io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / phy / rockchip / phy-rockchip-inno-dsidphy.c
blob8af8c6c5cc028b2799015e636ecdaed6a5db0289
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
5 * Author: Wyon Bi <bivvy.bi@rock-chips.com>
6 */
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/iopoll.h>
11 #include <linux/clk-provider.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/platform_device.h>
17 #include <linux/reset.h>
18 #include <linux/phy/phy.h>
19 #include <linux/phy/phy-mipi-dphy.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/mfd/syscon.h>
23 #define PSEC_PER_SEC 1000000000000LL
25 #define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
28 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
29 * is the first address, the other from the bit4 to bit0 is the second address.
30 * when you configure the registers, you must set both of them. The Clock Lane
31 * and Data Lane use the same registers with the same second address, but the
32 * first address is different.
34 #define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
35 #define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
36 #define PHY_REG(first, second) (FIRST_ADDRESS(first) | \
37 SECOND_ADDRESS(second))
39 /* Analog Register Part: reg00 */
40 #define BANDGAP_POWER_MASK BIT(7)
41 #define BANDGAP_POWER_DOWN BIT(7)
42 #define BANDGAP_POWER_ON 0
43 #define LANE_EN_MASK GENMASK(6, 2)
44 #define LANE_EN_CK BIT(6)
45 #define LANE_EN_3 BIT(5)
46 #define LANE_EN_2 BIT(4)
47 #define LANE_EN_1 BIT(3)
48 #define LANE_EN_0 BIT(2)
49 #define POWER_WORK_MASK GENMASK(1, 0)
50 #define POWER_WORK_ENABLE UPDATE(1, 1, 0)
51 #define POWER_WORK_DISABLE UPDATE(2, 1, 0)
52 /* Analog Register Part: reg01 */
53 #define REG_SYNCRST_MASK BIT(2)
54 #define REG_SYNCRST_RESET BIT(2)
55 #define REG_SYNCRST_NORMAL 0
56 #define REG_LDOPD_MASK BIT(1)
57 #define REG_LDOPD_POWER_DOWN BIT(1)
58 #define REG_LDOPD_POWER_ON 0
59 #define REG_PLLPD_MASK BIT(0)
60 #define REG_PLLPD_POWER_DOWN BIT(0)
61 #define REG_PLLPD_POWER_ON 0
62 /* Analog Register Part: reg03 */
63 #define REG_FBDIV_HI_MASK BIT(5)
64 #define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5)
65 #define REG_PREDIV_MASK GENMASK(4, 0)
66 #define REG_PREDIV(x) UPDATE(x, 4, 0)
67 /* Analog Register Part: reg04 */
68 #define REG_FBDIV_LO_MASK GENMASK(7, 0)
69 #define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
70 /* Analog Register Part: reg05 */
71 #define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4)
72 #define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4)
73 #define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0)
74 #define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0)
75 /* Analog Register Part: reg06 */
76 #define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4)
77 #define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4)
78 #define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0)
79 #define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0)
80 /* Analog Register Part: reg07 */
81 #define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4)
82 #define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4)
83 #define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0)
84 #define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0)
85 /* Analog Register Part: reg08 */
86 #define SAMPLE_CLOCK_DIRECTION_MASK BIT(4)
87 #define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4)
88 #define SAMPLE_CLOCK_DIRECTION_FORWARD 0
89 /* Digital Register Part: reg00 */
90 #define REG_DIG_RSTN_MASK BIT(0)
91 #define REG_DIG_RSTN_NORMAL BIT(0)
92 #define REG_DIG_RSTN_RESET 0
93 /* Digital Register Part: reg01 */
94 #define INVERT_TXCLKESC_MASK BIT(1)
95 #define INVERT_TXCLKESC_ENABLE BIT(1)
96 #define INVERT_TXCLKESC_DISABLE 0
97 #define INVERT_TXBYTECLKHS_MASK BIT(0)
98 #define INVERT_TXBYTECLKHS_ENABLE BIT(0)
99 #define INVERT_TXBYTECLKHS_DISABLE 0
100 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
101 #define T_LPX_CNT_MASK GENMASK(5, 0)
102 #define T_LPX_CNT(x) UPDATE(x, 5, 0)
103 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
104 #define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
105 #define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
106 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
107 #define T_HS_ZERO_CNT_MASK GENMASK(5, 0)
108 #define T_HS_ZERO_CNT(x) UPDATE(x, 5, 0)
109 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
110 #define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
111 #define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
112 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
113 #define T_HS_EXIT_CNT_MASK GENMASK(4, 0)
114 #define T_HS_EXIT_CNT(x) UPDATE(x, 4, 0)
115 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
116 #define T_CLK_POST_CNT_MASK GENMASK(3, 0)
117 #define T_CLK_POST_CNT(x) UPDATE(x, 3, 0)
118 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
119 #define LPDT_TX_PPI_SYNC_MASK BIT(2)
120 #define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
121 #define LPDT_TX_PPI_SYNC_DISABLE 0
122 #define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
123 #define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
124 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
125 #define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
126 #define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
127 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
128 #define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
129 #define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
130 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
131 #define T_TA_GO_CNT_MASK GENMASK(5, 0)
132 #define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
133 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
134 #define T_TA_SURE_CNT_MASK GENMASK(5, 0)
135 #define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
136 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
137 #define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
138 #define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
139 /* LVDS Register Part: reg00 */
140 #define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2)
141 #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2)
142 #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0
143 /* LVDS Register Part: reg01 */
144 #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7)
145 #define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7)
146 #define LVDS_DIGITAL_INTERNAL_DISABLE 0
147 /* LVDS Register Part: reg03 */
148 #define MODE_ENABLE_MASK GENMASK(2, 0)
149 #define TTL_MODE_ENABLE BIT(2)
150 #define LVDS_MODE_ENABLE BIT(1)
151 #define MIPI_MODE_ENABLE BIT(0)
152 /* LVDS Register Part: reg0b */
153 #define LVDS_LANE_EN_MASK GENMASK(7, 3)
154 #define LVDS_DATA_LANE0_EN BIT(7)
155 #define LVDS_DATA_LANE1_EN BIT(6)
156 #define LVDS_DATA_LANE2_EN BIT(5)
157 #define LVDS_DATA_LANE3_EN BIT(4)
158 #define LVDS_CLK_LANE_EN BIT(3)
159 #define LVDS_PLL_POWER_MASK BIT(2)
160 #define LVDS_PLL_POWER_OFF BIT(2)
161 #define LVDS_PLL_POWER_ON 0
162 #define LVDS_BANDGAP_POWER_MASK BIT(0)
163 #define LVDS_BANDGAP_POWER_DOWN BIT(0)
164 #define LVDS_BANDGAP_POWER_ON 0
166 #define DSI_PHY_RSTZ 0xa0
167 #define PHY_ENABLECLK BIT(2)
168 #define DSI_PHY_STATUS 0xb0
169 #define PHY_LOCK BIT(0)
171 struct inno_dsidphy {
172 struct device *dev;
173 struct clk *ref_clk;
174 struct clk *pclk_phy;
175 struct clk *pclk_host;
176 void __iomem *phy_base;
177 void __iomem *host_base;
178 struct reset_control *rst;
179 enum phy_mode mode;
180 struct phy_configure_opts_mipi_dphy dphy_cfg;
182 struct clk *pll_clk;
183 struct {
184 struct clk_hw hw;
185 u8 prediv;
186 u16 fbdiv;
187 unsigned long rate;
188 } pll;
191 enum {
192 REGISTER_PART_ANALOG,
193 REGISTER_PART_DIGITAL,
194 REGISTER_PART_CLOCK_LANE,
195 REGISTER_PART_DATA0_LANE,
196 REGISTER_PART_DATA1_LANE,
197 REGISTER_PART_DATA2_LANE,
198 REGISTER_PART_DATA3_LANE,
199 REGISTER_PART_LVDS,
202 static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw)
204 return container_of(hw, struct inno_dsidphy, pll.hw);
207 static void phy_update_bits(struct inno_dsidphy *inno,
208 u8 first, u8 second, u8 mask, u8 val)
210 u32 reg = PHY_REG(first, second) << 2;
211 unsigned int tmp, orig;
213 orig = readl(inno->phy_base + reg);
214 tmp = orig & ~mask;
215 tmp |= val & mask;
216 writel(tmp, inno->phy_base + reg);
219 static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
220 unsigned long rate)
222 unsigned long prate = clk_get_rate(inno->ref_clk);
223 unsigned long best_freq = 0;
224 unsigned long fref, fout;
225 u8 min_prediv, max_prediv;
226 u8 _prediv, best_prediv = 1;
227 u16 _fbdiv, best_fbdiv = 1;
228 u32 min_delta = UINT_MAX;
231 * The PLL output frequency can be calculated using a simple formula:
232 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
233 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
235 fref = prate / 2;
236 if (rate > 1000000000UL)
237 fout = 1000000000UL;
238 else
239 fout = rate;
241 /* 5Mhz < Fref / prediv < 40MHz */
242 min_prediv = DIV_ROUND_UP(fref, 40000000);
243 max_prediv = fref / 5000000;
245 for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
246 u64 tmp;
247 u32 delta;
249 tmp = (u64)fout * _prediv;
250 do_div(tmp, fref);
251 _fbdiv = tmp;
254 * The possible settings of feedback divider are
255 * 12, 13, 14, 16, ~ 511
257 if (_fbdiv == 15)
258 continue;
260 if (_fbdiv < 12 || _fbdiv > 511)
261 continue;
263 tmp = (u64)_fbdiv * fref;
264 do_div(tmp, _prediv);
266 delta = abs(fout - tmp);
267 if (!delta) {
268 best_prediv = _prediv;
269 best_fbdiv = _fbdiv;
270 best_freq = tmp;
271 break;
272 } else if (delta < min_delta) {
273 best_prediv = _prediv;
274 best_fbdiv = _fbdiv;
275 best_freq = tmp;
276 min_delta = delta;
280 if (best_freq) {
281 inno->pll.prediv = best_prediv;
282 inno->pll.fbdiv = best_fbdiv;
283 inno->pll.rate = best_freq;
286 return best_freq;
289 static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
291 struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
292 const struct {
293 unsigned long rate;
294 u8 hs_prepare;
295 u8 clk_lane_hs_zero;
296 u8 data_lane_hs_zero;
297 u8 hs_trail;
298 } timings[] = {
299 { 110000000, 0x20, 0x16, 0x02, 0x22},
300 { 150000000, 0x06, 0x16, 0x03, 0x45},
301 { 200000000, 0x18, 0x17, 0x04, 0x0b},
302 { 250000000, 0x05, 0x17, 0x05, 0x16},
303 { 300000000, 0x51, 0x18, 0x06, 0x2c},
304 { 400000000, 0x64, 0x19, 0x07, 0x33},
305 { 500000000, 0x20, 0x1b, 0x07, 0x4e},
306 { 600000000, 0x6a, 0x1d, 0x08, 0x3a},
307 { 700000000, 0x3e, 0x1e, 0x08, 0x6a},
308 { 800000000, 0x21, 0x1f, 0x09, 0x29},
309 {1000000000, 0x09, 0x20, 0x09, 0x27},
311 u32 t_txbyteclkhs, t_txclkesc;
312 u32 txbyteclkhs, txclkesc, esc_clk_div;
313 u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
314 u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
315 unsigned int i;
317 inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
319 /* Select MIPI mode */
320 phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
321 MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
322 /* Configure PLL */
323 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
324 REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
325 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
326 REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
327 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
328 REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
329 /* Enable PLL and LDO */
330 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
331 REG_LDOPD_MASK | REG_PLLPD_MASK,
332 REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
333 /* Reset analog */
334 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
335 REG_SYNCRST_MASK, REG_SYNCRST_RESET);
336 udelay(1);
337 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
338 REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
339 /* Reset digital */
340 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
341 REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
342 udelay(1);
343 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
344 REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
346 txbyteclkhs = inno->pll.rate / 8;
347 t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
349 esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
350 txclkesc = txbyteclkhs / esc_clk_div;
351 t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
354 * The value of counter for HS Ths-exit
355 * Ths-exit = Tpin_txbyteclkhs * value
357 hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
359 * The value of counter for HS Tclk-post
360 * Tclk-post = Tpin_txbyteclkhs * value
362 clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
364 * The value of counter for HS Tclk-pre
365 * Tclk-pre = Tpin_txbyteclkhs * value
367 clk_pre = DIV_ROUND_UP(cfg->clk_pre, t_txbyteclkhs);
370 * The value of counter for HS Tlpx Time
371 * Tlpx = Tpin_txbyteclkhs * (2 + value)
373 lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
374 if (lpx >= 2)
375 lpx -= 2;
378 * The value of counter for HS Tta-go
379 * Tta-go for turnaround
380 * Tta-go = Ttxclkesc * value
382 ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
384 * The value of counter for HS Tta-sure
385 * Tta-sure for turnaround
386 * Tta-sure = Ttxclkesc * value
388 ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
390 * The value of counter for HS Tta-wait
391 * Tta-wait for turnaround
392 * Tta-wait = Ttxclkesc * value
394 ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
396 for (i = 0; i < ARRAY_SIZE(timings); i++)
397 if (inno->pll.rate <= timings[i].rate)
398 break;
400 if (i == ARRAY_SIZE(timings))
401 --i;
403 hs_prepare = timings[i].hs_prepare;
404 hs_trail = timings[i].hs_trail;
405 clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
406 data_lane_hs_zero = timings[i].data_lane_hs_zero;
407 wakeup = 0x3ff;
409 for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
410 if (i == REGISTER_PART_CLOCK_LANE)
411 hs_zero = clk_lane_hs_zero;
412 else
413 hs_zero = data_lane_hs_zero;
415 phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
416 T_LPX_CNT(lpx));
417 phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
418 T_HS_PREPARE_CNT(hs_prepare));
419 phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_MASK,
420 T_HS_ZERO_CNT(hs_zero));
421 phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
422 T_HS_TRAIL_CNT(hs_trail));
423 phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_MASK,
424 T_HS_EXIT_CNT(hs_exit));
425 phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_MASK,
426 T_CLK_POST_CNT(clk_post));
427 phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
428 T_CLK_PRE_CNT(clk_pre));
429 phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
430 T_WAKEUP_CNT_HI(wakeup >> 8));
431 phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
432 T_WAKEUP_CNT_LO(wakeup));
433 phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
434 T_TA_GO_CNT(ta_go));
435 phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
436 T_TA_SURE_CNT(ta_sure));
437 phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
438 T_TA_WAIT_CNT(ta_wait));
441 /* Enable all lanes on analog part */
442 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
443 LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
444 LANE_EN_1 | LANE_EN_0);
447 static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
449 u8 prediv = 2;
450 u16 fbdiv = 28;
452 /* Sample clock reverse direction */
453 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
454 SAMPLE_CLOCK_DIRECTION_MASK,
455 SAMPLE_CLOCK_DIRECTION_REVERSE);
457 /* Select LVDS mode */
458 phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
459 MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
460 /* Configure PLL */
461 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
462 REG_PREDIV_MASK, REG_PREDIV(prediv));
463 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
464 REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
465 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
466 REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
467 phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
468 /* Enable PLL and Bandgap */
469 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
470 LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
471 LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
473 msleep(20);
475 /* Reset LVDS digital logic */
476 phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
477 LVDS_DIGITAL_INTERNAL_RESET_MASK,
478 LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
479 udelay(1);
480 phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
481 LVDS_DIGITAL_INTERNAL_RESET_MASK,
482 LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
483 /* Enable LVDS digital logic */
484 phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
485 LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
486 LVDS_DIGITAL_INTERNAL_ENABLE);
487 /* Enable LVDS analog driver */
488 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
489 LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
490 LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
491 LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
494 static int inno_dsidphy_power_on(struct phy *phy)
496 struct inno_dsidphy *inno = phy_get_drvdata(phy);
498 clk_prepare_enable(inno->pclk_phy);
499 clk_prepare_enable(inno->ref_clk);
500 pm_runtime_get_sync(inno->dev);
502 /* Bandgap power on */
503 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
504 BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
505 /* Enable power work */
506 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
507 POWER_WORK_MASK, POWER_WORK_ENABLE);
509 switch (inno->mode) {
510 case PHY_MODE_MIPI_DPHY:
511 inno_dsidphy_mipi_mode_enable(inno);
512 break;
513 case PHY_MODE_LVDS:
514 inno_dsidphy_lvds_mode_enable(inno);
515 break;
516 default:
517 return -EINVAL;
520 return 0;
523 static int inno_dsidphy_power_off(struct phy *phy)
525 struct inno_dsidphy *inno = phy_get_drvdata(phy);
527 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
528 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
529 REG_LDOPD_MASK | REG_PLLPD_MASK,
530 REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
531 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
532 POWER_WORK_MASK, POWER_WORK_DISABLE);
533 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
534 BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
536 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
537 phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
538 LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
539 LVDS_DIGITAL_INTERNAL_DISABLE);
540 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
541 LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
542 LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
544 pm_runtime_put(inno->dev);
545 clk_disable_unprepare(inno->ref_clk);
546 clk_disable_unprepare(inno->pclk_phy);
548 return 0;
551 static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
552 int submode)
554 struct inno_dsidphy *inno = phy_get_drvdata(phy);
556 switch (mode) {
557 case PHY_MODE_MIPI_DPHY:
558 case PHY_MODE_LVDS:
559 inno->mode = mode;
560 break;
561 default:
562 return -EINVAL;
565 return 0;
568 static int inno_dsidphy_configure(struct phy *phy,
569 union phy_configure_opts *opts)
571 struct inno_dsidphy *inno = phy_get_drvdata(phy);
572 int ret;
574 if (inno->mode != PHY_MODE_MIPI_DPHY)
575 return -EINVAL;
577 ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
578 if (ret)
579 return ret;
581 memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
583 return 0;
586 static const struct phy_ops inno_dsidphy_ops = {
587 .configure = inno_dsidphy_configure,
588 .set_mode = inno_dsidphy_set_mode,
589 .power_on = inno_dsidphy_power_on,
590 .power_off = inno_dsidphy_power_off,
591 .owner = THIS_MODULE,
594 static int inno_dsidphy_probe(struct platform_device *pdev)
596 struct device *dev = &pdev->dev;
597 struct inno_dsidphy *inno;
598 struct phy_provider *phy_provider;
599 struct phy *phy;
600 int ret;
602 inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
603 if (!inno)
604 return -ENOMEM;
606 inno->dev = dev;
607 platform_set_drvdata(pdev, inno);
609 inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
610 if (IS_ERR(inno->phy_base))
611 return PTR_ERR(inno->phy_base);
613 inno->ref_clk = devm_clk_get(dev, "ref");
614 if (IS_ERR(inno->ref_clk)) {
615 ret = PTR_ERR(inno->ref_clk);
616 dev_err(dev, "failed to get ref clock: %d\n", ret);
617 return ret;
620 inno->pclk_phy = devm_clk_get(dev, "pclk");
621 if (IS_ERR(inno->pclk_phy)) {
622 ret = PTR_ERR(inno->pclk_phy);
623 dev_err(dev, "failed to get phy pclk: %d\n", ret);
624 return ret;
627 inno->rst = devm_reset_control_get(dev, "apb");
628 if (IS_ERR(inno->rst)) {
629 ret = PTR_ERR(inno->rst);
630 dev_err(dev, "failed to get system reset control: %d\n", ret);
631 return ret;
634 phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
635 if (IS_ERR(phy)) {
636 ret = PTR_ERR(phy);
637 dev_err(dev, "failed to create phy: %d\n", ret);
638 return ret;
641 phy_set_drvdata(phy, inno);
643 phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
644 if (IS_ERR(phy_provider)) {
645 ret = PTR_ERR(phy_provider);
646 dev_err(dev, "failed to register phy provider: %d\n", ret);
647 return ret;
650 pm_runtime_enable(dev);
652 return 0;
655 static int inno_dsidphy_remove(struct platform_device *pdev)
657 struct inno_dsidphy *inno = platform_get_drvdata(pdev);
659 pm_runtime_disable(inno->dev);
661 return 0;
664 static const struct of_device_id inno_dsidphy_of_match[] = {
665 { .compatible = "rockchip,px30-dsi-dphy", },
666 { .compatible = "rockchip,rk3128-dsi-dphy", },
667 { .compatible = "rockchip,rk3368-dsi-dphy", },
670 MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
672 static struct platform_driver inno_dsidphy_driver = {
673 .driver = {
674 .name = "inno-dsidphy",
675 .of_match_table = of_match_ptr(inno_dsidphy_of_match),
677 .probe = inno_dsidphy_probe,
678 .remove = inno_dsidphy_remove,
680 module_platform_driver(inno_dsidphy_driver);
682 MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
683 MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
684 MODULE_LICENSE("GPL v2");