1 // SPDX-License-Identifier: GPL-2.0
3 * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
5 * Copyright (c) 2017 Melexis <cmo@melexis.com>
7 * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/i2c.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/math64.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/regmap.h>
20 #include <linux/iio/iio.h>
21 #include <linux/iio/sysfs.h>
23 /* Memory sections addresses */
24 #define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */
25 #define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */
27 /* EEPROM addresses - used at startup */
28 #define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */
29 #define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */
30 #define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */
31 #define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */
32 #define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */
33 #define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */
34 #define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */
35 #define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */
36 #define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */
37 #define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */
38 #define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */
39 #define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */
40 #define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */
41 #define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */
42 #define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */
43 #define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */
44 #define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */
45 #define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */
46 #define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */
47 #define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */
49 #define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */
50 #define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */
52 #define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */
53 #define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */
55 /* Register addresses - volatile */
56 #define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */
58 /* Control register address - volatile */
59 #define MLX90632_REG_CONTROL 0x3001 /* Control Register address */
60 #define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */
61 /* PowerModes statuses */
62 #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
63 #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
64 #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/
65 #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
66 #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/
68 /* Device status register - volatile */
69 #define MLX90632_REG_STATUS 0x3fff /* Device status register */
70 #define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */
71 #define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */
72 #define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */
73 #define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */
74 #define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */
76 /* RAM_MEAS address-es for each channel */
77 #define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num)
78 #define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1)
79 #define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2)
82 #define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */
83 #define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */
84 #define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */
85 #define MLX90632_REF_12 12LL /**< ResCtrlRef value of Ch 1 or Ch 2 */
86 #define MLX90632_REF_3 12LL /**< ResCtrlRef value of Channel 3 */
87 #define MLX90632_MAX_MEAS_NUM 31 /**< Maximum measurements in list */
88 #define MLX90632_SLEEP_DELAY_MS 3000 /**< Autosleep delay */
90 struct mlx90632_data
{
91 struct i2c_client
*client
;
92 struct mutex lock
; /* Multiple reads for single measurement */
93 struct regmap
*regmap
;
97 static const struct regmap_range mlx90632_volatile_reg_range
[] = {
98 regmap_reg_range(MLX90632_REG_I2C_ADDR
, MLX90632_REG_CONTROL
),
99 regmap_reg_range(MLX90632_REG_STATUS
, MLX90632_REG_STATUS
),
100 regmap_reg_range(MLX90632_RAM_1(0),
101 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM
)),
104 static const struct regmap_access_table mlx90632_volatile_regs_tbl
= {
105 .yes_ranges
= mlx90632_volatile_reg_range
,
106 .n_yes_ranges
= ARRAY_SIZE(mlx90632_volatile_reg_range
),
109 static const struct regmap_range mlx90632_read_reg_range
[] = {
110 regmap_reg_range(MLX90632_EE_VERSION
, MLX90632_EE_Ka
),
111 regmap_reg_range(MLX90632_EE_CTRL
, MLX90632_EE_I2C_ADDR
),
112 regmap_reg_range(MLX90632_EE_Ha
, MLX90632_EE_Hb
),
113 regmap_reg_range(MLX90632_REG_I2C_ADDR
, MLX90632_REG_CONTROL
),
114 regmap_reg_range(MLX90632_REG_STATUS
, MLX90632_REG_STATUS
),
115 regmap_reg_range(MLX90632_RAM_1(0),
116 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM
)),
119 static const struct regmap_access_table mlx90632_readable_regs_tbl
= {
120 .yes_ranges
= mlx90632_read_reg_range
,
121 .n_yes_ranges
= ARRAY_SIZE(mlx90632_read_reg_range
),
124 static const struct regmap_range mlx90632_no_write_reg_range
[] = {
125 regmap_reg_range(MLX90632_EE_VERSION
, MLX90632_EE_Ka
),
126 regmap_reg_range(MLX90632_RAM_1(0),
127 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM
)),
130 static const struct regmap_access_table mlx90632_writeable_regs_tbl
= {
131 .no_ranges
= mlx90632_no_write_reg_range
,
132 .n_no_ranges
= ARRAY_SIZE(mlx90632_no_write_reg_range
),
135 static const struct regmap_config mlx90632_regmap
= {
139 .volatile_table
= &mlx90632_volatile_regs_tbl
,
140 .rd_table
= &mlx90632_readable_regs_tbl
,
141 .wr_table
= &mlx90632_writeable_regs_tbl
,
143 .use_single_rw
= true,
144 .reg_format_endian
= REGMAP_ENDIAN_BIG
,
145 .val_format_endian
= REGMAP_ENDIAN_BIG
,
146 .cache_type
= REGCACHE_RBTREE
,
149 static s32
mlx90632_pwr_set_sleep_step(struct regmap
*regmap
)
151 return regmap_update_bits(regmap
, MLX90632_REG_CONTROL
,
152 MLX90632_CFG_PWR_MASK
,
153 MLX90632_PWR_STATUS_SLEEP_STEP
);
156 static s32
mlx90632_pwr_continuous(struct regmap
*regmap
)
158 return regmap_update_bits(regmap
, MLX90632_REG_CONTROL
,
159 MLX90632_CFG_PWR_MASK
,
160 MLX90632_PWR_STATUS_CONTINUOUS
);
164 * mlx90632_perform_measurement - Trigger and retrieve current measurement cycle
165 * @*data: pointer to mlx90632_data object containing regmap information
167 * Perform a measurement and return latest measurement cycle position reported
168 * by sensor. This is a blocking function for 500ms, as that is default sensor
171 static int mlx90632_perform_measurement(struct mlx90632_data
*data
)
173 int ret
, tries
= 100;
174 unsigned int reg_status
;
176 ret
= regmap_update_bits(data
->regmap
, MLX90632_REG_STATUS
,
177 MLX90632_STAT_DATA_RDY
, 0);
181 while (tries
-- > 0) {
182 ret
= regmap_read(data
->regmap
, MLX90632_REG_STATUS
,
186 if (reg_status
& MLX90632_STAT_DATA_RDY
)
188 usleep_range(10000, 11000);
192 dev_err(&data
->client
->dev
, "data not ready");
196 return (reg_status
& MLX90632_STAT_CYCLE_POS
) >> 2;
199 static int mlx90632_channel_new_select(int perform_ret
, uint8_t *channel_new
,
200 uint8_t *channel_old
)
202 switch (perform_ret
) {
218 static int mlx90632_read_ambient_raw(struct regmap
*regmap
,
219 s16
*ambient_new_raw
, s16
*ambient_old_raw
)
222 unsigned int read_tmp
;
224 ret
= regmap_read(regmap
, MLX90632_RAM_3(1), &read_tmp
);
227 *ambient_new_raw
= (s16
)read_tmp
;
229 ret
= regmap_read(regmap
, MLX90632_RAM_3(2), &read_tmp
);
232 *ambient_old_raw
= (s16
)read_tmp
;
237 static int mlx90632_read_object_raw(struct regmap
*regmap
,
238 int perform_measurement_ret
,
239 s16
*object_new_raw
, s16
*object_old_raw
)
242 unsigned int read_tmp
;
247 ret
= mlx90632_channel_new_select(perform_measurement_ret
, &channel
,
252 ret
= regmap_read(regmap
, MLX90632_RAM_2(channel
), &read_tmp
);
256 read
= (s16
)read_tmp
;
258 ret
= regmap_read(regmap
, MLX90632_RAM_1(channel
), &read_tmp
);
261 *object_new_raw
= (read
+ (s16
)read_tmp
) / 2;
263 ret
= regmap_read(regmap
, MLX90632_RAM_2(channel_old
), &read_tmp
);
266 read
= (s16
)read_tmp
;
268 ret
= regmap_read(regmap
, MLX90632_RAM_1(channel_old
), &read_tmp
);
271 *object_old_raw
= (read
+ (s16
)read_tmp
) / 2;
276 static int mlx90632_read_all_channel(struct mlx90632_data
*data
,
277 s16
*ambient_new_raw
, s16
*ambient_old_raw
,
278 s16
*object_new_raw
, s16
*object_old_raw
)
280 s32 ret
, measurement
;
282 mutex_lock(&data
->lock
);
283 measurement
= mlx90632_perform_measurement(data
);
284 if (measurement
< 0) {
288 ret
= mlx90632_read_ambient_raw(data
->regmap
, ambient_new_raw
,
293 ret
= mlx90632_read_object_raw(data
->regmap
, measurement
,
294 object_new_raw
, object_old_raw
);
296 mutex_unlock(&data
->lock
);
300 static int mlx90632_read_ee_register(struct regmap
*regmap
, u16 reg_lsb
,
307 ret
= regmap_read(regmap
, reg_lsb
, &read
);
313 ret
= regmap_read(regmap
, reg_lsb
+ 1, &read
);
317 *reg_value
= (read
<< 16) | (value
& 0xffff);
322 static s64
mlx90632_preprocess_temp_amb(s16 ambient_new_raw
,
323 s16 ambient_old_raw
, s16 Gb
)
327 kGb
= ((s64
)Gb
* 1000LL) >> 10ULL;
328 VR_Ta
= (s64
)ambient_old_raw
* 1000000LL +
329 kGb
* div64_s64(((s64
)ambient_new_raw
* 1000LL),
332 div64_s64(((s64
)ambient_new_raw
* 1000000000000LL),
333 (MLX90632_REF_3
)), VR_Ta
);
334 return div64_s64(tmp
<< 19ULL, 1000LL);
337 static s64
mlx90632_preprocess_temp_obj(s16 object_new_raw
, s16 object_old_raw
,
339 s16 ambient_old_raw
, s16 Ka
)
343 kKa
= ((s64
)Ka
* 1000LL) >> 10ULL;
344 VR_IR
= (s64
)ambient_old_raw
* 1000000LL +
345 kKa
* div64_s64(((s64
)ambient_new_raw
* 1000LL),
348 div64_s64(((s64
)((object_new_raw
+ object_old_raw
) / 2)
349 * 1000000000000LL), (MLX90632_REF_12
)),
351 return div64_s64((tmp
<< 19ULL), 1000LL);
354 static s32
mlx90632_calc_temp_ambient(s16 ambient_new_raw
, s16 ambient_old_raw
,
355 s32 P_T
, s32 P_R
, s32 P_G
, s32 P_O
,
358 s64 Asub
, Bsub
, Ablock
, Bblock
, Cblock
, AMB
, sum
;
360 AMB
= mlx90632_preprocess_temp_amb(ambient_new_raw
, ambient_old_raw
,
362 Asub
= ((s64
)P_T
* 10000000000LL) >> 44ULL;
363 Bsub
= AMB
- (((s64
)P_R
* 1000LL) >> 8ULL);
364 Ablock
= Asub
* (Bsub
* Bsub
);
365 Bblock
= (div64_s64(Bsub
* 10000000LL, P_G
)) << 20ULL;
366 Cblock
= ((s64
)P_O
* 10000000000LL) >> 8ULL;
368 sum
= div64_s64(Ablock
, 1000000LL) + Bblock
+ Cblock
;
370 return div64_s64(sum
, 10000000LL);
373 static s32
mlx90632_calc_temp_object_iteration(s32 prev_object_temp
, s64 object
,
374 s64 TAdut
, s32 Fa
, s32 Fb
,
375 s32 Ga
, s16 Ha
, s16 Hb
,
378 s64 calcedKsTO
, calcedKsTA
, ir_Alpha
, TAdut4
, Alpha_corr
;
379 s64 Ha_customer
, Hb_customer
;
381 Ha_customer
= ((s64
)Ha
* 1000000LL) >> 14ULL;
382 Hb_customer
= ((s64
)Hb
* 100) >> 10ULL;
384 calcedKsTO
= ((s64
)((s64
)Ga
* (prev_object_temp
- 25 * 1000LL)
386 calcedKsTA
= ((s64
)(Fb
* (TAdut
- 25 * 1000000LL))) >> 36LL;
387 Alpha_corr
= div64_s64((((s64
)(Fa
* 10000000000LL) >> 46LL)
388 * Ha_customer
), 1000LL);
389 Alpha_corr
*= ((s64
)(1 * 1000000LL + calcedKsTO
+ calcedKsTA
));
390 Alpha_corr
= emissivity
* div64_s64(Alpha_corr
, 100000LL);
391 Alpha_corr
= div64_s64(Alpha_corr
, 1000LL);
392 ir_Alpha
= div64_s64((s64
)object
* 10000000LL, Alpha_corr
);
393 TAdut4
= (div64_s64(TAdut
, 10000LL) + 27315) *
394 (div64_s64(TAdut
, 10000LL) + 27315) *
395 (div64_s64(TAdut
, 10000LL) + 27315) *
396 (div64_s64(TAdut
, 10000LL) + 27315);
398 return (int_sqrt64(int_sqrt64(ir_Alpha
* 1000000000000LL + TAdut4
))
399 - 27315 - Hb_customer
) * 10;
402 static s32
mlx90632_calc_temp_object(s64 object
, s64 ambient
, s32 Ea
, s32 Eb
,
403 s32 Fa
, s32 Fb
, s32 Ga
, s16 Ha
, s16 Hb
,
406 s64 kTA
, kTA0
, TAdut
;
410 kTA
= (Ea
* 1000LL) >> 16LL;
411 kTA0
= (Eb
* 1000LL) >> 8LL;
412 TAdut
= div64_s64(((ambient
- kTA0
) * 1000000LL), kTA
) + 25 * 1000000LL;
414 /* Iterations of calculation as described in datasheet */
415 for (i
= 0; i
< 5; ++i
) {
416 temp
= mlx90632_calc_temp_object_iteration(temp
, object
, TAdut
,
423 static int mlx90632_calc_object_dsp105(struct mlx90632_data
*data
, int *val
)
426 s32 Ea
, Eb
, Fa
, Fb
, Ga
;
427 unsigned int read_tmp
;
429 s16 ambient_new_raw
, ambient_old_raw
, object_new_raw
, object_old_raw
;
432 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_Ea
, &Ea
);
435 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_Eb
, &Eb
);
438 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_Fa
, &Fa
);
441 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_Fb
, &Fb
);
444 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_Ga
, &Ga
);
447 ret
= regmap_read(data
->regmap
, MLX90632_EE_Ha
, &read_tmp
);
451 ret
= regmap_read(data
->regmap
, MLX90632_EE_Hb
, &read_tmp
);
455 ret
= regmap_read(data
->regmap
, MLX90632_EE_Gb
, &read_tmp
);
459 ret
= regmap_read(data
->regmap
, MLX90632_EE_Ka
, &read_tmp
);
464 ret
= mlx90632_read_all_channel(data
,
465 &ambient_new_raw
, &ambient_old_raw
,
466 &object_new_raw
, &object_old_raw
);
470 ambient
= mlx90632_preprocess_temp_amb(ambient_new_raw
,
471 ambient_old_raw
, Gb
);
472 object
= mlx90632_preprocess_temp_obj(object_new_raw
,
475 ambient_old_raw
, Ka
);
477 *val
= mlx90632_calc_temp_object(object
, ambient
, Ea
, Eb
, Fa
, Fb
, Ga
,
478 Ha
, Hb
, data
->emissivity
);
482 static int mlx90632_calc_ambient_dsp105(struct mlx90632_data
*data
, int *val
)
485 unsigned int read_tmp
;
488 s16 ambient_new_raw
, ambient_old_raw
;
490 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_P_R
, &PR
);
493 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_P_G
, &PG
);
496 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_P_T
, &PT
);
499 ret
= mlx90632_read_ee_register(data
->regmap
, MLX90632_EE_P_O
, &PO
);
502 ret
= regmap_read(data
->regmap
, MLX90632_EE_Gb
, &read_tmp
);
507 ret
= mlx90632_read_ambient_raw(data
->regmap
, &ambient_new_raw
,
511 *val
= mlx90632_calc_temp_ambient(ambient_new_raw
, ambient_old_raw
,
516 static int mlx90632_read_raw(struct iio_dev
*indio_dev
,
517 struct iio_chan_spec
const *channel
, int *val
,
518 int *val2
, long mask
)
520 struct mlx90632_data
*data
= iio_priv(indio_dev
);
524 case IIO_CHAN_INFO_PROCESSED
:
525 switch (channel
->channel2
) {
526 case IIO_MOD_TEMP_AMBIENT
:
527 ret
= mlx90632_calc_ambient_dsp105(data
, val
);
531 case IIO_MOD_TEMP_OBJECT
:
532 ret
= mlx90632_calc_object_dsp105(data
, val
);
539 case IIO_CHAN_INFO_CALIBEMISSIVITY
:
540 if (data
->emissivity
== 1000) {
545 *val2
= data
->emissivity
* 1000;
547 return IIO_VAL_INT_PLUS_MICRO
;
554 static int mlx90632_write_raw(struct iio_dev
*indio_dev
,
555 struct iio_chan_spec
const *channel
, int val
,
558 struct mlx90632_data
*data
= iio_priv(indio_dev
);
561 case IIO_CHAN_INFO_CALIBEMISSIVITY
:
562 /* Confirm we are within 0 and 1.0 */
563 if (val
< 0 || val2
< 0 || val
> 1 ||
564 (val
== 1 && val2
!= 0))
566 data
->emissivity
= val
* 1000 + val2
/ 1000;
573 static const struct iio_chan_spec mlx90632_channels
[] = {
577 .channel2
= IIO_MOD_TEMP_AMBIENT
,
578 .info_mask_separate
= BIT(IIO_CHAN_INFO_PROCESSED
),
583 .channel2
= IIO_MOD_TEMP_OBJECT
,
584 .info_mask_separate
= BIT(IIO_CHAN_INFO_PROCESSED
) |
585 BIT(IIO_CHAN_INFO_CALIBEMISSIVITY
),
589 static const struct iio_info mlx90632_info
= {
590 .read_raw
= mlx90632_read_raw
,
591 .write_raw
= mlx90632_write_raw
,
594 static int mlx90632_sleep(struct mlx90632_data
*data
)
596 regcache_mark_dirty(data
->regmap
);
598 dev_dbg(&data
->client
->dev
, "Requesting sleep");
599 return mlx90632_pwr_set_sleep_step(data
->regmap
);
602 static int mlx90632_wakeup(struct mlx90632_data
*data
)
606 ret
= regcache_sync(data
->regmap
);
608 dev_err(&data
->client
->dev
,
609 "Failed to sync regmap registers: %d\n", ret
);
613 dev_dbg(&data
->client
->dev
, "Requesting wake-up\n");
614 return mlx90632_pwr_continuous(data
->regmap
);
617 static int mlx90632_probe(struct i2c_client
*client
,
618 const struct i2c_device_id
*id
)
620 struct iio_dev
*indio_dev
;
621 struct mlx90632_data
*mlx90632
;
622 struct regmap
*regmap
;
626 indio_dev
= devm_iio_device_alloc(&client
->dev
, sizeof(*mlx90632
));
628 dev_err(&client
->dev
, "Failed to allocate device\n");
632 regmap
= devm_regmap_init_i2c(client
, &mlx90632_regmap
);
633 if (IS_ERR(regmap
)) {
634 ret
= PTR_ERR(regmap
);
635 dev_err(&client
->dev
, "Failed to allocate regmap: %d\n", ret
);
639 mlx90632
= iio_priv(indio_dev
);
640 i2c_set_clientdata(client
, indio_dev
);
641 mlx90632
->client
= client
;
642 mlx90632
->regmap
= regmap
;
644 mutex_init(&mlx90632
->lock
);
645 indio_dev
->dev
.parent
= &client
->dev
;
646 indio_dev
->name
= id
->name
;
647 indio_dev
->modes
= INDIO_DIRECT_MODE
;
648 indio_dev
->info
= &mlx90632_info
;
649 indio_dev
->channels
= mlx90632_channels
;
650 indio_dev
->num_channels
= ARRAY_SIZE(mlx90632_channels
);
652 ret
= mlx90632_wakeup(mlx90632
);
654 dev_err(&client
->dev
, "Wakeup failed: %d\n", ret
);
658 ret
= regmap_read(mlx90632
->regmap
, MLX90632_EE_VERSION
, &read
);
660 dev_err(&client
->dev
, "read of version failed: %d\n", ret
);
663 if (read
== MLX90632_ID_MEDICAL
) {
664 dev_dbg(&client
->dev
,
665 "Detected Medical EEPROM calibration %x\n", read
);
666 } else if (read
== MLX90632_ID_CONSUMER
) {
667 dev_dbg(&client
->dev
,
668 "Detected Consumer EEPROM calibration %x\n", read
);
670 dev_err(&client
->dev
,
671 "EEPROM version mismatch %x (expected %x or %x)\n",
672 read
, MLX90632_ID_CONSUMER
, MLX90632_ID_MEDICAL
);
673 return -EPROTONOSUPPORT
;
676 mlx90632
->emissivity
= 1000;
678 pm_runtime_disable(&client
->dev
);
679 ret
= pm_runtime_set_active(&client
->dev
);
681 mlx90632_sleep(mlx90632
);
684 pm_runtime_enable(&client
->dev
);
685 pm_runtime_set_autosuspend_delay(&client
->dev
, MLX90632_SLEEP_DELAY_MS
);
686 pm_runtime_use_autosuspend(&client
->dev
);
688 return iio_device_register(indio_dev
);
691 static int mlx90632_remove(struct i2c_client
*client
)
693 struct iio_dev
*indio_dev
= i2c_get_clientdata(client
);
694 struct mlx90632_data
*data
= iio_priv(indio_dev
);
696 iio_device_unregister(indio_dev
);
698 pm_runtime_disable(&client
->dev
);
699 pm_runtime_set_suspended(&client
->dev
);
700 pm_runtime_put_noidle(&client
->dev
);
702 mlx90632_sleep(data
);
707 static const struct i2c_device_id mlx90632_id
[] = {
711 MODULE_DEVICE_TABLE(i2c
, mlx90632_id
);
713 static const struct of_device_id mlx90632_of_match
[] = {
714 { .compatible
= "melexis,mlx90632" },
717 MODULE_DEVICE_TABLE(of
, mlx90632_of_match
);
719 static int __maybe_unused
mlx90632_pm_suspend(struct device
*dev
)
721 struct iio_dev
*indio_dev
= i2c_get_clientdata(to_i2c_client(dev
));
722 struct mlx90632_data
*data
= iio_priv(indio_dev
);
724 return mlx90632_sleep(data
);
727 static int __maybe_unused
mlx90632_pm_resume(struct device
*dev
)
729 struct iio_dev
*indio_dev
= i2c_get_clientdata(to_i2c_client(dev
));
730 struct mlx90632_data
*data
= iio_priv(indio_dev
);
732 return mlx90632_wakeup(data
);
735 static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops
, mlx90632_pm_suspend
,
736 mlx90632_pm_resume
, NULL
);
738 static struct i2c_driver mlx90632_driver
= {
741 .of_match_table
= mlx90632_of_match
,
742 .pm
= &mlx90632_pm_ops
,
744 .probe
= mlx90632_probe
,
745 .remove
= mlx90632_remove
,
746 .id_table
= mlx90632_id
,
748 module_i2c_driver(mlx90632_driver
);
750 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
751 MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
752 MODULE_LICENSE("GPL v2");