb->nbuckets)
118 goto err;
120 err = "Bad UUID";
121 if (bch_is_zero(sb->set_uuid, 16))
122 goto err;
124 err = "Bad cache device number in set";
125 if (!sb->nr_in_set ||
126 sb->nr_in_set <= sb->nr_this_dev ||
127 sb->nr_in_set > MAX_CACHES_PER_SET)
128 goto err;
130 err = "Journal buckets not sequential";
131 for (i = 0; i < sb->keys; i++)
132 if (sb->d[i] != sb->first_bucket + i)
133 goto err;
135 err = "Too many journal buckets";
136 if (sb->first_bucket + sb->keys > sb->nbuckets)
137 goto err;
139 err = "Invalid superblock: first bucket comes before end of super";
140 if (sb->first_bucket * sb->bucket_size < 16)
141 goto err;
143 err = NULL;
144 err:
145 return err;
149 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
150 struct cache_sb_disk **res)
152 const char *err;
153 struct cache_sb_disk *s;
154 struct page *page;
155 unsigned int i;
157 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
158 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
159 if (IS_ERR(page))
160 return "IO error";
161 s = page_address(page) + offset_in_page(SB_OFFSET);
163 sb->offset = le64_to_cpu(s->offset);
164 sb->version = le64_to_cpu(s->version);
166 memcpy(sb->magic, s->magic, 16);
167 memcpy(sb->uuid, s->uuid, 16);
168 memcpy(sb->set_uuid, s->set_uuid, 16);
169 memcpy(sb->label, s->label, SB_LABEL_SIZE);
171 sb->flags = le64_to_cpu(s->flags);
172 sb->seq = le64_to_cpu(s->seq);
173 sb->last_mount = le32_to_cpu(s->last_mount);
174 sb->keys = le16_to_cpu(s->keys);
176 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
177 sb->d[i] = le64_to_cpu(s->d[i]);
179 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
180 sb->version, sb->flags, sb->seq, sb->keys);
182 err = "Not a bcache superblock (bad offset)";
183 if (sb->offset != SB_SECTOR)
184 goto err;
186 err = "Not a bcache superblock (bad magic)";
187 if (memcmp(sb->magic, bcache_magic, 16))
188 goto err;
190 err = "Bad checksum";
191 if (s->csum != csum_set(s))
192 goto err;
194 err = "Bad UUID";
195 if (bch_is_zero(sb->uuid, 16))
196 goto err;
198 sb->block_size = le16_to_cpu(s->block_size);
200 err = "Superblock block size smaller than device block size";
201 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
202 goto err;
204 switch (sb->version) {
205 case BCACHE_SB_VERSION_BDEV:
206 sb->data_offset = BDEV_DATA_START_DEFAULT;
207 break;
208 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
209 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
210 sb->data_offset = le64_to_cpu(s->data_offset);
212 err = "Bad data offset";
213 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
214 goto err;
216 break;
217 case BCACHE_SB_VERSION_CDEV:
218 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
219 err = read_super_common(sb, bdev, s);
220 if (err)
221 goto err;
222 break;
223 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
225 * Feature bits are needed in read_super_common(),
226 * convert them firstly.
228 sb->feature_compat = le64_to_cpu(s->feature_compat);
229 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
230 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
231 err = read_super_common(sb, bdev, s);
232 if (err)
233 goto err;
234 break;
235 default:
236 err = "Unsupported superblock version";
237 goto err;
240 sb->last_mount = (u32)ktime_get_real_seconds();
241 *res = s;
242 return NULL;
243 err:
244 put_page(page);
245 return err;
248 static void write_bdev_super_endio(struct bio *bio)
250 struct cached_dev *dc = bio->bi_private;
252 if (bio->bi_status)
253 bch_count_backing_io_errors(dc, bio);
255 closure_put(&dc->sb_write);
258 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
259 struct bio *bio)
261 unsigned int i;
263 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
264 bio->bi_iter.bi_sector = SB_SECTOR;
265 __bio_add_page(bio, virt_to_page(out), SB_SIZE,
266 offset_in_page(out));
268 out->offset = cpu_to_le64(sb->offset);
270 memcpy(out->uuid, sb->uuid, 16);
271 memcpy(out->set_uuid, sb->set_uuid, 16);
272 memcpy(out->label, sb->label, SB_LABEL_SIZE);
274 out->flags = cpu_to_le64(sb->flags);
275 out->seq = cpu_to_le64(sb->seq);
277 out->last_mount = cpu_to_le32(sb->last_mount);
278 out->first_bucket = cpu_to_le16(sb->first_bucket);
279 out->keys = cpu_to_le16(sb->keys);
281 for (i = 0; i < sb->keys; i++)
282 out->d[i] = cpu_to_le64(sb->d[i]);
284 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
285 out->feature_compat = cpu_to_le64(sb->feature_compat);
286 out->feature_incompat = cpu_to_le64(sb->feature_incompat);
287 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
290 out->version = cpu_to_le64(sb->version);
291 out->csum = csum_set(out);
293 pr_debug("ver %llu, flags %llu, seq %llu\n",
294 sb->version, sb->flags, sb->seq);
296 submit_bio(bio);
299 static void bch_write_bdev_super_unlock(struct closure *cl)
301 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
303 up(&dc->sb_write_mutex);
306 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
308 struct closure *cl = &dc->sb_write;
309 struct bio *bio = &dc->sb_bio;
311 down(&dc->sb_write_mutex);
312 closure_init(cl, parent);
314 bio_init(bio, dc->sb_bv, 1);
315 bio_set_dev(bio, dc->bdev);
316 bio->bi_end_io = write_bdev_super_endio;
317 bio->bi_private = dc;
319 closure_get(cl);
320 /* I/O request sent to backing device */
321 __write_super(&dc->sb, dc->sb_disk, bio);
323 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
326 static void write_super_endio(struct bio *bio)
328 struct cache *ca = bio->bi_private;
330 /* is_read = 0 */
331 bch_count_io_errors(ca, bio->bi_status, 0,
332 "writing superblock");
333 closure_put(&ca->set->sb_write);
336 static void bcache_write_super_unlock(struct closure *cl)
338 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
340 up(&c->sb_write_mutex);
343 void bcache_write_super(struct cache_set *c)
345 struct closure *cl = &c->sb_write;
346 struct cache *ca = c->cache;
347 struct bio *bio = &ca->sb_bio;
348 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
350 down(&c->sb_write_mutex);
351 closure_init(cl, &c->cl);
353 ca->sb.seq++;
355 if (ca->sb.version < version)
356 ca->sb.version = version;
358 bio_init(bio, ca->sb_bv, 1);
359 bio_set_dev(bio, ca->bdev);
360 bio->bi_end_io = write_super_endio;
361 bio->bi_private = ca;
363 closure_get(cl);
364 __write_super(&ca->sb, ca->sb_disk, bio);
366 closure_return_with_destructor(cl, bcache_write_super_unlock);
369 /* UUID io */
371 static void uuid_endio(struct bio *bio)
373 struct closure *cl = bio->bi_private;
374 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
376 cache_set_err_on(bio->bi_status, c, "accessing uuids");
377 bch_bbio_free(bio, c);
378 closure_put(cl);
381 static void uuid_io_unlock(struct closure *cl)
383 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
385 up(&c->uuid_write_mutex);
388 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
389 struct bkey *k, struct closure *parent)
391 struct closure *cl = &c->uuid_write;
392 struct uuid_entry *u;
393 unsigned int i;
394 char buf[80];
396 BUG_ON(!parent);
397 down(&c->uuid_write_mutex);
398 closure_init(cl, parent);
400 for (i = 0; i < KEY_PTRS(k); i++) {
401 struct bio *bio = bch_bbio_alloc(c);
403 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
404 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
406 bio->bi_end_io = uuid_endio;
407 bio->bi_private = cl;
408 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
409 bch_bio_map(bio, c->uuids);
411 bch_submit_bbio(bio, c, k, i);
413 if (op != REQ_OP_WRITE)
414 break;
417 bch_extent_to_text(buf, sizeof(buf), k);
418 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
420 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
421 if (!bch_is_zero(u->uuid, 16))
422 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
423 u - c->uuids, u->uuid, u->label,
424 u->first_reg, u->last_reg, u->invalidated);
426 closure_return_with_destructor(cl, uuid_io_unlock);
429 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
431 struct bkey *k = &j->uuid_bucket;
433 if (__bch_btree_ptr_invalid(c, k))
434 return "bad uuid pointer";
436 bkey_copy(&c->uuid_bucket, k);
437 uuid_io(c, REQ_OP_READ, 0, k, cl);
439 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
440 struct uuid_entry_v0 *u0 = (void *) c->uuids;
441 struct uuid_entry *u1 = (void *) c->uuids;
442 int i;
444 closure_sync(cl);
447 * Since the new uuid entry is bigger than the old, we have to
448 * convert starting at the highest memory address and work down
449 * in order to do it in place
452 for (i = c->nr_uuids - 1;
453 i >= 0;
454 --i) {
455 memcpy(u1[i].uuid, u0[i].uuid, 16);
456 memcpy(u1[i].label, u0[i].label, 32);
458 u1[i].first_reg = u0[i].first_reg;
459 u1[i].last_reg = u0[i].last_reg;
460 u1[i].invalidated = u0[i].invalidated;
462 u1[i].flags = 0;
463 u1[i].sectors = 0;
467 return NULL;
470 static int __uuid_write(struct cache_set *c)
472 BKEY_PADDED(key) k;
473 struct closure cl;
474 struct cache *ca = c->cache;
475 unsigned int size;
477 closure_init_stack(&cl);
478 lockdep_assert_held(&bch_register_lock);
480 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
481 return 1;
483 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
484 SET_KEY_SIZE(&k.key, size);
485 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
486 closure_sync(&cl);
488 /* Only one bucket used for uuid write */
489 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
491 bkey_copy(&c->uuid_bucket, &k.key);
492 bkey_put(c, &k.key);
493 return 0;
496 int bch_uuid_write(struct cache_set *c)
498 int ret = __uuid_write(c);
500 if (!ret)
501 bch_journal_meta(c, NULL);
503 return ret;
506 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
508 struct uuid_entry *u;
510 for (u = c->uuids;
511 u < c->uuids + c->nr_uuids; u++)
512 if (!memcmp(u->uuid, uuid, 16))
513 return u;
515 return NULL;
518 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
520 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
522 return uuid_find(c, zero_uuid);
526 * Bucket priorities/gens:
528 * For each bucket, we store on disk its
529 * 8 bit gen
530 * 16 bit priority
532 * See alloc.c for an explanation of the gen. The priority is used to implement
533 * lru (and in the future other) cache replacement policies; for most purposes
534 * it's just an opaque integer.
536 * The gens and the priorities don't have a whole lot to do with each other, and
537 * it's actually the gens that must be written out at specific times - it's no
538 * big deal if the priorities don't get written, if we lose them we just reuse
539 * buckets in suboptimal order.
541 * On disk they're stored in a packed array, and in as many buckets are required
542 * to fit them all. The buckets we use to store them form a list; the journal
543 * header points to the first bucket, the first bucket points to the second
544 * bucket, et cetera.
546 * This code is used by the allocation code; periodically (whenever it runs out
547 * of buckets to allocate from) the allocation code will invalidate some
548 * buckets, but it can't use those buckets until their new gens are safely on
549 * disk.
552 static void prio_endio(struct bio *bio)
554 struct cache *ca = bio->bi_private;
556 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
557 bch_bbio_free(bio, ca->set);
558 closure_put(&ca->prio);
561 static void prio_io(struct cache *ca, uint64_t bucket, int op,
562 unsigned long op_flags)
564 struct closure *cl = &ca->prio;
565 struct bio *bio = bch_bbio_alloc(ca->set);
567 closure_init_stack(cl);
569 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
570 bio_set_dev(bio, ca->bdev);
571 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb);
573 bio->bi_end_io = prio_endio;
574 bio->bi_private = ca;
575 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
576 bch_bio_map(bio, ca->disk_buckets);
578 closure_bio_submit(ca->set, bio, &ca->prio);
579 closure_sync(cl);
582 int bch_prio_write(struct cache *ca, bool wait)
584 int i;
585 struct bucket *b;
586 struct closure cl;
588 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
589 fifo_used(&ca->free[RESERVE_PRIO]),
590 fifo_used(&ca->free[RESERVE_NONE]),
591 fifo_used(&ca->free_inc));
594 * Pre-check if there are enough free buckets. In the non-blocking
595 * scenario it's better to fail early rather than starting to allocate
596 * buckets and do a cleanup later in case of failure.
598 if (!wait) {
599 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
600 fifo_used(&ca->free[RESERVE_NONE]);
601 if (prio_buckets(ca) > avail)
602 return -ENOMEM;
605 closure_init_stack(&cl);
607 lockdep_assert_held(&ca->set->bucket_lock);
609 ca->disk_buckets->seq++;
611 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
612 &ca->meta_sectors_written);
614 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
615 long bucket;
616 struct prio_set *p = ca->disk_buckets;
617 struct bucket_disk *d = p->data;
618 struct bucket_disk *end = d + prios_per_bucket(ca);
620 for (b = ca->buckets + i * prios_per_bucket(ca);
621 b < ca->buckets + ca->sb.nbuckets && d < end;
622 b++, d++) {
623 d->prio = cpu_to_le16(b->prio);
624 d->gen = b->gen;
627 p->next_bucket = ca->prio_buckets[i + 1];
628 p->magic = pset_magic(&ca->sb);
629 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
631 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
632 BUG_ON(bucket == -1);
634 mutex_unlock(&ca->set->bucket_lock);
635 prio_io(ca, bucket, REQ_OP_WRITE, 0);
636 mutex_lock(&ca->set->bucket_lock);
638 ca->prio_buckets[i] = bucket;
639 atomic_dec_bug(&ca->buckets[bucket].pin);
642 mutex_unlock(&ca->set->bucket_lock);
644 bch_journal_meta(ca->set, &cl);
645 closure_sync(&cl);
647 mutex_lock(&ca->set->bucket_lock);
650 * Don't want the old priorities to get garbage collected until after we
651 * finish writing the new ones, and they're journalled
653 for (i = 0; i < prio_buckets(ca); i++) {
654 if (ca->prio_last_buckets[i])
655 __bch_bucket_free(ca,
656 &ca->buckets[ca->prio_last_buckets[i]]);
658 ca->prio_last_buckets[i] = ca->prio_buckets[i];
660 return 0;
663 static int prio_read(struct cache *ca, uint64_t bucket)
665 struct prio_set *p = ca->disk_buckets;
666 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
667 struct bucket *b;
668 unsigned int bucket_nr = 0;
669 int ret = -EIO;
671 for (b = ca->buckets;
672 b < ca->buckets + ca->sb.nbuckets;
673 b++, d++) {
674 if (d == end) {
675 ca->prio_buckets[bucket_nr] = bucket;
676 ca->prio_last_buckets[bucket_nr] = bucket;
677 bucket_nr++;
679 prio_io(ca, bucket, REQ_OP_READ, 0);
681 if (p->csum !=
682 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
683 pr_warn("bad csum reading priorities\n");
684 goto out;
687 if (p->magic != pset_magic(&ca->sb)) {
688 pr_warn("bad magic reading priorities\n");
689 goto out;
692 bucket = p->next_bucket;
693 d = p->data;
696 b->prio = le16_to_cpu(d->prio);
697 b->gen = b->last_gc = d->gen;
700 ret = 0;
701 out:
702 return ret;
705 /* Bcache device */
707 static int open_dev(struct block_device *b, fmode_t mode)
709 struct bcache_device *d = b->bd_disk->private_data;
711 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
712 return -ENXIO;
714 closure_get(&d->cl);
715 return 0;
718 static void release_dev(struct gendisk *b, fmode_t mode)
720 struct bcache_device *d = b->private_data;
722 closure_put(&d->cl);
725 static int ioctl_dev(struct block_device *b, fmode_t mode,
726 unsigned int cmd, unsigned long arg)
728 struct bcache_device *d = b->bd_disk->private_data;
730 return d->ioctl(d, mode, cmd, arg);
733 static const struct block_device_operations bcache_cached_ops = {
734 .submit_bio = cached_dev_submit_bio,
735 .open = open_dev,
736 .release = release_dev,
737 .ioctl = ioctl_dev,
738 .owner = THIS_MODULE,
741 static const struct block_device_operations bcache_flash_ops = {
742 .submit_bio = flash_dev_submit_bio,
743 .open = open_dev,
744 .release = release_dev,
745 .ioctl = ioctl_dev,
746 .owner = THIS_MODULE,
749 void bcache_device_stop(struct bcache_device *d)
751 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
753 * closure_fn set to
754 * - cached device: cached_dev_flush()
755 * - flash dev: flash_dev_flush()
757 closure_queue(&d->cl);
760 static void bcache_device_unlink(struct bcache_device *d)
762 lockdep_assert_held(&bch_register_lock);
764 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
765 struct cache *ca = d->c->cache;
767 sysfs_remove_link(&d->c->kobj, d->name);
768 sysfs_remove_link(&d->kobj, "cache");
770 bd_unlink_disk_holder(ca->bdev, d->disk);
774 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
775 const char *name)
777 struct cache *ca = c->cache;
778 int ret;
780 bd_link_disk_holder(ca->bdev, d->disk);
782 snprintf(d->name, BCACHEDEVNAME_SIZE,
783 "%s%u", name, d->id);
785 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
786 if (ret < 0)
787 pr_err("Couldn't create device -> cache set symlink\n");
789 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
790 if (ret < 0)
791 pr_err("Couldn't create cache set -> device symlink\n");
793 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
796 static void bcache_device_detach(struct bcache_device *d)
798 lockdep_assert_held(&bch_register_lock);
800 atomic_dec(&d->c->attached_dev_nr);
802 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
803 struct uuid_entry *u = d->c->uuids + d->id;
805 SET_UUID_FLASH_ONLY(u, 0);
806 memcpy(u->uuid, invalid_uuid, 16);
807 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
808 bch_uuid_write(d->c);
811 bcache_device_unlink(d);
813 d->c->devices[d->id] = NULL;
814 closure_put(&d->c->caching);
815 d->c = NULL;
818 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
819 unsigned int id)
821 d->id = id;
822 d->c = c;
823 c->devices[id] = d;
825 if (id >= c->devices_max_used)
826 c->devices_max_used = id + 1;
828 closure_get(&c->caching);
831 static inline int first_minor_to_idx(int first_minor)
833 return (first_minor/BCACHE_MINORS);
836 static inline int idx_to_first_minor(int idx)
838 return (idx * BCACHE_MINORS);
841 static void bcache_device_free(struct bcache_device *d)
843 struct gendisk *disk = d->disk;
845 lockdep_assert_held(&bch_register_lock);
847 if (disk)
848 pr_info("%s stopped\n", disk->disk_name);
849 else
850 pr_err("bcache device (NULL gendisk) stopped\n");
852 if (d->c)
853 bcache_device_detach(d);
855 if (disk) {
856 bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
858 if (disk_added)
859 del_gendisk(disk);
861 if (disk->queue)
862 blk_cleanup_queue(disk->queue);
864 ida_simple_remove(&bcache_device_idx,
865 first_minor_to_idx(disk->first_minor));
866 if (disk_added)
867 put_disk(disk);
870 bioset_exit(&d->bio_split);
871 kvfree(d->full_dirty_stripes);
872 kvfree(d->stripe_sectors_dirty);
874 closure_debug_destroy(&d->cl);
877 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
878 sector_t sectors, struct block_device *cached_bdev,
879 const struct block_device_operations *ops)
881 struct request_queue *q;
882 const size_t max_stripes = min_t(size_t, INT_MAX,
883 SIZE_MAX / sizeof(atomic_t));
884 uint64_t n;
885 int idx;
887 if (!d->stripe_size)
888 d->stripe_size = 1 << 31;
890 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
891 if (!n || n > max_stripes) {
892 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
894 return -ENOMEM;
896 d->nr_stripes = n;
898 n = d->nr_stripes * sizeof(atomic_t);
899 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
900 if (!d->stripe_sectors_dirty)
901 return -ENOMEM;
903 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
904 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
905 if (!d->full_dirty_stripes)
906 return -ENOMEM;
908 idx = ida_simple_get(&bcache_device_idx, 0,
909 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
910 if (idx < 0)
911 return idx;
913 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
914 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
915 goto err;
917 d->disk = alloc_disk(BCACHE_MINORS);
918 if (!d->disk)
919 goto err;
921 set_capacity(d->disk, sectors);
922 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
924 d->disk->major = bcache_major;
925 d->disk->first_minor = idx_to_first_minor(idx);
926 d->disk->fops = ops;
927 d->disk->private_data = d;
929 q = blk_alloc_queue(NUMA_NO_NODE);
930 if (!q)
931 return -ENOMEM;
933 d->disk->queue = q;
934 q->limits.max_hw_sectors = UINT_MAX;
935 q->limits.max_sectors = UINT_MAX;
936 q->limits.max_segment_size = UINT_MAX;
937 q->limits.max_segments = BIO_MAX_PAGES;
938 blk_queue_max_discard_sectors(q, UINT_MAX);
939 q->limits.discard_granularity = 512;
940 q->limits.io_min = block_size;
941 q->limits.logical_block_size = block_size;
942 q->limits.physical_block_size = block_size;
944 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
946 * This should only happen with BCACHE_SB_VERSION_BDEV.
947 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
949 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
950 d->disk->disk_name, q->limits.logical_block_size,
951 PAGE_SIZE, bdev_logical_block_size(cached_bdev));
953 /* This also adjusts physical block size/min io size if needed */
954 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
957 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
958 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
959 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
961 blk_queue_write_cache(q, true, true);
963 return 0;
965 err:
966 ida_simple_remove(&bcache_device_idx, idx);
967 return -ENOMEM;
971 /* Cached device */
973 static void calc_cached_dev_sectors(struct cache_set *c)
975 uint64_t sectors = 0;
976 struct cached_dev *dc;
978 list_for_each_entry(dc, &c->cached_devs, list)
979 sectors += bdev_sectors(dc->bdev);
981 c->cached_dev_sectors = sectors;
984 #define BACKING_DEV_OFFLINE_TIMEOUT 5
985 static int cached_dev_status_update(void *arg)
987 struct cached_dev *dc = arg;
988 struct request_queue *q;
991 * If this delayed worker is stopping outside, directly quit here.
992 * dc->io_disable might be set via sysfs interface, so check it
993 * here too.
995 while (!kthread_should_stop() && !dc->io_disable) {
996 q = bdev_get_queue(dc->bdev);
997 if (blk_queue_dying(q))
998 dc->offline_seconds++;
999 else
1000 dc->offline_seconds = 0;
1002 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1003 pr_err("%s: device offline for %d seconds\n",
1004 dc->backing_dev_name,
1005 BACKING_DEV_OFFLINE_TIMEOUT);
1006 pr_err("%s: disable I/O request due to backing device offline\n",
1007 dc->disk.name);
1008 dc->io_disable = true;
1009 /* let others know earlier that io_disable is true */
1010 smp_mb();
1011 bcache_device_stop(&dc->disk);
1012 break;
1014 schedule_timeout_interruptible(HZ);
1017 wait_for_kthread_stop();
1018 return 0;
1022 int bch_cached_dev_run(struct cached_dev *dc)
1024 struct bcache_device *d = &dc->disk;
1025 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1026 char *env[] = {
1027 "DRIVER=bcache",
1028 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1029 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1030 NULL,
1033 if (dc->io_disable) {
1034 pr_err("I/O disabled on cached dev %s\n",
1035 dc->backing_dev_name);
1036 kfree(env[1]);
1037 kfree(env[2]);
1038 kfree(buf);
1039 return -EIO;
1042 if (atomic_xchg(&dc->running, 1)) {
1043 kfree(env[1]);
1044 kfree(env[2]);
1045 kfree(buf);
1046 pr_info("cached dev %s is running already\n",
1047 dc->backing_dev_name);
1048 return -EBUSY;
1051 if (!d->c &&
1052 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1053 struct closure cl;
1055 closure_init_stack(&cl);
1057 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1058 bch_write_bdev_super(dc, &cl);
1059 closure_sync(&cl);
1062 add_disk(d->disk);
1063 bd_link_disk_holder(dc->bdev, dc->disk.disk);
1065 * won't show up in the uevent file, use udevadm monitor -e instead
1066 * only class / kset properties are persistent
1068 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1069 kfree(env[1]);
1070 kfree(env[2]);
1071 kfree(buf);
1073 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1074 sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1075 &d->kobj, "bcache")) {
1076 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1077 return -ENOMEM;
1080 dc->status_update_thread = kthread_run(cached_dev_status_update,
1081 dc, "bcache_status_update");
1082 if (IS_ERR(dc->status_update_thread)) {
1083 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1086 return 0;
1090 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1091 * work dc->writeback_rate_update is running. Wait until the routine
1092 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1093 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1094 * seconds, give up waiting here and continue to cancel it too.
1096 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1098 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1100 do {
1101 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1102 &dc->disk.flags))
1103 break;
1104 time_out--;
1105 schedule_timeout_interruptible(1);
1106 } while (time_out > 0);
1108 if (time_out == 0)
1109 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1111 cancel_delayed_work_sync(&dc->writeback_rate_update);
1114 static void cached_dev_detach_finish(struct work_struct *w)
1116 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1118 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1119 BUG_ON(refcount_read(&dc->count));
1122 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1123 cancel_writeback_rate_update_dwork(dc);
1125 if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1126 kthread_stop(dc->writeback_thread);
1127 dc->writeback_thread = NULL;
1130 mutex_lock(&bch_register_lock);
1132 calc_cached_dev_sectors(dc->disk.c);
1133 bcache_device_detach(&dc->disk);
1134 list_move(&dc->list, &uncached_devices);
1136 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1137 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1139 mutex_unlock(&bch_register_lock);
1141 pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1143 /* Drop ref we took in cached_dev_detach() */
1144 closure_put(&dc->disk.cl);
1147 void bch_cached_dev_detach(struct cached_dev *dc)
1149 lockdep_assert_held(&bch_register_lock);
1151 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1152 return;
1154 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1155 return;
1158 * Block the device from being closed and freed until we're finished
1159 * detaching
1161 closure_get(&dc->disk.cl);
1163 bch_writeback_queue(dc);
1165 cached_dev_put(dc);
1168 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1169 uint8_t *set_uuid)
1171 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1172 struct uuid_entry *u;
1173 struct cached_dev *exist_dc, *t;
1174 int ret = 0;
1176 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1177 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1178 return -ENOENT;
1180 if (dc->disk.c) {
1181 pr_err("Can't attach %s: already attached\n",
1182 dc->backing_dev_name);
1183 return -EINVAL;
1186 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1187 pr_err("Can't attach %s: shutting down\n",
1188 dc->backing_dev_name);
1189 return -EINVAL;
1192 if (dc->sb.block_size < c->cache->sb.block_size) {
1193 /* Will die */
1194 pr_err("Couldn't attach %s: block size less than set's block size\n",
1195 dc->backing_dev_name);
1196 return -EINVAL;
1199 /* Check whether already attached */
1200 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1201 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1202 pr_err("Tried to attach %s but duplicate UUID already attached\n",
1203 dc->backing_dev_name);
1205 return -EINVAL;
1209 u = uuid_find(c, dc->sb.uuid);
1211 if (u &&
1212 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1213 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1214 memcpy(u->uuid, invalid_uuid, 16);
1215 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1216 u = NULL;
1219 if (!u) {
1220 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1221 pr_err("Couldn't find uuid for %s in set\n",
1222 dc->backing_dev_name);
1223 return -ENOENT;
1226 u = uuid_find_empty(c);
1227 if (!u) {
1228 pr_err("Not caching %s, no room for UUID\n",
1229 dc->backing_dev_name);
1230 return -EINVAL;
1235 * Deadlocks since we're called via sysfs...
1236 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1239 if (bch_is_zero(u->uuid, 16)) {
1240 struct closure cl;
1242 closure_init_stack(&cl);
1244 memcpy(u->uuid, dc->sb.uuid, 16);
1245 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1246 u->first_reg = u->last_reg = rtime;
1247 bch_uuid_write(c);
1249 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1250 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1252 bch_write_bdev_super(dc, &cl);
1253 closure_sync(&cl);
1254 } else {
1255 u->last_reg = rtime;
1256 bch_uuid_write(c);
1259 bcache_device_attach(&dc->disk, c, u - c->uuids);
1260 list_move(&dc->list, &c->cached_devs);
1261 calc_cached_dev_sectors(c);
1264 * dc->c must be set before dc->count != 0 - paired with the mb in
1265 * cached_dev_get()
1267 smp_wmb();
1268 refcount_set(&dc->count, 1);
1270 /* Block writeback thread, but spawn it */
1271 down_write(&dc->writeback_lock);
1272 if (bch_cached_dev_writeback_start(dc)) {
1273 up_write(&dc->writeback_lock);
1274 pr_err("Couldn't start writeback facilities for %s\n",
1275 dc->disk.disk->disk_name);
1276 return -ENOMEM;
1279 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1280 atomic_set(&dc->has_dirty, 1);
1281 bch_writeback_queue(dc);
1284 bch_sectors_dirty_init(&dc->disk);
1286 ret = bch_cached_dev_run(dc);
1287 if (ret && (ret != -EBUSY)) {
1288 up_write(&dc->writeback_lock);
1290 * bch_register_lock is held, bcache_device_stop() is not
1291 * able to be directly called. The kthread and kworker
1292 * created previously in bch_cached_dev_writeback_start()
1293 * have to be stopped manually here.
1295 kthread_stop(dc->writeback_thread);
1296 cancel_writeback_rate_update_dwork(dc);
1297 pr_err("Couldn't run cached device %s\n",
1298 dc->backing_dev_name);
1299 return ret;
1302 bcache_device_link(&dc->disk, c, "bdev");
1303 atomic_inc(&c->attached_dev_nr);
1305 /* Allow the writeback thread to proceed */
1306 up_write(&dc->writeback_lock);
1308 pr_info("Caching %s as %s on set %pU\n",
1309 dc->backing_dev_name,
1310 dc->disk.disk->disk_name,
1311 dc->disk.c->set_uuid);
1312 return 0;
1315 /* when dc->disk.kobj released */
1316 void bch_cached_dev_release(struct kobject *kobj)
1318 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1319 disk.kobj);
1320 kfree(dc);
1321 module_put(THIS_MODULE);
1324 static void cached_dev_free(struct closure *cl)
1326 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1328 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1329 cancel_writeback_rate_update_dwork(dc);
1331 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1332 kthread_stop(dc->writeback_thread);
1333 if (!IS_ERR_OR_NULL(dc->status_update_thread))
1334 kthread_stop(dc->status_update_thread);
1336 mutex_lock(&bch_register_lock);
1338 if (atomic_read(&dc->running))
1339 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1340 bcache_device_free(&dc->disk);
1341 list_del(&dc->list);
1343 mutex_unlock(&bch_register_lock);
1345 if (dc->sb_disk)
1346 put_page(virt_to_page(dc->sb_disk));
1348 if (!IS_ERR_OR_NULL(dc->bdev))
1349 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1351 wake_up(&unregister_wait);
1353 kobject_put(&dc->disk.kobj);
1356 static void cached_dev_flush(struct closure *cl)
1358 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1359 struct bcache_device *d = &dc->disk;
1361 mutex_lock(&bch_register_lock);
1362 bcache_device_unlink(d);
1363 mutex_unlock(&bch_register_lock);
1365 bch_cache_accounting_destroy(&dc->accounting);
1366 kobject_del(&d->kobj);
1368 continue_at(cl, cached_dev_free, system_wq);
1371 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1373 int ret;
1374 struct io *io;
1375 struct request_queue *q = bdev_get_queue(dc->bdev);
1377 __module_get(THIS_MODULE);
1378 INIT_LIST_HEAD(&dc->list);
1379 closure_init(&dc->disk.cl, NULL);
1380 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1381 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1382 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1383 sema_init(&dc->sb_write_mutex, 1);
1384 INIT_LIST_HEAD(&dc->io_lru);
1385 spin_lock_init(&dc->io_lock);
1386 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1388 dc->sequential_cutoff = 4 << 20;
1390 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1391 list_add(&io->lru, &dc->io_lru);
1392 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1395 dc->disk.stripe_size = q->limits.io_opt >> 9;
1397 if (dc->disk.stripe_size)
1398 dc->partial_stripes_expensive =
1399 q->limits.raid_partial_stripes_expensive;
1401 ret = bcache_device_init(&dc->disk, block_size,
1402 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1403 dc->bdev, &bcache_cached_ops);
1404 if (ret)
1405 return ret;
1407 blk_queue_io_opt(dc->disk.disk->queue,
1408 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1410 atomic_set(&dc->io_errors, 0);
1411 dc->io_disable = false;
1412 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1413 /* default to auto */
1414 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1416 bch_cached_dev_request_init(dc);
1417 bch_cached_dev_writeback_init(dc);
1418 return 0;
1421 /* Cached device - bcache superblock */
1423 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1424 struct block_device *bdev,
1425 struct cached_dev *dc)
1427 const char *err = "cannot allocate memory";
1428 struct cache_set *c;
1429 int ret = -ENOMEM;
1431 bdevname(bdev, dc->backing_dev_name);
1432 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1433 dc->bdev = bdev;
1434 dc->bdev->bd_holder = dc;
1435 dc->sb_disk = sb_disk;
1437 if (cached_dev_init(dc, sb->block_size << 9))
1438 goto err;
1440 err = "error creating kobject";
1441 if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache"))
1442 goto err;
1443 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1444 goto err;
1446 pr_info("registered backing device %s\n", dc->backing_dev_name);
1448 list_add(&dc->list, &uncached_devices);
1449 /* attach to a matched cache set if it exists */
1450 list_for_each_entry(c, &bch_cache_sets, list)
1451 bch_cached_dev_attach(dc, c, NULL);
1453 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1454 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1455 err = "failed to run cached device";
1456 ret = bch_cached_dev_run(dc);
1457 if (ret)
1458 goto err;
1461 return 0;
1462 err:
1463 pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1464 bcache_device_stop(&dc->disk);
1465 return ret;
1468 /* Flash only volumes */
1470 /* When d->kobj released */
1471 void bch_flash_dev_release(struct kobject *kobj)
1473 struct bcache_device *d = container_of(kobj, struct bcache_device,
1474 kobj);
1475 kfree(d);
1478 static void flash_dev_free(struct closure *cl)
1480 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1482 mutex_lock(&bch_register_lock);
1483 atomic_long_sub(bcache_dev_sectors_dirty(d),
1484 &d->c->flash_dev_dirty_sectors);
1485 bcache_device_free(d);
1486 mutex_unlock(&bch_register_lock);
1487 kobject_put(&d->kobj);
1490 static void flash_dev_flush(struct closure *cl)
1492 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1494 mutex_lock(&bch_register_lock);
1495 bcache_device_unlink(d);
1496 mutex_unlock(&bch_register_lock);
1497 kobject_del(&d->kobj);
1498 continue_at(cl, flash_dev_free, system_wq);
1501 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1503 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1504 GFP_KERNEL);
1505 if (!d)
1506 return -ENOMEM;
1508 closure_init(&d->cl, NULL);
1509 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1511 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1513 if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1514 NULL, &bcache_flash_ops))
1515 goto err;
1517 bcache_device_attach(d, c, u - c->uuids);
1518 bch_sectors_dirty_init(d);
1519 bch_flash_dev_request_init(d);
1520 add_disk(d->disk);
1522 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1523 goto err;
1525 bcache_device_link(d, c, "volume");
1527 return 0;
1528 err:
1529 kobject_put(&d->kobj);
1530 return -ENOMEM;
1533 static int flash_devs_run(struct cache_set *c)
1535 int ret = 0;
1536 struct uuid_entry *u;
1538 for (u = c->uuids;
1539 u < c->uuids + c->nr_uuids && !ret;
1540 u++)
1541 if (UUID_FLASH_ONLY(u))
1542 ret = flash_dev_run(c, u);
1544 return ret;
1547 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1549 struct uuid_entry *u;
1551 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1552 return -EINTR;
1554 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1555 return -EPERM;
1557 u = uuid_find_empty(c);
1558 if (!u) {
1559 pr_err("Can't create volume, no room for UUID\n");
1560 return -EINVAL;
1563 get_random_bytes(u->uuid, 16);
1564 memset(u->label, 0, 32);
1565 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1567 SET_UUID_FLASH_ONLY(u, 1);
1568 u->sectors = size >> 9;
1570 bch_uuid_write(c);
1572 return flash_dev_run(c, u);
1575 bool bch_cached_dev_error(struct cached_dev *dc)
1577 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1578 return false;
1580 dc->io_disable = true;
1581 /* make others know io_disable is true earlier */
1582 smp_mb();
1584 pr_err("stop %s: too many IO errors on backing device %s\n",
1585 dc->disk.disk->disk_name, dc->backing_dev_name);
1587 bcache_device_stop(&dc->disk);
1588 return true;
1591 /* Cache set */
1593 __printf(2, 3)
1594 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1596 struct va_format vaf;
1597 va_list args;
1599 if (c->on_error != ON_ERROR_PANIC &&
1600 test_bit(CACHE_SET_STOPPING, &c->flags))
1601 return false;
1603 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1604 pr_info("CACHE_SET_IO_DISABLE already set\n");
1607 * XXX: we can be called from atomic context
1608 * acquire_console_sem();
1611 va_start(args, fmt);
1613 vaf.fmt = fmt;
1614 vaf.va = &args;
1616 pr_err("error on %pU: %pV, disabling caching\n",
1617 c->set_uuid, &vaf);
1619 va_end(args);
1621 if (c->on_error == ON_ERROR_PANIC)
1622 panic("panic forced after error\n");
1624 bch_cache_set_unregister(c);
1625 return true;
1628 /* When c->kobj released */
1629 void bch_cache_set_release(struct kobject *kobj)
1631 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1633 kfree(c);
1634 module_put(THIS_MODULE);
1637 static void cache_set_free(struct closure *cl)
1639 struct cache_set *c = container_of(cl, struct cache_set, cl);
1640 struct cache *ca;
1642 debugfs_remove(c->debug);
1644 bch_open_buckets_free(c);
1645 bch_btree_cache_free(c);
1646 bch_journal_free(c);
1648 mutex_lock(&bch_register_lock);
1649 bch_bset_sort_state_free(&c->sort);
1650 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1652 ca = c->cache;
1653 if (ca) {
1654 ca->set = NULL;
1655 c->cache = NULL;
1656 kobject_put(&ca->kobj);
1660 if (c->moving_gc_wq)
1661 destroy_workqueue(c->moving_gc_wq);
1662 bioset_exit(&c->bio_split);
1663 mempool_exit(&c->fill_iter);
1664 mempool_exit(&c->bio_meta);
1665 mempool_exit(&c->search);
1666 kfree(c->devices);
1668 list_del(&c->list);
1669 mutex_unlock(&bch_register_lock);
1671 pr_info("Cache set %pU unregistered\n", c->set_uuid);
1672 wake_up(&unregister_wait);
1674 closure_debug_destroy(&c->cl);
1675 kobject_put(&c->kobj);
1678 static void cache_set_flush(struct closure *cl)
1680 struct cache_set *c = container_of(cl, struct cache_set, caching);
1681 struct cache *ca = c->cache;
1682 struct btree *b;
1684 bch_cache_accounting_destroy(&c->accounting);
1686 kobject_put(&c->internal);
1687 kobject_del(&c->kobj);
1689 if (!IS_ERR_OR_NULL(c->gc_thread))
1690 kthread_stop(c->gc_thread);
1692 if (!IS_ERR_OR_NULL(c->root))
1693 list_add(&c->root->list, &c->btree_cache);
1696 * Avoid flushing cached nodes if cache set is retiring
1697 * due to too many I/O errors detected.
1699 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1700 list_for_each_entry(b, &c->btree_cache, list) {
1701 mutex_lock(&b->write_lock);
1702 if (btree_node_dirty(b))
1703 __bch_btree_node_write(b, NULL);
1704 mutex_unlock(&b->write_lock);
1707 if (ca->alloc_thread)
1708 kthread_stop(ca->alloc_thread);
1710 if (c->journal.cur) {
1711 cancel_delayed_work_sync(&c->journal.work);
1712 /* flush last journal entry if needed */
1713 c->journal.work.work.func(&c->journal.work.work);
1716 closure_return(cl);
1720 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1721 * cache set is unregistering due to too many I/O errors. In this condition,
1722 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1723 * value and whether the broken cache has dirty data:
1725 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1726 * BCH_CACHED_STOP_AUTO 0 NO
1727 * BCH_CACHED_STOP_AUTO 1 YES
1728 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1729 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1731 * The expected behavior is, if stop_when_cache_set_failed is configured to
1732 * "auto" via sysfs interface, the bcache device will not be stopped if the
1733 * backing device is clean on the broken cache device.
1735 static void conditional_stop_bcache_device(struct cache_set *c,
1736 struct bcache_device *d,
1737 struct cached_dev *dc)
1739 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1740 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1741 d->disk->disk_name, c->set_uuid);
1742 bcache_device_stop(d);
1743 } else if (atomic_read(&dc->has_dirty)) {
1745 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1746 * and dc->has_dirty == 1
1748 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1749 d->disk->disk_name);
1751 * There might be a small time gap that cache set is
1752 * released but bcache device is not. Inside this time
1753 * gap, regular I/O requests will directly go into
1754 * backing device as no cache set attached to. This
1755 * behavior may also introduce potential inconsistence
1756 * data in writeback mode while cache is dirty.
1757 * Therefore before calling bcache_device_stop() due
1758 * to a broken cache device, dc->io_disable should be
1759 * explicitly set to true.
1761 dc->io_disable = true;
1762 /* make others know io_disable is true earlier */
1763 smp_mb();
1764 bcache_device_stop(d);
1765 } else {
1767 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1768 * and dc->has_dirty == 0
1770 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1771 d->disk->disk_name);
1775 static void __cache_set_unregister(struct closure *cl)
1777 struct cache_set *c = container_of(cl, struct cache_set, caching);
1778 struct cached_dev *dc;
1779 struct bcache_device *d;
1780 size_t i;
1782 mutex_lock(&bch_register_lock);
1784 for (i = 0; i < c->devices_max_used; i++) {
1785 d = c->devices[i];
1786 if (!d)
1787 continue;
1789 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1790 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1791 dc = container_of(d, struct cached_dev, disk);
1792 bch_cached_dev_detach(dc);
1793 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1794 conditional_stop_bcache_device(c, d, dc);
1795 } else {
1796 bcache_device_stop(d);
1800 mutex_unlock(&bch_register_lock);
1802 continue_at(cl, cache_set_flush, system_wq);
1805 void bch_cache_set_stop(struct cache_set *c)
1807 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1808 /* closure_fn set to __cache_set_unregister() */
1809 closure_queue(&c->caching);
1812 void bch_cache_set_unregister(struct cache_set *c)
1814 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1815 bch_cache_set_stop(c);
1818 #define alloc_meta_bucket_pages(gfp, sb) \
1819 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1821 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1823 int iter_size;
1824 struct cache *ca = container_of(sb, struct cache, sb);
1825 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1827 if (!c)
1828 return NULL;
1830 __module_get(THIS_MODULE);
1831 closure_init(&c->cl, NULL);
1832 set_closure_fn(&c->cl, cache_set_free, system_wq);
1834 closure_init(&c->caching, &c->cl);
1835 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1837 /* Maybe create continue_at_noreturn() and use it here? */
1838 closure_set_stopped(&c->cl);
1839 closure_put(&c->cl);
1841 kobject_init(&c->kobj, &bch_cache_set_ktype);
1842 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1844 bch_cache_accounting_init(&c->accounting, &c->cl);
1846 memcpy(c->set_uuid, sb->set_uuid, 16);
1848 c->cache = ca;
1849 c->cache->set = c;
1850 c->bucket_bits = ilog2(sb->bucket_size);
1851 c->block_bits = ilog2(sb->block_size);
1852 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1853 c->devices_max_used = 0;
1854 atomic_set(&c->attached_dev_nr, 0);
1855 c->btree_pages = meta_bucket_pages(sb);
1856 if (c->btree_pages > BTREE_MAX_PAGES)
1857 c->btree_pages = max_t(int, c->btree_pages / 4,
1858 BTREE_MAX_PAGES);
1860 sema_init(&c->sb_write_mutex, 1);
1861 mutex_init(&c->bucket_lock);
1862 init_waitqueue_head(&c->btree_cache_wait);
1863 spin_lock_init(&c->btree_cannibalize_lock);
1864 init_waitqueue_head(&c->bucket_wait);
1865 init_waitqueue_head(&c->gc_wait);
1866 sema_init(&c->uuid_write_mutex, 1);
1868 spin_lock_init(&c->btree_gc_time.lock);
1869 spin_lock_init(&c->btree_split_time.lock);
1870 spin_lock_init(&c->btree_read_time.lock);
1872 bch_moving_init_cache_set(c);
1874 INIT_LIST_HEAD(&c->list);
1875 INIT_LIST_HEAD(&c->cached_devs);
1876 INIT_LIST_HEAD(&c->btree_cache);
1877 INIT_LIST_HEAD(&c->btree_cache_freeable);
1878 INIT_LIST_HEAD(&c->btree_cache_freed);
1879 INIT_LIST_HEAD(&c->data_buckets);
1881 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1882 sizeof(struct btree_iter_set);
1884 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1885 if (!c->devices)
1886 goto err;
1888 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1889 goto err;
1891 if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1892 sizeof(struct bbio) +
1893 sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1894 goto err;
1896 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1897 goto err;
1899 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1900 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
1901 goto err;
1903 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1904 if (!c->uuids)
1905 goto err;
1907 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1908 if (!c->moving_gc_wq)
1909 goto err;
1911 if (bch_journal_alloc(c))
1912 goto err;
1914 if (bch_btree_cache_alloc(c))
1915 goto err;
1917 if (bch_open_buckets_alloc(c))
1918 goto err;
1920 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1921 goto err;
1923 c->congested_read_threshold_us = 2000;
1924 c->congested_write_threshold_us = 20000;
1925 c->error_limit = DEFAULT_IO_ERROR_LIMIT;
1926 c->idle_max_writeback_rate_enabled = 1;
1927 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1929 return c;
1930 err:
1931 bch_cache_set_unregister(c);
1932 return NULL;
1935 static int run_cache_set(struct cache_set *c)
1937 const char *err = "cannot allocate memory";
1938 struct cached_dev *dc, *t;
1939 struct cache *ca = c->cache;
1940 struct closure cl;
1941 LIST_HEAD(journal);
1942 struct journal_replay *l;
1944 closure_init_stack(&cl);
1946 c->nbuckets = ca->sb.nbuckets;
1947 set_gc_sectors(c);
1949 if (CACHE_SYNC(&c->cache->sb)) {
1950 struct bkey *k;
1951 struct jset *j;
1953 err = "cannot allocate memory for journal";
1954 if (bch_journal_read(c, &journal))
1955 goto err;
1957 pr_debug("btree_journal_read() done\n");
1959 err = "no journal entries found";
1960 if (list_empty(&journal))
1961 goto err;
1963 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1965 err = "IO error reading priorities";
1966 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
1967 goto err;
1970 * If prio_read() fails it'll call cache_set_error and we'll
1971 * tear everything down right away, but if we perhaps checked
1972 * sooner we could avoid journal replay.
1975 k = &j->btree_root;
1977 err = "bad btree root";
1978 if (__bch_btree_ptr_invalid(c, k))
1979 goto err;
1981 err = "error reading btree root";
1982 c->root = bch_btree_node_get(c, NULL, k,
1983 j->btree_level,
1984 true, NULL);
1985 if (IS_ERR_OR_NULL(c->root))
1986 goto err;
1988 list_del_init(&c->root->list);
1989 rw_unlock(true, c->root);
1991 err = uuid_read(c, j, &cl);
1992 if (err)
1993 goto err;
1995 err = "error in recovery";
1996 if (bch_btree_check(c))
1997 goto err;
1999 bch_journal_mark(c, &journal);
2000 bch_initial_gc_finish(c);
2001 pr_debug("btree_check() done\n");
2004 * bcache_journal_next() can't happen sooner, or
2005 * btree_gc_finish() will give spurious errors about last_gc >
2006 * gc_gen - this is a hack but oh well.
2008 bch_journal_next(&c->journal);
2010 err = "error starting allocator thread";
2011 if (bch_cache_allocator_start(ca))
2012 goto err;
2015 * First place it's safe to allocate: btree_check() and
2016 * btree_gc_finish() have to run before we have buckets to
2017 * allocate, and bch_bucket_alloc_set() might cause a journal
2018 * entry to be written so bcache_journal_next() has to be called
2019 * first.
2021 * If the uuids were in the old format we have to rewrite them
2022 * before the next journal entry is written:
2024 if (j->version < BCACHE_JSET_VERSION_UUID)
2025 __uuid_write(c);
2027 err = "bcache: replay journal failed";
2028 if (bch_journal_replay(c, &journal))
2029 goto err;
2030 } else {
2031 unsigned int j;
2033 pr_notice("invalidating existing data\n");
2034 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2035 2, SB_JOURNAL_BUCKETS);
2037 for (j = 0; j < ca->sb.keys; j++)
2038 ca->sb.d[j] = ca->sb.first_bucket + j;
2040 bch_initial_gc_finish(c);
2042 err = "error starting allocator thread";
2043 if (bch_cache_allocator_start(ca))
2044 goto err;
2046 mutex_lock(&c->bucket_lock);
2047 bch_prio_write(ca, true);
2048 mutex_unlock(&c->bucket_lock);
2050 err = "cannot allocate new UUID bucket";
2051 if (__uuid_write(c))
2052 goto err;
2054 err = "cannot allocate new btree root";
2055 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2056 if (IS_ERR_OR_NULL(c->root))
2057 goto err;
2059 mutex_lock(&c->root->write_lock);
2060 bkey_copy_key(&c->root->key, &MAX_KEY);
2061 bch_btree_node_write(c->root, &cl);
2062 mutex_unlock(&c->root->write_lock);
2064 bch_btree_set_root(c->root);
2065 rw_unlock(true, c->root);
2068 * We don't want to write the first journal entry until
2069 * everything is set up - fortunately journal entries won't be
2070 * written until the SET_CACHE_SYNC() here:
2072 SET_CACHE_SYNC(&c->cache->sb, true);
2074 bch_journal_next(&c->journal);
2075 bch_journal_meta(c, &cl);
2078 err = "error starting gc thread";
2079 if (bch_gc_thread_start(c))
2080 goto err;
2082 closure_sync(&cl);
2083 c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2084 bcache_write_super(c);
2086 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2087 bch_cached_dev_attach(dc, c, NULL);
2089 flash_devs_run(c);
2091 set_bit(CACHE_SET_RUNNING, &c->flags);
2092 return 0;
2093 err:
2094 while (!list_empty(&journal)) {
2095 l = list_first_entry(&journal, struct journal_replay, list);
2096 list_del(&l->list);
2097 kfree(l);
2100 closure_sync(&cl);
2102 bch_cache_set_error(c, "%s", err);
2104 return -EIO;
2107 static const char *register_cache_set(struct cache *ca)
2109 char buf[12];
2110 const char *err = "cannot allocate memory";
2111 struct cache_set *c;
2113 list_for_each_entry(c, &bch_cache_sets, list)
2114 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2115 if (c->cache)
2116 return "duplicate cache set member";
2118 goto found;
2121 c = bch_cache_set_alloc(&ca->sb);
2122 if (!c)
2123 return err;
2125 err = "error creating kobject";
2126 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2127 kobject_add(&c->internal, &c->kobj, "internal"))
2128 goto err;
2130 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2131 goto err;
2133 bch_debug_init_cache_set(c);
2135 list_add(&c->list, &bch_cache_sets);
2136 found:
2137 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2138 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2139 sysfs_create_link(&c->kobj, &ca->kobj, buf))
2140 goto err;
2142 kobject_get(&ca->kobj);
2143 ca->set = c;
2144 ca->set->cache = ca;
2146 err = "failed to run cache set";
2147 if (run_cache_set(c) < 0)
2148 goto err;
2150 return NULL;
2151 err:
2152 bch_cache_set_unregister(c);
2153 return err;
2156 /* Cache device */
2158 /* When ca->kobj released */
2159 void bch_cache_release(struct kobject *kobj)
2161 struct cache *ca = container_of(kobj, struct cache, kobj);
2162 unsigned int i;
2164 if (ca->set) {
2165 BUG_ON(ca->set->cache != ca);
2166 ca->set->cache = NULL;
2169 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2170 kfree(ca->prio_buckets);
2171 vfree(ca->buckets);
2173 free_heap(&ca->heap);
2174 free_fifo(&ca->free_inc);
2176 for (i = 0; i < RESERVE_NR; i++)
2177 free_fifo(&ca->free[i]);
2179 if (ca->sb_disk)
2180 put_page(virt_to_page(ca->sb_disk));
2182 if (!IS_ERR_OR_NULL(ca->bdev))
2183 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2185 kfree(ca);
2186 module_put(THIS_MODULE);
2189 static int cache_alloc(struct cache *ca)
2191 size_t free;
2192 size_t btree_buckets;
2193 struct bucket *b;
2194 int ret = -ENOMEM;
2195 const char *err = NULL;
2197 __module_get(THIS_MODULE);
2198 kobject_init(&ca->kobj, &bch_cache_ktype);
2200 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2203 * when ca->sb.njournal_buckets is not zero, journal exists,
2204 * and in bch_journal_replay(), tree node may split,
2205 * so bucket of RESERVE_BTREE type is needed,
2206 * the worst situation is all journal buckets are valid journal,
2207 * and all the keys need to replay,
2208 * so the number of RESERVE_BTREE type buckets should be as much
2209 * as journal buckets
2211 btree_buckets = ca->sb.njournal_buckets ?: 8;
2212 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2213 if (!free) {
2214 ret = -EPERM;
2215 err = "ca->sb.nbuckets is too small";
2216 goto err_free;
2219 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2220 GFP_KERNEL)) {
2221 err = "ca->free[RESERVE_BTREE] alloc failed";
2222 goto err_btree_alloc;
2225 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2226 GFP_KERNEL)) {
2227 err = "ca->free[RESERVE_PRIO] alloc failed";
2228 goto err_prio_alloc;
2231 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2232 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2233 goto err_movinggc_alloc;
2236 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2237 err = "ca->free[RESERVE_NONE] alloc failed";
2238 goto err_none_alloc;
2241 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2242 err = "ca->free_inc alloc failed";
2243 goto err_free_inc_alloc;
2246 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2247 err = "ca->heap alloc failed";
2248 goto err_heap_alloc;
2251 ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2252 ca->sb.nbuckets));
2253 if (!ca->buckets) {
2254 err = "ca->buckets alloc failed";
2255 goto err_buckets_alloc;
2258 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2259 prio_buckets(ca), 2),
2260 GFP_KERNEL);
2261 if (!ca->prio_buckets) {
2262 err = "ca->prio_buckets alloc failed";
2263 goto err_prio_buckets_alloc;
2266 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2267 if (!ca->disk_buckets) {
2268 err = "ca->disk_buckets alloc failed";
2269 goto err_disk_buckets_alloc;
2272 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2274 for_each_bucket(b, ca)
2275 atomic_set(&b->pin, 0);
2276 return 0;
2278 err_disk_buckets_alloc:
2279 kfree(ca->prio_buckets);
2280 err_prio_buckets_alloc:
2281 vfree(ca->buckets);
2282 err_buckets_alloc:
2283 free_heap(&ca->heap);
2284 err_heap_alloc:
2285 free_fifo(&ca->free_inc);
2286 err_free_inc_alloc:
2287 free_fifo(&ca->free[RESERVE_NONE]);
2288 err_none_alloc:
2289 free_fifo(&ca->free[RESERVE_MOVINGGC]);
2290 err_movinggc_alloc:
2291 free_fifo(&ca->free[RESERVE_PRIO]);
2292 err_prio_alloc:
2293 free_fifo(&ca->free[RESERVE_BTREE]);
2294 err_btree_alloc:
2295 err_free:
2296 module_put(THIS_MODULE);
2297 if (err)
2298 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2299 return ret;
2302 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2303 struct block_device *bdev, struct cache *ca)
2305 const char *err = NULL; /* must be set for any error case */
2306 int ret = 0;
2308 bdevname(bdev, ca->cache_dev_name);
2309 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2310 ca->bdev = bdev;
2311 ca->bdev->bd_holder = ca;
2312 ca->sb_disk = sb_disk;
2314 if (blk_queue_discard(bdev_get_queue(bdev)))
2315 ca->discard = CACHE_DISCARD(&ca->sb);
2317 ret = cache_alloc(ca);
2318 if (ret != 0) {
2320 * If we failed here, it means ca->kobj is not initialized yet,
2321 * kobject_put() won't be called and there is no chance to
2322 * call blkdev_put() to bdev in bch_cache_release(). So we
2323 * explicitly call blkdev_put() here.
2325 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2326 if (ret == -ENOMEM)
2327 err = "cache_alloc(): -ENOMEM";
2328 else if (ret == -EPERM)
2329 err = "cache_alloc(): cache device is too small";
2330 else
2331 err = "cache_alloc(): unknown error";
2332 goto err;
2335 if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) {
2336 err = "error calling kobject_add";
2337 ret = -ENOMEM;
2338 goto out;
2341 mutex_lock(&bch_register_lock);
2342 err = register_cache_set(ca);
2343 mutex_unlock(&bch_register_lock);
2345 if (err) {
2346 ret = -ENODEV;
2347 goto out;
2350 pr_info("registered cache device %s\n", ca->cache_dev_name);
2352 out:
2353 kobject_put(&ca->kobj);
2355 err:
2356 if (err)
2357 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2359 return ret;
2362 /* Global interfaces/init */
2364 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2365 const char *buffer, size_t size);
2366 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2367 struct kobj_attribute *attr,
2368 const char *buffer, size_t size);
2370 kobj_attribute_write(register, register_bcache);
2371 kobj_attribute_write(register_quiet, register_bcache);
2372 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
2374 static bool bch_is_open_backing(dev_t dev)
2376 struct cache_set *c, *tc;
2377 struct cached_dev *dc, *t;
2379 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2380 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2381 if (dc->bdev->bd_dev == dev)
2382 return true;
2383 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2384 if (dc->bdev->bd_dev == dev)
2385 return true;
2386 return false;
2389 static bool bch_is_open_cache(dev_t dev)
2391 struct cache_set *c, *tc;
2393 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2394 struct cache *ca = c->cache;
2396 if (ca->bdev->bd_dev == dev)
2397 return true;
2400 return false;
2403 static bool bch_is_open(dev_t dev)
2405 return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2408 struct async_reg_args {
2409 struct delayed_work reg_work;
2410 char *path;
2411 struct cache_sb *sb;
2412 struct cache_sb_disk *sb_disk;
2413 struct block_device *bdev;
2416 static void register_bdev_worker(struct work_struct *work)
2418 int fail = false;
2419 struct async_reg_args *args =
2420 container_of(work, struct async_reg_args, reg_work.work);
2421 struct cached_dev *dc;
2423 dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2424 if (!dc) {
2425 fail = true;
2426 put_page(virt_to_page(args->sb_disk));
2427 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2428 goto out;
2431 mutex_lock(&bch_register_lock);
2432 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2433 fail = true;
2434 mutex_unlock(&bch_register_lock);
2436 out:
2437 if (fail)
2438 pr_info("error %s: fail to register backing device\n",
2439 args->path);
2440 kfree(args->sb);
2441 kfree(args->path);
2442 kfree(args);
2443 module_put(THIS_MODULE);
2446 static void register_cache_worker(struct work_struct *work)
2448 int fail = false;
2449 struct async_reg_args *args =
2450 container_of(work, struct async_reg_args, reg_work.work);
2451 struct cache *ca;
2453 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2454 if (!ca) {
2455 fail = true;
2456 put_page(virt_to_page(args->sb_disk));
2457 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2458 goto out;
2461 /* blkdev_put() will be called in bch_cache_release() */
2462 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2463 fail = true;
2465 out:
2466 if (fail)
2467 pr_info("error %s: fail to register cache device\n",
2468 args->path);
2469 kfree(args->sb);
2470 kfree(args->path);
2471 kfree(args);
2472 module_put(THIS_MODULE);
2475 static void register_device_aync(struct async_reg_args *args)
2477 if (SB_IS_BDEV(args->sb))
2478 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2479 else
2480 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2482 /* 10 jiffies is enough for a delay */
2483 queue_delayed_work(system_wq, &args->reg_work, 10);
2486 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2487 const char *buffer, size_t size)
2489 const char *err;
2490 char *path = NULL;
2491 struct cache_sb *sb;
2492 struct cache_sb_disk *sb_disk;
2493 struct block_device *bdev;
2494 ssize_t ret;
2495 bool async_registration = false;
2497 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2498 async_registration = true;
2499 #endif
2501 ret = -EBUSY;
2502 err = "failed to reference bcache module";
2503 if (!try_module_get(THIS_MODULE))
2504 goto out;
2506 /* For latest state of bcache_is_reboot */
2507 smp_mb();
2508 err = "bcache is in reboot";
2509 if (bcache_is_reboot)
2510 goto out_module_put;
2512 ret = -ENOMEM;
2513 err = "cannot allocate memory";
2514 path = kstrndup(buffer, size, GFP_KERNEL);
2515 if (!path)
2516 goto out_module_put;
2518 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2519 if (!sb)
2520 goto out_free_path;
2522 ret = -EINVAL;
2523 err = "failed to open device";
2524 bdev = blkdev_get_by_path(strim(path),
2525 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2526 sb);
2527 if (IS_ERR(bdev)) {
2528 if (bdev == ERR_PTR(-EBUSY)) {
2529 dev_t dev;
2531 mutex_lock(&bch_register_lock);
2532 if (lookup_bdev(strim(path), &dev) == 0 &&
2533 bch_is_open(dev))
2534 err = "device already registered";
2535 else
2536 err = "device busy";
2537 mutex_unlock(&bch_register_lock);
2538 if (attr == &ksysfs_register_quiet)
2539 goto done;
2541 goto out_free_sb;
2544 err = "failed to set blocksize";
2545 if (set_blocksize(bdev, 4096))
2546 goto out_blkdev_put;
2548 err = read_super(sb, bdev, &sb_disk);
2549 if (err)
2550 goto out_blkdev_put;
2552 err = "failed to register device";
2554 if (async_registration) {
2555 /* register in asynchronous way */
2556 struct async_reg_args *args =
2557 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2559 if (!args) {
2560 ret = -ENOMEM;
2561 err = "cannot allocate memory";
2562 goto out_put_sb_page;
2565 args->path = path;
2566 args->sb = sb;
2567 args->sb_disk = sb_disk;
2568 args->bdev = bdev;
2569 register_device_aync(args);
2570 /* No wait and returns to user space */
2571 goto async_done;
2574 if (SB_IS_BDEV(sb)) {
2575 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2577 if (!dc)
2578 goto out_put_sb_page;
2580 mutex_lock(&bch_register_lock);
2581 ret = register_bdev(sb, sb_disk, bdev, dc);
2582 mutex_unlock(&bch_register_lock);
2583 /* blkdev_put() will be called in cached_dev_free() */
2584 if (ret < 0)
2585 goto out_free_sb;
2586 } else {
2587 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2589 if (!ca)
2590 goto out_put_sb_page;
2592 /* blkdev_put() will be called in bch_cache_release() */
2593 if (register_cache(sb, sb_disk, bdev, ca) != 0)
2594 goto out_free_sb;
2597 done:
2598 kfree(sb);
2599 kfree(path);
2600 module_put(THIS_MODULE);
2601 async_done:
2602 return size;
2604 out_put_sb_page:
2605 put_page(virt_to_page(sb_disk));
2606 out_blkdev_put:
2607 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2608 out_free_sb:
2609 kfree(sb);
2610 out_free_path:
2611 kfree(path);
2612 path = NULL;
2613 out_module_put:
2614 module_put(THIS_MODULE);
2615 out:
2616 pr_info("error %s: %s\n", path?path:"", err);
2617 return ret;
2621 struct pdev {
2622 struct list_head list;
2623 struct cached_dev *dc;
2626 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2627 struct kobj_attribute *attr,
2628 const char *buffer,
2629 size_t size)
2631 LIST_HEAD(pending_devs);
2632 ssize_t ret = size;
2633 struct cached_dev *dc, *tdc;
2634 struct pdev *pdev, *tpdev;
2635 struct cache_set *c, *tc;
2637 mutex_lock(&bch_register_lock);
2638 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2639 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2640 if (!pdev)
2641 break;
2642 pdev->dc = dc;
2643 list_add(&pdev->list, &pending_devs);
2646 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2647 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2648 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2649 char *set_uuid = c->set_uuid;
2651 if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2652 list_del(&pdev->list);
2653 kfree(pdev);
2654 break;
2658 mutex_unlock(&bch_register_lock);
2660 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2661 pr_info("delete pdev %p\n", pdev);
2662 list_del(&pdev->list);
2663 bcache_device_stop(&pdev->dc->disk);
2664 kfree(pdev);
2667 return ret;
2670 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2672 if (bcache_is_reboot)
2673 return NOTIFY_DONE;
2675 if (code == SYS_DOWN ||
2676 code == SYS_HALT ||
2677 code == SYS_POWER_OFF) {
2678 DEFINE_WAIT(wait);
2679 unsigned long start = jiffies;
2680 bool stopped = false;
2682 struct cache_set *c, *tc;
2683 struct cached_dev *dc, *tdc;
2685 mutex_lock(&bch_register_lock);
2687 if (bcache_is_reboot)
2688 goto out;
2690 /* New registration is rejected since now */
2691 bcache_is_reboot = true;
2693 * Make registering caller (if there is) on other CPU
2694 * core know bcache_is_reboot set to true earlier
2696 smp_mb();
2698 if (list_empty(&bch_cache_sets) &&
2699 list_empty(&uncached_devices))
2700 goto out;
2702 mutex_unlock(&bch_register_lock);
2704 pr_info("Stopping all devices:\n");
2707 * The reason bch_register_lock is not held to call
2708 * bch_cache_set_stop() and bcache_device_stop() is to
2709 * avoid potential deadlock during reboot, because cache
2710 * set or bcache device stopping process will acqurie
2711 * bch_register_lock too.
2713 * We are safe here because bcache_is_reboot sets to
2714 * true already, register_bcache() will reject new
2715 * registration now. bcache_is_reboot also makes sure
2716 * bcache_reboot() won't be re-entered on by other thread,
2717 * so there is no race in following list iteration by
2718 * list_for_each_entry_safe().
2720 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2721 bch_cache_set_stop(c);
2723 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2724 bcache_device_stop(&dc->disk);
2728 * Give an early chance for other kthreads and
2729 * kworkers to stop themselves
2731 schedule();
2733 /* What's a condition variable? */
2734 while (1) {
2735 long timeout = start + 10 * HZ - jiffies;
2737 mutex_lock(&bch_register_lock);
2738 stopped = list_empty(&bch_cache_sets) &&
2739 list_empty(&uncached_devices);
2741 if (timeout < 0 || stopped)
2742 break;
2744 prepare_to_wait(&unregister_wait, &wait,
2745 TASK_UNINTERRUPTIBLE);
2747 mutex_unlock(&bch_register_lock);
2748 schedule_timeout(timeout);
2751 finish_wait(&unregister_wait, &wait);
2753 if (stopped)
2754 pr_info("All devices stopped\n");
2755 else
2756 pr_notice("Timeout waiting for devices to be closed\n");
2757 out:
2758 mutex_unlock(&bch_register_lock);
2761 return NOTIFY_DONE;
2764 static struct notifier_block reboot = {
2765 .notifier_call = bcache_reboot,
2766 .priority = INT_MAX, /* before any real devices */
2769 static void bcache_exit(void)
2771 bch_debug_exit();
2772 bch_request_exit();
2773 if (bcache_kobj)
2774 kobject_put(bcache_kobj);
2775 if (bcache_wq)
2776 destroy_workqueue(bcache_wq);
2777 if (bch_journal_wq)
2778 destroy_workqueue(bch_journal_wq);
2780 if (bcache_major)
2781 unregister_blkdev(bcache_major, "bcache");
2782 unregister_reboot_notifier(&reboot);
2783 mutex_destroy(&bch_register_lock);
2786 /* Check and fixup module parameters */
2787 static void check_module_parameters(void)
2789 if (bch_cutoff_writeback_sync == 0)
2790 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2791 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2792 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2793 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2794 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2797 if (bch_cutoff_writeback == 0)
2798 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2799 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2800 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2801 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2802 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2805 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2806 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2807 bch_cutoff_writeback, bch_cutoff_writeback_sync);
2808 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2812 static int __init bcache_init(void)
2814 static const struct attribute *files[] = {
2815 &ksysfs_register.attr,
2816 &ksysfs_register_quiet.attr,
2817 &ksysfs_pendings_cleanup.attr,
2818 NULL
2821 check_module_parameters();
2823 mutex_init(&bch_register_lock);
2824 init_waitqueue_head(&unregister_wait);
2825 register_reboot_notifier(&reboot);
2827 bcache_major = register_blkdev(0, "bcache");
2828 if (bcache_major < 0) {
2829 unregister_reboot_notifier(&reboot);
2830 mutex_destroy(&bch_register_lock);
2831 return bcache_major;
2834 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2835 if (!bcache_wq)
2836 goto err;
2838 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2839 if (!bch_journal_wq)
2840 goto err;
2842 bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2843 if (!bcache_kobj)
2844 goto err;
2846 if (bch_request_init() ||
2847 sysfs_create_files(bcache_kobj, files))
2848 goto err;
2850 bch_debug_init();
2851 closure_debug_init();
2853 bcache_is_reboot = false;
2855 return 0;
2856 err:
2857 bcache_exit();
2858 return -ENOMEM;
2862 * Module hooks
2864 module_exit(bcache_exit);
2865 module_init(bcache_init);
2867 module_param(bch_cutoff_writeback, uint, 0);
2868 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2870 module_param(bch_cutoff_writeback_sync, uint, 0);
2871 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2873 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2874 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2875 MODULE_LICENSE("GPL");