io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / spi / spi-atmel.c
blob948396b382d73c8bf9d12b224a61e57324e07571
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
5 * Copyright (C) 2006 Atmel Corporation
6 */
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
27 /* SPI register offsets */
28 #define SPI_CR 0x0000
29 #define SPI_MR 0x0004
30 #define SPI_RDR 0x0008
31 #define SPI_TDR 0x000c
32 #define SPI_SR 0x0010
33 #define SPI_IER 0x0014
34 #define SPI_IDR 0x0018
35 #define SPI_IMR 0x001c
36 #define SPI_CSR0 0x0030
37 #define SPI_CSR1 0x0034
38 #define SPI_CSR2 0x0038
39 #define SPI_CSR3 0x003c
40 #define SPI_FMR 0x0040
41 #define SPI_FLR 0x0044
42 #define SPI_VERSION 0x00fc
43 #define SPI_RPR 0x0100
44 #define SPI_RCR 0x0104
45 #define SPI_TPR 0x0108
46 #define SPI_TCR 0x010c
47 #define SPI_RNPR 0x0110
48 #define SPI_RNCR 0x0114
49 #define SPI_TNPR 0x0118
50 #define SPI_TNCR 0x011c
51 #define SPI_PTCR 0x0120
52 #define SPI_PTSR 0x0124
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET 0
56 #define SPI_SPIEN_SIZE 1
57 #define SPI_SPIDIS_OFFSET 1
58 #define SPI_SPIDIS_SIZE 1
59 #define SPI_SWRST_OFFSET 7
60 #define SPI_SWRST_SIZE 1
61 #define SPI_LASTXFER_OFFSET 24
62 #define SPI_LASTXFER_SIZE 1
63 #define SPI_TXFCLR_OFFSET 16
64 #define SPI_TXFCLR_SIZE 1
65 #define SPI_RXFCLR_OFFSET 17
66 #define SPI_RXFCLR_SIZE 1
67 #define SPI_FIFOEN_OFFSET 30
68 #define SPI_FIFOEN_SIZE 1
69 #define SPI_FIFODIS_OFFSET 31
70 #define SPI_FIFODIS_SIZE 1
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET 0
74 #define SPI_MSTR_SIZE 1
75 #define SPI_PS_OFFSET 1
76 #define SPI_PS_SIZE 1
77 #define SPI_PCSDEC_OFFSET 2
78 #define SPI_PCSDEC_SIZE 1
79 #define SPI_FDIV_OFFSET 3
80 #define SPI_FDIV_SIZE 1
81 #define SPI_MODFDIS_OFFSET 4
82 #define SPI_MODFDIS_SIZE 1
83 #define SPI_WDRBT_OFFSET 5
84 #define SPI_WDRBT_SIZE 1
85 #define SPI_LLB_OFFSET 7
86 #define SPI_LLB_SIZE 1
87 #define SPI_PCS_OFFSET 16
88 #define SPI_PCS_SIZE 4
89 #define SPI_DLYBCS_OFFSET 24
90 #define SPI_DLYBCS_SIZE 8
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET 0
94 #define SPI_RD_SIZE 16
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET 0
98 #define SPI_TD_SIZE 16
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET 0
102 #define SPI_RDRF_SIZE 1
103 #define SPI_TDRE_OFFSET 1
104 #define SPI_TDRE_SIZE 1
105 #define SPI_MODF_OFFSET 2
106 #define SPI_MODF_SIZE 1
107 #define SPI_OVRES_OFFSET 3
108 #define SPI_OVRES_SIZE 1
109 #define SPI_ENDRX_OFFSET 4
110 #define SPI_ENDRX_SIZE 1
111 #define SPI_ENDTX_OFFSET 5
112 #define SPI_ENDTX_SIZE 1
113 #define SPI_RXBUFF_OFFSET 6
114 #define SPI_RXBUFF_SIZE 1
115 #define SPI_TXBUFE_OFFSET 7
116 #define SPI_TXBUFE_SIZE 1
117 #define SPI_NSSR_OFFSET 8
118 #define SPI_NSSR_SIZE 1
119 #define SPI_TXEMPTY_OFFSET 9
120 #define SPI_TXEMPTY_SIZE 1
121 #define SPI_SPIENS_OFFSET 16
122 #define SPI_SPIENS_SIZE 1
123 #define SPI_TXFEF_OFFSET 24
124 #define SPI_TXFEF_SIZE 1
125 #define SPI_TXFFF_OFFSET 25
126 #define SPI_TXFFF_SIZE 1
127 #define SPI_TXFTHF_OFFSET 26
128 #define SPI_TXFTHF_SIZE 1
129 #define SPI_RXFEF_OFFSET 27
130 #define SPI_RXFEF_SIZE 1
131 #define SPI_RXFFF_OFFSET 28
132 #define SPI_RXFFF_SIZE 1
133 #define SPI_RXFTHF_OFFSET 29
134 #define SPI_RXFTHF_SIZE 1
135 #define SPI_TXFPTEF_OFFSET 30
136 #define SPI_TXFPTEF_SIZE 1
137 #define SPI_RXFPTEF_OFFSET 31
138 #define SPI_RXFPTEF_SIZE 1
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET 0
142 #define SPI_CPOL_SIZE 1
143 #define SPI_NCPHA_OFFSET 1
144 #define SPI_NCPHA_SIZE 1
145 #define SPI_CSAAT_OFFSET 3
146 #define SPI_CSAAT_SIZE 1
147 #define SPI_BITS_OFFSET 4
148 #define SPI_BITS_SIZE 4
149 #define SPI_SCBR_OFFSET 8
150 #define SPI_SCBR_SIZE 8
151 #define SPI_DLYBS_OFFSET 16
152 #define SPI_DLYBS_SIZE 8
153 #define SPI_DLYBCT_OFFSET 24
154 #define SPI_DLYBCT_SIZE 8
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET 0
158 #define SPI_RXCTR_SIZE 16
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET 0
162 #define SPI_TXCTR_SIZE 16
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET 0
166 #define SPI_RXNCR_SIZE 16
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET 0
170 #define SPI_TXNCR_SIZE 16
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET 0
174 #define SPI_RXTEN_SIZE 1
175 #define SPI_RXTDIS_OFFSET 1
176 #define SPI_RXTDIS_SIZE 1
177 #define SPI_TXTEN_OFFSET 8
178 #define SPI_TXTEN_SIZE 1
179 #define SPI_TXTDIS_OFFSET 9
180 #define SPI_TXTDIS_SIZE 1
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET 0
184 #define SPI_TXRDYM_SIZE 2
185 #define SPI_RXRDYM_OFFSET 4
186 #define SPI_RXRDYM_SIZE 2
187 #define SPI_TXFTHRES_OFFSET 16
188 #define SPI_TXFTHRES_SIZE 6
189 #define SPI_RXFTHRES_OFFSET 24
190 #define SPI_RXFTHRES_SIZE 6
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET 0
194 #define SPI_TXFL_SIZE 6
195 #define SPI_RXFL_OFFSET 16
196 #define SPI_RXFL_SIZE 6
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT 0
200 #define SPI_BITS_9_BPT 1
201 #define SPI_BITS_10_BPT 2
202 #define SPI_BITS_11_BPT 3
203 #define SPI_BITS_12_BPT 4
204 #define SPI_BITS_13_BPT 5
205 #define SPI_BITS_14_BPT 6
206 #define SPI_BITS_15_BPT 7
207 #define SPI_BITS_16_BPT 8
208 #define SPI_ONE_DATA 0
209 #define SPI_TWO_DATA 1
210 #define SPI_FOUR_DATA 2
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214 (1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221 | SPI_BF(name, value))
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225 readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227 writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229 writew_relaxed((value), (port)->regs + SPI_##reg)
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232 * cache operations; better heuristics consider wordsize and bitrate.
234 #define DMA_MIN_BYTES 16
236 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
238 #define AUTOSUSPEND_TIMEOUT 2000
240 struct atmel_spi_caps {
241 bool is_spi2;
242 bool has_wdrbt;
243 bool has_dma_support;
244 bool has_pdc_support;
248 * The core SPI transfer engine just talks to a register bank to set up
249 * DMA transfers; transfer queue progress is driven by IRQs. The clock
250 * framework provides the base clock, subdivided for each spi_device.
252 struct atmel_spi {
253 spinlock_t lock;
254 unsigned long flags;
256 phys_addr_t phybase;
257 void __iomem *regs;
258 int irq;
259 struct clk *clk;
260 struct platform_device *pdev;
261 unsigned long spi_clk;
263 struct spi_transfer *current_transfer;
264 int current_remaining_bytes;
265 int done_status;
266 dma_addr_t dma_addr_rx_bbuf;
267 dma_addr_t dma_addr_tx_bbuf;
268 void *addr_rx_bbuf;
269 void *addr_tx_bbuf;
271 struct completion xfer_completion;
273 struct atmel_spi_caps caps;
275 bool use_dma;
276 bool use_pdc;
278 bool keep_cs;
280 u32 fifo_size;
281 u8 native_cs_free;
282 u8 native_cs_for_gpio;
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287 u32 csr;
290 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS 0xffffffff
294 * Version 2 of the SPI controller has
295 * - CR.LASTXFER
296 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298 * - SPI_CSRx.CSAAT
299 * - SPI_CSRx.SBCR allows faster clocking
301 static bool atmel_spi_is_v2(struct atmel_spi *as)
303 return as->caps.is_spi2;
307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308 * they assume that spi slave device state will not change on deselect, so
309 * that automagic deselection is OK. ("NPCSx rises if no data is to be
310 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
311 * controllers have CSAAT and friends.
313 * Even controller newer than ar91rm9200, using GPIOs can make sens as
314 * it lets us support active-high chipselects despite the controller's
315 * belief that only active-low devices/systems exists.
317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318 * right when driven with GPIO. ("Mode Fault does not allow more than one
319 * Master on Chip Select 0.") No workaround exists for that ... so for
320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321 * and (c) will trigger that first erratum in some cases.
324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
326 struct atmel_spi_device *asd = spi->controller_state;
327 int chip_select;
328 u32 mr;
330 if (spi->cs_gpiod)
331 chip_select = as->native_cs_for_gpio;
332 else
333 chip_select = spi->chip_select;
335 if (atmel_spi_is_v2(as)) {
336 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337 /* For the low SPI version, there is a issue that PDC transfer
338 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
340 spi_writel(as, CSR0, asd->csr);
341 if (as->caps.has_wdrbt) {
342 spi_writel(as, MR,
343 SPI_BF(PCS, ~(0x01 << chip_select))
344 | SPI_BIT(WDRBT)
345 | SPI_BIT(MODFDIS)
346 | SPI_BIT(MSTR));
347 } else {
348 spi_writel(as, MR,
349 SPI_BF(PCS, ~(0x01 << chip_select))
350 | SPI_BIT(MODFDIS)
351 | SPI_BIT(MSTR));
354 mr = spi_readl(as, MR);
355 if (spi->cs_gpiod)
356 gpiod_set_value(spi->cs_gpiod, 1);
357 } else {
358 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
359 int i;
360 u32 csr;
362 /* Make sure clock polarity is correct */
363 for (i = 0; i < spi->master->num_chipselect; i++) {
364 csr = spi_readl(as, CSR0 + 4 * i);
365 if ((csr ^ cpol) & SPI_BIT(CPOL))
366 spi_writel(as, CSR0 + 4 * i,
367 csr ^ SPI_BIT(CPOL));
370 mr = spi_readl(as, MR);
371 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
372 if (spi->cs_gpiod)
373 gpiod_set_value(spi->cs_gpiod, 1);
374 spi_writel(as, MR, mr);
377 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
380 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
382 int chip_select;
383 u32 mr;
385 if (spi->cs_gpiod)
386 chip_select = as->native_cs_for_gpio;
387 else
388 chip_select = spi->chip_select;
390 /* only deactivate *this* device; sometimes transfers to
391 * another device may be active when this routine is called.
393 mr = spi_readl(as, MR);
394 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
395 mr = SPI_BFINS(PCS, 0xf, mr);
396 spi_writel(as, MR, mr);
399 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
401 if (!spi->cs_gpiod)
402 spi_writel(as, CR, SPI_BIT(LASTXFER));
403 else
404 gpiod_set_value(spi->cs_gpiod, 0);
407 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
409 spin_lock_irqsave(&as->lock, as->flags);
412 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
414 spin_unlock_irqrestore(&as->lock, as->flags);
417 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
419 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
422 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
423 struct spi_transfer *xfer)
425 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
428 static bool atmel_spi_can_dma(struct spi_master *master,
429 struct spi_device *spi,
430 struct spi_transfer *xfer)
432 struct atmel_spi *as = spi_master_get_devdata(master);
434 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
435 return atmel_spi_use_dma(as, xfer) &&
436 !atmel_spi_is_vmalloc_xfer(xfer);
437 else
438 return atmel_spi_use_dma(as, xfer);
442 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
443 struct dma_slave_config *slave_config,
444 u8 bits_per_word)
446 struct spi_master *master = platform_get_drvdata(as->pdev);
447 int err = 0;
449 if (bits_per_word > 8) {
450 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
451 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
452 } else {
453 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
454 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
457 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
458 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
459 slave_config->src_maxburst = 1;
460 slave_config->dst_maxburst = 1;
461 slave_config->device_fc = false;
464 * This driver uses fixed peripheral select mode (PS bit set to '0' in
465 * the Mode Register).
466 * So according to the datasheet, when FIFOs are available (and
467 * enabled), the Transmit FIFO operates in Multiple Data Mode.
468 * In this mode, up to 2 data, not 4, can be written into the Transmit
469 * Data Register in a single access.
470 * However, the first data has to be written into the lowest 16 bits and
471 * the second data into the highest 16 bits of the Transmit
472 * Data Register. For 8bit data (the most frequent case), it would
473 * require to rework tx_buf so each data would actualy fit 16 bits.
474 * So we'd rather write only one data at the time. Hence the transmit
475 * path works the same whether FIFOs are available (and enabled) or not.
477 slave_config->direction = DMA_MEM_TO_DEV;
478 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
479 dev_err(&as->pdev->dev,
480 "failed to configure tx dma channel\n");
481 err = -EINVAL;
485 * This driver configures the spi controller for master mode (MSTR bit
486 * set to '1' in the Mode Register).
487 * So according to the datasheet, when FIFOs are available (and
488 * enabled), the Receive FIFO operates in Single Data Mode.
489 * So the receive path works the same whether FIFOs are available (and
490 * enabled) or not.
492 slave_config->direction = DMA_DEV_TO_MEM;
493 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
494 dev_err(&as->pdev->dev,
495 "failed to configure rx dma channel\n");
496 err = -EINVAL;
499 return err;
502 static int atmel_spi_configure_dma(struct spi_master *master,
503 struct atmel_spi *as)
505 struct dma_slave_config slave_config;
506 struct device *dev = &as->pdev->dev;
507 int err;
509 dma_cap_mask_t mask;
510 dma_cap_zero(mask);
511 dma_cap_set(DMA_SLAVE, mask);
513 master->dma_tx = dma_request_chan(dev, "tx");
514 if (IS_ERR(master->dma_tx)) {
515 err = PTR_ERR(master->dma_tx);
516 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
517 goto error_clear;
520 master->dma_rx = dma_request_chan(dev, "rx");
521 if (IS_ERR(master->dma_rx)) {
522 err = PTR_ERR(master->dma_rx);
524 * No reason to check EPROBE_DEFER here since we have already
525 * requested tx channel.
527 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
528 goto error;
531 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
532 if (err)
533 goto error;
535 dev_info(&as->pdev->dev,
536 "Using %s (tx) and %s (rx) for DMA transfers\n",
537 dma_chan_name(master->dma_tx),
538 dma_chan_name(master->dma_rx));
540 return 0;
541 error:
542 if (!IS_ERR(master->dma_rx))
543 dma_release_channel(master->dma_rx);
544 if (!IS_ERR(master->dma_tx))
545 dma_release_channel(master->dma_tx);
546 error_clear:
547 master->dma_tx = master->dma_rx = NULL;
548 return err;
551 static void atmel_spi_stop_dma(struct spi_master *master)
553 if (master->dma_rx)
554 dmaengine_terminate_all(master->dma_rx);
555 if (master->dma_tx)
556 dmaengine_terminate_all(master->dma_tx);
559 static void atmel_spi_release_dma(struct spi_master *master)
561 if (master->dma_rx) {
562 dma_release_channel(master->dma_rx);
563 master->dma_rx = NULL;
565 if (master->dma_tx) {
566 dma_release_channel(master->dma_tx);
567 master->dma_tx = NULL;
571 /* This function is called by the DMA driver from tasklet context */
572 static void dma_callback(void *data)
574 struct spi_master *master = data;
575 struct atmel_spi *as = spi_master_get_devdata(master);
577 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
578 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
579 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
580 as->current_transfer->len);
582 complete(&as->xfer_completion);
586 * Next transfer using PIO without FIFO.
588 static void atmel_spi_next_xfer_single(struct spi_master *master,
589 struct spi_transfer *xfer)
591 struct atmel_spi *as = spi_master_get_devdata(master);
592 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
594 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
596 /* Make sure data is not remaining in RDR */
597 spi_readl(as, RDR);
598 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
599 spi_readl(as, RDR);
600 cpu_relax();
603 if (xfer->bits_per_word > 8)
604 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
605 else
606 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
608 dev_dbg(master->dev.parent,
609 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
610 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
611 xfer->bits_per_word);
613 /* Enable relevant interrupts */
614 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
618 * Next transfer using PIO with FIFO.
620 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
621 struct spi_transfer *xfer)
623 struct atmel_spi *as = spi_master_get_devdata(master);
624 u32 current_remaining_data, num_data;
625 u32 offset = xfer->len - as->current_remaining_bytes;
626 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
627 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
628 u16 td0, td1;
629 u32 fifomr;
631 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
633 /* Compute the number of data to transfer in the current iteration */
634 current_remaining_data = ((xfer->bits_per_word > 8) ?
635 ((u32)as->current_remaining_bytes >> 1) :
636 (u32)as->current_remaining_bytes);
637 num_data = min(current_remaining_data, as->fifo_size);
639 /* Flush RX and TX FIFOs */
640 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
641 while (spi_readl(as, FLR))
642 cpu_relax();
644 /* Set RX FIFO Threshold to the number of data to transfer */
645 fifomr = spi_readl(as, FMR);
646 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
648 /* Clear FIFO flags in the Status Register, especially RXFTHF */
649 (void)spi_readl(as, SR);
651 /* Fill TX FIFO */
652 while (num_data >= 2) {
653 if (xfer->bits_per_word > 8) {
654 td0 = *words++;
655 td1 = *words++;
656 } else {
657 td0 = *bytes++;
658 td1 = *bytes++;
661 spi_writel(as, TDR, (td1 << 16) | td0);
662 num_data -= 2;
665 if (num_data) {
666 if (xfer->bits_per_word > 8)
667 td0 = *words++;
668 else
669 td0 = *bytes++;
671 spi_writew(as, TDR, td0);
672 num_data--;
675 dev_dbg(master->dev.parent,
676 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
677 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
678 xfer->bits_per_word);
681 * Enable RX FIFO Threshold Flag interrupt to be notified about
682 * transfer completion.
684 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
688 * Next transfer using PIO.
690 static void atmel_spi_next_xfer_pio(struct spi_master *master,
691 struct spi_transfer *xfer)
693 struct atmel_spi *as = spi_master_get_devdata(master);
695 if (as->fifo_size)
696 atmel_spi_next_xfer_fifo(master, xfer);
697 else
698 atmel_spi_next_xfer_single(master, xfer);
702 * Submit next transfer for DMA.
704 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
705 struct spi_transfer *xfer,
706 u32 *plen)
707 __must_hold(&as->lock)
709 struct atmel_spi *as = spi_master_get_devdata(master);
710 struct dma_chan *rxchan = master->dma_rx;
711 struct dma_chan *txchan = master->dma_tx;
712 struct dma_async_tx_descriptor *rxdesc;
713 struct dma_async_tx_descriptor *txdesc;
714 struct dma_slave_config slave_config;
715 dma_cookie_t cookie;
717 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
719 /* Check that the channels are available */
720 if (!rxchan || !txchan)
721 return -ENODEV;
723 /* release lock for DMA operations */
724 atmel_spi_unlock(as);
726 *plen = xfer->len;
728 if (atmel_spi_dma_slave_config(as, &slave_config,
729 xfer->bits_per_word))
730 goto err_exit;
732 /* Send both scatterlists */
733 if (atmel_spi_is_vmalloc_xfer(xfer) &&
734 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
735 rxdesc = dmaengine_prep_slave_single(rxchan,
736 as->dma_addr_rx_bbuf,
737 xfer->len,
738 DMA_DEV_TO_MEM,
739 DMA_PREP_INTERRUPT |
740 DMA_CTRL_ACK);
741 } else {
742 rxdesc = dmaengine_prep_slave_sg(rxchan,
743 xfer->rx_sg.sgl,
744 xfer->rx_sg.nents,
745 DMA_DEV_TO_MEM,
746 DMA_PREP_INTERRUPT |
747 DMA_CTRL_ACK);
749 if (!rxdesc)
750 goto err_dma;
752 if (atmel_spi_is_vmalloc_xfer(xfer) &&
753 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
754 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
755 txdesc = dmaengine_prep_slave_single(txchan,
756 as->dma_addr_tx_bbuf,
757 xfer->len, DMA_MEM_TO_DEV,
758 DMA_PREP_INTERRUPT |
759 DMA_CTRL_ACK);
760 } else {
761 txdesc = dmaengine_prep_slave_sg(txchan,
762 xfer->tx_sg.sgl,
763 xfer->tx_sg.nents,
764 DMA_MEM_TO_DEV,
765 DMA_PREP_INTERRUPT |
766 DMA_CTRL_ACK);
768 if (!txdesc)
769 goto err_dma;
771 dev_dbg(master->dev.parent,
772 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
773 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
774 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
776 /* Enable relevant interrupts */
777 spi_writel(as, IER, SPI_BIT(OVRES));
779 /* Put the callback on the RX transfer only, that should finish last */
780 rxdesc->callback = dma_callback;
781 rxdesc->callback_param = master;
783 /* Submit and fire RX and TX with TX last so we're ready to read! */
784 cookie = rxdesc->tx_submit(rxdesc);
785 if (dma_submit_error(cookie))
786 goto err_dma;
787 cookie = txdesc->tx_submit(txdesc);
788 if (dma_submit_error(cookie))
789 goto err_dma;
790 rxchan->device->device_issue_pending(rxchan);
791 txchan->device->device_issue_pending(txchan);
793 /* take back lock */
794 atmel_spi_lock(as);
795 return 0;
797 err_dma:
798 spi_writel(as, IDR, SPI_BIT(OVRES));
799 atmel_spi_stop_dma(master);
800 err_exit:
801 atmel_spi_lock(as);
802 return -ENOMEM;
805 static void atmel_spi_next_xfer_data(struct spi_master *master,
806 struct spi_transfer *xfer,
807 dma_addr_t *tx_dma,
808 dma_addr_t *rx_dma,
809 u32 *plen)
811 *rx_dma = xfer->rx_dma + xfer->len - *plen;
812 *tx_dma = xfer->tx_dma + xfer->len - *plen;
813 if (*plen > master->max_dma_len)
814 *plen = master->max_dma_len;
817 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
818 struct spi_device *spi,
819 struct spi_transfer *xfer)
821 u32 scbr, csr;
822 unsigned long bus_hz;
823 int chip_select;
825 if (spi->cs_gpiod)
826 chip_select = as->native_cs_for_gpio;
827 else
828 chip_select = spi->chip_select;
830 /* v1 chips start out at half the peripheral bus speed. */
831 bus_hz = as->spi_clk;
832 if (!atmel_spi_is_v2(as))
833 bus_hz /= 2;
836 * Calculate the lowest divider that satisfies the
837 * constraint, assuming div32/fdiv/mbz == 0.
839 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
842 * If the resulting divider doesn't fit into the
843 * register bitfield, we can't satisfy the constraint.
845 if (scbr >= (1 << SPI_SCBR_SIZE)) {
846 dev_err(&spi->dev,
847 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
848 xfer->speed_hz, scbr, bus_hz/255);
849 return -EINVAL;
851 if (scbr == 0) {
852 dev_err(&spi->dev,
853 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
854 xfer->speed_hz, scbr, bus_hz);
855 return -EINVAL;
857 csr = spi_readl(as, CSR0 + 4 * chip_select);
858 csr = SPI_BFINS(SCBR, scbr, csr);
859 spi_writel(as, CSR0 + 4 * chip_select, csr);
860 xfer->effective_speed_hz = bus_hz / scbr;
862 return 0;
866 * Submit next transfer for PDC.
867 * lock is held, spi irq is blocked
869 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
870 struct spi_message *msg,
871 struct spi_transfer *xfer)
873 struct atmel_spi *as = spi_master_get_devdata(master);
874 u32 len;
875 dma_addr_t tx_dma, rx_dma;
877 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
879 len = as->current_remaining_bytes;
880 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
881 as->current_remaining_bytes -= len;
883 spi_writel(as, RPR, rx_dma);
884 spi_writel(as, TPR, tx_dma);
886 if (msg->spi->bits_per_word > 8)
887 len >>= 1;
888 spi_writel(as, RCR, len);
889 spi_writel(as, TCR, len);
891 dev_dbg(&msg->spi->dev,
892 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
893 xfer, xfer->len, xfer->tx_buf,
894 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
895 (unsigned long long)xfer->rx_dma);
897 if (as->current_remaining_bytes) {
898 len = as->current_remaining_bytes;
899 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
900 as->current_remaining_bytes -= len;
902 spi_writel(as, RNPR, rx_dma);
903 spi_writel(as, TNPR, tx_dma);
905 if (msg->spi->bits_per_word > 8)
906 len >>= 1;
907 spi_writel(as, RNCR, len);
908 spi_writel(as, TNCR, len);
910 dev_dbg(&msg->spi->dev,
911 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
912 xfer, xfer->len, xfer->tx_buf,
913 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
914 (unsigned long long)xfer->rx_dma);
917 /* REVISIT: We're waiting for RXBUFF before we start the next
918 * transfer because we need to handle some difficult timing
919 * issues otherwise. If we wait for TXBUFE in one transfer and
920 * then starts waiting for RXBUFF in the next, it's difficult
921 * to tell the difference between the RXBUFF interrupt we're
922 * actually waiting for and the RXBUFF interrupt of the
923 * previous transfer.
925 * It should be doable, though. Just not now...
927 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
928 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
932 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
933 * - The buffer is either valid for CPU access, else NULL
934 * - If the buffer is valid, so is its DMA address
936 * This driver manages the dma address unless message->is_dma_mapped.
938 static int
939 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
941 struct device *dev = &as->pdev->dev;
943 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
944 if (xfer->tx_buf) {
945 /* tx_buf is a const void* where we need a void * for the dma
946 * mapping */
947 void *nonconst_tx = (void *)xfer->tx_buf;
949 xfer->tx_dma = dma_map_single(dev,
950 nonconst_tx, xfer->len,
951 DMA_TO_DEVICE);
952 if (dma_mapping_error(dev, xfer->tx_dma))
953 return -ENOMEM;
955 if (xfer->rx_buf) {
956 xfer->rx_dma = dma_map_single(dev,
957 xfer->rx_buf, xfer->len,
958 DMA_FROM_DEVICE);
959 if (dma_mapping_error(dev, xfer->rx_dma)) {
960 if (xfer->tx_buf)
961 dma_unmap_single(dev,
962 xfer->tx_dma, xfer->len,
963 DMA_TO_DEVICE);
964 return -ENOMEM;
967 return 0;
970 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
971 struct spi_transfer *xfer)
973 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
974 dma_unmap_single(master->dev.parent, xfer->tx_dma,
975 xfer->len, DMA_TO_DEVICE);
976 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
977 dma_unmap_single(master->dev.parent, xfer->rx_dma,
978 xfer->len, DMA_FROM_DEVICE);
981 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
983 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
986 static void
987 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
989 u8 *rxp;
990 u16 *rxp16;
991 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
993 if (xfer->bits_per_word > 8) {
994 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
995 *rxp16 = spi_readl(as, RDR);
996 } else {
997 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
998 *rxp = spi_readl(as, RDR);
1000 if (xfer->bits_per_word > 8) {
1001 if (as->current_remaining_bytes > 2)
1002 as->current_remaining_bytes -= 2;
1003 else
1004 as->current_remaining_bytes = 0;
1005 } else {
1006 as->current_remaining_bytes--;
1010 static void
1011 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1013 u32 fifolr = spi_readl(as, FLR);
1014 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1015 u32 offset = xfer->len - as->current_remaining_bytes;
1016 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1017 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1018 u16 rd; /* RD field is the lowest 16 bits of RDR */
1020 /* Update the number of remaining bytes to transfer */
1021 num_bytes = ((xfer->bits_per_word > 8) ?
1022 (num_data << 1) :
1023 num_data);
1025 if (as->current_remaining_bytes > num_bytes)
1026 as->current_remaining_bytes -= num_bytes;
1027 else
1028 as->current_remaining_bytes = 0;
1030 /* Handle odd number of bytes when data are more than 8bit width */
1031 if (xfer->bits_per_word > 8)
1032 as->current_remaining_bytes &= ~0x1;
1034 /* Read data */
1035 while (num_data) {
1036 rd = spi_readl(as, RDR);
1037 if (xfer->bits_per_word > 8)
1038 *words++ = rd;
1039 else
1040 *bytes++ = rd;
1041 num_data--;
1045 /* Called from IRQ
1047 * Must update "current_remaining_bytes" to keep track of data
1048 * to transfer.
1050 static void
1051 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1053 if (as->fifo_size)
1054 atmel_spi_pump_fifo_data(as, xfer);
1055 else
1056 atmel_spi_pump_single_data(as, xfer);
1059 /* Interrupt
1061 * No need for locking in this Interrupt handler: done_status is the
1062 * only information modified.
1064 static irqreturn_t
1065 atmel_spi_pio_interrupt(int irq, void *dev_id)
1067 struct spi_master *master = dev_id;
1068 struct atmel_spi *as = spi_master_get_devdata(master);
1069 u32 status, pending, imr;
1070 struct spi_transfer *xfer;
1071 int ret = IRQ_NONE;
1073 imr = spi_readl(as, IMR);
1074 status = spi_readl(as, SR);
1075 pending = status & imr;
1077 if (pending & SPI_BIT(OVRES)) {
1078 ret = IRQ_HANDLED;
1079 spi_writel(as, IDR, SPI_BIT(OVRES));
1080 dev_warn(master->dev.parent, "overrun\n");
1083 * When we get an overrun, we disregard the current
1084 * transfer. Data will not be copied back from any
1085 * bounce buffer and msg->actual_len will not be
1086 * updated with the last xfer.
1088 * We will also not process any remaning transfers in
1089 * the message.
1091 as->done_status = -EIO;
1092 smp_wmb();
1094 /* Clear any overrun happening while cleaning up */
1095 spi_readl(as, SR);
1097 complete(&as->xfer_completion);
1099 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1100 atmel_spi_lock(as);
1102 if (as->current_remaining_bytes) {
1103 ret = IRQ_HANDLED;
1104 xfer = as->current_transfer;
1105 atmel_spi_pump_pio_data(as, xfer);
1106 if (!as->current_remaining_bytes)
1107 spi_writel(as, IDR, pending);
1109 complete(&as->xfer_completion);
1112 atmel_spi_unlock(as);
1113 } else {
1114 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1115 ret = IRQ_HANDLED;
1116 spi_writel(as, IDR, pending);
1119 return ret;
1122 static irqreturn_t
1123 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1125 struct spi_master *master = dev_id;
1126 struct atmel_spi *as = spi_master_get_devdata(master);
1127 u32 status, pending, imr;
1128 int ret = IRQ_NONE;
1130 imr = spi_readl(as, IMR);
1131 status = spi_readl(as, SR);
1132 pending = status & imr;
1134 if (pending & SPI_BIT(OVRES)) {
1136 ret = IRQ_HANDLED;
1138 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1139 | SPI_BIT(OVRES)));
1141 /* Clear any overrun happening while cleaning up */
1142 spi_readl(as, SR);
1144 as->done_status = -EIO;
1146 complete(&as->xfer_completion);
1148 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1149 ret = IRQ_HANDLED;
1151 spi_writel(as, IDR, pending);
1153 complete(&as->xfer_completion);
1156 return ret;
1159 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1161 struct spi_delay *delay = &spi->word_delay;
1162 u32 value = delay->value;
1164 switch (delay->unit) {
1165 case SPI_DELAY_UNIT_NSECS:
1166 value /= 1000;
1167 break;
1168 case SPI_DELAY_UNIT_USECS:
1169 break;
1170 default:
1171 return -EINVAL;
1174 return (as->spi_clk / 1000000 * value) >> 5;
1177 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1179 int i;
1180 struct spi_master *master = platform_get_drvdata(as->pdev);
1182 if (!as->native_cs_free)
1183 return; /* already initialized */
1185 if (!master->cs_gpiods)
1186 return; /* No CS GPIO */
1189 * On the first version of the controller (AT91RM9200), CS0
1190 * can't be used associated with GPIO
1192 if (atmel_spi_is_v2(as))
1193 i = 0;
1194 else
1195 i = 1;
1197 for (; i < 4; i++)
1198 if (master->cs_gpiods[i])
1199 as->native_cs_free |= BIT(i);
1201 if (as->native_cs_free)
1202 as->native_cs_for_gpio = ffs(as->native_cs_free);
1205 static int atmel_spi_setup(struct spi_device *spi)
1207 struct atmel_spi *as;
1208 struct atmel_spi_device *asd;
1209 u32 csr;
1210 unsigned int bits = spi->bits_per_word;
1211 int chip_select;
1212 int word_delay_csr;
1214 as = spi_master_get_devdata(spi->master);
1216 /* see notes above re chipselect */
1217 if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1218 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1219 return -EINVAL;
1222 /* Setup() is called during spi_register_controller(aka
1223 * spi_register_master) but after all membmers of the cs_gpiod
1224 * array have been filled, so we can looked for which native
1225 * CS will be free for using with GPIO
1227 initialize_native_cs_for_gpio(as);
1229 if (spi->cs_gpiod && as->native_cs_free) {
1230 dev_err(&spi->dev,
1231 "No native CS available to support this GPIO CS\n");
1232 return -EBUSY;
1235 if (spi->cs_gpiod)
1236 chip_select = as->native_cs_for_gpio;
1237 else
1238 chip_select = spi->chip_select;
1240 csr = SPI_BF(BITS, bits - 8);
1241 if (spi->mode & SPI_CPOL)
1242 csr |= SPI_BIT(CPOL);
1243 if (!(spi->mode & SPI_CPHA))
1244 csr |= SPI_BIT(NCPHA);
1246 if (!spi->cs_gpiod)
1247 csr |= SPI_BIT(CSAAT);
1248 csr |= SPI_BF(DLYBS, 0);
1250 word_delay_csr = atmel_word_delay_csr(spi, as);
1251 if (word_delay_csr < 0)
1252 return word_delay_csr;
1254 /* DLYBCT adds delays between words. This is useful for slow devices
1255 * that need a bit of time to setup the next transfer.
1257 csr |= SPI_BF(DLYBCT, word_delay_csr);
1259 asd = spi->controller_state;
1260 if (!asd) {
1261 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1262 if (!asd)
1263 return -ENOMEM;
1265 spi->controller_state = asd;
1268 asd->csr = csr;
1270 dev_dbg(&spi->dev,
1271 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1272 bits, spi->mode, spi->chip_select, csr);
1274 if (!atmel_spi_is_v2(as))
1275 spi_writel(as, CSR0 + 4 * chip_select, csr);
1277 return 0;
1280 static int atmel_spi_one_transfer(struct spi_master *master,
1281 struct spi_message *msg,
1282 struct spi_transfer *xfer)
1284 struct atmel_spi *as;
1285 struct spi_device *spi = msg->spi;
1286 u8 bits;
1287 u32 len;
1288 struct atmel_spi_device *asd;
1289 int timeout;
1290 int ret;
1291 unsigned long dma_timeout;
1293 as = spi_master_get_devdata(master);
1295 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1296 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1297 return -EINVAL;
1300 asd = spi->controller_state;
1301 bits = (asd->csr >> 4) & 0xf;
1302 if (bits != xfer->bits_per_word - 8) {
1303 dev_dbg(&spi->dev,
1304 "you can't yet change bits_per_word in transfers\n");
1305 return -ENOPROTOOPT;
1309 * DMA map early, for performance (empties dcache ASAP) and
1310 * better fault reporting.
1312 if ((!msg->is_dma_mapped)
1313 && as->use_pdc) {
1314 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1315 return -ENOMEM;
1318 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1320 as->done_status = 0;
1321 as->current_transfer = xfer;
1322 as->current_remaining_bytes = xfer->len;
1323 while (as->current_remaining_bytes) {
1324 reinit_completion(&as->xfer_completion);
1326 if (as->use_pdc) {
1327 atmel_spi_pdc_next_xfer(master, msg, xfer);
1328 } else if (atmel_spi_use_dma(as, xfer)) {
1329 len = as->current_remaining_bytes;
1330 ret = atmel_spi_next_xfer_dma_submit(master,
1331 xfer, &len);
1332 if (ret) {
1333 dev_err(&spi->dev,
1334 "unable to use DMA, fallback to PIO\n");
1335 atmel_spi_next_xfer_pio(master, xfer);
1336 } else {
1337 as->current_remaining_bytes -= len;
1338 if (as->current_remaining_bytes < 0)
1339 as->current_remaining_bytes = 0;
1341 } else {
1342 atmel_spi_next_xfer_pio(master, xfer);
1345 /* interrupts are disabled, so free the lock for schedule */
1346 atmel_spi_unlock(as);
1347 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1348 SPI_DMA_TIMEOUT);
1349 atmel_spi_lock(as);
1350 if (WARN_ON(dma_timeout == 0)) {
1351 dev_err(&spi->dev, "spi transfer timeout\n");
1352 as->done_status = -EIO;
1355 if (as->done_status)
1356 break;
1359 if (as->done_status) {
1360 if (as->use_pdc) {
1361 dev_warn(master->dev.parent,
1362 "overrun (%u/%u remaining)\n",
1363 spi_readl(as, TCR), spi_readl(as, RCR));
1366 * Clean up DMA registers and make sure the data
1367 * registers are empty.
1369 spi_writel(as, RNCR, 0);
1370 spi_writel(as, TNCR, 0);
1371 spi_writel(as, RCR, 0);
1372 spi_writel(as, TCR, 0);
1373 for (timeout = 1000; timeout; timeout--)
1374 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1375 break;
1376 if (!timeout)
1377 dev_warn(master->dev.parent,
1378 "timeout waiting for TXEMPTY");
1379 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1380 spi_readl(as, RDR);
1382 /* Clear any overrun happening while cleaning up */
1383 spi_readl(as, SR);
1385 } else if (atmel_spi_use_dma(as, xfer)) {
1386 atmel_spi_stop_dma(master);
1389 if (!msg->is_dma_mapped
1390 && as->use_pdc)
1391 atmel_spi_dma_unmap_xfer(master, xfer);
1393 return 0;
1395 } else {
1396 /* only update length if no error */
1397 msg->actual_length += xfer->len;
1400 if (!msg->is_dma_mapped
1401 && as->use_pdc)
1402 atmel_spi_dma_unmap_xfer(master, xfer);
1404 spi_transfer_delay_exec(xfer);
1406 if (xfer->cs_change) {
1407 if (list_is_last(&xfer->transfer_list,
1408 &msg->transfers)) {
1409 as->keep_cs = true;
1410 } else {
1411 cs_deactivate(as, msg->spi);
1412 udelay(10);
1413 cs_activate(as, msg->spi);
1417 return 0;
1420 static int atmel_spi_transfer_one_message(struct spi_master *master,
1421 struct spi_message *msg)
1423 struct atmel_spi *as;
1424 struct spi_transfer *xfer;
1425 struct spi_device *spi = msg->spi;
1426 int ret = 0;
1428 as = spi_master_get_devdata(master);
1430 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1431 msg, dev_name(&spi->dev));
1433 atmel_spi_lock(as);
1434 cs_activate(as, spi);
1436 as->keep_cs = false;
1438 msg->status = 0;
1439 msg->actual_length = 0;
1441 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1442 trace_spi_transfer_start(msg, xfer);
1444 ret = atmel_spi_one_transfer(master, msg, xfer);
1445 if (ret)
1446 goto msg_done;
1448 trace_spi_transfer_stop(msg, xfer);
1451 if (as->use_pdc)
1452 atmel_spi_disable_pdc_transfer(as);
1454 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1455 dev_dbg(&spi->dev,
1456 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1457 xfer, xfer->len,
1458 xfer->tx_buf, &xfer->tx_dma,
1459 xfer->rx_buf, &xfer->rx_dma);
1462 msg_done:
1463 if (!as->keep_cs)
1464 cs_deactivate(as, msg->spi);
1466 atmel_spi_unlock(as);
1468 msg->status = as->done_status;
1469 spi_finalize_current_message(spi->master);
1471 return ret;
1474 static void atmel_spi_cleanup(struct spi_device *spi)
1476 struct atmel_spi_device *asd = spi->controller_state;
1478 if (!asd)
1479 return;
1481 spi->controller_state = NULL;
1482 kfree(asd);
1485 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1487 return spi_readl(as, VERSION) & 0x00000fff;
1490 static void atmel_get_caps(struct atmel_spi *as)
1492 unsigned int version;
1494 version = atmel_get_version(as);
1496 as->caps.is_spi2 = version > 0x121;
1497 as->caps.has_wdrbt = version >= 0x210;
1498 as->caps.has_dma_support = version >= 0x212;
1499 as->caps.has_pdc_support = version < 0x212;
1502 static void atmel_spi_init(struct atmel_spi *as)
1504 spi_writel(as, CR, SPI_BIT(SWRST));
1505 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1507 /* It is recommended to enable FIFOs first thing after reset */
1508 if (as->fifo_size)
1509 spi_writel(as, CR, SPI_BIT(FIFOEN));
1511 if (as->caps.has_wdrbt) {
1512 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1513 | SPI_BIT(MSTR));
1514 } else {
1515 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1518 if (as->use_pdc)
1519 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1520 spi_writel(as, CR, SPI_BIT(SPIEN));
1523 static int atmel_spi_probe(struct platform_device *pdev)
1525 struct resource *regs;
1526 int irq;
1527 struct clk *clk;
1528 int ret;
1529 struct spi_master *master;
1530 struct atmel_spi *as;
1532 /* Select default pin state */
1533 pinctrl_pm_select_default_state(&pdev->dev);
1535 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1536 if (!regs)
1537 return -ENXIO;
1539 irq = platform_get_irq(pdev, 0);
1540 if (irq < 0)
1541 return irq;
1543 clk = devm_clk_get(&pdev->dev, "spi_clk");
1544 if (IS_ERR(clk))
1545 return PTR_ERR(clk);
1547 /* setup spi core then atmel-specific driver state */
1548 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1549 if (!master)
1550 return -ENOMEM;
1552 /* the spi->mode bits understood by this driver: */
1553 master->use_gpio_descriptors = true;
1554 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1555 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1556 master->dev.of_node = pdev->dev.of_node;
1557 master->bus_num = pdev->id;
1558 master->num_chipselect = 4;
1559 master->setup = atmel_spi_setup;
1560 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1561 master->transfer_one_message = atmel_spi_transfer_one_message;
1562 master->cleanup = atmel_spi_cleanup;
1563 master->auto_runtime_pm = true;
1564 master->max_dma_len = SPI_MAX_DMA_XFER;
1565 master->can_dma = atmel_spi_can_dma;
1566 platform_set_drvdata(pdev, master);
1568 as = spi_master_get_devdata(master);
1570 spin_lock_init(&as->lock);
1572 as->pdev = pdev;
1573 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1574 if (IS_ERR(as->regs)) {
1575 ret = PTR_ERR(as->regs);
1576 goto out_unmap_regs;
1578 as->phybase = regs->start;
1579 as->irq = irq;
1580 as->clk = clk;
1582 init_completion(&as->xfer_completion);
1584 atmel_get_caps(as);
1586 as->use_dma = false;
1587 as->use_pdc = false;
1588 if (as->caps.has_dma_support) {
1589 ret = atmel_spi_configure_dma(master, as);
1590 if (ret == 0) {
1591 as->use_dma = true;
1592 } else if (ret == -EPROBE_DEFER) {
1593 return ret;
1595 } else if (as->caps.has_pdc_support) {
1596 as->use_pdc = true;
1599 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1600 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1601 SPI_MAX_DMA_XFER,
1602 &as->dma_addr_rx_bbuf,
1603 GFP_KERNEL | GFP_DMA);
1604 if (!as->addr_rx_bbuf) {
1605 as->use_dma = false;
1606 } else {
1607 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1608 SPI_MAX_DMA_XFER,
1609 &as->dma_addr_tx_bbuf,
1610 GFP_KERNEL | GFP_DMA);
1611 if (!as->addr_tx_bbuf) {
1612 as->use_dma = false;
1613 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1614 as->addr_rx_bbuf,
1615 as->dma_addr_rx_bbuf);
1618 if (!as->use_dma)
1619 dev_info(master->dev.parent,
1620 " can not allocate dma coherent memory\n");
1623 if (as->caps.has_dma_support && !as->use_dma)
1624 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1626 if (as->use_pdc) {
1627 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1628 0, dev_name(&pdev->dev), master);
1629 } else {
1630 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1631 0, dev_name(&pdev->dev), master);
1633 if (ret)
1634 goto out_unmap_regs;
1636 /* Initialize the hardware */
1637 ret = clk_prepare_enable(clk);
1638 if (ret)
1639 goto out_free_irq;
1641 as->spi_clk = clk_get_rate(clk);
1643 as->fifo_size = 0;
1644 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1645 &as->fifo_size)) {
1646 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1649 atmel_spi_init(as);
1651 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1652 pm_runtime_use_autosuspend(&pdev->dev);
1653 pm_runtime_set_active(&pdev->dev);
1654 pm_runtime_enable(&pdev->dev);
1656 ret = devm_spi_register_master(&pdev->dev, master);
1657 if (ret)
1658 goto out_free_dma;
1660 /* go! */
1661 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1662 atmel_get_version(as), (unsigned long)regs->start,
1663 irq);
1665 return 0;
1667 out_free_dma:
1668 pm_runtime_disable(&pdev->dev);
1669 pm_runtime_set_suspended(&pdev->dev);
1671 if (as->use_dma)
1672 atmel_spi_release_dma(master);
1674 spi_writel(as, CR, SPI_BIT(SWRST));
1675 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1676 clk_disable_unprepare(clk);
1677 out_free_irq:
1678 out_unmap_regs:
1679 spi_master_put(master);
1680 return ret;
1683 static int atmel_spi_remove(struct platform_device *pdev)
1685 struct spi_master *master = platform_get_drvdata(pdev);
1686 struct atmel_spi *as = spi_master_get_devdata(master);
1688 pm_runtime_get_sync(&pdev->dev);
1690 /* reset the hardware and block queue progress */
1691 if (as->use_dma) {
1692 atmel_spi_stop_dma(master);
1693 atmel_spi_release_dma(master);
1694 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1695 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1696 as->addr_tx_bbuf,
1697 as->dma_addr_tx_bbuf);
1698 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1699 as->addr_rx_bbuf,
1700 as->dma_addr_rx_bbuf);
1704 spin_lock_irq(&as->lock);
1705 spi_writel(as, CR, SPI_BIT(SWRST));
1706 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1707 spi_readl(as, SR);
1708 spin_unlock_irq(&as->lock);
1710 clk_disable_unprepare(as->clk);
1712 pm_runtime_put_noidle(&pdev->dev);
1713 pm_runtime_disable(&pdev->dev);
1715 return 0;
1718 #ifdef CONFIG_PM
1719 static int atmel_spi_runtime_suspend(struct device *dev)
1721 struct spi_master *master = dev_get_drvdata(dev);
1722 struct atmel_spi *as = spi_master_get_devdata(master);
1724 clk_disable_unprepare(as->clk);
1725 pinctrl_pm_select_sleep_state(dev);
1727 return 0;
1730 static int atmel_spi_runtime_resume(struct device *dev)
1732 struct spi_master *master = dev_get_drvdata(dev);
1733 struct atmel_spi *as = spi_master_get_devdata(master);
1735 pinctrl_pm_select_default_state(dev);
1737 return clk_prepare_enable(as->clk);
1740 #ifdef CONFIG_PM_SLEEP
1741 static int atmel_spi_suspend(struct device *dev)
1743 struct spi_master *master = dev_get_drvdata(dev);
1744 int ret;
1746 /* Stop the queue running */
1747 ret = spi_master_suspend(master);
1748 if (ret)
1749 return ret;
1751 if (!pm_runtime_suspended(dev))
1752 atmel_spi_runtime_suspend(dev);
1754 return 0;
1757 static int atmel_spi_resume(struct device *dev)
1759 struct spi_master *master = dev_get_drvdata(dev);
1760 struct atmel_spi *as = spi_master_get_devdata(master);
1761 int ret;
1763 ret = clk_prepare_enable(as->clk);
1764 if (ret)
1765 return ret;
1767 atmel_spi_init(as);
1769 clk_disable_unprepare(as->clk);
1771 if (!pm_runtime_suspended(dev)) {
1772 ret = atmel_spi_runtime_resume(dev);
1773 if (ret)
1774 return ret;
1777 /* Start the queue running */
1778 return spi_master_resume(master);
1780 #endif
1782 static const struct dev_pm_ops atmel_spi_pm_ops = {
1783 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1784 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1785 atmel_spi_runtime_resume, NULL)
1787 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1788 #else
1789 #define ATMEL_SPI_PM_OPS NULL
1790 #endif
1792 static const struct of_device_id atmel_spi_dt_ids[] = {
1793 { .compatible = "atmel,at91rm9200-spi" },
1794 { /* sentinel */ }
1797 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1799 static struct platform_driver atmel_spi_driver = {
1800 .driver = {
1801 .name = "atmel_spi",
1802 .pm = ATMEL_SPI_PM_OPS,
1803 .of_match_table = atmel_spi_dt_ids,
1805 .probe = atmel_spi_probe,
1806 .remove = atmel_spi_remove,
1808 module_platform_driver(atmel_spi_driver);
1810 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1811 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1812 MODULE_LICENSE("GPL");
1813 MODULE_ALIAS("platform:atmel_spi");