staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
blob5acf3b743876a485f61002658dccba47a0ca3d59
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
4 /* ethtool support for igb */
6 #include <linux/vmalloc.h>
7 #include <linux/netdevice.h>
8 #include <linux/pci.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/if_ether.h>
12 #include <linux/ethtool.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/highmem.h>
17 #include <linux/mdio.h>
19 #include "igb.h"
21 struct igb_stats {
22 char stat_string[ETH_GSTRING_LEN];
23 int sizeof_stat;
24 int stat_offset;
27 #define IGB_STAT(_name, _stat) { \
28 .stat_string = _name, \
29 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
30 .stat_offset = offsetof(struct igb_adapter, _stat) \
32 static const struct igb_stats igb_gstrings_stats[] = {
33 IGB_STAT("rx_packets", stats.gprc),
34 IGB_STAT("tx_packets", stats.gptc),
35 IGB_STAT("rx_bytes", stats.gorc),
36 IGB_STAT("tx_bytes", stats.gotc),
37 IGB_STAT("rx_broadcast", stats.bprc),
38 IGB_STAT("tx_broadcast", stats.bptc),
39 IGB_STAT("rx_multicast", stats.mprc),
40 IGB_STAT("tx_multicast", stats.mptc),
41 IGB_STAT("multicast", stats.mprc),
42 IGB_STAT("collisions", stats.colc),
43 IGB_STAT("rx_crc_errors", stats.crcerrs),
44 IGB_STAT("rx_no_buffer_count", stats.rnbc),
45 IGB_STAT("rx_missed_errors", stats.mpc),
46 IGB_STAT("tx_aborted_errors", stats.ecol),
47 IGB_STAT("tx_carrier_errors", stats.tncrs),
48 IGB_STAT("tx_window_errors", stats.latecol),
49 IGB_STAT("tx_abort_late_coll", stats.latecol),
50 IGB_STAT("tx_deferred_ok", stats.dc),
51 IGB_STAT("tx_single_coll_ok", stats.scc),
52 IGB_STAT("tx_multi_coll_ok", stats.mcc),
53 IGB_STAT("tx_timeout_count", tx_timeout_count),
54 IGB_STAT("rx_long_length_errors", stats.roc),
55 IGB_STAT("rx_short_length_errors", stats.ruc),
56 IGB_STAT("rx_align_errors", stats.algnerrc),
57 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
58 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
59 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
60 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
61 IGB_STAT("tx_flow_control_xon", stats.xontxc),
62 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
63 IGB_STAT("rx_long_byte_count", stats.gorc),
64 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
65 IGB_STAT("tx_smbus", stats.mgptc),
66 IGB_STAT("rx_smbus", stats.mgprc),
67 IGB_STAT("dropped_smbus", stats.mgpdc),
68 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
69 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
70 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
71 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
72 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
73 IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
74 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
77 #define IGB_NETDEV_STAT(_net_stat) { \
78 .stat_string = __stringify(_net_stat), \
79 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
80 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
82 static const struct igb_stats igb_gstrings_net_stats[] = {
83 IGB_NETDEV_STAT(rx_errors),
84 IGB_NETDEV_STAT(tx_errors),
85 IGB_NETDEV_STAT(tx_dropped),
86 IGB_NETDEV_STAT(rx_length_errors),
87 IGB_NETDEV_STAT(rx_over_errors),
88 IGB_NETDEV_STAT(rx_frame_errors),
89 IGB_NETDEV_STAT(rx_fifo_errors),
90 IGB_NETDEV_STAT(tx_fifo_errors),
91 IGB_NETDEV_STAT(tx_heartbeat_errors)
94 #define IGB_GLOBAL_STATS_LEN \
95 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96 #define IGB_NETDEV_STATS_LEN \
97 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98 #define IGB_RX_QUEUE_STATS_LEN \
99 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
103 #define IGB_QUEUE_STATS_LEN \
104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 IGB_RX_QUEUE_STATS_LEN) + \
106 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 IGB_TX_QUEUE_STATS_LEN))
108 #define IGB_STATS_LEN \
109 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
111 enum igb_diagnostics_results {
112 TEST_REG = 0,
113 TEST_EEP,
114 TEST_IRQ,
115 TEST_LOOP,
116 TEST_LINK
119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
120 [TEST_REG] = "Register test (offline)",
121 [TEST_EEP] = "Eeprom test (offline)",
122 [TEST_IRQ] = "Interrupt test (offline)",
123 [TEST_LOOP] = "Loopback test (offline)",
124 [TEST_LINK] = "Link test (on/offline)"
126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
129 #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0)
130 "legacy-rx",
133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
135 static int igb_get_link_ksettings(struct net_device *netdev,
136 struct ethtool_link_ksettings *cmd)
138 struct igb_adapter *adapter = netdev_priv(netdev);
139 struct e1000_hw *hw = &adapter->hw;
140 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
141 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
142 u32 status;
143 u32 speed;
144 u32 supported, advertising;
146 status = rd32(E1000_STATUS);
147 if (hw->phy.media_type == e1000_media_type_copper) {
149 supported = (SUPPORTED_10baseT_Half |
150 SUPPORTED_10baseT_Full |
151 SUPPORTED_100baseT_Half |
152 SUPPORTED_100baseT_Full |
153 SUPPORTED_1000baseT_Full|
154 SUPPORTED_Autoneg |
155 SUPPORTED_TP |
156 SUPPORTED_Pause);
157 advertising = ADVERTISED_TP;
159 if (hw->mac.autoneg == 1) {
160 advertising |= ADVERTISED_Autoneg;
161 /* the e1000 autoneg seems to match ethtool nicely */
162 advertising |= hw->phy.autoneg_advertised;
165 cmd->base.port = PORT_TP;
166 cmd->base.phy_address = hw->phy.addr;
167 } else {
168 supported = (SUPPORTED_FIBRE |
169 SUPPORTED_1000baseKX_Full |
170 SUPPORTED_Autoneg |
171 SUPPORTED_Pause);
172 advertising = (ADVERTISED_FIBRE |
173 ADVERTISED_1000baseKX_Full);
174 if (hw->mac.type == e1000_i354) {
175 if ((hw->device_id ==
176 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
177 !(status & E1000_STATUS_2P5_SKU_OVER)) {
178 supported |= SUPPORTED_2500baseX_Full;
179 supported &= ~SUPPORTED_1000baseKX_Full;
180 advertising |= ADVERTISED_2500baseX_Full;
181 advertising &= ~ADVERTISED_1000baseKX_Full;
184 if (eth_flags->e100_base_fx) {
185 supported |= SUPPORTED_100baseT_Full;
186 advertising |= ADVERTISED_100baseT_Full;
188 if (hw->mac.autoneg == 1)
189 advertising |= ADVERTISED_Autoneg;
191 cmd->base.port = PORT_FIBRE;
193 if (hw->mac.autoneg != 1)
194 advertising &= ~(ADVERTISED_Pause |
195 ADVERTISED_Asym_Pause);
197 switch (hw->fc.requested_mode) {
198 case e1000_fc_full:
199 advertising |= ADVERTISED_Pause;
200 break;
201 case e1000_fc_rx_pause:
202 advertising |= (ADVERTISED_Pause |
203 ADVERTISED_Asym_Pause);
204 break;
205 case e1000_fc_tx_pause:
206 advertising |= ADVERTISED_Asym_Pause;
207 break;
208 default:
209 advertising &= ~(ADVERTISED_Pause |
210 ADVERTISED_Asym_Pause);
212 if (status & E1000_STATUS_LU) {
213 if ((status & E1000_STATUS_2P5_SKU) &&
214 !(status & E1000_STATUS_2P5_SKU_OVER)) {
215 speed = SPEED_2500;
216 } else if (status & E1000_STATUS_SPEED_1000) {
217 speed = SPEED_1000;
218 } else if (status & E1000_STATUS_SPEED_100) {
219 speed = SPEED_100;
220 } else {
221 speed = SPEED_10;
223 if ((status & E1000_STATUS_FD) ||
224 hw->phy.media_type != e1000_media_type_copper)
225 cmd->base.duplex = DUPLEX_FULL;
226 else
227 cmd->base.duplex = DUPLEX_HALF;
228 } else {
229 speed = SPEED_UNKNOWN;
230 cmd->base.duplex = DUPLEX_UNKNOWN;
232 cmd->base.speed = speed;
233 if ((hw->phy.media_type == e1000_media_type_fiber) ||
234 hw->mac.autoneg)
235 cmd->base.autoneg = AUTONEG_ENABLE;
236 else
237 cmd->base.autoneg = AUTONEG_DISABLE;
239 /* MDI-X => 2; MDI =>1; Invalid =>0 */
240 if (hw->phy.media_type == e1000_media_type_copper)
241 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
242 ETH_TP_MDI;
243 else
244 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
246 if (hw->phy.mdix == AUTO_ALL_MODES)
247 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
248 else
249 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
251 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
252 supported);
253 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
254 advertising);
256 return 0;
259 static int igb_set_link_ksettings(struct net_device *netdev,
260 const struct ethtool_link_ksettings *cmd)
262 struct igb_adapter *adapter = netdev_priv(netdev);
263 struct e1000_hw *hw = &adapter->hw;
264 u32 advertising;
266 /* When SoL/IDER sessions are active, autoneg/speed/duplex
267 * cannot be changed
269 if (igb_check_reset_block(hw)) {
270 dev_err(&adapter->pdev->dev,
271 "Cannot change link characteristics when SoL/IDER is active.\n");
272 return -EINVAL;
275 /* MDI setting is only allowed when autoneg enabled because
276 * some hardware doesn't allow MDI setting when speed or
277 * duplex is forced.
279 if (cmd->base.eth_tp_mdix_ctrl) {
280 if (hw->phy.media_type != e1000_media_type_copper)
281 return -EOPNOTSUPP;
283 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
284 (cmd->base.autoneg != AUTONEG_ENABLE)) {
285 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
286 return -EINVAL;
290 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
291 usleep_range(1000, 2000);
293 ethtool_convert_link_mode_to_legacy_u32(&advertising,
294 cmd->link_modes.advertising);
296 if (cmd->base.autoneg == AUTONEG_ENABLE) {
297 hw->mac.autoneg = 1;
298 if (hw->phy.media_type == e1000_media_type_fiber) {
299 hw->phy.autoneg_advertised = advertising |
300 ADVERTISED_FIBRE |
301 ADVERTISED_Autoneg;
302 switch (adapter->link_speed) {
303 case SPEED_2500:
304 hw->phy.autoneg_advertised =
305 ADVERTISED_2500baseX_Full;
306 break;
307 case SPEED_1000:
308 hw->phy.autoneg_advertised =
309 ADVERTISED_1000baseT_Full;
310 break;
311 case SPEED_100:
312 hw->phy.autoneg_advertised =
313 ADVERTISED_100baseT_Full;
314 break;
315 default:
316 break;
318 } else {
319 hw->phy.autoneg_advertised = advertising |
320 ADVERTISED_TP |
321 ADVERTISED_Autoneg;
323 advertising = hw->phy.autoneg_advertised;
324 if (adapter->fc_autoneg)
325 hw->fc.requested_mode = e1000_fc_default;
326 } else {
327 u32 speed = cmd->base.speed;
328 /* calling this overrides forced MDI setting */
329 if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
330 clear_bit(__IGB_RESETTING, &adapter->state);
331 return -EINVAL;
335 /* MDI-X => 2; MDI => 1; Auto => 3 */
336 if (cmd->base.eth_tp_mdix_ctrl) {
337 /* fix up the value for auto (3 => 0) as zero is mapped
338 * internally to auto
340 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
341 hw->phy.mdix = AUTO_ALL_MODES;
342 else
343 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
346 /* reset the link */
347 if (netif_running(adapter->netdev)) {
348 igb_down(adapter);
349 igb_up(adapter);
350 } else
351 igb_reset(adapter);
353 clear_bit(__IGB_RESETTING, &adapter->state);
354 return 0;
357 static u32 igb_get_link(struct net_device *netdev)
359 struct igb_adapter *adapter = netdev_priv(netdev);
360 struct e1000_mac_info *mac = &adapter->hw.mac;
362 /* If the link is not reported up to netdev, interrupts are disabled,
363 * and so the physical link state may have changed since we last
364 * looked. Set get_link_status to make sure that the true link
365 * state is interrogated, rather than pulling a cached and possibly
366 * stale link state from the driver.
368 if (!netif_carrier_ok(netdev))
369 mac->get_link_status = 1;
371 return igb_has_link(adapter);
374 static void igb_get_pauseparam(struct net_device *netdev,
375 struct ethtool_pauseparam *pause)
377 struct igb_adapter *adapter = netdev_priv(netdev);
378 struct e1000_hw *hw = &adapter->hw;
380 pause->autoneg =
381 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
383 if (hw->fc.current_mode == e1000_fc_rx_pause)
384 pause->rx_pause = 1;
385 else if (hw->fc.current_mode == e1000_fc_tx_pause)
386 pause->tx_pause = 1;
387 else if (hw->fc.current_mode == e1000_fc_full) {
388 pause->rx_pause = 1;
389 pause->tx_pause = 1;
393 static int igb_set_pauseparam(struct net_device *netdev,
394 struct ethtool_pauseparam *pause)
396 struct igb_adapter *adapter = netdev_priv(netdev);
397 struct e1000_hw *hw = &adapter->hw;
398 int retval = 0;
400 /* 100basefx does not support setting link flow control */
401 if (hw->dev_spec._82575.eth_flags.e100_base_fx)
402 return -EINVAL;
404 adapter->fc_autoneg = pause->autoneg;
406 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
407 usleep_range(1000, 2000);
409 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
410 hw->fc.requested_mode = e1000_fc_default;
411 if (netif_running(adapter->netdev)) {
412 igb_down(adapter);
413 igb_up(adapter);
414 } else {
415 igb_reset(adapter);
417 } else {
418 if (pause->rx_pause && pause->tx_pause)
419 hw->fc.requested_mode = e1000_fc_full;
420 else if (pause->rx_pause && !pause->tx_pause)
421 hw->fc.requested_mode = e1000_fc_rx_pause;
422 else if (!pause->rx_pause && pause->tx_pause)
423 hw->fc.requested_mode = e1000_fc_tx_pause;
424 else if (!pause->rx_pause && !pause->tx_pause)
425 hw->fc.requested_mode = e1000_fc_none;
427 hw->fc.current_mode = hw->fc.requested_mode;
429 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
430 igb_force_mac_fc(hw) : igb_setup_link(hw));
433 clear_bit(__IGB_RESETTING, &adapter->state);
434 return retval;
437 static u32 igb_get_msglevel(struct net_device *netdev)
439 struct igb_adapter *adapter = netdev_priv(netdev);
440 return adapter->msg_enable;
443 static void igb_set_msglevel(struct net_device *netdev, u32 data)
445 struct igb_adapter *adapter = netdev_priv(netdev);
446 adapter->msg_enable = data;
449 static int igb_get_regs_len(struct net_device *netdev)
451 #define IGB_REGS_LEN 739
452 return IGB_REGS_LEN * sizeof(u32);
455 static void igb_get_regs(struct net_device *netdev,
456 struct ethtool_regs *regs, void *p)
458 struct igb_adapter *adapter = netdev_priv(netdev);
459 struct e1000_hw *hw = &adapter->hw;
460 u32 *regs_buff = p;
461 u8 i;
463 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
465 regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
467 /* General Registers */
468 regs_buff[0] = rd32(E1000_CTRL);
469 regs_buff[1] = rd32(E1000_STATUS);
470 regs_buff[2] = rd32(E1000_CTRL_EXT);
471 regs_buff[3] = rd32(E1000_MDIC);
472 regs_buff[4] = rd32(E1000_SCTL);
473 regs_buff[5] = rd32(E1000_CONNSW);
474 regs_buff[6] = rd32(E1000_VET);
475 regs_buff[7] = rd32(E1000_LEDCTL);
476 regs_buff[8] = rd32(E1000_PBA);
477 regs_buff[9] = rd32(E1000_PBS);
478 regs_buff[10] = rd32(E1000_FRTIMER);
479 regs_buff[11] = rd32(E1000_TCPTIMER);
481 /* NVM Register */
482 regs_buff[12] = rd32(E1000_EECD);
484 /* Interrupt */
485 /* Reading EICS for EICR because they read the
486 * same but EICS does not clear on read
488 regs_buff[13] = rd32(E1000_EICS);
489 regs_buff[14] = rd32(E1000_EICS);
490 regs_buff[15] = rd32(E1000_EIMS);
491 regs_buff[16] = rd32(E1000_EIMC);
492 regs_buff[17] = rd32(E1000_EIAC);
493 regs_buff[18] = rd32(E1000_EIAM);
494 /* Reading ICS for ICR because they read the
495 * same but ICS does not clear on read
497 regs_buff[19] = rd32(E1000_ICS);
498 regs_buff[20] = rd32(E1000_ICS);
499 regs_buff[21] = rd32(E1000_IMS);
500 regs_buff[22] = rd32(E1000_IMC);
501 regs_buff[23] = rd32(E1000_IAC);
502 regs_buff[24] = rd32(E1000_IAM);
503 regs_buff[25] = rd32(E1000_IMIRVP);
505 /* Flow Control */
506 regs_buff[26] = rd32(E1000_FCAL);
507 regs_buff[27] = rd32(E1000_FCAH);
508 regs_buff[28] = rd32(E1000_FCTTV);
509 regs_buff[29] = rd32(E1000_FCRTL);
510 regs_buff[30] = rd32(E1000_FCRTH);
511 regs_buff[31] = rd32(E1000_FCRTV);
513 /* Receive */
514 regs_buff[32] = rd32(E1000_RCTL);
515 regs_buff[33] = rd32(E1000_RXCSUM);
516 regs_buff[34] = rd32(E1000_RLPML);
517 regs_buff[35] = rd32(E1000_RFCTL);
518 regs_buff[36] = rd32(E1000_MRQC);
519 regs_buff[37] = rd32(E1000_VT_CTL);
521 /* Transmit */
522 regs_buff[38] = rd32(E1000_TCTL);
523 regs_buff[39] = rd32(E1000_TCTL_EXT);
524 regs_buff[40] = rd32(E1000_TIPG);
525 regs_buff[41] = rd32(E1000_DTXCTL);
527 /* Wake Up */
528 regs_buff[42] = rd32(E1000_WUC);
529 regs_buff[43] = rd32(E1000_WUFC);
530 regs_buff[44] = rd32(E1000_WUS);
531 regs_buff[45] = rd32(E1000_IPAV);
532 regs_buff[46] = rd32(E1000_WUPL);
534 /* MAC */
535 regs_buff[47] = rd32(E1000_PCS_CFG0);
536 regs_buff[48] = rd32(E1000_PCS_LCTL);
537 regs_buff[49] = rd32(E1000_PCS_LSTAT);
538 regs_buff[50] = rd32(E1000_PCS_ANADV);
539 regs_buff[51] = rd32(E1000_PCS_LPAB);
540 regs_buff[52] = rd32(E1000_PCS_NPTX);
541 regs_buff[53] = rd32(E1000_PCS_LPABNP);
543 /* Statistics */
544 regs_buff[54] = adapter->stats.crcerrs;
545 regs_buff[55] = adapter->stats.algnerrc;
546 regs_buff[56] = adapter->stats.symerrs;
547 regs_buff[57] = adapter->stats.rxerrc;
548 regs_buff[58] = adapter->stats.mpc;
549 regs_buff[59] = adapter->stats.scc;
550 regs_buff[60] = adapter->stats.ecol;
551 regs_buff[61] = adapter->stats.mcc;
552 regs_buff[62] = adapter->stats.latecol;
553 regs_buff[63] = adapter->stats.colc;
554 regs_buff[64] = adapter->stats.dc;
555 regs_buff[65] = adapter->stats.tncrs;
556 regs_buff[66] = adapter->stats.sec;
557 regs_buff[67] = adapter->stats.htdpmc;
558 regs_buff[68] = adapter->stats.rlec;
559 regs_buff[69] = adapter->stats.xonrxc;
560 regs_buff[70] = adapter->stats.xontxc;
561 regs_buff[71] = adapter->stats.xoffrxc;
562 regs_buff[72] = adapter->stats.xofftxc;
563 regs_buff[73] = adapter->stats.fcruc;
564 regs_buff[74] = adapter->stats.prc64;
565 regs_buff[75] = adapter->stats.prc127;
566 regs_buff[76] = adapter->stats.prc255;
567 regs_buff[77] = adapter->stats.prc511;
568 regs_buff[78] = adapter->stats.prc1023;
569 regs_buff[79] = adapter->stats.prc1522;
570 regs_buff[80] = adapter->stats.gprc;
571 regs_buff[81] = adapter->stats.bprc;
572 regs_buff[82] = adapter->stats.mprc;
573 regs_buff[83] = adapter->stats.gptc;
574 regs_buff[84] = adapter->stats.gorc;
575 regs_buff[86] = adapter->stats.gotc;
576 regs_buff[88] = adapter->stats.rnbc;
577 regs_buff[89] = adapter->stats.ruc;
578 regs_buff[90] = adapter->stats.rfc;
579 regs_buff[91] = adapter->stats.roc;
580 regs_buff[92] = adapter->stats.rjc;
581 regs_buff[93] = adapter->stats.mgprc;
582 regs_buff[94] = adapter->stats.mgpdc;
583 regs_buff[95] = adapter->stats.mgptc;
584 regs_buff[96] = adapter->stats.tor;
585 regs_buff[98] = adapter->stats.tot;
586 regs_buff[100] = adapter->stats.tpr;
587 regs_buff[101] = adapter->stats.tpt;
588 regs_buff[102] = adapter->stats.ptc64;
589 regs_buff[103] = adapter->stats.ptc127;
590 regs_buff[104] = adapter->stats.ptc255;
591 regs_buff[105] = adapter->stats.ptc511;
592 regs_buff[106] = adapter->stats.ptc1023;
593 regs_buff[107] = adapter->stats.ptc1522;
594 regs_buff[108] = adapter->stats.mptc;
595 regs_buff[109] = adapter->stats.bptc;
596 regs_buff[110] = adapter->stats.tsctc;
597 regs_buff[111] = adapter->stats.iac;
598 regs_buff[112] = adapter->stats.rpthc;
599 regs_buff[113] = adapter->stats.hgptc;
600 regs_buff[114] = adapter->stats.hgorc;
601 regs_buff[116] = adapter->stats.hgotc;
602 regs_buff[118] = adapter->stats.lenerrs;
603 regs_buff[119] = adapter->stats.scvpc;
604 regs_buff[120] = adapter->stats.hrmpc;
606 for (i = 0; i < 4; i++)
607 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
608 for (i = 0; i < 4; i++)
609 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
610 for (i = 0; i < 4; i++)
611 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
612 for (i = 0; i < 4; i++)
613 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
614 for (i = 0; i < 4; i++)
615 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
616 for (i = 0; i < 4; i++)
617 regs_buff[141 + i] = rd32(E1000_RDH(i));
618 for (i = 0; i < 4; i++)
619 regs_buff[145 + i] = rd32(E1000_RDT(i));
620 for (i = 0; i < 4; i++)
621 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
623 for (i = 0; i < 10; i++)
624 regs_buff[153 + i] = rd32(E1000_EITR(i));
625 for (i = 0; i < 8; i++)
626 regs_buff[163 + i] = rd32(E1000_IMIR(i));
627 for (i = 0; i < 8; i++)
628 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
629 for (i = 0; i < 16; i++)
630 regs_buff[179 + i] = rd32(E1000_RAL(i));
631 for (i = 0; i < 16; i++)
632 regs_buff[195 + i] = rd32(E1000_RAH(i));
634 for (i = 0; i < 4; i++)
635 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
636 for (i = 0; i < 4; i++)
637 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
638 for (i = 0; i < 4; i++)
639 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
640 for (i = 0; i < 4; i++)
641 regs_buff[223 + i] = rd32(E1000_TDH(i));
642 for (i = 0; i < 4; i++)
643 regs_buff[227 + i] = rd32(E1000_TDT(i));
644 for (i = 0; i < 4; i++)
645 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
646 for (i = 0; i < 4; i++)
647 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
648 for (i = 0; i < 4; i++)
649 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
650 for (i = 0; i < 4; i++)
651 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
653 for (i = 0; i < 4; i++)
654 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
655 for (i = 0; i < 4; i++)
656 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
657 for (i = 0; i < 32; i++)
658 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
659 for (i = 0; i < 128; i++)
660 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
661 for (i = 0; i < 128; i++)
662 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
663 for (i = 0; i < 4; i++)
664 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
666 regs_buff[547] = rd32(E1000_TDFH);
667 regs_buff[548] = rd32(E1000_TDFT);
668 regs_buff[549] = rd32(E1000_TDFHS);
669 regs_buff[550] = rd32(E1000_TDFPC);
671 if (hw->mac.type > e1000_82580) {
672 regs_buff[551] = adapter->stats.o2bgptc;
673 regs_buff[552] = adapter->stats.b2ospc;
674 regs_buff[553] = adapter->stats.o2bspc;
675 regs_buff[554] = adapter->stats.b2ogprc;
678 if (hw->mac.type != e1000_82576)
679 return;
680 for (i = 0; i < 12; i++)
681 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
682 for (i = 0; i < 4; i++)
683 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
684 for (i = 0; i < 12; i++)
685 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
686 for (i = 0; i < 12; i++)
687 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
688 for (i = 0; i < 12; i++)
689 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
690 for (i = 0; i < 12; i++)
691 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
692 for (i = 0; i < 12; i++)
693 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
694 for (i = 0; i < 12; i++)
695 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
697 for (i = 0; i < 12; i++)
698 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
699 for (i = 0; i < 12; i++)
700 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
701 for (i = 0; i < 12; i++)
702 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
703 for (i = 0; i < 12; i++)
704 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
705 for (i = 0; i < 12; i++)
706 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
707 for (i = 0; i < 12; i++)
708 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
709 for (i = 0; i < 12; i++)
710 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
711 for (i = 0; i < 12; i++)
712 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
715 static int igb_get_eeprom_len(struct net_device *netdev)
717 struct igb_adapter *adapter = netdev_priv(netdev);
718 return adapter->hw.nvm.word_size * 2;
721 static int igb_get_eeprom(struct net_device *netdev,
722 struct ethtool_eeprom *eeprom, u8 *bytes)
724 struct igb_adapter *adapter = netdev_priv(netdev);
725 struct e1000_hw *hw = &adapter->hw;
726 u16 *eeprom_buff;
727 int first_word, last_word;
728 int ret_val = 0;
729 u16 i;
731 if (eeprom->len == 0)
732 return -EINVAL;
734 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
736 first_word = eeprom->offset >> 1;
737 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
739 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
740 GFP_KERNEL);
741 if (!eeprom_buff)
742 return -ENOMEM;
744 if (hw->nvm.type == e1000_nvm_eeprom_spi)
745 ret_val = hw->nvm.ops.read(hw, first_word,
746 last_word - first_word + 1,
747 eeprom_buff);
748 else {
749 for (i = 0; i < last_word - first_word + 1; i++) {
750 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
751 &eeprom_buff[i]);
752 if (ret_val)
753 break;
757 /* Device's eeprom is always little-endian, word addressable */
758 for (i = 0; i < last_word - first_word + 1; i++)
759 le16_to_cpus(&eeprom_buff[i]);
761 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
762 eeprom->len);
763 kfree(eeprom_buff);
765 return ret_val;
768 static int igb_set_eeprom(struct net_device *netdev,
769 struct ethtool_eeprom *eeprom, u8 *bytes)
771 struct igb_adapter *adapter = netdev_priv(netdev);
772 struct e1000_hw *hw = &adapter->hw;
773 u16 *eeprom_buff;
774 void *ptr;
775 int max_len, first_word, last_word, ret_val = 0;
776 u16 i;
778 if (eeprom->len == 0)
779 return -EOPNOTSUPP;
781 if ((hw->mac.type >= e1000_i210) &&
782 !igb_get_flash_presence_i210(hw)) {
783 return -EOPNOTSUPP;
786 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
787 return -EFAULT;
789 max_len = hw->nvm.word_size * 2;
791 first_word = eeprom->offset >> 1;
792 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
793 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
794 if (!eeprom_buff)
795 return -ENOMEM;
797 ptr = (void *)eeprom_buff;
799 if (eeprom->offset & 1) {
800 /* need read/modify/write of first changed EEPROM word
801 * only the second byte of the word is being modified
803 ret_val = hw->nvm.ops.read(hw, first_word, 1,
804 &eeprom_buff[0]);
805 ptr++;
807 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
808 /* need read/modify/write of last changed EEPROM word
809 * only the first byte of the word is being modified
811 ret_val = hw->nvm.ops.read(hw, last_word, 1,
812 &eeprom_buff[last_word - first_word]);
815 /* Device's eeprom is always little-endian, word addressable */
816 for (i = 0; i < last_word - first_word + 1; i++)
817 le16_to_cpus(&eeprom_buff[i]);
819 memcpy(ptr, bytes, eeprom->len);
821 for (i = 0; i < last_word - first_word + 1; i++)
822 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
824 ret_val = hw->nvm.ops.write(hw, first_word,
825 last_word - first_word + 1, eeprom_buff);
827 /* Update the checksum if nvm write succeeded */
828 if (ret_val == 0)
829 hw->nvm.ops.update(hw);
831 igb_set_fw_version(adapter);
832 kfree(eeprom_buff);
833 return ret_val;
836 static void igb_get_drvinfo(struct net_device *netdev,
837 struct ethtool_drvinfo *drvinfo)
839 struct igb_adapter *adapter = netdev_priv(netdev);
841 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
842 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
844 /* EEPROM image version # is reported as firmware version # for
845 * 82575 controllers
847 strlcpy(drvinfo->fw_version, adapter->fw_version,
848 sizeof(drvinfo->fw_version));
849 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
850 sizeof(drvinfo->bus_info));
852 drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
855 static void igb_get_ringparam(struct net_device *netdev,
856 struct ethtool_ringparam *ring)
858 struct igb_adapter *adapter = netdev_priv(netdev);
860 ring->rx_max_pending = IGB_MAX_RXD;
861 ring->tx_max_pending = IGB_MAX_TXD;
862 ring->rx_pending = adapter->rx_ring_count;
863 ring->tx_pending = adapter->tx_ring_count;
866 static int igb_set_ringparam(struct net_device *netdev,
867 struct ethtool_ringparam *ring)
869 struct igb_adapter *adapter = netdev_priv(netdev);
870 struct igb_ring *temp_ring;
871 int i, err = 0;
872 u16 new_rx_count, new_tx_count;
874 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
875 return -EINVAL;
877 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
878 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
879 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
881 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
882 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
883 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
885 if ((new_tx_count == adapter->tx_ring_count) &&
886 (new_rx_count == adapter->rx_ring_count)) {
887 /* nothing to do */
888 return 0;
891 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
892 usleep_range(1000, 2000);
894 if (!netif_running(adapter->netdev)) {
895 for (i = 0; i < adapter->num_tx_queues; i++)
896 adapter->tx_ring[i]->count = new_tx_count;
897 for (i = 0; i < adapter->num_rx_queues; i++)
898 adapter->rx_ring[i]->count = new_rx_count;
899 adapter->tx_ring_count = new_tx_count;
900 adapter->rx_ring_count = new_rx_count;
901 goto clear_reset;
904 if (adapter->num_tx_queues > adapter->num_rx_queues)
905 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
906 adapter->num_tx_queues));
907 else
908 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
909 adapter->num_rx_queues));
911 if (!temp_ring) {
912 err = -ENOMEM;
913 goto clear_reset;
916 igb_down(adapter);
918 /* We can't just free everything and then setup again,
919 * because the ISRs in MSI-X mode get passed pointers
920 * to the Tx and Rx ring structs.
922 if (new_tx_count != adapter->tx_ring_count) {
923 for (i = 0; i < adapter->num_tx_queues; i++) {
924 memcpy(&temp_ring[i], adapter->tx_ring[i],
925 sizeof(struct igb_ring));
927 temp_ring[i].count = new_tx_count;
928 err = igb_setup_tx_resources(&temp_ring[i]);
929 if (err) {
930 while (i) {
931 i--;
932 igb_free_tx_resources(&temp_ring[i]);
934 goto err_setup;
938 for (i = 0; i < adapter->num_tx_queues; i++) {
939 igb_free_tx_resources(adapter->tx_ring[i]);
941 memcpy(adapter->tx_ring[i], &temp_ring[i],
942 sizeof(struct igb_ring));
945 adapter->tx_ring_count = new_tx_count;
948 if (new_rx_count != adapter->rx_ring_count) {
949 for (i = 0; i < adapter->num_rx_queues; i++) {
950 memcpy(&temp_ring[i], adapter->rx_ring[i],
951 sizeof(struct igb_ring));
953 temp_ring[i].count = new_rx_count;
954 err = igb_setup_rx_resources(&temp_ring[i]);
955 if (err) {
956 while (i) {
957 i--;
958 igb_free_rx_resources(&temp_ring[i]);
960 goto err_setup;
965 for (i = 0; i < adapter->num_rx_queues; i++) {
966 igb_free_rx_resources(adapter->rx_ring[i]);
968 memcpy(adapter->rx_ring[i], &temp_ring[i],
969 sizeof(struct igb_ring));
972 adapter->rx_ring_count = new_rx_count;
974 err_setup:
975 igb_up(adapter);
976 vfree(temp_ring);
977 clear_reset:
978 clear_bit(__IGB_RESETTING, &adapter->state);
979 return err;
982 /* ethtool register test data */
983 struct igb_reg_test {
984 u16 reg;
985 u16 reg_offset;
986 u16 array_len;
987 u16 test_type;
988 u32 mask;
989 u32 write;
992 /* In the hardware, registers are laid out either singly, in arrays
993 * spaced 0x100 bytes apart, or in contiguous tables. We assume
994 * most tests take place on arrays or single registers (handled
995 * as a single-element array) and special-case the tables.
996 * Table tests are always pattern tests.
998 * We also make provision for some required setup steps by specifying
999 * registers to be written without any read-back testing.
1002 #define PATTERN_TEST 1
1003 #define SET_READ_TEST 2
1004 #define WRITE_NO_TEST 3
1005 #define TABLE32_TEST 4
1006 #define TABLE64_TEST_LO 5
1007 #define TABLE64_TEST_HI 6
1009 /* i210 reg test */
1010 static struct igb_reg_test reg_test_i210[] = {
1011 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1012 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1013 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1014 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1015 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1016 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1017 /* RDH is read-only for i210, only test RDT. */
1018 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1020 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1021 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1022 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1023 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1024 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1025 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1026 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1027 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1028 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1029 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1030 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1031 0xFFFFFFFF, 0xFFFFFFFF },
1032 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1033 0x900FFFFF, 0xFFFFFFFF },
1034 { E1000_MTA, 0, 128, TABLE32_TEST,
1035 0xFFFFFFFF, 0xFFFFFFFF },
1036 { 0, 0, 0, 0, 0 }
1039 /* i350 reg test */
1040 static struct igb_reg_test reg_test_i350[] = {
1041 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1042 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1043 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1044 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1045 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1046 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1047 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1048 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1049 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1050 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1051 /* RDH is read-only for i350, only test RDT. */
1052 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1053 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1054 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1055 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1056 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1057 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1058 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1060 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1063 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1064 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1065 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1066 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1067 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1068 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1069 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1070 0xFFFFFFFF, 0xFFFFFFFF },
1071 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1072 0xC3FFFFFF, 0xFFFFFFFF },
1073 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
1074 0xFFFFFFFF, 0xFFFFFFFF },
1075 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
1076 0xC3FFFFFF, 0xFFFFFFFF },
1077 { E1000_MTA, 0, 128, TABLE32_TEST,
1078 0xFFFFFFFF, 0xFFFFFFFF },
1079 { 0, 0, 0, 0 }
1082 /* 82580 reg test */
1083 static struct igb_reg_test reg_test_82580[] = {
1084 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1085 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1086 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1087 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1088 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1089 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1090 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1091 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1092 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1093 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1094 /* RDH is read-only for 82580, only test RDT. */
1095 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1096 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1097 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1098 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1099 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1100 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1101 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1102 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1103 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1104 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1106 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1107 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1108 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1109 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1110 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1111 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1112 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1113 0xFFFFFFFF, 0xFFFFFFFF },
1114 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1115 0x83FFFFFF, 0xFFFFFFFF },
1116 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1117 0xFFFFFFFF, 0xFFFFFFFF },
1118 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1119 0x83FFFFFF, 0xFFFFFFFF },
1120 { E1000_MTA, 0, 128, TABLE32_TEST,
1121 0xFFFFFFFF, 0xFFFFFFFF },
1122 { 0, 0, 0, 0 }
1125 /* 82576 reg test */
1126 static struct igb_reg_test reg_test_82576[] = {
1127 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1128 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1129 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1130 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1131 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1132 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1133 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1134 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1135 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1136 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1137 /* Enable all RX queues before testing. */
1138 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1139 E1000_RXDCTL_QUEUE_ENABLE },
1140 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1141 E1000_RXDCTL_QUEUE_ENABLE },
1142 /* RDH is read-only for 82576, only test RDT. */
1143 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1144 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1145 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1146 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1147 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1148 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1149 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1150 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1151 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1152 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1153 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1154 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1155 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1156 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1157 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1158 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1159 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1160 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1161 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1162 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1163 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1164 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1165 { 0, 0, 0, 0 }
1168 /* 82575 register test */
1169 static struct igb_reg_test reg_test_82575[] = {
1170 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1171 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1172 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1173 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1174 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1175 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1176 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1177 /* Enable all four RX queues before testing. */
1178 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1179 E1000_RXDCTL_QUEUE_ENABLE },
1180 /* RDH is read-only for 82575, only test RDT. */
1181 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1182 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1183 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1184 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1185 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1186 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1187 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1188 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1189 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1190 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1191 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1192 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1193 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1194 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1195 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1196 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1197 { 0, 0, 0, 0 }
1200 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1201 int reg, u32 mask, u32 write)
1203 struct e1000_hw *hw = &adapter->hw;
1204 u32 pat, val;
1205 static const u32 _test[] = {
1206 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1207 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1208 wr32(reg, (_test[pat] & write));
1209 val = rd32(reg) & mask;
1210 if (val != (_test[pat] & write & mask)) {
1211 dev_err(&adapter->pdev->dev,
1212 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1213 reg, val, (_test[pat] & write & mask));
1214 *data = reg;
1215 return true;
1219 return false;
1222 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1223 int reg, u32 mask, u32 write)
1225 struct e1000_hw *hw = &adapter->hw;
1226 u32 val;
1228 wr32(reg, write & mask);
1229 val = rd32(reg);
1230 if ((write & mask) != (val & mask)) {
1231 dev_err(&adapter->pdev->dev,
1232 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1233 reg, (val & mask), (write & mask));
1234 *data = reg;
1235 return true;
1238 return false;
1241 #define REG_PATTERN_TEST(reg, mask, write) \
1242 do { \
1243 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1244 return 1; \
1245 } while (0)
1247 #define REG_SET_AND_CHECK(reg, mask, write) \
1248 do { \
1249 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1250 return 1; \
1251 } while (0)
1253 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1255 struct e1000_hw *hw = &adapter->hw;
1256 struct igb_reg_test *test;
1257 u32 value, before, after;
1258 u32 i, toggle;
1260 switch (adapter->hw.mac.type) {
1261 case e1000_i350:
1262 case e1000_i354:
1263 test = reg_test_i350;
1264 toggle = 0x7FEFF3FF;
1265 break;
1266 case e1000_i210:
1267 case e1000_i211:
1268 test = reg_test_i210;
1269 toggle = 0x7FEFF3FF;
1270 break;
1271 case e1000_82580:
1272 test = reg_test_82580;
1273 toggle = 0x7FEFF3FF;
1274 break;
1275 case e1000_82576:
1276 test = reg_test_82576;
1277 toggle = 0x7FFFF3FF;
1278 break;
1279 default:
1280 test = reg_test_82575;
1281 toggle = 0x7FFFF3FF;
1282 break;
1285 /* Because the status register is such a special case,
1286 * we handle it separately from the rest of the register
1287 * tests. Some bits are read-only, some toggle, and some
1288 * are writable on newer MACs.
1290 before = rd32(E1000_STATUS);
1291 value = (rd32(E1000_STATUS) & toggle);
1292 wr32(E1000_STATUS, toggle);
1293 after = rd32(E1000_STATUS) & toggle;
1294 if (value != after) {
1295 dev_err(&adapter->pdev->dev,
1296 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1297 after, value);
1298 *data = 1;
1299 return 1;
1301 /* restore previous status */
1302 wr32(E1000_STATUS, before);
1304 /* Perform the remainder of the register test, looping through
1305 * the test table until we either fail or reach the null entry.
1307 while (test->reg) {
1308 for (i = 0; i < test->array_len; i++) {
1309 switch (test->test_type) {
1310 case PATTERN_TEST:
1311 REG_PATTERN_TEST(test->reg +
1312 (i * test->reg_offset),
1313 test->mask,
1314 test->write);
1315 break;
1316 case SET_READ_TEST:
1317 REG_SET_AND_CHECK(test->reg +
1318 (i * test->reg_offset),
1319 test->mask,
1320 test->write);
1321 break;
1322 case WRITE_NO_TEST:
1323 writel(test->write,
1324 (adapter->hw.hw_addr + test->reg)
1325 + (i * test->reg_offset));
1326 break;
1327 case TABLE32_TEST:
1328 REG_PATTERN_TEST(test->reg + (i * 4),
1329 test->mask,
1330 test->write);
1331 break;
1332 case TABLE64_TEST_LO:
1333 REG_PATTERN_TEST(test->reg + (i * 8),
1334 test->mask,
1335 test->write);
1336 break;
1337 case TABLE64_TEST_HI:
1338 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1339 test->mask,
1340 test->write);
1341 break;
1344 test++;
1347 *data = 0;
1348 return 0;
1351 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1353 struct e1000_hw *hw = &adapter->hw;
1355 *data = 0;
1357 /* Validate eeprom on all parts but flashless */
1358 switch (hw->mac.type) {
1359 case e1000_i210:
1360 case e1000_i211:
1361 if (igb_get_flash_presence_i210(hw)) {
1362 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1363 *data = 2;
1365 break;
1366 default:
1367 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1368 *data = 2;
1369 break;
1372 return *data;
1375 static irqreturn_t igb_test_intr(int irq, void *data)
1377 struct igb_adapter *adapter = (struct igb_adapter *) data;
1378 struct e1000_hw *hw = &adapter->hw;
1380 adapter->test_icr |= rd32(E1000_ICR);
1382 return IRQ_HANDLED;
1385 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1387 struct e1000_hw *hw = &adapter->hw;
1388 struct net_device *netdev = adapter->netdev;
1389 u32 mask, ics_mask, i = 0, shared_int = true;
1390 u32 irq = adapter->pdev->irq;
1392 *data = 0;
1394 /* Hook up test interrupt handler just for this test */
1395 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1396 if (request_irq(adapter->msix_entries[0].vector,
1397 igb_test_intr, 0, netdev->name, adapter)) {
1398 *data = 1;
1399 return -1;
1401 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1402 shared_int = false;
1403 if (request_irq(irq,
1404 igb_test_intr, 0, netdev->name, adapter)) {
1405 *data = 1;
1406 return -1;
1408 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1409 netdev->name, adapter)) {
1410 shared_int = false;
1411 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1412 netdev->name, adapter)) {
1413 *data = 1;
1414 return -1;
1416 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1417 (shared_int ? "shared" : "unshared"));
1419 /* Disable all the interrupts */
1420 wr32(E1000_IMC, ~0);
1421 wrfl();
1422 usleep_range(10000, 11000);
1424 /* Define all writable bits for ICS */
1425 switch (hw->mac.type) {
1426 case e1000_82575:
1427 ics_mask = 0x37F47EDD;
1428 break;
1429 case e1000_82576:
1430 ics_mask = 0x77D4FBFD;
1431 break;
1432 case e1000_82580:
1433 ics_mask = 0x77DCFED5;
1434 break;
1435 case e1000_i350:
1436 case e1000_i354:
1437 case e1000_i210:
1438 case e1000_i211:
1439 ics_mask = 0x77DCFED5;
1440 break;
1441 default:
1442 ics_mask = 0x7FFFFFFF;
1443 break;
1446 /* Test each interrupt */
1447 for (; i < 31; i++) {
1448 /* Interrupt to test */
1449 mask = BIT(i);
1451 if (!(mask & ics_mask))
1452 continue;
1454 if (!shared_int) {
1455 /* Disable the interrupt to be reported in
1456 * the cause register and then force the same
1457 * interrupt and see if one gets posted. If
1458 * an interrupt was posted to the bus, the
1459 * test failed.
1461 adapter->test_icr = 0;
1463 /* Flush any pending interrupts */
1464 wr32(E1000_ICR, ~0);
1466 wr32(E1000_IMC, mask);
1467 wr32(E1000_ICS, mask);
1468 wrfl();
1469 usleep_range(10000, 11000);
1471 if (adapter->test_icr & mask) {
1472 *data = 3;
1473 break;
1477 /* Enable the interrupt to be reported in
1478 * the cause register and then force the same
1479 * interrupt and see if one gets posted. If
1480 * an interrupt was not posted to the bus, the
1481 * test failed.
1483 adapter->test_icr = 0;
1485 /* Flush any pending interrupts */
1486 wr32(E1000_ICR, ~0);
1488 wr32(E1000_IMS, mask);
1489 wr32(E1000_ICS, mask);
1490 wrfl();
1491 usleep_range(10000, 11000);
1493 if (!(adapter->test_icr & mask)) {
1494 *data = 4;
1495 break;
1498 if (!shared_int) {
1499 /* Disable the other interrupts to be reported in
1500 * the cause register and then force the other
1501 * interrupts and see if any get posted. If
1502 * an interrupt was posted to the bus, the
1503 * test failed.
1505 adapter->test_icr = 0;
1507 /* Flush any pending interrupts */
1508 wr32(E1000_ICR, ~0);
1510 wr32(E1000_IMC, ~mask);
1511 wr32(E1000_ICS, ~mask);
1512 wrfl();
1513 usleep_range(10000, 11000);
1515 if (adapter->test_icr & mask) {
1516 *data = 5;
1517 break;
1522 /* Disable all the interrupts */
1523 wr32(E1000_IMC, ~0);
1524 wrfl();
1525 usleep_range(10000, 11000);
1527 /* Unhook test interrupt handler */
1528 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1529 free_irq(adapter->msix_entries[0].vector, adapter);
1530 else
1531 free_irq(irq, adapter);
1533 return *data;
1536 static void igb_free_desc_rings(struct igb_adapter *adapter)
1538 igb_free_tx_resources(&adapter->test_tx_ring);
1539 igb_free_rx_resources(&adapter->test_rx_ring);
1542 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1544 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1545 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1546 struct e1000_hw *hw = &adapter->hw;
1547 int ret_val;
1549 /* Setup Tx descriptor ring and Tx buffers */
1550 tx_ring->count = IGB_DEFAULT_TXD;
1551 tx_ring->dev = &adapter->pdev->dev;
1552 tx_ring->netdev = adapter->netdev;
1553 tx_ring->reg_idx = adapter->vfs_allocated_count;
1555 if (igb_setup_tx_resources(tx_ring)) {
1556 ret_val = 1;
1557 goto err_nomem;
1560 igb_setup_tctl(adapter);
1561 igb_configure_tx_ring(adapter, tx_ring);
1563 /* Setup Rx descriptor ring and Rx buffers */
1564 rx_ring->count = IGB_DEFAULT_RXD;
1565 rx_ring->dev = &adapter->pdev->dev;
1566 rx_ring->netdev = adapter->netdev;
1567 rx_ring->reg_idx = adapter->vfs_allocated_count;
1569 if (igb_setup_rx_resources(rx_ring)) {
1570 ret_val = 3;
1571 goto err_nomem;
1574 /* set the default queue to queue 0 of PF */
1575 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1577 /* enable receive ring */
1578 igb_setup_rctl(adapter);
1579 igb_configure_rx_ring(adapter, rx_ring);
1581 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1583 return 0;
1585 err_nomem:
1586 igb_free_desc_rings(adapter);
1587 return ret_val;
1590 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1592 struct e1000_hw *hw = &adapter->hw;
1594 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1595 igb_write_phy_reg(hw, 29, 0x001F);
1596 igb_write_phy_reg(hw, 30, 0x8FFC);
1597 igb_write_phy_reg(hw, 29, 0x001A);
1598 igb_write_phy_reg(hw, 30, 0x8FF0);
1601 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1603 struct e1000_hw *hw = &adapter->hw;
1604 u32 ctrl_reg = 0;
1606 hw->mac.autoneg = false;
1608 if (hw->phy.type == e1000_phy_m88) {
1609 if (hw->phy.id != I210_I_PHY_ID) {
1610 /* Auto-MDI/MDIX Off */
1611 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1612 /* reset to update Auto-MDI/MDIX */
1613 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1614 /* autoneg off */
1615 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1616 } else {
1617 /* force 1000, set loopback */
1618 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1619 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1621 } else if (hw->phy.type == e1000_phy_82580) {
1622 /* enable MII loopback */
1623 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1626 /* add small delay to avoid loopback test failure */
1627 msleep(50);
1629 /* force 1000, set loopback */
1630 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1632 /* Now set up the MAC to the same speed/duplex as the PHY. */
1633 ctrl_reg = rd32(E1000_CTRL);
1634 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1635 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1636 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1637 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1638 E1000_CTRL_FD | /* Force Duplex to FULL */
1639 E1000_CTRL_SLU); /* Set link up enable bit */
1641 if (hw->phy.type == e1000_phy_m88)
1642 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1644 wr32(E1000_CTRL, ctrl_reg);
1646 /* Disable the receiver on the PHY so when a cable is plugged in, the
1647 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1649 if (hw->phy.type == e1000_phy_m88)
1650 igb_phy_disable_receiver(adapter);
1652 msleep(500);
1653 return 0;
1656 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1658 return igb_integrated_phy_loopback(adapter);
1661 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1663 struct e1000_hw *hw = &adapter->hw;
1664 u32 reg;
1666 reg = rd32(E1000_CTRL_EXT);
1668 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1669 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1670 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1671 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1672 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1673 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1674 (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1675 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1676 /* Enable DH89xxCC MPHY for near end loopback */
1677 reg = rd32(E1000_MPHY_ADDR_CTL);
1678 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1679 E1000_MPHY_PCS_CLK_REG_OFFSET;
1680 wr32(E1000_MPHY_ADDR_CTL, reg);
1682 reg = rd32(E1000_MPHY_DATA);
1683 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1684 wr32(E1000_MPHY_DATA, reg);
1687 reg = rd32(E1000_RCTL);
1688 reg |= E1000_RCTL_LBM_TCVR;
1689 wr32(E1000_RCTL, reg);
1691 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1693 reg = rd32(E1000_CTRL);
1694 reg &= ~(E1000_CTRL_RFCE |
1695 E1000_CTRL_TFCE |
1696 E1000_CTRL_LRST);
1697 reg |= E1000_CTRL_SLU |
1698 E1000_CTRL_FD;
1699 wr32(E1000_CTRL, reg);
1701 /* Unset switch control to serdes energy detect */
1702 reg = rd32(E1000_CONNSW);
1703 reg &= ~E1000_CONNSW_ENRGSRC;
1704 wr32(E1000_CONNSW, reg);
1706 /* Unset sigdetect for SERDES loopback on
1707 * 82580 and newer devices.
1709 if (hw->mac.type >= e1000_82580) {
1710 reg = rd32(E1000_PCS_CFG0);
1711 reg |= E1000_PCS_CFG_IGN_SD;
1712 wr32(E1000_PCS_CFG0, reg);
1715 /* Set PCS register for forced speed */
1716 reg = rd32(E1000_PCS_LCTL);
1717 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1718 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1719 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1720 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1721 E1000_PCS_LCTL_FSD | /* Force Speed */
1722 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1723 wr32(E1000_PCS_LCTL, reg);
1725 return 0;
1728 return igb_set_phy_loopback(adapter);
1731 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1733 struct e1000_hw *hw = &adapter->hw;
1734 u32 rctl;
1735 u16 phy_reg;
1737 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1738 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1739 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1740 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1741 (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1742 u32 reg;
1744 /* Disable near end loopback on DH89xxCC */
1745 reg = rd32(E1000_MPHY_ADDR_CTL);
1746 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1747 E1000_MPHY_PCS_CLK_REG_OFFSET;
1748 wr32(E1000_MPHY_ADDR_CTL, reg);
1750 reg = rd32(E1000_MPHY_DATA);
1751 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1752 wr32(E1000_MPHY_DATA, reg);
1755 rctl = rd32(E1000_RCTL);
1756 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1757 wr32(E1000_RCTL, rctl);
1759 hw->mac.autoneg = true;
1760 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1761 if (phy_reg & MII_CR_LOOPBACK) {
1762 phy_reg &= ~MII_CR_LOOPBACK;
1763 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1764 igb_phy_sw_reset(hw);
1768 static void igb_create_lbtest_frame(struct sk_buff *skb,
1769 unsigned int frame_size)
1771 memset(skb->data, 0xFF, frame_size);
1772 frame_size /= 2;
1773 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1774 memset(&skb->data[frame_size + 10], 0xBE, 1);
1775 memset(&skb->data[frame_size + 12], 0xAF, 1);
1778 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1779 unsigned int frame_size)
1781 unsigned char *data;
1782 bool match = true;
1784 frame_size >>= 1;
1786 data = kmap(rx_buffer->page);
1788 if (data[3] != 0xFF ||
1789 data[frame_size + 10] != 0xBE ||
1790 data[frame_size + 12] != 0xAF)
1791 match = false;
1793 kunmap(rx_buffer->page);
1795 return match;
1798 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1799 struct igb_ring *tx_ring,
1800 unsigned int size)
1802 union e1000_adv_rx_desc *rx_desc;
1803 struct igb_rx_buffer *rx_buffer_info;
1804 struct igb_tx_buffer *tx_buffer_info;
1805 u16 rx_ntc, tx_ntc, count = 0;
1807 /* initialize next to clean and descriptor values */
1808 rx_ntc = rx_ring->next_to_clean;
1809 tx_ntc = tx_ring->next_to_clean;
1810 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1812 while (rx_desc->wb.upper.length) {
1813 /* check Rx buffer */
1814 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1816 /* sync Rx buffer for CPU read */
1817 dma_sync_single_for_cpu(rx_ring->dev,
1818 rx_buffer_info->dma,
1819 size,
1820 DMA_FROM_DEVICE);
1822 /* verify contents of skb */
1823 if (igb_check_lbtest_frame(rx_buffer_info, size))
1824 count++;
1826 /* sync Rx buffer for device write */
1827 dma_sync_single_for_device(rx_ring->dev,
1828 rx_buffer_info->dma,
1829 size,
1830 DMA_FROM_DEVICE);
1832 /* unmap buffer on Tx side */
1833 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1835 /* Free all the Tx ring sk_buffs */
1836 dev_kfree_skb_any(tx_buffer_info->skb);
1838 /* unmap skb header data */
1839 dma_unmap_single(tx_ring->dev,
1840 dma_unmap_addr(tx_buffer_info, dma),
1841 dma_unmap_len(tx_buffer_info, len),
1842 DMA_TO_DEVICE);
1843 dma_unmap_len_set(tx_buffer_info, len, 0);
1845 /* increment Rx/Tx next to clean counters */
1846 rx_ntc++;
1847 if (rx_ntc == rx_ring->count)
1848 rx_ntc = 0;
1849 tx_ntc++;
1850 if (tx_ntc == tx_ring->count)
1851 tx_ntc = 0;
1853 /* fetch next descriptor */
1854 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1857 netdev_tx_reset_queue(txring_txq(tx_ring));
1859 /* re-map buffers to ring, store next to clean values */
1860 igb_alloc_rx_buffers(rx_ring, count);
1861 rx_ring->next_to_clean = rx_ntc;
1862 tx_ring->next_to_clean = tx_ntc;
1864 return count;
1867 static int igb_run_loopback_test(struct igb_adapter *adapter)
1869 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1870 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1871 u16 i, j, lc, good_cnt;
1872 int ret_val = 0;
1873 unsigned int size = IGB_RX_HDR_LEN;
1874 netdev_tx_t tx_ret_val;
1875 struct sk_buff *skb;
1877 /* allocate test skb */
1878 skb = alloc_skb(size, GFP_KERNEL);
1879 if (!skb)
1880 return 11;
1882 /* place data into test skb */
1883 igb_create_lbtest_frame(skb, size);
1884 skb_put(skb, size);
1886 /* Calculate the loop count based on the largest descriptor ring
1887 * The idea is to wrap the largest ring a number of times using 64
1888 * send/receive pairs during each loop
1891 if (rx_ring->count <= tx_ring->count)
1892 lc = ((tx_ring->count / 64) * 2) + 1;
1893 else
1894 lc = ((rx_ring->count / 64) * 2) + 1;
1896 for (j = 0; j <= lc; j++) { /* loop count loop */
1897 /* reset count of good packets */
1898 good_cnt = 0;
1900 /* place 64 packets on the transmit queue*/
1901 for (i = 0; i < 64; i++) {
1902 skb_get(skb);
1903 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1904 if (tx_ret_val == NETDEV_TX_OK)
1905 good_cnt++;
1908 if (good_cnt != 64) {
1909 ret_val = 12;
1910 break;
1913 /* allow 200 milliseconds for packets to go from Tx to Rx */
1914 msleep(200);
1916 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1917 if (good_cnt != 64) {
1918 ret_val = 13;
1919 break;
1921 } /* end loop count loop */
1923 /* free the original skb */
1924 kfree_skb(skb);
1926 return ret_val;
1929 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1931 /* PHY loopback cannot be performed if SoL/IDER
1932 * sessions are active
1934 if (igb_check_reset_block(&adapter->hw)) {
1935 dev_err(&adapter->pdev->dev,
1936 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1937 *data = 0;
1938 goto out;
1941 if (adapter->hw.mac.type == e1000_i354) {
1942 dev_info(&adapter->pdev->dev,
1943 "Loopback test not supported on i354.\n");
1944 *data = 0;
1945 goto out;
1947 *data = igb_setup_desc_rings(adapter);
1948 if (*data)
1949 goto out;
1950 *data = igb_setup_loopback_test(adapter);
1951 if (*data)
1952 goto err_loopback;
1953 *data = igb_run_loopback_test(adapter);
1954 igb_loopback_cleanup(adapter);
1956 err_loopback:
1957 igb_free_desc_rings(adapter);
1958 out:
1959 return *data;
1962 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1964 struct e1000_hw *hw = &adapter->hw;
1965 *data = 0;
1966 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1967 int i = 0;
1969 hw->mac.serdes_has_link = false;
1971 /* On some blade server designs, link establishment
1972 * could take as long as 2-3 minutes
1974 do {
1975 hw->mac.ops.check_for_link(&adapter->hw);
1976 if (hw->mac.serdes_has_link)
1977 return *data;
1978 msleep(20);
1979 } while (i++ < 3750);
1981 *data = 1;
1982 } else {
1983 hw->mac.ops.check_for_link(&adapter->hw);
1984 if (hw->mac.autoneg)
1985 msleep(5000);
1987 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1988 *data = 1;
1990 return *data;
1993 static void igb_diag_test(struct net_device *netdev,
1994 struct ethtool_test *eth_test, u64 *data)
1996 struct igb_adapter *adapter = netdev_priv(netdev);
1997 u16 autoneg_advertised;
1998 u8 forced_speed_duplex, autoneg;
1999 bool if_running = netif_running(netdev);
2001 set_bit(__IGB_TESTING, &adapter->state);
2003 /* can't do offline tests on media switching devices */
2004 if (adapter->hw.dev_spec._82575.mas_capable)
2005 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2006 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2007 /* Offline tests */
2009 /* save speed, duplex, autoneg settings */
2010 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2011 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2012 autoneg = adapter->hw.mac.autoneg;
2014 dev_info(&adapter->pdev->dev, "offline testing starting\n");
2016 /* power up link for link test */
2017 igb_power_up_link(adapter);
2019 /* Link test performed before hardware reset so autoneg doesn't
2020 * interfere with test result
2022 if (igb_link_test(adapter, &data[TEST_LINK]))
2023 eth_test->flags |= ETH_TEST_FL_FAILED;
2025 if (if_running)
2026 /* indicate we're in test mode */
2027 igb_close(netdev);
2028 else
2029 igb_reset(adapter);
2031 if (igb_reg_test(adapter, &data[TEST_REG]))
2032 eth_test->flags |= ETH_TEST_FL_FAILED;
2034 igb_reset(adapter);
2035 if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2036 eth_test->flags |= ETH_TEST_FL_FAILED;
2038 igb_reset(adapter);
2039 if (igb_intr_test(adapter, &data[TEST_IRQ]))
2040 eth_test->flags |= ETH_TEST_FL_FAILED;
2042 igb_reset(adapter);
2043 /* power up link for loopback test */
2044 igb_power_up_link(adapter);
2045 if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2046 eth_test->flags |= ETH_TEST_FL_FAILED;
2048 /* restore speed, duplex, autoneg settings */
2049 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2050 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2051 adapter->hw.mac.autoneg = autoneg;
2053 /* force this routine to wait until autoneg complete/timeout */
2054 adapter->hw.phy.autoneg_wait_to_complete = true;
2055 igb_reset(adapter);
2056 adapter->hw.phy.autoneg_wait_to_complete = false;
2058 clear_bit(__IGB_TESTING, &adapter->state);
2059 if (if_running)
2060 igb_open(netdev);
2061 } else {
2062 dev_info(&adapter->pdev->dev, "online testing starting\n");
2064 /* PHY is powered down when interface is down */
2065 if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2066 eth_test->flags |= ETH_TEST_FL_FAILED;
2067 else
2068 data[TEST_LINK] = 0;
2070 /* Online tests aren't run; pass by default */
2071 data[TEST_REG] = 0;
2072 data[TEST_EEP] = 0;
2073 data[TEST_IRQ] = 0;
2074 data[TEST_LOOP] = 0;
2076 clear_bit(__IGB_TESTING, &adapter->state);
2078 msleep_interruptible(4 * 1000);
2081 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2083 struct igb_adapter *adapter = netdev_priv(netdev);
2085 wol->wolopts = 0;
2087 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2088 return;
2090 wol->supported = WAKE_UCAST | WAKE_MCAST |
2091 WAKE_BCAST | WAKE_MAGIC |
2092 WAKE_PHY;
2094 /* apply any specific unsupported masks here */
2095 switch (adapter->hw.device_id) {
2096 default:
2097 break;
2100 if (adapter->wol & E1000_WUFC_EX)
2101 wol->wolopts |= WAKE_UCAST;
2102 if (adapter->wol & E1000_WUFC_MC)
2103 wol->wolopts |= WAKE_MCAST;
2104 if (adapter->wol & E1000_WUFC_BC)
2105 wol->wolopts |= WAKE_BCAST;
2106 if (adapter->wol & E1000_WUFC_MAG)
2107 wol->wolopts |= WAKE_MAGIC;
2108 if (adapter->wol & E1000_WUFC_LNKC)
2109 wol->wolopts |= WAKE_PHY;
2112 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2114 struct igb_adapter *adapter = netdev_priv(netdev);
2116 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2117 return -EOPNOTSUPP;
2119 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2120 return wol->wolopts ? -EOPNOTSUPP : 0;
2122 /* these settings will always override what we currently have */
2123 adapter->wol = 0;
2125 if (wol->wolopts & WAKE_UCAST)
2126 adapter->wol |= E1000_WUFC_EX;
2127 if (wol->wolopts & WAKE_MCAST)
2128 adapter->wol |= E1000_WUFC_MC;
2129 if (wol->wolopts & WAKE_BCAST)
2130 adapter->wol |= E1000_WUFC_BC;
2131 if (wol->wolopts & WAKE_MAGIC)
2132 adapter->wol |= E1000_WUFC_MAG;
2133 if (wol->wolopts & WAKE_PHY)
2134 adapter->wol |= E1000_WUFC_LNKC;
2135 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2137 return 0;
2140 /* bit defines for adapter->led_status */
2141 #define IGB_LED_ON 0
2143 static int igb_set_phys_id(struct net_device *netdev,
2144 enum ethtool_phys_id_state state)
2146 struct igb_adapter *adapter = netdev_priv(netdev);
2147 struct e1000_hw *hw = &adapter->hw;
2149 switch (state) {
2150 case ETHTOOL_ID_ACTIVE:
2151 igb_blink_led(hw);
2152 return 2;
2153 case ETHTOOL_ID_ON:
2154 igb_blink_led(hw);
2155 break;
2156 case ETHTOOL_ID_OFF:
2157 igb_led_off(hw);
2158 break;
2159 case ETHTOOL_ID_INACTIVE:
2160 igb_led_off(hw);
2161 clear_bit(IGB_LED_ON, &adapter->led_status);
2162 igb_cleanup_led(hw);
2163 break;
2166 return 0;
2169 static int igb_set_coalesce(struct net_device *netdev,
2170 struct ethtool_coalesce *ec)
2172 struct igb_adapter *adapter = netdev_priv(netdev);
2173 int i;
2175 if (ec->rx_max_coalesced_frames ||
2176 ec->rx_coalesce_usecs_irq ||
2177 ec->rx_max_coalesced_frames_irq ||
2178 ec->tx_max_coalesced_frames ||
2179 ec->tx_coalesce_usecs_irq ||
2180 ec->stats_block_coalesce_usecs ||
2181 ec->use_adaptive_rx_coalesce ||
2182 ec->use_adaptive_tx_coalesce ||
2183 ec->pkt_rate_low ||
2184 ec->rx_coalesce_usecs_low ||
2185 ec->rx_max_coalesced_frames_low ||
2186 ec->tx_coalesce_usecs_low ||
2187 ec->tx_max_coalesced_frames_low ||
2188 ec->pkt_rate_high ||
2189 ec->rx_coalesce_usecs_high ||
2190 ec->rx_max_coalesced_frames_high ||
2191 ec->tx_coalesce_usecs_high ||
2192 ec->tx_max_coalesced_frames_high ||
2193 ec->rate_sample_interval)
2194 return -ENOTSUPP;
2196 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2197 ((ec->rx_coalesce_usecs > 3) &&
2198 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2199 (ec->rx_coalesce_usecs == 2))
2200 return -EINVAL;
2202 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2203 ((ec->tx_coalesce_usecs > 3) &&
2204 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2205 (ec->tx_coalesce_usecs == 2))
2206 return -EINVAL;
2208 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2209 return -EINVAL;
2211 /* If ITR is disabled, disable DMAC */
2212 if (ec->rx_coalesce_usecs == 0) {
2213 if (adapter->flags & IGB_FLAG_DMAC)
2214 adapter->flags &= ~IGB_FLAG_DMAC;
2217 /* convert to rate of irq's per second */
2218 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2219 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2220 else
2221 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2223 /* convert to rate of irq's per second */
2224 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2225 adapter->tx_itr_setting = adapter->rx_itr_setting;
2226 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2227 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2228 else
2229 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2231 for (i = 0; i < adapter->num_q_vectors; i++) {
2232 struct igb_q_vector *q_vector = adapter->q_vector[i];
2233 q_vector->tx.work_limit = adapter->tx_work_limit;
2234 if (q_vector->rx.ring)
2235 q_vector->itr_val = adapter->rx_itr_setting;
2236 else
2237 q_vector->itr_val = adapter->tx_itr_setting;
2238 if (q_vector->itr_val && q_vector->itr_val <= 3)
2239 q_vector->itr_val = IGB_START_ITR;
2240 q_vector->set_itr = 1;
2243 return 0;
2246 static int igb_get_coalesce(struct net_device *netdev,
2247 struct ethtool_coalesce *ec)
2249 struct igb_adapter *adapter = netdev_priv(netdev);
2251 if (adapter->rx_itr_setting <= 3)
2252 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2253 else
2254 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2256 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2257 if (adapter->tx_itr_setting <= 3)
2258 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2259 else
2260 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2263 return 0;
2266 static int igb_nway_reset(struct net_device *netdev)
2268 struct igb_adapter *adapter = netdev_priv(netdev);
2269 if (netif_running(netdev))
2270 igb_reinit_locked(adapter);
2271 return 0;
2274 static int igb_get_sset_count(struct net_device *netdev, int sset)
2276 switch (sset) {
2277 case ETH_SS_STATS:
2278 return IGB_STATS_LEN;
2279 case ETH_SS_TEST:
2280 return IGB_TEST_LEN;
2281 case ETH_SS_PRIV_FLAGS:
2282 return IGB_PRIV_FLAGS_STR_LEN;
2283 default:
2284 return -ENOTSUPP;
2288 static void igb_get_ethtool_stats(struct net_device *netdev,
2289 struct ethtool_stats *stats, u64 *data)
2291 struct igb_adapter *adapter = netdev_priv(netdev);
2292 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2293 unsigned int start;
2294 struct igb_ring *ring;
2295 int i, j;
2296 char *p;
2298 spin_lock(&adapter->stats64_lock);
2299 igb_update_stats(adapter);
2301 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2302 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2303 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2304 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2306 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2307 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2308 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2309 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2311 for (j = 0; j < adapter->num_tx_queues; j++) {
2312 u64 restart2;
2314 ring = adapter->tx_ring[j];
2315 do {
2316 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2317 data[i] = ring->tx_stats.packets;
2318 data[i+1] = ring->tx_stats.bytes;
2319 data[i+2] = ring->tx_stats.restart_queue;
2320 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2321 do {
2322 start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2323 restart2 = ring->tx_stats.restart_queue2;
2324 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2325 data[i+2] += restart2;
2327 i += IGB_TX_QUEUE_STATS_LEN;
2329 for (j = 0; j < adapter->num_rx_queues; j++) {
2330 ring = adapter->rx_ring[j];
2331 do {
2332 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2333 data[i] = ring->rx_stats.packets;
2334 data[i+1] = ring->rx_stats.bytes;
2335 data[i+2] = ring->rx_stats.drops;
2336 data[i+3] = ring->rx_stats.csum_err;
2337 data[i+4] = ring->rx_stats.alloc_failed;
2338 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2339 i += IGB_RX_QUEUE_STATS_LEN;
2341 spin_unlock(&adapter->stats64_lock);
2344 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2346 struct igb_adapter *adapter = netdev_priv(netdev);
2347 u8 *p = data;
2348 int i;
2350 switch (stringset) {
2351 case ETH_SS_TEST:
2352 memcpy(data, *igb_gstrings_test,
2353 IGB_TEST_LEN*ETH_GSTRING_LEN);
2354 break;
2355 case ETH_SS_STATS:
2356 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2357 memcpy(p, igb_gstrings_stats[i].stat_string,
2358 ETH_GSTRING_LEN);
2359 p += ETH_GSTRING_LEN;
2361 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2362 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2363 ETH_GSTRING_LEN);
2364 p += ETH_GSTRING_LEN;
2366 for (i = 0; i < adapter->num_tx_queues; i++) {
2367 sprintf(p, "tx_queue_%u_packets", i);
2368 p += ETH_GSTRING_LEN;
2369 sprintf(p, "tx_queue_%u_bytes", i);
2370 p += ETH_GSTRING_LEN;
2371 sprintf(p, "tx_queue_%u_restart", i);
2372 p += ETH_GSTRING_LEN;
2374 for (i = 0; i < adapter->num_rx_queues; i++) {
2375 sprintf(p, "rx_queue_%u_packets", i);
2376 p += ETH_GSTRING_LEN;
2377 sprintf(p, "rx_queue_%u_bytes", i);
2378 p += ETH_GSTRING_LEN;
2379 sprintf(p, "rx_queue_%u_drops", i);
2380 p += ETH_GSTRING_LEN;
2381 sprintf(p, "rx_queue_%u_csum_err", i);
2382 p += ETH_GSTRING_LEN;
2383 sprintf(p, "rx_queue_%u_alloc_failed", i);
2384 p += ETH_GSTRING_LEN;
2386 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2387 break;
2388 case ETH_SS_PRIV_FLAGS:
2389 memcpy(data, igb_priv_flags_strings,
2390 IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2391 break;
2395 static int igb_get_ts_info(struct net_device *dev,
2396 struct ethtool_ts_info *info)
2398 struct igb_adapter *adapter = netdev_priv(dev);
2400 if (adapter->ptp_clock)
2401 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2402 else
2403 info->phc_index = -1;
2405 switch (adapter->hw.mac.type) {
2406 case e1000_82575:
2407 info->so_timestamping =
2408 SOF_TIMESTAMPING_TX_SOFTWARE |
2409 SOF_TIMESTAMPING_RX_SOFTWARE |
2410 SOF_TIMESTAMPING_SOFTWARE;
2411 return 0;
2412 case e1000_82576:
2413 case e1000_82580:
2414 case e1000_i350:
2415 case e1000_i354:
2416 case e1000_i210:
2417 case e1000_i211:
2418 info->so_timestamping =
2419 SOF_TIMESTAMPING_TX_SOFTWARE |
2420 SOF_TIMESTAMPING_RX_SOFTWARE |
2421 SOF_TIMESTAMPING_SOFTWARE |
2422 SOF_TIMESTAMPING_TX_HARDWARE |
2423 SOF_TIMESTAMPING_RX_HARDWARE |
2424 SOF_TIMESTAMPING_RAW_HARDWARE;
2426 info->tx_types =
2427 BIT(HWTSTAMP_TX_OFF) |
2428 BIT(HWTSTAMP_TX_ON);
2430 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2432 /* 82576 does not support timestamping all packets. */
2433 if (adapter->hw.mac.type >= e1000_82580)
2434 info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2435 else
2436 info->rx_filters |=
2437 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2438 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2439 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2441 return 0;
2442 default:
2443 return -EOPNOTSUPP;
2447 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2448 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2449 struct ethtool_rxnfc *cmd)
2451 struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2452 struct igb_nfc_filter *rule = NULL;
2454 /* report total rule count */
2455 cmd->data = IGB_MAX_RXNFC_FILTERS;
2457 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2458 if (fsp->location <= rule->sw_idx)
2459 break;
2462 if (!rule || fsp->location != rule->sw_idx)
2463 return -EINVAL;
2465 if (rule->filter.match_flags) {
2466 fsp->flow_type = ETHER_FLOW;
2467 fsp->ring_cookie = rule->action;
2468 if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2469 fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2470 fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2472 if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2473 fsp->flow_type |= FLOW_EXT;
2474 fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2475 fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2477 if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2478 ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2479 rule->filter.dst_addr);
2480 /* As we only support matching by the full
2481 * mask, return the mask to userspace
2483 eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2485 if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2486 ether_addr_copy(fsp->h_u.ether_spec.h_source,
2487 rule->filter.src_addr);
2488 /* As we only support matching by the full
2489 * mask, return the mask to userspace
2491 eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2494 return 0;
2496 return -EINVAL;
2499 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2500 struct ethtool_rxnfc *cmd,
2501 u32 *rule_locs)
2503 struct igb_nfc_filter *rule;
2504 int cnt = 0;
2506 /* report total rule count */
2507 cmd->data = IGB_MAX_RXNFC_FILTERS;
2509 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2510 if (cnt == cmd->rule_cnt)
2511 return -EMSGSIZE;
2512 rule_locs[cnt] = rule->sw_idx;
2513 cnt++;
2516 cmd->rule_cnt = cnt;
2518 return 0;
2521 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2522 struct ethtool_rxnfc *cmd)
2524 cmd->data = 0;
2526 /* Report default options for RSS on igb */
2527 switch (cmd->flow_type) {
2528 case TCP_V4_FLOW:
2529 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2530 /* Fall through */
2531 case UDP_V4_FLOW:
2532 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2533 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2534 /* Fall through */
2535 case SCTP_V4_FLOW:
2536 case AH_ESP_V4_FLOW:
2537 case AH_V4_FLOW:
2538 case ESP_V4_FLOW:
2539 case IPV4_FLOW:
2540 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2541 break;
2542 case TCP_V6_FLOW:
2543 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2544 /* Fall through */
2545 case UDP_V6_FLOW:
2546 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2547 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2548 /* Fall through */
2549 case SCTP_V6_FLOW:
2550 case AH_ESP_V6_FLOW:
2551 case AH_V6_FLOW:
2552 case ESP_V6_FLOW:
2553 case IPV6_FLOW:
2554 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2555 break;
2556 default:
2557 return -EINVAL;
2560 return 0;
2563 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2564 u32 *rule_locs)
2566 struct igb_adapter *adapter = netdev_priv(dev);
2567 int ret = -EOPNOTSUPP;
2569 switch (cmd->cmd) {
2570 case ETHTOOL_GRXRINGS:
2571 cmd->data = adapter->num_rx_queues;
2572 ret = 0;
2573 break;
2574 case ETHTOOL_GRXCLSRLCNT:
2575 cmd->rule_cnt = adapter->nfc_filter_count;
2576 ret = 0;
2577 break;
2578 case ETHTOOL_GRXCLSRULE:
2579 ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2580 break;
2581 case ETHTOOL_GRXCLSRLALL:
2582 ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2583 break;
2584 case ETHTOOL_GRXFH:
2585 ret = igb_get_rss_hash_opts(adapter, cmd);
2586 break;
2587 default:
2588 break;
2591 return ret;
2594 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2595 IGB_FLAG_RSS_FIELD_IPV6_UDP)
2596 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2597 struct ethtool_rxnfc *nfc)
2599 u32 flags = adapter->flags;
2601 /* RSS does not support anything other than hashing
2602 * to queues on src and dst IPs and ports
2604 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2605 RXH_L4_B_0_1 | RXH_L4_B_2_3))
2606 return -EINVAL;
2608 switch (nfc->flow_type) {
2609 case TCP_V4_FLOW:
2610 case TCP_V6_FLOW:
2611 if (!(nfc->data & RXH_IP_SRC) ||
2612 !(nfc->data & RXH_IP_DST) ||
2613 !(nfc->data & RXH_L4_B_0_1) ||
2614 !(nfc->data & RXH_L4_B_2_3))
2615 return -EINVAL;
2616 break;
2617 case UDP_V4_FLOW:
2618 if (!(nfc->data & RXH_IP_SRC) ||
2619 !(nfc->data & RXH_IP_DST))
2620 return -EINVAL;
2621 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2622 case 0:
2623 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2624 break;
2625 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2626 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2627 break;
2628 default:
2629 return -EINVAL;
2631 break;
2632 case UDP_V6_FLOW:
2633 if (!(nfc->data & RXH_IP_SRC) ||
2634 !(nfc->data & RXH_IP_DST))
2635 return -EINVAL;
2636 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2637 case 0:
2638 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2639 break;
2640 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2641 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2642 break;
2643 default:
2644 return -EINVAL;
2646 break;
2647 case AH_ESP_V4_FLOW:
2648 case AH_V4_FLOW:
2649 case ESP_V4_FLOW:
2650 case SCTP_V4_FLOW:
2651 case AH_ESP_V6_FLOW:
2652 case AH_V6_FLOW:
2653 case ESP_V6_FLOW:
2654 case SCTP_V6_FLOW:
2655 if (!(nfc->data & RXH_IP_SRC) ||
2656 !(nfc->data & RXH_IP_DST) ||
2657 (nfc->data & RXH_L4_B_0_1) ||
2658 (nfc->data & RXH_L4_B_2_3))
2659 return -EINVAL;
2660 break;
2661 default:
2662 return -EINVAL;
2665 /* if we changed something we need to update flags */
2666 if (flags != adapter->flags) {
2667 struct e1000_hw *hw = &adapter->hw;
2668 u32 mrqc = rd32(E1000_MRQC);
2670 if ((flags & UDP_RSS_FLAGS) &&
2671 !(adapter->flags & UDP_RSS_FLAGS))
2672 dev_err(&adapter->pdev->dev,
2673 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2675 adapter->flags = flags;
2677 /* Perform hash on these packet types */
2678 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2679 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2680 E1000_MRQC_RSS_FIELD_IPV6 |
2681 E1000_MRQC_RSS_FIELD_IPV6_TCP;
2683 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2684 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2686 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2687 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2689 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2690 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2692 wr32(E1000_MRQC, mrqc);
2695 return 0;
2698 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2699 struct igb_nfc_filter *input)
2701 struct e1000_hw *hw = &adapter->hw;
2702 u8 i;
2703 u32 etqf;
2704 u16 etype;
2706 /* find an empty etype filter register */
2707 for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2708 if (!adapter->etype_bitmap[i])
2709 break;
2711 if (i == MAX_ETYPE_FILTER) {
2712 dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2713 return -EINVAL;
2716 adapter->etype_bitmap[i] = true;
2718 etqf = rd32(E1000_ETQF(i));
2719 etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2721 etqf |= E1000_ETQF_FILTER_ENABLE;
2722 etqf &= ~E1000_ETQF_ETYPE_MASK;
2723 etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2725 etqf &= ~E1000_ETQF_QUEUE_MASK;
2726 etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2727 & E1000_ETQF_QUEUE_MASK);
2728 etqf |= E1000_ETQF_QUEUE_ENABLE;
2730 wr32(E1000_ETQF(i), etqf);
2732 input->etype_reg_index = i;
2734 return 0;
2737 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2738 struct igb_nfc_filter *input)
2740 struct e1000_hw *hw = &adapter->hw;
2741 u8 vlan_priority;
2742 u16 queue_index;
2743 u32 vlapqf;
2745 vlapqf = rd32(E1000_VLAPQF);
2746 vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2747 >> VLAN_PRIO_SHIFT;
2748 queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2750 /* check whether this vlan prio is already set */
2751 if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2752 (queue_index != input->action)) {
2753 dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2754 return -EEXIST;
2757 vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2758 vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2760 wr32(E1000_VLAPQF, vlapqf);
2762 return 0;
2765 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2767 struct e1000_hw *hw = &adapter->hw;
2768 int err = -EINVAL;
2770 if (hw->mac.type == e1000_i210 &&
2771 !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2772 dev_err(&adapter->pdev->dev,
2773 "i210 doesn't support flow classification rules specifying only source addresses.\n");
2774 return -EOPNOTSUPP;
2777 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2778 err = igb_rxnfc_write_etype_filter(adapter, input);
2779 if (err)
2780 return err;
2783 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2784 err = igb_add_mac_steering_filter(adapter,
2785 input->filter.dst_addr,
2786 input->action, 0);
2787 err = min_t(int, err, 0);
2788 if (err)
2789 return err;
2792 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2793 err = igb_add_mac_steering_filter(adapter,
2794 input->filter.src_addr,
2795 input->action,
2796 IGB_MAC_STATE_SRC_ADDR);
2797 err = min_t(int, err, 0);
2798 if (err)
2799 return err;
2802 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2803 err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2805 return err;
2808 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2809 u16 reg_index)
2811 struct e1000_hw *hw = &adapter->hw;
2812 u32 etqf = rd32(E1000_ETQF(reg_index));
2814 etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2815 etqf &= ~E1000_ETQF_QUEUE_MASK;
2816 etqf &= ~E1000_ETQF_FILTER_ENABLE;
2818 wr32(E1000_ETQF(reg_index), etqf);
2820 adapter->etype_bitmap[reg_index] = false;
2823 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2824 u16 vlan_tci)
2826 struct e1000_hw *hw = &adapter->hw;
2827 u8 vlan_priority;
2828 u32 vlapqf;
2830 vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2832 vlapqf = rd32(E1000_VLAPQF);
2833 vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2834 vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2835 E1000_VLAPQF_QUEUE_MASK);
2837 wr32(E1000_VLAPQF, vlapqf);
2840 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2842 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2843 igb_clear_etype_filter_regs(adapter,
2844 input->etype_reg_index);
2846 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2847 igb_clear_vlan_prio_filter(adapter,
2848 ntohs(input->filter.vlan_tci));
2850 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2851 igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2852 input->action,
2853 IGB_MAC_STATE_SRC_ADDR);
2855 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2856 igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2857 input->action, 0);
2859 return 0;
2862 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2863 struct igb_nfc_filter *input,
2864 u16 sw_idx)
2866 struct igb_nfc_filter *rule, *parent;
2867 int err = -EINVAL;
2869 parent = NULL;
2870 rule = NULL;
2872 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2873 /* hash found, or no matching entry */
2874 if (rule->sw_idx >= sw_idx)
2875 break;
2876 parent = rule;
2879 /* if there is an old rule occupying our place remove it */
2880 if (rule && (rule->sw_idx == sw_idx)) {
2881 if (!input)
2882 err = igb_erase_filter(adapter, rule);
2884 hlist_del(&rule->nfc_node);
2885 kfree(rule);
2886 adapter->nfc_filter_count--;
2889 /* If no input this was a delete, err should be 0 if a rule was
2890 * successfully found and removed from the list else -EINVAL
2892 if (!input)
2893 return err;
2895 /* initialize node */
2896 INIT_HLIST_NODE(&input->nfc_node);
2898 /* add filter to the list */
2899 if (parent)
2900 hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2901 else
2902 hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2904 /* update counts */
2905 adapter->nfc_filter_count++;
2907 return 0;
2910 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2911 struct ethtool_rxnfc *cmd)
2913 struct net_device *netdev = adapter->netdev;
2914 struct ethtool_rx_flow_spec *fsp =
2915 (struct ethtool_rx_flow_spec *)&cmd->fs;
2916 struct igb_nfc_filter *input, *rule;
2917 int err = 0;
2919 if (!(netdev->hw_features & NETIF_F_NTUPLE))
2920 return -EOPNOTSUPP;
2922 /* Don't allow programming if the action is a queue greater than
2923 * the number of online Rx queues.
2925 if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2926 (fsp->ring_cookie >= adapter->num_rx_queues)) {
2927 dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2928 return -EINVAL;
2931 /* Don't allow indexes to exist outside of available space */
2932 if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2933 dev_err(&adapter->pdev->dev, "Location out of range\n");
2934 return -EINVAL;
2937 if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2938 return -EINVAL;
2940 input = kzalloc(sizeof(*input), GFP_KERNEL);
2941 if (!input)
2942 return -ENOMEM;
2944 if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2945 input->filter.etype = fsp->h_u.ether_spec.h_proto;
2946 input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2949 /* Only support matching addresses by the full mask */
2950 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2951 input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2952 ether_addr_copy(input->filter.src_addr,
2953 fsp->h_u.ether_spec.h_source);
2956 /* Only support matching addresses by the full mask */
2957 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2958 input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2959 ether_addr_copy(input->filter.dst_addr,
2960 fsp->h_u.ether_spec.h_dest);
2963 if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2964 if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2965 err = -EINVAL;
2966 goto err_out;
2968 input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2969 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2972 input->action = fsp->ring_cookie;
2973 input->sw_idx = fsp->location;
2975 spin_lock(&adapter->nfc_lock);
2977 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2978 if (!memcmp(&input->filter, &rule->filter,
2979 sizeof(input->filter))) {
2980 err = -EEXIST;
2981 dev_err(&adapter->pdev->dev,
2982 "ethtool: this filter is already set\n");
2983 goto err_out_w_lock;
2987 err = igb_add_filter(adapter, input);
2988 if (err)
2989 goto err_out_w_lock;
2991 igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2993 spin_unlock(&adapter->nfc_lock);
2994 return 0;
2996 err_out_w_lock:
2997 spin_unlock(&adapter->nfc_lock);
2998 err_out:
2999 kfree(input);
3000 return err;
3003 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
3004 struct ethtool_rxnfc *cmd)
3006 struct ethtool_rx_flow_spec *fsp =
3007 (struct ethtool_rx_flow_spec *)&cmd->fs;
3008 int err;
3010 spin_lock(&adapter->nfc_lock);
3011 err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
3012 spin_unlock(&adapter->nfc_lock);
3014 return err;
3017 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3019 struct igb_adapter *adapter = netdev_priv(dev);
3020 int ret = -EOPNOTSUPP;
3022 switch (cmd->cmd) {
3023 case ETHTOOL_SRXFH:
3024 ret = igb_set_rss_hash_opt(adapter, cmd);
3025 break;
3026 case ETHTOOL_SRXCLSRLINS:
3027 ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3028 break;
3029 case ETHTOOL_SRXCLSRLDEL:
3030 ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3031 default:
3032 break;
3035 return ret;
3038 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3040 struct igb_adapter *adapter = netdev_priv(netdev);
3041 struct e1000_hw *hw = &adapter->hw;
3042 u32 ret_val;
3043 u16 phy_data;
3045 if ((hw->mac.type < e1000_i350) ||
3046 (hw->phy.media_type != e1000_media_type_copper))
3047 return -EOPNOTSUPP;
3049 edata->supported = (SUPPORTED_1000baseT_Full |
3050 SUPPORTED_100baseT_Full);
3051 if (!hw->dev_spec._82575.eee_disable)
3052 edata->advertised =
3053 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3055 /* The IPCNFG and EEER registers are not supported on I354. */
3056 if (hw->mac.type == e1000_i354) {
3057 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3058 } else {
3059 u32 eeer;
3061 eeer = rd32(E1000_EEER);
3063 /* EEE status on negotiated link */
3064 if (eeer & E1000_EEER_EEE_NEG)
3065 edata->eee_active = true;
3067 if (eeer & E1000_EEER_TX_LPI_EN)
3068 edata->tx_lpi_enabled = true;
3071 /* EEE Link Partner Advertised */
3072 switch (hw->mac.type) {
3073 case e1000_i350:
3074 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3075 &phy_data);
3076 if (ret_val)
3077 return -ENODATA;
3079 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3080 break;
3081 case e1000_i354:
3082 case e1000_i210:
3083 case e1000_i211:
3084 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3085 E1000_EEE_LP_ADV_DEV_I210,
3086 &phy_data);
3087 if (ret_val)
3088 return -ENODATA;
3090 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3092 break;
3093 default:
3094 break;
3097 edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3099 if ((hw->mac.type == e1000_i354) &&
3100 (edata->eee_enabled))
3101 edata->tx_lpi_enabled = true;
3103 /* Report correct negotiated EEE status for devices that
3104 * wrongly report EEE at half-duplex
3106 if (adapter->link_duplex == HALF_DUPLEX) {
3107 edata->eee_enabled = false;
3108 edata->eee_active = false;
3109 edata->tx_lpi_enabled = false;
3110 edata->advertised &= ~edata->advertised;
3113 return 0;
3116 static int igb_set_eee(struct net_device *netdev,
3117 struct ethtool_eee *edata)
3119 struct igb_adapter *adapter = netdev_priv(netdev);
3120 struct e1000_hw *hw = &adapter->hw;
3121 struct ethtool_eee eee_curr;
3122 bool adv1g_eee = true, adv100m_eee = true;
3123 s32 ret_val;
3125 if ((hw->mac.type < e1000_i350) ||
3126 (hw->phy.media_type != e1000_media_type_copper))
3127 return -EOPNOTSUPP;
3129 memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3131 ret_val = igb_get_eee(netdev, &eee_curr);
3132 if (ret_val)
3133 return ret_val;
3135 if (eee_curr.eee_enabled) {
3136 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3137 dev_err(&adapter->pdev->dev,
3138 "Setting EEE tx-lpi is not supported\n");
3139 return -EINVAL;
3142 /* Tx LPI timer is not implemented currently */
3143 if (edata->tx_lpi_timer) {
3144 dev_err(&adapter->pdev->dev,
3145 "Setting EEE Tx LPI timer is not supported\n");
3146 return -EINVAL;
3149 if (!edata->advertised || (edata->advertised &
3150 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3151 dev_err(&adapter->pdev->dev,
3152 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3153 return -EINVAL;
3155 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3156 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3158 } else if (!edata->eee_enabled) {
3159 dev_err(&adapter->pdev->dev,
3160 "Setting EEE options are not supported with EEE disabled\n");
3161 return -EINVAL;
3164 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3165 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3166 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3167 adapter->flags |= IGB_FLAG_EEE;
3169 /* reset link */
3170 if (netif_running(netdev))
3171 igb_reinit_locked(adapter);
3172 else
3173 igb_reset(adapter);
3176 if (hw->mac.type == e1000_i354)
3177 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3178 else
3179 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3181 if (ret_val) {
3182 dev_err(&adapter->pdev->dev,
3183 "Problem setting EEE advertisement options\n");
3184 return -EINVAL;
3187 return 0;
3190 static int igb_get_module_info(struct net_device *netdev,
3191 struct ethtool_modinfo *modinfo)
3193 struct igb_adapter *adapter = netdev_priv(netdev);
3194 struct e1000_hw *hw = &adapter->hw;
3195 u32 status = 0;
3196 u16 sff8472_rev, addr_mode;
3197 bool page_swap = false;
3199 if ((hw->phy.media_type == e1000_media_type_copper) ||
3200 (hw->phy.media_type == e1000_media_type_unknown))
3201 return -EOPNOTSUPP;
3203 /* Check whether we support SFF-8472 or not */
3204 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3205 if (status)
3206 return -EIO;
3208 /* addressing mode is not supported */
3209 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3210 if (status)
3211 return -EIO;
3213 /* addressing mode is not supported */
3214 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3215 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3216 page_swap = true;
3219 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3220 /* We have an SFP, but it does not support SFF-8472 */
3221 modinfo->type = ETH_MODULE_SFF_8079;
3222 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3223 } else {
3224 /* We have an SFP which supports a revision of SFF-8472 */
3225 modinfo->type = ETH_MODULE_SFF_8472;
3226 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3229 return 0;
3232 static int igb_get_module_eeprom(struct net_device *netdev,
3233 struct ethtool_eeprom *ee, u8 *data)
3235 struct igb_adapter *adapter = netdev_priv(netdev);
3236 struct e1000_hw *hw = &adapter->hw;
3237 u32 status = 0;
3238 u16 *dataword;
3239 u16 first_word, last_word;
3240 int i = 0;
3242 if (ee->len == 0)
3243 return -EINVAL;
3245 first_word = ee->offset >> 1;
3246 last_word = (ee->offset + ee->len - 1) >> 1;
3248 dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3249 GFP_KERNEL);
3250 if (!dataword)
3251 return -ENOMEM;
3253 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3254 for (i = 0; i < last_word - first_word + 1; i++) {
3255 status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3256 &dataword[i]);
3257 if (status) {
3258 /* Error occurred while reading module */
3259 kfree(dataword);
3260 return -EIO;
3263 be16_to_cpus(&dataword[i]);
3266 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3267 kfree(dataword);
3269 return 0;
3272 static int igb_ethtool_begin(struct net_device *netdev)
3274 struct igb_adapter *adapter = netdev_priv(netdev);
3275 pm_runtime_get_sync(&adapter->pdev->dev);
3276 return 0;
3279 static void igb_ethtool_complete(struct net_device *netdev)
3281 struct igb_adapter *adapter = netdev_priv(netdev);
3282 pm_runtime_put(&adapter->pdev->dev);
3285 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3287 return IGB_RETA_SIZE;
3290 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3291 u8 *hfunc)
3293 struct igb_adapter *adapter = netdev_priv(netdev);
3294 int i;
3296 if (hfunc)
3297 *hfunc = ETH_RSS_HASH_TOP;
3298 if (!indir)
3299 return 0;
3300 for (i = 0; i < IGB_RETA_SIZE; i++)
3301 indir[i] = adapter->rss_indir_tbl[i];
3303 return 0;
3306 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3308 struct e1000_hw *hw = &adapter->hw;
3309 u32 reg = E1000_RETA(0);
3310 u32 shift = 0;
3311 int i = 0;
3313 switch (hw->mac.type) {
3314 case e1000_82575:
3315 shift = 6;
3316 break;
3317 case e1000_82576:
3318 /* 82576 supports 2 RSS queues for SR-IOV */
3319 if (adapter->vfs_allocated_count)
3320 shift = 3;
3321 break;
3322 default:
3323 break;
3326 while (i < IGB_RETA_SIZE) {
3327 u32 val = 0;
3328 int j;
3330 for (j = 3; j >= 0; j--) {
3331 val <<= 8;
3332 val |= adapter->rss_indir_tbl[i + j];
3335 wr32(reg, val << shift);
3336 reg += 4;
3337 i += 4;
3341 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3342 const u8 *key, const u8 hfunc)
3344 struct igb_adapter *adapter = netdev_priv(netdev);
3345 struct e1000_hw *hw = &adapter->hw;
3346 int i;
3347 u32 num_queues;
3349 /* We do not allow change in unsupported parameters */
3350 if (key ||
3351 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3352 return -EOPNOTSUPP;
3353 if (!indir)
3354 return 0;
3356 num_queues = adapter->rss_queues;
3358 switch (hw->mac.type) {
3359 case e1000_82576:
3360 /* 82576 supports 2 RSS queues for SR-IOV */
3361 if (adapter->vfs_allocated_count)
3362 num_queues = 2;
3363 break;
3364 default:
3365 break;
3368 /* Verify user input. */
3369 for (i = 0; i < IGB_RETA_SIZE; i++)
3370 if (indir[i] >= num_queues)
3371 return -EINVAL;
3374 for (i = 0; i < IGB_RETA_SIZE; i++)
3375 adapter->rss_indir_tbl[i] = indir[i];
3377 igb_write_rss_indir_tbl(adapter);
3379 return 0;
3382 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3384 return igb_get_max_rss_queues(adapter);
3387 static void igb_get_channels(struct net_device *netdev,
3388 struct ethtool_channels *ch)
3390 struct igb_adapter *adapter = netdev_priv(netdev);
3392 /* Report maximum channels */
3393 ch->max_combined = igb_max_channels(adapter);
3395 /* Report info for other vector */
3396 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3397 ch->max_other = NON_Q_VECTORS;
3398 ch->other_count = NON_Q_VECTORS;
3401 ch->combined_count = adapter->rss_queues;
3404 static int igb_set_channels(struct net_device *netdev,
3405 struct ethtool_channels *ch)
3407 struct igb_adapter *adapter = netdev_priv(netdev);
3408 unsigned int count = ch->combined_count;
3409 unsigned int max_combined = 0;
3411 /* Verify they are not requesting separate vectors */
3412 if (!count || ch->rx_count || ch->tx_count)
3413 return -EINVAL;
3415 /* Verify other_count is valid and has not been changed */
3416 if (ch->other_count != NON_Q_VECTORS)
3417 return -EINVAL;
3419 /* Verify the number of channels doesn't exceed hw limits */
3420 max_combined = igb_max_channels(adapter);
3421 if (count > max_combined)
3422 return -EINVAL;
3424 if (count != adapter->rss_queues) {
3425 adapter->rss_queues = count;
3426 igb_set_flag_queue_pairs(adapter, max_combined);
3428 /* Hardware has to reinitialize queues and interrupts to
3429 * match the new configuration.
3431 return igb_reinit_queues(adapter);
3434 return 0;
3437 static u32 igb_get_priv_flags(struct net_device *netdev)
3439 struct igb_adapter *adapter = netdev_priv(netdev);
3440 u32 priv_flags = 0;
3442 if (adapter->flags & IGB_FLAG_RX_LEGACY)
3443 priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3445 return priv_flags;
3448 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3450 struct igb_adapter *adapter = netdev_priv(netdev);
3451 unsigned int flags = adapter->flags;
3453 flags &= ~IGB_FLAG_RX_LEGACY;
3454 if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3455 flags |= IGB_FLAG_RX_LEGACY;
3457 if (flags != adapter->flags) {
3458 adapter->flags = flags;
3460 /* reset interface to repopulate queues */
3461 if (netif_running(netdev))
3462 igb_reinit_locked(adapter);
3465 return 0;
3468 static const struct ethtool_ops igb_ethtool_ops = {
3469 .get_drvinfo = igb_get_drvinfo,
3470 .get_regs_len = igb_get_regs_len,
3471 .get_regs = igb_get_regs,
3472 .get_wol = igb_get_wol,
3473 .set_wol = igb_set_wol,
3474 .get_msglevel = igb_get_msglevel,
3475 .set_msglevel = igb_set_msglevel,
3476 .nway_reset = igb_nway_reset,
3477 .get_link = igb_get_link,
3478 .get_eeprom_len = igb_get_eeprom_len,
3479 .get_eeprom = igb_get_eeprom,
3480 .set_eeprom = igb_set_eeprom,
3481 .get_ringparam = igb_get_ringparam,
3482 .set_ringparam = igb_set_ringparam,
3483 .get_pauseparam = igb_get_pauseparam,
3484 .set_pauseparam = igb_set_pauseparam,
3485 .self_test = igb_diag_test,
3486 .get_strings = igb_get_strings,
3487 .set_phys_id = igb_set_phys_id,
3488 .get_sset_count = igb_get_sset_count,
3489 .get_ethtool_stats = igb_get_ethtool_stats,
3490 .get_coalesce = igb_get_coalesce,
3491 .set_coalesce = igb_set_coalesce,
3492 .get_ts_info = igb_get_ts_info,
3493 .get_rxnfc = igb_get_rxnfc,
3494 .set_rxnfc = igb_set_rxnfc,
3495 .get_eee = igb_get_eee,
3496 .set_eee = igb_set_eee,
3497 .get_module_info = igb_get_module_info,
3498 .get_module_eeprom = igb_get_module_eeprom,
3499 .get_rxfh_indir_size = igb_get_rxfh_indir_size,
3500 .get_rxfh = igb_get_rxfh,
3501 .set_rxfh = igb_set_rxfh,
3502 .get_channels = igb_get_channels,
3503 .set_channels = igb_set_channels,
3504 .get_priv_flags = igb_get_priv_flags,
3505 .set_priv_flags = igb_set_priv_flags,
3506 .begin = igb_ethtool_begin,
3507 .complete = igb_ethtool_complete,
3508 .get_link_ksettings = igb_get_link_ksettings,
3509 .set_link_ksettings = igb_set_link_ksettings,
3512 void igb_set_ethtool_ops(struct net_device *netdev)
3514 netdev->ethtool_ops = &igb_ethtool_ops;