1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
4 /* ethtool support for igb */
6 #include <linux/vmalloc.h>
7 #include <linux/netdevice.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/if_ether.h>
12 #include <linux/ethtool.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/highmem.h>
17 #include <linux/mdio.h>
22 char stat_string
[ETH_GSTRING_LEN
];
27 #define IGB_STAT(_name, _stat) { \
28 .stat_string = _name, \
29 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
30 .stat_offset = offsetof(struct igb_adapter, _stat) \
32 static const struct igb_stats igb_gstrings_stats
[] = {
33 IGB_STAT("rx_packets", stats
.gprc
),
34 IGB_STAT("tx_packets", stats
.gptc
),
35 IGB_STAT("rx_bytes", stats
.gorc
),
36 IGB_STAT("tx_bytes", stats
.gotc
),
37 IGB_STAT("rx_broadcast", stats
.bprc
),
38 IGB_STAT("tx_broadcast", stats
.bptc
),
39 IGB_STAT("rx_multicast", stats
.mprc
),
40 IGB_STAT("tx_multicast", stats
.mptc
),
41 IGB_STAT("multicast", stats
.mprc
),
42 IGB_STAT("collisions", stats
.colc
),
43 IGB_STAT("rx_crc_errors", stats
.crcerrs
),
44 IGB_STAT("rx_no_buffer_count", stats
.rnbc
),
45 IGB_STAT("rx_missed_errors", stats
.mpc
),
46 IGB_STAT("tx_aborted_errors", stats
.ecol
),
47 IGB_STAT("tx_carrier_errors", stats
.tncrs
),
48 IGB_STAT("tx_window_errors", stats
.latecol
),
49 IGB_STAT("tx_abort_late_coll", stats
.latecol
),
50 IGB_STAT("tx_deferred_ok", stats
.dc
),
51 IGB_STAT("tx_single_coll_ok", stats
.scc
),
52 IGB_STAT("tx_multi_coll_ok", stats
.mcc
),
53 IGB_STAT("tx_timeout_count", tx_timeout_count
),
54 IGB_STAT("rx_long_length_errors", stats
.roc
),
55 IGB_STAT("rx_short_length_errors", stats
.ruc
),
56 IGB_STAT("rx_align_errors", stats
.algnerrc
),
57 IGB_STAT("tx_tcp_seg_good", stats
.tsctc
),
58 IGB_STAT("tx_tcp_seg_failed", stats
.tsctfc
),
59 IGB_STAT("rx_flow_control_xon", stats
.xonrxc
),
60 IGB_STAT("rx_flow_control_xoff", stats
.xoffrxc
),
61 IGB_STAT("tx_flow_control_xon", stats
.xontxc
),
62 IGB_STAT("tx_flow_control_xoff", stats
.xofftxc
),
63 IGB_STAT("rx_long_byte_count", stats
.gorc
),
64 IGB_STAT("tx_dma_out_of_sync", stats
.doosync
),
65 IGB_STAT("tx_smbus", stats
.mgptc
),
66 IGB_STAT("rx_smbus", stats
.mgprc
),
67 IGB_STAT("dropped_smbus", stats
.mgpdc
),
68 IGB_STAT("os2bmc_rx_by_bmc", stats
.o2bgptc
),
69 IGB_STAT("os2bmc_tx_by_bmc", stats
.b2ospc
),
70 IGB_STAT("os2bmc_tx_by_host", stats
.o2bspc
),
71 IGB_STAT("os2bmc_rx_by_host", stats
.b2ogprc
),
72 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts
),
73 IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped
),
74 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared
),
77 #define IGB_NETDEV_STAT(_net_stat) { \
78 .stat_string = __stringify(_net_stat), \
79 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
80 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
82 static const struct igb_stats igb_gstrings_net_stats
[] = {
83 IGB_NETDEV_STAT(rx_errors
),
84 IGB_NETDEV_STAT(tx_errors
),
85 IGB_NETDEV_STAT(tx_dropped
),
86 IGB_NETDEV_STAT(rx_length_errors
),
87 IGB_NETDEV_STAT(rx_over_errors
),
88 IGB_NETDEV_STAT(rx_frame_errors
),
89 IGB_NETDEV_STAT(rx_fifo_errors
),
90 IGB_NETDEV_STAT(tx_fifo_errors
),
91 IGB_NETDEV_STAT(tx_heartbeat_errors
)
94 #define IGB_GLOBAL_STATS_LEN \
95 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96 #define IGB_NETDEV_STATS_LEN \
97 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98 #define IGB_RX_QUEUE_STATS_LEN \
99 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
103 #define IGB_QUEUE_STATS_LEN \
104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 IGB_RX_QUEUE_STATS_LEN) + \
106 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 IGB_TX_QUEUE_STATS_LEN))
108 #define IGB_STATS_LEN \
109 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
111 enum igb_diagnostics_results
{
119 static const char igb_gstrings_test
[][ETH_GSTRING_LEN
] = {
120 [TEST_REG
] = "Register test (offline)",
121 [TEST_EEP
] = "Eeprom test (offline)",
122 [TEST_IRQ
] = "Interrupt test (offline)",
123 [TEST_LOOP
] = "Loopback test (offline)",
124 [TEST_LINK
] = "Link test (on/offline)"
126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
128 static const char igb_priv_flags_strings
[][ETH_GSTRING_LEN
] = {
129 #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0)
133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
135 static int igb_get_link_ksettings(struct net_device
*netdev
,
136 struct ethtool_link_ksettings
*cmd
)
138 struct igb_adapter
*adapter
= netdev_priv(netdev
);
139 struct e1000_hw
*hw
= &adapter
->hw
;
140 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
141 struct e1000_sfp_flags
*eth_flags
= &dev_spec
->eth_flags
;
144 u32 supported
, advertising
;
146 status
= rd32(E1000_STATUS
);
147 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
149 supported
= (SUPPORTED_10baseT_Half
|
150 SUPPORTED_10baseT_Full
|
151 SUPPORTED_100baseT_Half
|
152 SUPPORTED_100baseT_Full
|
153 SUPPORTED_1000baseT_Full
|
157 advertising
= ADVERTISED_TP
;
159 if (hw
->mac
.autoneg
== 1) {
160 advertising
|= ADVERTISED_Autoneg
;
161 /* the e1000 autoneg seems to match ethtool nicely */
162 advertising
|= hw
->phy
.autoneg_advertised
;
165 cmd
->base
.port
= PORT_TP
;
166 cmd
->base
.phy_address
= hw
->phy
.addr
;
168 supported
= (SUPPORTED_FIBRE
|
169 SUPPORTED_1000baseKX_Full
|
172 advertising
= (ADVERTISED_FIBRE
|
173 ADVERTISED_1000baseKX_Full
);
174 if (hw
->mac
.type
== e1000_i354
) {
175 if ((hw
->device_id
==
176 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS
) &&
177 !(status
& E1000_STATUS_2P5_SKU_OVER
)) {
178 supported
|= SUPPORTED_2500baseX_Full
;
179 supported
&= ~SUPPORTED_1000baseKX_Full
;
180 advertising
|= ADVERTISED_2500baseX_Full
;
181 advertising
&= ~ADVERTISED_1000baseKX_Full
;
184 if (eth_flags
->e100_base_fx
) {
185 supported
|= SUPPORTED_100baseT_Full
;
186 advertising
|= ADVERTISED_100baseT_Full
;
188 if (hw
->mac
.autoneg
== 1)
189 advertising
|= ADVERTISED_Autoneg
;
191 cmd
->base
.port
= PORT_FIBRE
;
193 if (hw
->mac
.autoneg
!= 1)
194 advertising
&= ~(ADVERTISED_Pause
|
195 ADVERTISED_Asym_Pause
);
197 switch (hw
->fc
.requested_mode
) {
199 advertising
|= ADVERTISED_Pause
;
201 case e1000_fc_rx_pause
:
202 advertising
|= (ADVERTISED_Pause
|
203 ADVERTISED_Asym_Pause
);
205 case e1000_fc_tx_pause
:
206 advertising
|= ADVERTISED_Asym_Pause
;
209 advertising
&= ~(ADVERTISED_Pause
|
210 ADVERTISED_Asym_Pause
);
212 if (status
& E1000_STATUS_LU
) {
213 if ((status
& E1000_STATUS_2P5_SKU
) &&
214 !(status
& E1000_STATUS_2P5_SKU_OVER
)) {
216 } else if (status
& E1000_STATUS_SPEED_1000
) {
218 } else if (status
& E1000_STATUS_SPEED_100
) {
223 if ((status
& E1000_STATUS_FD
) ||
224 hw
->phy
.media_type
!= e1000_media_type_copper
)
225 cmd
->base
.duplex
= DUPLEX_FULL
;
227 cmd
->base
.duplex
= DUPLEX_HALF
;
229 speed
= SPEED_UNKNOWN
;
230 cmd
->base
.duplex
= DUPLEX_UNKNOWN
;
232 cmd
->base
.speed
= speed
;
233 if ((hw
->phy
.media_type
== e1000_media_type_fiber
) ||
235 cmd
->base
.autoneg
= AUTONEG_ENABLE
;
237 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
239 /* MDI-X => 2; MDI =>1; Invalid =>0 */
240 if (hw
->phy
.media_type
== e1000_media_type_copper
)
241 cmd
->base
.eth_tp_mdix
= hw
->phy
.is_mdix
? ETH_TP_MDI_X
:
244 cmd
->base
.eth_tp_mdix
= ETH_TP_MDI_INVALID
;
246 if (hw
->phy
.mdix
== AUTO_ALL_MODES
)
247 cmd
->base
.eth_tp_mdix_ctrl
= ETH_TP_MDI_AUTO
;
249 cmd
->base
.eth_tp_mdix_ctrl
= hw
->phy
.mdix
;
251 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
253 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
259 static int igb_set_link_ksettings(struct net_device
*netdev
,
260 const struct ethtool_link_ksettings
*cmd
)
262 struct igb_adapter
*adapter
= netdev_priv(netdev
);
263 struct e1000_hw
*hw
= &adapter
->hw
;
266 /* When SoL/IDER sessions are active, autoneg/speed/duplex
269 if (igb_check_reset_block(hw
)) {
270 dev_err(&adapter
->pdev
->dev
,
271 "Cannot change link characteristics when SoL/IDER is active.\n");
275 /* MDI setting is only allowed when autoneg enabled because
276 * some hardware doesn't allow MDI setting when speed or
279 if (cmd
->base
.eth_tp_mdix_ctrl
) {
280 if (hw
->phy
.media_type
!= e1000_media_type_copper
)
283 if ((cmd
->base
.eth_tp_mdix_ctrl
!= ETH_TP_MDI_AUTO
) &&
284 (cmd
->base
.autoneg
!= AUTONEG_ENABLE
)) {
285 dev_err(&adapter
->pdev
->dev
, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
290 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
291 usleep_range(1000, 2000);
293 ethtool_convert_link_mode_to_legacy_u32(&advertising
,
294 cmd
->link_modes
.advertising
);
296 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
298 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
299 hw
->phy
.autoneg_advertised
= advertising
|
302 switch (adapter
->link_speed
) {
304 hw
->phy
.autoneg_advertised
=
305 ADVERTISED_2500baseX_Full
;
308 hw
->phy
.autoneg_advertised
=
309 ADVERTISED_1000baseT_Full
;
312 hw
->phy
.autoneg_advertised
=
313 ADVERTISED_100baseT_Full
;
319 hw
->phy
.autoneg_advertised
= advertising
|
323 advertising
= hw
->phy
.autoneg_advertised
;
324 if (adapter
->fc_autoneg
)
325 hw
->fc
.requested_mode
= e1000_fc_default
;
327 u32 speed
= cmd
->base
.speed
;
328 /* calling this overrides forced MDI setting */
329 if (igb_set_spd_dplx(adapter
, speed
, cmd
->base
.duplex
)) {
330 clear_bit(__IGB_RESETTING
, &adapter
->state
);
335 /* MDI-X => 2; MDI => 1; Auto => 3 */
336 if (cmd
->base
.eth_tp_mdix_ctrl
) {
337 /* fix up the value for auto (3 => 0) as zero is mapped
340 if (cmd
->base
.eth_tp_mdix_ctrl
== ETH_TP_MDI_AUTO
)
341 hw
->phy
.mdix
= AUTO_ALL_MODES
;
343 hw
->phy
.mdix
= cmd
->base
.eth_tp_mdix_ctrl
;
347 if (netif_running(adapter
->netdev
)) {
353 clear_bit(__IGB_RESETTING
, &adapter
->state
);
357 static u32
igb_get_link(struct net_device
*netdev
)
359 struct igb_adapter
*adapter
= netdev_priv(netdev
);
360 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
362 /* If the link is not reported up to netdev, interrupts are disabled,
363 * and so the physical link state may have changed since we last
364 * looked. Set get_link_status to make sure that the true link
365 * state is interrogated, rather than pulling a cached and possibly
366 * stale link state from the driver.
368 if (!netif_carrier_ok(netdev
))
369 mac
->get_link_status
= 1;
371 return igb_has_link(adapter
);
374 static void igb_get_pauseparam(struct net_device
*netdev
,
375 struct ethtool_pauseparam
*pause
)
377 struct igb_adapter
*adapter
= netdev_priv(netdev
);
378 struct e1000_hw
*hw
= &adapter
->hw
;
381 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
383 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
)
385 else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
)
387 else if (hw
->fc
.current_mode
== e1000_fc_full
) {
393 static int igb_set_pauseparam(struct net_device
*netdev
,
394 struct ethtool_pauseparam
*pause
)
396 struct igb_adapter
*adapter
= netdev_priv(netdev
);
397 struct e1000_hw
*hw
= &adapter
->hw
;
400 /* 100basefx does not support setting link flow control */
401 if (hw
->dev_spec
._82575
.eth_flags
.e100_base_fx
)
404 adapter
->fc_autoneg
= pause
->autoneg
;
406 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
407 usleep_range(1000, 2000);
409 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
410 hw
->fc
.requested_mode
= e1000_fc_default
;
411 if (netif_running(adapter
->netdev
)) {
418 if (pause
->rx_pause
&& pause
->tx_pause
)
419 hw
->fc
.requested_mode
= e1000_fc_full
;
420 else if (pause
->rx_pause
&& !pause
->tx_pause
)
421 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
422 else if (!pause
->rx_pause
&& pause
->tx_pause
)
423 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
424 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
425 hw
->fc
.requested_mode
= e1000_fc_none
;
427 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
429 retval
= ((hw
->phy
.media_type
== e1000_media_type_copper
) ?
430 igb_force_mac_fc(hw
) : igb_setup_link(hw
));
433 clear_bit(__IGB_RESETTING
, &adapter
->state
);
437 static u32
igb_get_msglevel(struct net_device
*netdev
)
439 struct igb_adapter
*adapter
= netdev_priv(netdev
);
440 return adapter
->msg_enable
;
443 static void igb_set_msglevel(struct net_device
*netdev
, u32 data
)
445 struct igb_adapter
*adapter
= netdev_priv(netdev
);
446 adapter
->msg_enable
= data
;
449 static int igb_get_regs_len(struct net_device
*netdev
)
451 #define IGB_REGS_LEN 739
452 return IGB_REGS_LEN
* sizeof(u32
);
455 static void igb_get_regs(struct net_device
*netdev
,
456 struct ethtool_regs
*regs
, void *p
)
458 struct igb_adapter
*adapter
= netdev_priv(netdev
);
459 struct e1000_hw
*hw
= &adapter
->hw
;
463 memset(p
, 0, IGB_REGS_LEN
* sizeof(u32
));
465 regs
->version
= (1u << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
467 /* General Registers */
468 regs_buff
[0] = rd32(E1000_CTRL
);
469 regs_buff
[1] = rd32(E1000_STATUS
);
470 regs_buff
[2] = rd32(E1000_CTRL_EXT
);
471 regs_buff
[3] = rd32(E1000_MDIC
);
472 regs_buff
[4] = rd32(E1000_SCTL
);
473 regs_buff
[5] = rd32(E1000_CONNSW
);
474 regs_buff
[6] = rd32(E1000_VET
);
475 regs_buff
[7] = rd32(E1000_LEDCTL
);
476 regs_buff
[8] = rd32(E1000_PBA
);
477 regs_buff
[9] = rd32(E1000_PBS
);
478 regs_buff
[10] = rd32(E1000_FRTIMER
);
479 regs_buff
[11] = rd32(E1000_TCPTIMER
);
482 regs_buff
[12] = rd32(E1000_EECD
);
485 /* Reading EICS for EICR because they read the
486 * same but EICS does not clear on read
488 regs_buff
[13] = rd32(E1000_EICS
);
489 regs_buff
[14] = rd32(E1000_EICS
);
490 regs_buff
[15] = rd32(E1000_EIMS
);
491 regs_buff
[16] = rd32(E1000_EIMC
);
492 regs_buff
[17] = rd32(E1000_EIAC
);
493 regs_buff
[18] = rd32(E1000_EIAM
);
494 /* Reading ICS for ICR because they read the
495 * same but ICS does not clear on read
497 regs_buff
[19] = rd32(E1000_ICS
);
498 regs_buff
[20] = rd32(E1000_ICS
);
499 regs_buff
[21] = rd32(E1000_IMS
);
500 regs_buff
[22] = rd32(E1000_IMC
);
501 regs_buff
[23] = rd32(E1000_IAC
);
502 regs_buff
[24] = rd32(E1000_IAM
);
503 regs_buff
[25] = rd32(E1000_IMIRVP
);
506 regs_buff
[26] = rd32(E1000_FCAL
);
507 regs_buff
[27] = rd32(E1000_FCAH
);
508 regs_buff
[28] = rd32(E1000_FCTTV
);
509 regs_buff
[29] = rd32(E1000_FCRTL
);
510 regs_buff
[30] = rd32(E1000_FCRTH
);
511 regs_buff
[31] = rd32(E1000_FCRTV
);
514 regs_buff
[32] = rd32(E1000_RCTL
);
515 regs_buff
[33] = rd32(E1000_RXCSUM
);
516 regs_buff
[34] = rd32(E1000_RLPML
);
517 regs_buff
[35] = rd32(E1000_RFCTL
);
518 regs_buff
[36] = rd32(E1000_MRQC
);
519 regs_buff
[37] = rd32(E1000_VT_CTL
);
522 regs_buff
[38] = rd32(E1000_TCTL
);
523 regs_buff
[39] = rd32(E1000_TCTL_EXT
);
524 regs_buff
[40] = rd32(E1000_TIPG
);
525 regs_buff
[41] = rd32(E1000_DTXCTL
);
528 regs_buff
[42] = rd32(E1000_WUC
);
529 regs_buff
[43] = rd32(E1000_WUFC
);
530 regs_buff
[44] = rd32(E1000_WUS
);
531 regs_buff
[45] = rd32(E1000_IPAV
);
532 regs_buff
[46] = rd32(E1000_WUPL
);
535 regs_buff
[47] = rd32(E1000_PCS_CFG0
);
536 regs_buff
[48] = rd32(E1000_PCS_LCTL
);
537 regs_buff
[49] = rd32(E1000_PCS_LSTAT
);
538 regs_buff
[50] = rd32(E1000_PCS_ANADV
);
539 regs_buff
[51] = rd32(E1000_PCS_LPAB
);
540 regs_buff
[52] = rd32(E1000_PCS_NPTX
);
541 regs_buff
[53] = rd32(E1000_PCS_LPABNP
);
544 regs_buff
[54] = adapter
->stats
.crcerrs
;
545 regs_buff
[55] = adapter
->stats
.algnerrc
;
546 regs_buff
[56] = adapter
->stats
.symerrs
;
547 regs_buff
[57] = adapter
->stats
.rxerrc
;
548 regs_buff
[58] = adapter
->stats
.mpc
;
549 regs_buff
[59] = adapter
->stats
.scc
;
550 regs_buff
[60] = adapter
->stats
.ecol
;
551 regs_buff
[61] = adapter
->stats
.mcc
;
552 regs_buff
[62] = adapter
->stats
.latecol
;
553 regs_buff
[63] = adapter
->stats
.colc
;
554 regs_buff
[64] = adapter
->stats
.dc
;
555 regs_buff
[65] = adapter
->stats
.tncrs
;
556 regs_buff
[66] = adapter
->stats
.sec
;
557 regs_buff
[67] = adapter
->stats
.htdpmc
;
558 regs_buff
[68] = adapter
->stats
.rlec
;
559 regs_buff
[69] = adapter
->stats
.xonrxc
;
560 regs_buff
[70] = adapter
->stats
.xontxc
;
561 regs_buff
[71] = adapter
->stats
.xoffrxc
;
562 regs_buff
[72] = adapter
->stats
.xofftxc
;
563 regs_buff
[73] = adapter
->stats
.fcruc
;
564 regs_buff
[74] = adapter
->stats
.prc64
;
565 regs_buff
[75] = adapter
->stats
.prc127
;
566 regs_buff
[76] = adapter
->stats
.prc255
;
567 regs_buff
[77] = adapter
->stats
.prc511
;
568 regs_buff
[78] = adapter
->stats
.prc1023
;
569 regs_buff
[79] = adapter
->stats
.prc1522
;
570 regs_buff
[80] = adapter
->stats
.gprc
;
571 regs_buff
[81] = adapter
->stats
.bprc
;
572 regs_buff
[82] = adapter
->stats
.mprc
;
573 regs_buff
[83] = adapter
->stats
.gptc
;
574 regs_buff
[84] = adapter
->stats
.gorc
;
575 regs_buff
[86] = adapter
->stats
.gotc
;
576 regs_buff
[88] = adapter
->stats
.rnbc
;
577 regs_buff
[89] = adapter
->stats
.ruc
;
578 regs_buff
[90] = adapter
->stats
.rfc
;
579 regs_buff
[91] = adapter
->stats
.roc
;
580 regs_buff
[92] = adapter
->stats
.rjc
;
581 regs_buff
[93] = adapter
->stats
.mgprc
;
582 regs_buff
[94] = adapter
->stats
.mgpdc
;
583 regs_buff
[95] = adapter
->stats
.mgptc
;
584 regs_buff
[96] = adapter
->stats
.tor
;
585 regs_buff
[98] = adapter
->stats
.tot
;
586 regs_buff
[100] = adapter
->stats
.tpr
;
587 regs_buff
[101] = adapter
->stats
.tpt
;
588 regs_buff
[102] = adapter
->stats
.ptc64
;
589 regs_buff
[103] = adapter
->stats
.ptc127
;
590 regs_buff
[104] = adapter
->stats
.ptc255
;
591 regs_buff
[105] = adapter
->stats
.ptc511
;
592 regs_buff
[106] = adapter
->stats
.ptc1023
;
593 regs_buff
[107] = adapter
->stats
.ptc1522
;
594 regs_buff
[108] = adapter
->stats
.mptc
;
595 regs_buff
[109] = adapter
->stats
.bptc
;
596 regs_buff
[110] = adapter
->stats
.tsctc
;
597 regs_buff
[111] = adapter
->stats
.iac
;
598 regs_buff
[112] = adapter
->stats
.rpthc
;
599 regs_buff
[113] = adapter
->stats
.hgptc
;
600 regs_buff
[114] = adapter
->stats
.hgorc
;
601 regs_buff
[116] = adapter
->stats
.hgotc
;
602 regs_buff
[118] = adapter
->stats
.lenerrs
;
603 regs_buff
[119] = adapter
->stats
.scvpc
;
604 regs_buff
[120] = adapter
->stats
.hrmpc
;
606 for (i
= 0; i
< 4; i
++)
607 regs_buff
[121 + i
] = rd32(E1000_SRRCTL(i
));
608 for (i
= 0; i
< 4; i
++)
609 regs_buff
[125 + i
] = rd32(E1000_PSRTYPE(i
));
610 for (i
= 0; i
< 4; i
++)
611 regs_buff
[129 + i
] = rd32(E1000_RDBAL(i
));
612 for (i
= 0; i
< 4; i
++)
613 regs_buff
[133 + i
] = rd32(E1000_RDBAH(i
));
614 for (i
= 0; i
< 4; i
++)
615 regs_buff
[137 + i
] = rd32(E1000_RDLEN(i
));
616 for (i
= 0; i
< 4; i
++)
617 regs_buff
[141 + i
] = rd32(E1000_RDH(i
));
618 for (i
= 0; i
< 4; i
++)
619 regs_buff
[145 + i
] = rd32(E1000_RDT(i
));
620 for (i
= 0; i
< 4; i
++)
621 regs_buff
[149 + i
] = rd32(E1000_RXDCTL(i
));
623 for (i
= 0; i
< 10; i
++)
624 regs_buff
[153 + i
] = rd32(E1000_EITR(i
));
625 for (i
= 0; i
< 8; i
++)
626 regs_buff
[163 + i
] = rd32(E1000_IMIR(i
));
627 for (i
= 0; i
< 8; i
++)
628 regs_buff
[171 + i
] = rd32(E1000_IMIREXT(i
));
629 for (i
= 0; i
< 16; i
++)
630 regs_buff
[179 + i
] = rd32(E1000_RAL(i
));
631 for (i
= 0; i
< 16; i
++)
632 regs_buff
[195 + i
] = rd32(E1000_RAH(i
));
634 for (i
= 0; i
< 4; i
++)
635 regs_buff
[211 + i
] = rd32(E1000_TDBAL(i
));
636 for (i
= 0; i
< 4; i
++)
637 regs_buff
[215 + i
] = rd32(E1000_TDBAH(i
));
638 for (i
= 0; i
< 4; i
++)
639 regs_buff
[219 + i
] = rd32(E1000_TDLEN(i
));
640 for (i
= 0; i
< 4; i
++)
641 regs_buff
[223 + i
] = rd32(E1000_TDH(i
));
642 for (i
= 0; i
< 4; i
++)
643 regs_buff
[227 + i
] = rd32(E1000_TDT(i
));
644 for (i
= 0; i
< 4; i
++)
645 regs_buff
[231 + i
] = rd32(E1000_TXDCTL(i
));
646 for (i
= 0; i
< 4; i
++)
647 regs_buff
[235 + i
] = rd32(E1000_TDWBAL(i
));
648 for (i
= 0; i
< 4; i
++)
649 regs_buff
[239 + i
] = rd32(E1000_TDWBAH(i
));
650 for (i
= 0; i
< 4; i
++)
651 regs_buff
[243 + i
] = rd32(E1000_DCA_TXCTRL(i
));
653 for (i
= 0; i
< 4; i
++)
654 regs_buff
[247 + i
] = rd32(E1000_IP4AT_REG(i
));
655 for (i
= 0; i
< 4; i
++)
656 regs_buff
[251 + i
] = rd32(E1000_IP6AT_REG(i
));
657 for (i
= 0; i
< 32; i
++)
658 regs_buff
[255 + i
] = rd32(E1000_WUPM_REG(i
));
659 for (i
= 0; i
< 128; i
++)
660 regs_buff
[287 + i
] = rd32(E1000_FFMT_REG(i
));
661 for (i
= 0; i
< 128; i
++)
662 regs_buff
[415 + i
] = rd32(E1000_FFVT_REG(i
));
663 for (i
= 0; i
< 4; i
++)
664 regs_buff
[543 + i
] = rd32(E1000_FFLT_REG(i
));
666 regs_buff
[547] = rd32(E1000_TDFH
);
667 regs_buff
[548] = rd32(E1000_TDFT
);
668 regs_buff
[549] = rd32(E1000_TDFHS
);
669 regs_buff
[550] = rd32(E1000_TDFPC
);
671 if (hw
->mac
.type
> e1000_82580
) {
672 regs_buff
[551] = adapter
->stats
.o2bgptc
;
673 regs_buff
[552] = adapter
->stats
.b2ospc
;
674 regs_buff
[553] = adapter
->stats
.o2bspc
;
675 regs_buff
[554] = adapter
->stats
.b2ogprc
;
678 if (hw
->mac
.type
!= e1000_82576
)
680 for (i
= 0; i
< 12; i
++)
681 regs_buff
[555 + i
] = rd32(E1000_SRRCTL(i
+ 4));
682 for (i
= 0; i
< 4; i
++)
683 regs_buff
[567 + i
] = rd32(E1000_PSRTYPE(i
+ 4));
684 for (i
= 0; i
< 12; i
++)
685 regs_buff
[571 + i
] = rd32(E1000_RDBAL(i
+ 4));
686 for (i
= 0; i
< 12; i
++)
687 regs_buff
[583 + i
] = rd32(E1000_RDBAH(i
+ 4));
688 for (i
= 0; i
< 12; i
++)
689 regs_buff
[595 + i
] = rd32(E1000_RDLEN(i
+ 4));
690 for (i
= 0; i
< 12; i
++)
691 regs_buff
[607 + i
] = rd32(E1000_RDH(i
+ 4));
692 for (i
= 0; i
< 12; i
++)
693 regs_buff
[619 + i
] = rd32(E1000_RDT(i
+ 4));
694 for (i
= 0; i
< 12; i
++)
695 regs_buff
[631 + i
] = rd32(E1000_RXDCTL(i
+ 4));
697 for (i
= 0; i
< 12; i
++)
698 regs_buff
[643 + i
] = rd32(E1000_TDBAL(i
+ 4));
699 for (i
= 0; i
< 12; i
++)
700 regs_buff
[655 + i
] = rd32(E1000_TDBAH(i
+ 4));
701 for (i
= 0; i
< 12; i
++)
702 regs_buff
[667 + i
] = rd32(E1000_TDLEN(i
+ 4));
703 for (i
= 0; i
< 12; i
++)
704 regs_buff
[679 + i
] = rd32(E1000_TDH(i
+ 4));
705 for (i
= 0; i
< 12; i
++)
706 regs_buff
[691 + i
] = rd32(E1000_TDT(i
+ 4));
707 for (i
= 0; i
< 12; i
++)
708 regs_buff
[703 + i
] = rd32(E1000_TXDCTL(i
+ 4));
709 for (i
= 0; i
< 12; i
++)
710 regs_buff
[715 + i
] = rd32(E1000_TDWBAL(i
+ 4));
711 for (i
= 0; i
< 12; i
++)
712 regs_buff
[727 + i
] = rd32(E1000_TDWBAH(i
+ 4));
715 static int igb_get_eeprom_len(struct net_device
*netdev
)
717 struct igb_adapter
*adapter
= netdev_priv(netdev
);
718 return adapter
->hw
.nvm
.word_size
* 2;
721 static int igb_get_eeprom(struct net_device
*netdev
,
722 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
724 struct igb_adapter
*adapter
= netdev_priv(netdev
);
725 struct e1000_hw
*hw
= &adapter
->hw
;
727 int first_word
, last_word
;
731 if (eeprom
->len
== 0)
734 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
736 first_word
= eeprom
->offset
>> 1;
737 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
739 eeprom_buff
= kmalloc_array(last_word
- first_word
+ 1, sizeof(u16
),
744 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
)
745 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
,
746 last_word
- first_word
+ 1,
749 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
750 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
+ i
, 1,
757 /* Device's eeprom is always little-endian, word addressable */
758 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
759 le16_to_cpus(&eeprom_buff
[i
]);
761 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
768 static int igb_set_eeprom(struct net_device
*netdev
,
769 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
771 struct igb_adapter
*adapter
= netdev_priv(netdev
);
772 struct e1000_hw
*hw
= &adapter
->hw
;
775 int max_len
, first_word
, last_word
, ret_val
= 0;
778 if (eeprom
->len
== 0)
781 if ((hw
->mac
.type
>= e1000_i210
) &&
782 !igb_get_flash_presence_i210(hw
)) {
786 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
789 max_len
= hw
->nvm
.word_size
* 2;
791 first_word
= eeprom
->offset
>> 1;
792 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
793 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
797 ptr
= (void *)eeprom_buff
;
799 if (eeprom
->offset
& 1) {
800 /* need read/modify/write of first changed EEPROM word
801 * only the second byte of the word is being modified
803 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
, 1,
807 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
808 /* need read/modify/write of last changed EEPROM word
809 * only the first byte of the word is being modified
811 ret_val
= hw
->nvm
.ops
.read(hw
, last_word
, 1,
812 &eeprom_buff
[last_word
- first_word
]);
815 /* Device's eeprom is always little-endian, word addressable */
816 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
817 le16_to_cpus(&eeprom_buff
[i
]);
819 memcpy(ptr
, bytes
, eeprom
->len
);
821 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
822 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
824 ret_val
= hw
->nvm
.ops
.write(hw
, first_word
,
825 last_word
- first_word
+ 1, eeprom_buff
);
827 /* Update the checksum if nvm write succeeded */
829 hw
->nvm
.ops
.update(hw
);
831 igb_set_fw_version(adapter
);
836 static void igb_get_drvinfo(struct net_device
*netdev
,
837 struct ethtool_drvinfo
*drvinfo
)
839 struct igb_adapter
*adapter
= netdev_priv(netdev
);
841 strlcpy(drvinfo
->driver
, igb_driver_name
, sizeof(drvinfo
->driver
));
842 strlcpy(drvinfo
->version
, igb_driver_version
, sizeof(drvinfo
->version
));
844 /* EEPROM image version # is reported as firmware version # for
847 strlcpy(drvinfo
->fw_version
, adapter
->fw_version
,
848 sizeof(drvinfo
->fw_version
));
849 strlcpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
850 sizeof(drvinfo
->bus_info
));
852 drvinfo
->n_priv_flags
= IGB_PRIV_FLAGS_STR_LEN
;
855 static void igb_get_ringparam(struct net_device
*netdev
,
856 struct ethtool_ringparam
*ring
)
858 struct igb_adapter
*adapter
= netdev_priv(netdev
);
860 ring
->rx_max_pending
= IGB_MAX_RXD
;
861 ring
->tx_max_pending
= IGB_MAX_TXD
;
862 ring
->rx_pending
= adapter
->rx_ring_count
;
863 ring
->tx_pending
= adapter
->tx_ring_count
;
866 static int igb_set_ringparam(struct net_device
*netdev
,
867 struct ethtool_ringparam
*ring
)
869 struct igb_adapter
*adapter
= netdev_priv(netdev
);
870 struct igb_ring
*temp_ring
;
872 u16 new_rx_count
, new_tx_count
;
874 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
877 new_rx_count
= min_t(u32
, ring
->rx_pending
, IGB_MAX_RXD
);
878 new_rx_count
= max_t(u16
, new_rx_count
, IGB_MIN_RXD
);
879 new_rx_count
= ALIGN(new_rx_count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
881 new_tx_count
= min_t(u32
, ring
->tx_pending
, IGB_MAX_TXD
);
882 new_tx_count
= max_t(u16
, new_tx_count
, IGB_MIN_TXD
);
883 new_tx_count
= ALIGN(new_tx_count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
885 if ((new_tx_count
== adapter
->tx_ring_count
) &&
886 (new_rx_count
== adapter
->rx_ring_count
)) {
891 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
892 usleep_range(1000, 2000);
894 if (!netif_running(adapter
->netdev
)) {
895 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
896 adapter
->tx_ring
[i
]->count
= new_tx_count
;
897 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
898 adapter
->rx_ring
[i
]->count
= new_rx_count
;
899 adapter
->tx_ring_count
= new_tx_count
;
900 adapter
->rx_ring_count
= new_rx_count
;
904 if (adapter
->num_tx_queues
> adapter
->num_rx_queues
)
905 temp_ring
= vmalloc(array_size(sizeof(struct igb_ring
),
906 adapter
->num_tx_queues
));
908 temp_ring
= vmalloc(array_size(sizeof(struct igb_ring
),
909 adapter
->num_rx_queues
));
918 /* We can't just free everything and then setup again,
919 * because the ISRs in MSI-X mode get passed pointers
920 * to the Tx and Rx ring structs.
922 if (new_tx_count
!= adapter
->tx_ring_count
) {
923 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
924 memcpy(&temp_ring
[i
], adapter
->tx_ring
[i
],
925 sizeof(struct igb_ring
));
927 temp_ring
[i
].count
= new_tx_count
;
928 err
= igb_setup_tx_resources(&temp_ring
[i
]);
932 igb_free_tx_resources(&temp_ring
[i
]);
938 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
939 igb_free_tx_resources(adapter
->tx_ring
[i
]);
941 memcpy(adapter
->tx_ring
[i
], &temp_ring
[i
],
942 sizeof(struct igb_ring
));
945 adapter
->tx_ring_count
= new_tx_count
;
948 if (new_rx_count
!= adapter
->rx_ring_count
) {
949 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
950 memcpy(&temp_ring
[i
], adapter
->rx_ring
[i
],
951 sizeof(struct igb_ring
));
953 temp_ring
[i
].count
= new_rx_count
;
954 err
= igb_setup_rx_resources(&temp_ring
[i
]);
958 igb_free_rx_resources(&temp_ring
[i
]);
965 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
966 igb_free_rx_resources(adapter
->rx_ring
[i
]);
968 memcpy(adapter
->rx_ring
[i
], &temp_ring
[i
],
969 sizeof(struct igb_ring
));
972 adapter
->rx_ring_count
= new_rx_count
;
978 clear_bit(__IGB_RESETTING
, &adapter
->state
);
982 /* ethtool register test data */
983 struct igb_reg_test
{
992 /* In the hardware, registers are laid out either singly, in arrays
993 * spaced 0x100 bytes apart, or in contiguous tables. We assume
994 * most tests take place on arrays or single registers (handled
995 * as a single-element array) and special-case the tables.
996 * Table tests are always pattern tests.
998 * We also make provision for some required setup steps by specifying
999 * registers to be written without any read-back testing.
1002 #define PATTERN_TEST 1
1003 #define SET_READ_TEST 2
1004 #define WRITE_NO_TEST 3
1005 #define TABLE32_TEST 4
1006 #define TABLE64_TEST_LO 5
1007 #define TABLE64_TEST_HI 6
1010 static struct igb_reg_test reg_test_i210
[] = {
1011 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1012 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1013 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1014 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1015 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1016 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1017 /* RDH is read-only for i210, only test RDT. */
1018 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1019 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1020 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1021 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1022 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1023 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1024 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1025 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1026 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1027 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
1028 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
1029 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1030 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
1031 0xFFFFFFFF, 0xFFFFFFFF },
1032 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
1033 0x900FFFFF, 0xFFFFFFFF },
1034 { E1000_MTA
, 0, 128, TABLE32_TEST
,
1035 0xFFFFFFFF, 0xFFFFFFFF },
1040 static struct igb_reg_test reg_test_i350
[] = {
1041 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1042 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1043 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1044 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFF0000, 0xFFFF0000 },
1045 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1046 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1047 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1048 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1049 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1050 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1051 /* RDH is read-only for i350, only test RDT. */
1052 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1053 { E1000_RDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1054 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1055 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1056 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1057 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1058 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1059 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1060 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1061 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1062 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1063 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1064 { E1000_TDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1065 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1066 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
1067 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
1068 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1069 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
1070 0xFFFFFFFF, 0xFFFFFFFF },
1071 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
1072 0xC3FFFFFF, 0xFFFFFFFF },
1073 { E1000_RA2
, 0, 16, TABLE64_TEST_LO
,
1074 0xFFFFFFFF, 0xFFFFFFFF },
1075 { E1000_RA2
, 0, 16, TABLE64_TEST_HI
,
1076 0xC3FFFFFF, 0xFFFFFFFF },
1077 { E1000_MTA
, 0, 128, TABLE32_TEST
,
1078 0xFFFFFFFF, 0xFFFFFFFF },
1082 /* 82580 reg test */
1083 static struct igb_reg_test reg_test_82580
[] = {
1084 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1085 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1086 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1087 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1088 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1089 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1090 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1091 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1092 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1093 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1094 /* RDH is read-only for 82580, only test RDT. */
1095 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1096 { E1000_RDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1097 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1098 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1099 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1100 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1101 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1102 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1103 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1104 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1105 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1106 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1107 { E1000_TDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1108 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1109 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
1110 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
1111 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1112 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
1113 0xFFFFFFFF, 0xFFFFFFFF },
1114 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
1115 0x83FFFFFF, 0xFFFFFFFF },
1116 { E1000_RA2
, 0, 8, TABLE64_TEST_LO
,
1117 0xFFFFFFFF, 0xFFFFFFFF },
1118 { E1000_RA2
, 0, 8, TABLE64_TEST_HI
,
1119 0x83FFFFFF, 0xFFFFFFFF },
1120 { E1000_MTA
, 0, 128, TABLE32_TEST
,
1121 0xFFFFFFFF, 0xFFFFFFFF },
1125 /* 82576 reg test */
1126 static struct igb_reg_test reg_test_82576
[] = {
1127 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1128 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1129 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1130 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1131 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1132 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1133 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1134 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1135 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1136 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1137 /* Enable all RX queues before testing. */
1138 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0,
1139 E1000_RXDCTL_QUEUE_ENABLE
},
1140 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST
, 0,
1141 E1000_RXDCTL_QUEUE_ENABLE
},
1142 /* RDH is read-only for 82576, only test RDT. */
1143 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1144 { E1000_RDT(4), 0x40, 12, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1145 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
1146 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST
, 0, 0 },
1147 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1148 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1149 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1150 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1151 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1152 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1153 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1154 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1155 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1156 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1157 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
1158 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
1159 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1160 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1161 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
1162 { E1000_RA2
, 0, 8, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1163 { E1000_RA2
, 0, 8, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
1164 { E1000_MTA
, 0, 128, TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1168 /* 82575 register test */
1169 static struct igb_reg_test reg_test_82575
[] = {
1170 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1171 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1172 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1173 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1174 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1175 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1176 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1177 /* Enable all four RX queues before testing. */
1178 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0,
1179 E1000_RXDCTL_QUEUE_ENABLE
},
1180 /* RDH is read-only for 82575, only test RDT. */
1181 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1182 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
1183 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1184 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1185 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1186 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1187 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1188 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1189 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1190 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0x003FFFFB },
1191 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0xFFFFFFFF },
1192 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1193 { E1000_TXCW
, 0x100, 1, PATTERN_TEST
, 0xC000FFFF, 0x0000FFFF },
1194 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1195 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x800FFFFF, 0xFFFFFFFF },
1196 { E1000_MTA
, 0, 128, TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1200 static bool reg_pattern_test(struct igb_adapter
*adapter
, u64
*data
,
1201 int reg
, u32 mask
, u32 write
)
1203 struct e1000_hw
*hw
= &adapter
->hw
;
1205 static const u32 _test
[] = {
1206 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1207 for (pat
= 0; pat
< ARRAY_SIZE(_test
); pat
++) {
1208 wr32(reg
, (_test
[pat
] & write
));
1209 val
= rd32(reg
) & mask
;
1210 if (val
!= (_test
[pat
] & write
& mask
)) {
1211 dev_err(&adapter
->pdev
->dev
,
1212 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1213 reg
, val
, (_test
[pat
] & write
& mask
));
1222 static bool reg_set_and_check(struct igb_adapter
*adapter
, u64
*data
,
1223 int reg
, u32 mask
, u32 write
)
1225 struct e1000_hw
*hw
= &adapter
->hw
;
1228 wr32(reg
, write
& mask
);
1230 if ((write
& mask
) != (val
& mask
)) {
1231 dev_err(&adapter
->pdev
->dev
,
1232 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1233 reg
, (val
& mask
), (write
& mask
));
1241 #define REG_PATTERN_TEST(reg, mask, write) \
1243 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1247 #define REG_SET_AND_CHECK(reg, mask, write) \
1249 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1253 static int igb_reg_test(struct igb_adapter
*adapter
, u64
*data
)
1255 struct e1000_hw
*hw
= &adapter
->hw
;
1256 struct igb_reg_test
*test
;
1257 u32 value
, before
, after
;
1260 switch (adapter
->hw
.mac
.type
) {
1263 test
= reg_test_i350
;
1264 toggle
= 0x7FEFF3FF;
1268 test
= reg_test_i210
;
1269 toggle
= 0x7FEFF3FF;
1272 test
= reg_test_82580
;
1273 toggle
= 0x7FEFF3FF;
1276 test
= reg_test_82576
;
1277 toggle
= 0x7FFFF3FF;
1280 test
= reg_test_82575
;
1281 toggle
= 0x7FFFF3FF;
1285 /* Because the status register is such a special case,
1286 * we handle it separately from the rest of the register
1287 * tests. Some bits are read-only, some toggle, and some
1288 * are writable on newer MACs.
1290 before
= rd32(E1000_STATUS
);
1291 value
= (rd32(E1000_STATUS
) & toggle
);
1292 wr32(E1000_STATUS
, toggle
);
1293 after
= rd32(E1000_STATUS
) & toggle
;
1294 if (value
!= after
) {
1295 dev_err(&adapter
->pdev
->dev
,
1296 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1301 /* restore previous status */
1302 wr32(E1000_STATUS
, before
);
1304 /* Perform the remainder of the register test, looping through
1305 * the test table until we either fail or reach the null entry.
1308 for (i
= 0; i
< test
->array_len
; i
++) {
1309 switch (test
->test_type
) {
1311 REG_PATTERN_TEST(test
->reg
+
1312 (i
* test
->reg_offset
),
1317 REG_SET_AND_CHECK(test
->reg
+
1318 (i
* test
->reg_offset
),
1324 (adapter
->hw
.hw_addr
+ test
->reg
)
1325 + (i
* test
->reg_offset
));
1328 REG_PATTERN_TEST(test
->reg
+ (i
* 4),
1332 case TABLE64_TEST_LO
:
1333 REG_PATTERN_TEST(test
->reg
+ (i
* 8),
1337 case TABLE64_TEST_HI
:
1338 REG_PATTERN_TEST((test
->reg
+ 4) + (i
* 8),
1351 static int igb_eeprom_test(struct igb_adapter
*adapter
, u64
*data
)
1353 struct e1000_hw
*hw
= &adapter
->hw
;
1357 /* Validate eeprom on all parts but flashless */
1358 switch (hw
->mac
.type
) {
1361 if (igb_get_flash_presence_i210(hw
)) {
1362 if (adapter
->hw
.nvm
.ops
.validate(&adapter
->hw
) < 0)
1367 if (adapter
->hw
.nvm
.ops
.validate(&adapter
->hw
) < 0)
1375 static irqreturn_t
igb_test_intr(int irq
, void *data
)
1377 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
1378 struct e1000_hw
*hw
= &adapter
->hw
;
1380 adapter
->test_icr
|= rd32(E1000_ICR
);
1385 static int igb_intr_test(struct igb_adapter
*adapter
, u64
*data
)
1387 struct e1000_hw
*hw
= &adapter
->hw
;
1388 struct net_device
*netdev
= adapter
->netdev
;
1389 u32 mask
, ics_mask
, i
= 0, shared_int
= true;
1390 u32 irq
= adapter
->pdev
->irq
;
1394 /* Hook up test interrupt handler just for this test */
1395 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
) {
1396 if (request_irq(adapter
->msix_entries
[0].vector
,
1397 igb_test_intr
, 0, netdev
->name
, adapter
)) {
1401 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
1403 if (request_irq(irq
,
1404 igb_test_intr
, 0, netdev
->name
, adapter
)) {
1408 } else if (!request_irq(irq
, igb_test_intr
, IRQF_PROBE_SHARED
,
1409 netdev
->name
, adapter
)) {
1411 } else if (request_irq(irq
, igb_test_intr
, IRQF_SHARED
,
1412 netdev
->name
, adapter
)) {
1416 dev_info(&adapter
->pdev
->dev
, "testing %s interrupt\n",
1417 (shared_int
? "shared" : "unshared"));
1419 /* Disable all the interrupts */
1420 wr32(E1000_IMC
, ~0);
1422 usleep_range(10000, 11000);
1424 /* Define all writable bits for ICS */
1425 switch (hw
->mac
.type
) {
1427 ics_mask
= 0x37F47EDD;
1430 ics_mask
= 0x77D4FBFD;
1433 ics_mask
= 0x77DCFED5;
1439 ics_mask
= 0x77DCFED5;
1442 ics_mask
= 0x7FFFFFFF;
1446 /* Test each interrupt */
1447 for (; i
< 31; i
++) {
1448 /* Interrupt to test */
1451 if (!(mask
& ics_mask
))
1455 /* Disable the interrupt to be reported in
1456 * the cause register and then force the same
1457 * interrupt and see if one gets posted. If
1458 * an interrupt was posted to the bus, the
1461 adapter
->test_icr
= 0;
1463 /* Flush any pending interrupts */
1464 wr32(E1000_ICR
, ~0);
1466 wr32(E1000_IMC
, mask
);
1467 wr32(E1000_ICS
, mask
);
1469 usleep_range(10000, 11000);
1471 if (adapter
->test_icr
& mask
) {
1477 /* Enable the interrupt to be reported in
1478 * the cause register and then force the same
1479 * interrupt and see if one gets posted. If
1480 * an interrupt was not posted to the bus, the
1483 adapter
->test_icr
= 0;
1485 /* Flush any pending interrupts */
1486 wr32(E1000_ICR
, ~0);
1488 wr32(E1000_IMS
, mask
);
1489 wr32(E1000_ICS
, mask
);
1491 usleep_range(10000, 11000);
1493 if (!(adapter
->test_icr
& mask
)) {
1499 /* Disable the other interrupts to be reported in
1500 * the cause register and then force the other
1501 * interrupts and see if any get posted. If
1502 * an interrupt was posted to the bus, the
1505 adapter
->test_icr
= 0;
1507 /* Flush any pending interrupts */
1508 wr32(E1000_ICR
, ~0);
1510 wr32(E1000_IMC
, ~mask
);
1511 wr32(E1000_ICS
, ~mask
);
1513 usleep_range(10000, 11000);
1515 if (adapter
->test_icr
& mask
) {
1522 /* Disable all the interrupts */
1523 wr32(E1000_IMC
, ~0);
1525 usleep_range(10000, 11000);
1527 /* Unhook test interrupt handler */
1528 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
)
1529 free_irq(adapter
->msix_entries
[0].vector
, adapter
);
1531 free_irq(irq
, adapter
);
1536 static void igb_free_desc_rings(struct igb_adapter
*adapter
)
1538 igb_free_tx_resources(&adapter
->test_tx_ring
);
1539 igb_free_rx_resources(&adapter
->test_rx_ring
);
1542 static int igb_setup_desc_rings(struct igb_adapter
*adapter
)
1544 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1545 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1546 struct e1000_hw
*hw
= &adapter
->hw
;
1549 /* Setup Tx descriptor ring and Tx buffers */
1550 tx_ring
->count
= IGB_DEFAULT_TXD
;
1551 tx_ring
->dev
= &adapter
->pdev
->dev
;
1552 tx_ring
->netdev
= adapter
->netdev
;
1553 tx_ring
->reg_idx
= adapter
->vfs_allocated_count
;
1555 if (igb_setup_tx_resources(tx_ring
)) {
1560 igb_setup_tctl(adapter
);
1561 igb_configure_tx_ring(adapter
, tx_ring
);
1563 /* Setup Rx descriptor ring and Rx buffers */
1564 rx_ring
->count
= IGB_DEFAULT_RXD
;
1565 rx_ring
->dev
= &adapter
->pdev
->dev
;
1566 rx_ring
->netdev
= adapter
->netdev
;
1567 rx_ring
->reg_idx
= adapter
->vfs_allocated_count
;
1569 if (igb_setup_rx_resources(rx_ring
)) {
1574 /* set the default queue to queue 0 of PF */
1575 wr32(E1000_MRQC
, adapter
->vfs_allocated_count
<< 3);
1577 /* enable receive ring */
1578 igb_setup_rctl(adapter
);
1579 igb_configure_rx_ring(adapter
, rx_ring
);
1581 igb_alloc_rx_buffers(rx_ring
, igb_desc_unused(rx_ring
));
1586 igb_free_desc_rings(adapter
);
1590 static void igb_phy_disable_receiver(struct igb_adapter
*adapter
)
1592 struct e1000_hw
*hw
= &adapter
->hw
;
1594 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1595 igb_write_phy_reg(hw
, 29, 0x001F);
1596 igb_write_phy_reg(hw
, 30, 0x8FFC);
1597 igb_write_phy_reg(hw
, 29, 0x001A);
1598 igb_write_phy_reg(hw
, 30, 0x8FF0);
1601 static int igb_integrated_phy_loopback(struct igb_adapter
*adapter
)
1603 struct e1000_hw
*hw
= &adapter
->hw
;
1606 hw
->mac
.autoneg
= false;
1608 if (hw
->phy
.type
== e1000_phy_m88
) {
1609 if (hw
->phy
.id
!= I210_I_PHY_ID
) {
1610 /* Auto-MDI/MDIX Off */
1611 igb_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1612 /* reset to update Auto-MDI/MDIX */
1613 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x9140);
1615 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x8140);
1617 /* force 1000, set loopback */
1618 igb_write_phy_reg(hw
, I347AT4_PAGE_SELECT
, 0);
1619 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x4140);
1621 } else if (hw
->phy
.type
== e1000_phy_82580
) {
1622 /* enable MII loopback */
1623 igb_write_phy_reg(hw
, I82580_PHY_LBK_CTRL
, 0x8041);
1626 /* add small delay to avoid loopback test failure */
1629 /* force 1000, set loopback */
1630 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x4140);
1632 /* Now set up the MAC to the same speed/duplex as the PHY. */
1633 ctrl_reg
= rd32(E1000_CTRL
);
1634 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1635 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1636 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1637 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1638 E1000_CTRL_FD
| /* Force Duplex to FULL */
1639 E1000_CTRL_SLU
); /* Set link up enable bit */
1641 if (hw
->phy
.type
== e1000_phy_m88
)
1642 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1644 wr32(E1000_CTRL
, ctrl_reg
);
1646 /* Disable the receiver on the PHY so when a cable is plugged in, the
1647 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1649 if (hw
->phy
.type
== e1000_phy_m88
)
1650 igb_phy_disable_receiver(adapter
);
1656 static int igb_set_phy_loopback(struct igb_adapter
*adapter
)
1658 return igb_integrated_phy_loopback(adapter
);
1661 static int igb_setup_loopback_test(struct igb_adapter
*adapter
)
1663 struct e1000_hw
*hw
= &adapter
->hw
;
1666 reg
= rd32(E1000_CTRL_EXT
);
1668 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1669 if (reg
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
1670 if ((hw
->device_id
== E1000_DEV_ID_DH89XXCC_SGMII
) ||
1671 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SERDES
) ||
1672 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_BACKPLANE
) ||
1673 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SFP
) ||
1674 (hw
->device_id
== E1000_DEV_ID_I354_SGMII
) ||
1675 (hw
->device_id
== E1000_DEV_ID_I354_BACKPLANE_2_5GBPS
)) {
1676 /* Enable DH89xxCC MPHY for near end loopback */
1677 reg
= rd32(E1000_MPHY_ADDR_CTL
);
1678 reg
= (reg
& E1000_MPHY_ADDR_CTL_OFFSET_MASK
) |
1679 E1000_MPHY_PCS_CLK_REG_OFFSET
;
1680 wr32(E1000_MPHY_ADDR_CTL
, reg
);
1682 reg
= rd32(E1000_MPHY_DATA
);
1683 reg
|= E1000_MPHY_PCS_CLK_REG_DIGINELBEN
;
1684 wr32(E1000_MPHY_DATA
, reg
);
1687 reg
= rd32(E1000_RCTL
);
1688 reg
|= E1000_RCTL_LBM_TCVR
;
1689 wr32(E1000_RCTL
, reg
);
1691 wr32(E1000_SCTL
, E1000_ENABLE_SERDES_LOOPBACK
);
1693 reg
= rd32(E1000_CTRL
);
1694 reg
&= ~(E1000_CTRL_RFCE
|
1697 reg
|= E1000_CTRL_SLU
|
1699 wr32(E1000_CTRL
, reg
);
1701 /* Unset switch control to serdes energy detect */
1702 reg
= rd32(E1000_CONNSW
);
1703 reg
&= ~E1000_CONNSW_ENRGSRC
;
1704 wr32(E1000_CONNSW
, reg
);
1706 /* Unset sigdetect for SERDES loopback on
1707 * 82580 and newer devices.
1709 if (hw
->mac
.type
>= e1000_82580
) {
1710 reg
= rd32(E1000_PCS_CFG0
);
1711 reg
|= E1000_PCS_CFG_IGN_SD
;
1712 wr32(E1000_PCS_CFG0
, reg
);
1715 /* Set PCS register for forced speed */
1716 reg
= rd32(E1000_PCS_LCTL
);
1717 reg
&= ~E1000_PCS_LCTL_AN_ENABLE
; /* Disable Autoneg*/
1718 reg
|= E1000_PCS_LCTL_FLV_LINK_UP
| /* Force link up */
1719 E1000_PCS_LCTL_FSV_1000
| /* Force 1000 */
1720 E1000_PCS_LCTL_FDV_FULL
| /* SerDes Full duplex */
1721 E1000_PCS_LCTL_FSD
| /* Force Speed */
1722 E1000_PCS_LCTL_FORCE_LINK
; /* Force Link */
1723 wr32(E1000_PCS_LCTL
, reg
);
1728 return igb_set_phy_loopback(adapter
);
1731 static void igb_loopback_cleanup(struct igb_adapter
*adapter
)
1733 struct e1000_hw
*hw
= &adapter
->hw
;
1737 if ((hw
->device_id
== E1000_DEV_ID_DH89XXCC_SGMII
) ||
1738 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SERDES
) ||
1739 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_BACKPLANE
) ||
1740 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SFP
) ||
1741 (hw
->device_id
== E1000_DEV_ID_I354_SGMII
)) {
1744 /* Disable near end loopback on DH89xxCC */
1745 reg
= rd32(E1000_MPHY_ADDR_CTL
);
1746 reg
= (reg
& E1000_MPHY_ADDR_CTL_OFFSET_MASK
) |
1747 E1000_MPHY_PCS_CLK_REG_OFFSET
;
1748 wr32(E1000_MPHY_ADDR_CTL
, reg
);
1750 reg
= rd32(E1000_MPHY_DATA
);
1751 reg
&= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN
;
1752 wr32(E1000_MPHY_DATA
, reg
);
1755 rctl
= rd32(E1000_RCTL
);
1756 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1757 wr32(E1000_RCTL
, rctl
);
1759 hw
->mac
.autoneg
= true;
1760 igb_read_phy_reg(hw
, PHY_CONTROL
, &phy_reg
);
1761 if (phy_reg
& MII_CR_LOOPBACK
) {
1762 phy_reg
&= ~MII_CR_LOOPBACK
;
1763 igb_write_phy_reg(hw
, PHY_CONTROL
, phy_reg
);
1764 igb_phy_sw_reset(hw
);
1768 static void igb_create_lbtest_frame(struct sk_buff
*skb
,
1769 unsigned int frame_size
)
1771 memset(skb
->data
, 0xFF, frame_size
);
1773 memset(&skb
->data
[frame_size
], 0xAA, frame_size
- 1);
1774 memset(&skb
->data
[frame_size
+ 10], 0xBE, 1);
1775 memset(&skb
->data
[frame_size
+ 12], 0xAF, 1);
1778 static int igb_check_lbtest_frame(struct igb_rx_buffer
*rx_buffer
,
1779 unsigned int frame_size
)
1781 unsigned char *data
;
1786 data
= kmap(rx_buffer
->page
);
1788 if (data
[3] != 0xFF ||
1789 data
[frame_size
+ 10] != 0xBE ||
1790 data
[frame_size
+ 12] != 0xAF)
1793 kunmap(rx_buffer
->page
);
1798 static int igb_clean_test_rings(struct igb_ring
*rx_ring
,
1799 struct igb_ring
*tx_ring
,
1802 union e1000_adv_rx_desc
*rx_desc
;
1803 struct igb_rx_buffer
*rx_buffer_info
;
1804 struct igb_tx_buffer
*tx_buffer_info
;
1805 u16 rx_ntc
, tx_ntc
, count
= 0;
1807 /* initialize next to clean and descriptor values */
1808 rx_ntc
= rx_ring
->next_to_clean
;
1809 tx_ntc
= tx_ring
->next_to_clean
;
1810 rx_desc
= IGB_RX_DESC(rx_ring
, rx_ntc
);
1812 while (rx_desc
->wb
.upper
.length
) {
1813 /* check Rx buffer */
1814 rx_buffer_info
= &rx_ring
->rx_buffer_info
[rx_ntc
];
1816 /* sync Rx buffer for CPU read */
1817 dma_sync_single_for_cpu(rx_ring
->dev
,
1818 rx_buffer_info
->dma
,
1822 /* verify contents of skb */
1823 if (igb_check_lbtest_frame(rx_buffer_info
, size
))
1826 /* sync Rx buffer for device write */
1827 dma_sync_single_for_device(rx_ring
->dev
,
1828 rx_buffer_info
->dma
,
1832 /* unmap buffer on Tx side */
1833 tx_buffer_info
= &tx_ring
->tx_buffer_info
[tx_ntc
];
1835 /* Free all the Tx ring sk_buffs */
1836 dev_kfree_skb_any(tx_buffer_info
->skb
);
1838 /* unmap skb header data */
1839 dma_unmap_single(tx_ring
->dev
,
1840 dma_unmap_addr(tx_buffer_info
, dma
),
1841 dma_unmap_len(tx_buffer_info
, len
),
1843 dma_unmap_len_set(tx_buffer_info
, len
, 0);
1845 /* increment Rx/Tx next to clean counters */
1847 if (rx_ntc
== rx_ring
->count
)
1850 if (tx_ntc
== tx_ring
->count
)
1853 /* fetch next descriptor */
1854 rx_desc
= IGB_RX_DESC(rx_ring
, rx_ntc
);
1857 netdev_tx_reset_queue(txring_txq(tx_ring
));
1859 /* re-map buffers to ring, store next to clean values */
1860 igb_alloc_rx_buffers(rx_ring
, count
);
1861 rx_ring
->next_to_clean
= rx_ntc
;
1862 tx_ring
->next_to_clean
= tx_ntc
;
1867 static int igb_run_loopback_test(struct igb_adapter
*adapter
)
1869 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1870 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1871 u16 i
, j
, lc
, good_cnt
;
1873 unsigned int size
= IGB_RX_HDR_LEN
;
1874 netdev_tx_t tx_ret_val
;
1875 struct sk_buff
*skb
;
1877 /* allocate test skb */
1878 skb
= alloc_skb(size
, GFP_KERNEL
);
1882 /* place data into test skb */
1883 igb_create_lbtest_frame(skb
, size
);
1886 /* Calculate the loop count based on the largest descriptor ring
1887 * The idea is to wrap the largest ring a number of times using 64
1888 * send/receive pairs during each loop
1891 if (rx_ring
->count
<= tx_ring
->count
)
1892 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1894 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1896 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1897 /* reset count of good packets */
1900 /* place 64 packets on the transmit queue*/
1901 for (i
= 0; i
< 64; i
++) {
1903 tx_ret_val
= igb_xmit_frame_ring(skb
, tx_ring
);
1904 if (tx_ret_val
== NETDEV_TX_OK
)
1908 if (good_cnt
!= 64) {
1913 /* allow 200 milliseconds for packets to go from Tx to Rx */
1916 good_cnt
= igb_clean_test_rings(rx_ring
, tx_ring
, size
);
1917 if (good_cnt
!= 64) {
1921 } /* end loop count loop */
1923 /* free the original skb */
1929 static int igb_loopback_test(struct igb_adapter
*adapter
, u64
*data
)
1931 /* PHY loopback cannot be performed if SoL/IDER
1932 * sessions are active
1934 if (igb_check_reset_block(&adapter
->hw
)) {
1935 dev_err(&adapter
->pdev
->dev
,
1936 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1941 if (adapter
->hw
.mac
.type
== e1000_i354
) {
1942 dev_info(&adapter
->pdev
->dev
,
1943 "Loopback test not supported on i354.\n");
1947 *data
= igb_setup_desc_rings(adapter
);
1950 *data
= igb_setup_loopback_test(adapter
);
1953 *data
= igb_run_loopback_test(adapter
);
1954 igb_loopback_cleanup(adapter
);
1957 igb_free_desc_rings(adapter
);
1962 static int igb_link_test(struct igb_adapter
*adapter
, u64
*data
)
1964 struct e1000_hw
*hw
= &adapter
->hw
;
1966 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1969 hw
->mac
.serdes_has_link
= false;
1971 /* On some blade server designs, link establishment
1972 * could take as long as 2-3 minutes
1975 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1976 if (hw
->mac
.serdes_has_link
)
1979 } while (i
++ < 3750);
1983 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1984 if (hw
->mac
.autoneg
)
1987 if (!(rd32(E1000_STATUS
) & E1000_STATUS_LU
))
1993 static void igb_diag_test(struct net_device
*netdev
,
1994 struct ethtool_test
*eth_test
, u64
*data
)
1996 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1997 u16 autoneg_advertised
;
1998 u8 forced_speed_duplex
, autoneg
;
1999 bool if_running
= netif_running(netdev
);
2001 set_bit(__IGB_TESTING
, &adapter
->state
);
2003 /* can't do offline tests on media switching devices */
2004 if (adapter
->hw
.dev_spec
._82575
.mas_capable
)
2005 eth_test
->flags
&= ~ETH_TEST_FL_OFFLINE
;
2006 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
2009 /* save speed, duplex, autoneg settings */
2010 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
2011 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
2012 autoneg
= adapter
->hw
.mac
.autoneg
;
2014 dev_info(&adapter
->pdev
->dev
, "offline testing starting\n");
2016 /* power up link for link test */
2017 igb_power_up_link(adapter
);
2019 /* Link test performed before hardware reset so autoneg doesn't
2020 * interfere with test result
2022 if (igb_link_test(adapter
, &data
[TEST_LINK
]))
2023 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2026 /* indicate we're in test mode */
2031 if (igb_reg_test(adapter
, &data
[TEST_REG
]))
2032 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2035 if (igb_eeprom_test(adapter
, &data
[TEST_EEP
]))
2036 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2039 if (igb_intr_test(adapter
, &data
[TEST_IRQ
]))
2040 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2043 /* power up link for loopback test */
2044 igb_power_up_link(adapter
);
2045 if (igb_loopback_test(adapter
, &data
[TEST_LOOP
]))
2046 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2048 /* restore speed, duplex, autoneg settings */
2049 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
2050 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
2051 adapter
->hw
.mac
.autoneg
= autoneg
;
2053 /* force this routine to wait until autoneg complete/timeout */
2054 adapter
->hw
.phy
.autoneg_wait_to_complete
= true;
2056 adapter
->hw
.phy
.autoneg_wait_to_complete
= false;
2058 clear_bit(__IGB_TESTING
, &adapter
->state
);
2062 dev_info(&adapter
->pdev
->dev
, "online testing starting\n");
2064 /* PHY is powered down when interface is down */
2065 if (if_running
&& igb_link_test(adapter
, &data
[TEST_LINK
]))
2066 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2068 data
[TEST_LINK
] = 0;
2070 /* Online tests aren't run; pass by default */
2074 data
[TEST_LOOP
] = 0;
2076 clear_bit(__IGB_TESTING
, &adapter
->state
);
2078 msleep_interruptible(4 * 1000);
2081 static void igb_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2083 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2087 if (!(adapter
->flags
& IGB_FLAG_WOL_SUPPORTED
))
2090 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
2091 WAKE_BCAST
| WAKE_MAGIC
|
2094 /* apply any specific unsupported masks here */
2095 switch (adapter
->hw
.device_id
) {
2100 if (adapter
->wol
& E1000_WUFC_EX
)
2101 wol
->wolopts
|= WAKE_UCAST
;
2102 if (adapter
->wol
& E1000_WUFC_MC
)
2103 wol
->wolopts
|= WAKE_MCAST
;
2104 if (adapter
->wol
& E1000_WUFC_BC
)
2105 wol
->wolopts
|= WAKE_BCAST
;
2106 if (adapter
->wol
& E1000_WUFC_MAG
)
2107 wol
->wolopts
|= WAKE_MAGIC
;
2108 if (adapter
->wol
& E1000_WUFC_LNKC
)
2109 wol
->wolopts
|= WAKE_PHY
;
2112 static int igb_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2114 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2116 if (wol
->wolopts
& (WAKE_ARP
| WAKE_MAGICSECURE
))
2119 if (!(adapter
->flags
& IGB_FLAG_WOL_SUPPORTED
))
2120 return wol
->wolopts
? -EOPNOTSUPP
: 0;
2122 /* these settings will always override what we currently have */
2125 if (wol
->wolopts
& WAKE_UCAST
)
2126 adapter
->wol
|= E1000_WUFC_EX
;
2127 if (wol
->wolopts
& WAKE_MCAST
)
2128 adapter
->wol
|= E1000_WUFC_MC
;
2129 if (wol
->wolopts
& WAKE_BCAST
)
2130 adapter
->wol
|= E1000_WUFC_BC
;
2131 if (wol
->wolopts
& WAKE_MAGIC
)
2132 adapter
->wol
|= E1000_WUFC_MAG
;
2133 if (wol
->wolopts
& WAKE_PHY
)
2134 adapter
->wol
|= E1000_WUFC_LNKC
;
2135 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
2140 /* bit defines for adapter->led_status */
2141 #define IGB_LED_ON 0
2143 static int igb_set_phys_id(struct net_device
*netdev
,
2144 enum ethtool_phys_id_state state
)
2146 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2147 struct e1000_hw
*hw
= &adapter
->hw
;
2150 case ETHTOOL_ID_ACTIVE
:
2156 case ETHTOOL_ID_OFF
:
2159 case ETHTOOL_ID_INACTIVE
:
2161 clear_bit(IGB_LED_ON
, &adapter
->led_status
);
2162 igb_cleanup_led(hw
);
2169 static int igb_set_coalesce(struct net_device
*netdev
,
2170 struct ethtool_coalesce
*ec
)
2172 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2175 if (ec
->rx_max_coalesced_frames
||
2176 ec
->rx_coalesce_usecs_irq
||
2177 ec
->rx_max_coalesced_frames_irq
||
2178 ec
->tx_max_coalesced_frames
||
2179 ec
->tx_coalesce_usecs_irq
||
2180 ec
->stats_block_coalesce_usecs
||
2181 ec
->use_adaptive_rx_coalesce
||
2182 ec
->use_adaptive_tx_coalesce
||
2184 ec
->rx_coalesce_usecs_low
||
2185 ec
->rx_max_coalesced_frames_low
||
2186 ec
->tx_coalesce_usecs_low
||
2187 ec
->tx_max_coalesced_frames_low
||
2188 ec
->pkt_rate_high
||
2189 ec
->rx_coalesce_usecs_high
||
2190 ec
->rx_max_coalesced_frames_high
||
2191 ec
->tx_coalesce_usecs_high
||
2192 ec
->tx_max_coalesced_frames_high
||
2193 ec
->rate_sample_interval
)
2196 if ((ec
->rx_coalesce_usecs
> IGB_MAX_ITR_USECS
) ||
2197 ((ec
->rx_coalesce_usecs
> 3) &&
2198 (ec
->rx_coalesce_usecs
< IGB_MIN_ITR_USECS
)) ||
2199 (ec
->rx_coalesce_usecs
== 2))
2202 if ((ec
->tx_coalesce_usecs
> IGB_MAX_ITR_USECS
) ||
2203 ((ec
->tx_coalesce_usecs
> 3) &&
2204 (ec
->tx_coalesce_usecs
< IGB_MIN_ITR_USECS
)) ||
2205 (ec
->tx_coalesce_usecs
== 2))
2208 if ((adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
) && ec
->tx_coalesce_usecs
)
2211 /* If ITR is disabled, disable DMAC */
2212 if (ec
->rx_coalesce_usecs
== 0) {
2213 if (adapter
->flags
& IGB_FLAG_DMAC
)
2214 adapter
->flags
&= ~IGB_FLAG_DMAC
;
2217 /* convert to rate of irq's per second */
2218 if (ec
->rx_coalesce_usecs
&& ec
->rx_coalesce_usecs
<= 3)
2219 adapter
->rx_itr_setting
= ec
->rx_coalesce_usecs
;
2221 adapter
->rx_itr_setting
= ec
->rx_coalesce_usecs
<< 2;
2223 /* convert to rate of irq's per second */
2224 if (adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
)
2225 adapter
->tx_itr_setting
= adapter
->rx_itr_setting
;
2226 else if (ec
->tx_coalesce_usecs
&& ec
->tx_coalesce_usecs
<= 3)
2227 adapter
->tx_itr_setting
= ec
->tx_coalesce_usecs
;
2229 adapter
->tx_itr_setting
= ec
->tx_coalesce_usecs
<< 2;
2231 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
2232 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
2233 q_vector
->tx
.work_limit
= adapter
->tx_work_limit
;
2234 if (q_vector
->rx
.ring
)
2235 q_vector
->itr_val
= adapter
->rx_itr_setting
;
2237 q_vector
->itr_val
= adapter
->tx_itr_setting
;
2238 if (q_vector
->itr_val
&& q_vector
->itr_val
<= 3)
2239 q_vector
->itr_val
= IGB_START_ITR
;
2240 q_vector
->set_itr
= 1;
2246 static int igb_get_coalesce(struct net_device
*netdev
,
2247 struct ethtool_coalesce
*ec
)
2249 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2251 if (adapter
->rx_itr_setting
<= 3)
2252 ec
->rx_coalesce_usecs
= adapter
->rx_itr_setting
;
2254 ec
->rx_coalesce_usecs
= adapter
->rx_itr_setting
>> 2;
2256 if (!(adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
)) {
2257 if (adapter
->tx_itr_setting
<= 3)
2258 ec
->tx_coalesce_usecs
= adapter
->tx_itr_setting
;
2260 ec
->tx_coalesce_usecs
= adapter
->tx_itr_setting
>> 2;
2266 static int igb_nway_reset(struct net_device
*netdev
)
2268 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2269 if (netif_running(netdev
))
2270 igb_reinit_locked(adapter
);
2274 static int igb_get_sset_count(struct net_device
*netdev
, int sset
)
2278 return IGB_STATS_LEN
;
2280 return IGB_TEST_LEN
;
2281 case ETH_SS_PRIV_FLAGS
:
2282 return IGB_PRIV_FLAGS_STR_LEN
;
2288 static void igb_get_ethtool_stats(struct net_device
*netdev
,
2289 struct ethtool_stats
*stats
, u64
*data
)
2291 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2292 struct rtnl_link_stats64
*net_stats
= &adapter
->stats64
;
2294 struct igb_ring
*ring
;
2298 spin_lock(&adapter
->stats64_lock
);
2299 igb_update_stats(adapter
);
2301 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
2302 p
= (char *)adapter
+ igb_gstrings_stats
[i
].stat_offset
;
2303 data
[i
] = (igb_gstrings_stats
[i
].sizeof_stat
==
2304 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2306 for (j
= 0; j
< IGB_NETDEV_STATS_LEN
; j
++, i
++) {
2307 p
= (char *)net_stats
+ igb_gstrings_net_stats
[j
].stat_offset
;
2308 data
[i
] = (igb_gstrings_net_stats
[j
].sizeof_stat
==
2309 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2311 for (j
= 0; j
< adapter
->num_tx_queues
; j
++) {
2314 ring
= adapter
->tx_ring
[j
];
2316 start
= u64_stats_fetch_begin_irq(&ring
->tx_syncp
);
2317 data
[i
] = ring
->tx_stats
.packets
;
2318 data
[i
+1] = ring
->tx_stats
.bytes
;
2319 data
[i
+2] = ring
->tx_stats
.restart_queue
;
2320 } while (u64_stats_fetch_retry_irq(&ring
->tx_syncp
, start
));
2322 start
= u64_stats_fetch_begin_irq(&ring
->tx_syncp2
);
2323 restart2
= ring
->tx_stats
.restart_queue2
;
2324 } while (u64_stats_fetch_retry_irq(&ring
->tx_syncp2
, start
));
2325 data
[i
+2] += restart2
;
2327 i
+= IGB_TX_QUEUE_STATS_LEN
;
2329 for (j
= 0; j
< adapter
->num_rx_queues
; j
++) {
2330 ring
= adapter
->rx_ring
[j
];
2332 start
= u64_stats_fetch_begin_irq(&ring
->rx_syncp
);
2333 data
[i
] = ring
->rx_stats
.packets
;
2334 data
[i
+1] = ring
->rx_stats
.bytes
;
2335 data
[i
+2] = ring
->rx_stats
.drops
;
2336 data
[i
+3] = ring
->rx_stats
.csum_err
;
2337 data
[i
+4] = ring
->rx_stats
.alloc_failed
;
2338 } while (u64_stats_fetch_retry_irq(&ring
->rx_syncp
, start
));
2339 i
+= IGB_RX_QUEUE_STATS_LEN
;
2341 spin_unlock(&adapter
->stats64_lock
);
2344 static void igb_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2346 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2350 switch (stringset
) {
2352 memcpy(data
, *igb_gstrings_test
,
2353 IGB_TEST_LEN
*ETH_GSTRING_LEN
);
2356 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
2357 memcpy(p
, igb_gstrings_stats
[i
].stat_string
,
2359 p
+= ETH_GSTRING_LEN
;
2361 for (i
= 0; i
< IGB_NETDEV_STATS_LEN
; i
++) {
2362 memcpy(p
, igb_gstrings_net_stats
[i
].stat_string
,
2364 p
+= ETH_GSTRING_LEN
;
2366 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
2367 sprintf(p
, "tx_queue_%u_packets", i
);
2368 p
+= ETH_GSTRING_LEN
;
2369 sprintf(p
, "tx_queue_%u_bytes", i
);
2370 p
+= ETH_GSTRING_LEN
;
2371 sprintf(p
, "tx_queue_%u_restart", i
);
2372 p
+= ETH_GSTRING_LEN
;
2374 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2375 sprintf(p
, "rx_queue_%u_packets", i
);
2376 p
+= ETH_GSTRING_LEN
;
2377 sprintf(p
, "rx_queue_%u_bytes", i
);
2378 p
+= ETH_GSTRING_LEN
;
2379 sprintf(p
, "rx_queue_%u_drops", i
);
2380 p
+= ETH_GSTRING_LEN
;
2381 sprintf(p
, "rx_queue_%u_csum_err", i
);
2382 p
+= ETH_GSTRING_LEN
;
2383 sprintf(p
, "rx_queue_%u_alloc_failed", i
);
2384 p
+= ETH_GSTRING_LEN
;
2386 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2388 case ETH_SS_PRIV_FLAGS
:
2389 memcpy(data
, igb_priv_flags_strings
,
2390 IGB_PRIV_FLAGS_STR_LEN
* ETH_GSTRING_LEN
);
2395 static int igb_get_ts_info(struct net_device
*dev
,
2396 struct ethtool_ts_info
*info
)
2398 struct igb_adapter
*adapter
= netdev_priv(dev
);
2400 if (adapter
->ptp_clock
)
2401 info
->phc_index
= ptp_clock_index(adapter
->ptp_clock
);
2403 info
->phc_index
= -1;
2405 switch (adapter
->hw
.mac
.type
) {
2407 info
->so_timestamping
=
2408 SOF_TIMESTAMPING_TX_SOFTWARE
|
2409 SOF_TIMESTAMPING_RX_SOFTWARE
|
2410 SOF_TIMESTAMPING_SOFTWARE
;
2418 info
->so_timestamping
=
2419 SOF_TIMESTAMPING_TX_SOFTWARE
|
2420 SOF_TIMESTAMPING_RX_SOFTWARE
|
2421 SOF_TIMESTAMPING_SOFTWARE
|
2422 SOF_TIMESTAMPING_TX_HARDWARE
|
2423 SOF_TIMESTAMPING_RX_HARDWARE
|
2424 SOF_TIMESTAMPING_RAW_HARDWARE
;
2427 BIT(HWTSTAMP_TX_OFF
) |
2428 BIT(HWTSTAMP_TX_ON
);
2430 info
->rx_filters
= BIT(HWTSTAMP_FILTER_NONE
);
2432 /* 82576 does not support timestamping all packets. */
2433 if (adapter
->hw
.mac
.type
>= e1000_82580
)
2434 info
->rx_filters
|= BIT(HWTSTAMP_FILTER_ALL
);
2437 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC
) |
2438 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
) |
2439 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT
);
2447 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2448 static int igb_get_ethtool_nfc_entry(struct igb_adapter
*adapter
,
2449 struct ethtool_rxnfc
*cmd
)
2451 struct ethtool_rx_flow_spec
*fsp
= &cmd
->fs
;
2452 struct igb_nfc_filter
*rule
= NULL
;
2454 /* report total rule count */
2455 cmd
->data
= IGB_MAX_RXNFC_FILTERS
;
2457 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
) {
2458 if (fsp
->location
<= rule
->sw_idx
)
2462 if (!rule
|| fsp
->location
!= rule
->sw_idx
)
2465 if (rule
->filter
.match_flags
) {
2466 fsp
->flow_type
= ETHER_FLOW
;
2467 fsp
->ring_cookie
= rule
->action
;
2468 if (rule
->filter
.match_flags
& IGB_FILTER_FLAG_ETHER_TYPE
) {
2469 fsp
->h_u
.ether_spec
.h_proto
= rule
->filter
.etype
;
2470 fsp
->m_u
.ether_spec
.h_proto
= ETHER_TYPE_FULL_MASK
;
2472 if (rule
->filter
.match_flags
& IGB_FILTER_FLAG_VLAN_TCI
) {
2473 fsp
->flow_type
|= FLOW_EXT
;
2474 fsp
->h_ext
.vlan_tci
= rule
->filter
.vlan_tci
;
2475 fsp
->m_ext
.vlan_tci
= htons(VLAN_PRIO_MASK
);
2477 if (rule
->filter
.match_flags
& IGB_FILTER_FLAG_DST_MAC_ADDR
) {
2478 ether_addr_copy(fsp
->h_u
.ether_spec
.h_dest
,
2479 rule
->filter
.dst_addr
);
2480 /* As we only support matching by the full
2481 * mask, return the mask to userspace
2483 eth_broadcast_addr(fsp
->m_u
.ether_spec
.h_dest
);
2485 if (rule
->filter
.match_flags
& IGB_FILTER_FLAG_SRC_MAC_ADDR
) {
2486 ether_addr_copy(fsp
->h_u
.ether_spec
.h_source
,
2487 rule
->filter
.src_addr
);
2488 /* As we only support matching by the full
2489 * mask, return the mask to userspace
2491 eth_broadcast_addr(fsp
->m_u
.ether_spec
.h_source
);
2499 static int igb_get_ethtool_nfc_all(struct igb_adapter
*adapter
,
2500 struct ethtool_rxnfc
*cmd
,
2503 struct igb_nfc_filter
*rule
;
2506 /* report total rule count */
2507 cmd
->data
= IGB_MAX_RXNFC_FILTERS
;
2509 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
) {
2510 if (cnt
== cmd
->rule_cnt
)
2512 rule_locs
[cnt
] = rule
->sw_idx
;
2516 cmd
->rule_cnt
= cnt
;
2521 static int igb_get_rss_hash_opts(struct igb_adapter
*adapter
,
2522 struct ethtool_rxnfc
*cmd
)
2526 /* Report default options for RSS on igb */
2527 switch (cmd
->flow_type
) {
2529 cmd
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2532 if (adapter
->flags
& IGB_FLAG_RSS_FIELD_IPV4_UDP
)
2533 cmd
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2536 case AH_ESP_V4_FLOW
:
2540 cmd
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2543 cmd
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2546 if (adapter
->flags
& IGB_FLAG_RSS_FIELD_IPV6_UDP
)
2547 cmd
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2550 case AH_ESP_V6_FLOW
:
2554 cmd
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2563 static int igb_get_rxnfc(struct net_device
*dev
, struct ethtool_rxnfc
*cmd
,
2566 struct igb_adapter
*adapter
= netdev_priv(dev
);
2567 int ret
= -EOPNOTSUPP
;
2570 case ETHTOOL_GRXRINGS
:
2571 cmd
->data
= adapter
->num_rx_queues
;
2574 case ETHTOOL_GRXCLSRLCNT
:
2575 cmd
->rule_cnt
= adapter
->nfc_filter_count
;
2578 case ETHTOOL_GRXCLSRULE
:
2579 ret
= igb_get_ethtool_nfc_entry(adapter
, cmd
);
2581 case ETHTOOL_GRXCLSRLALL
:
2582 ret
= igb_get_ethtool_nfc_all(adapter
, cmd
, rule_locs
);
2585 ret
= igb_get_rss_hash_opts(adapter
, cmd
);
2594 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2595 IGB_FLAG_RSS_FIELD_IPV6_UDP)
2596 static int igb_set_rss_hash_opt(struct igb_adapter
*adapter
,
2597 struct ethtool_rxnfc
*nfc
)
2599 u32 flags
= adapter
->flags
;
2601 /* RSS does not support anything other than hashing
2602 * to queues on src and dst IPs and ports
2604 if (nfc
->data
& ~(RXH_IP_SRC
| RXH_IP_DST
|
2605 RXH_L4_B_0_1
| RXH_L4_B_2_3
))
2608 switch (nfc
->flow_type
) {
2611 if (!(nfc
->data
& RXH_IP_SRC
) ||
2612 !(nfc
->data
& RXH_IP_DST
) ||
2613 !(nfc
->data
& RXH_L4_B_0_1
) ||
2614 !(nfc
->data
& RXH_L4_B_2_3
))
2618 if (!(nfc
->data
& RXH_IP_SRC
) ||
2619 !(nfc
->data
& RXH_IP_DST
))
2621 switch (nfc
->data
& (RXH_L4_B_0_1
| RXH_L4_B_2_3
)) {
2623 flags
&= ~IGB_FLAG_RSS_FIELD_IPV4_UDP
;
2625 case (RXH_L4_B_0_1
| RXH_L4_B_2_3
):
2626 flags
|= IGB_FLAG_RSS_FIELD_IPV4_UDP
;
2633 if (!(nfc
->data
& RXH_IP_SRC
) ||
2634 !(nfc
->data
& RXH_IP_DST
))
2636 switch (nfc
->data
& (RXH_L4_B_0_1
| RXH_L4_B_2_3
)) {
2638 flags
&= ~IGB_FLAG_RSS_FIELD_IPV6_UDP
;
2640 case (RXH_L4_B_0_1
| RXH_L4_B_2_3
):
2641 flags
|= IGB_FLAG_RSS_FIELD_IPV6_UDP
;
2647 case AH_ESP_V4_FLOW
:
2651 case AH_ESP_V6_FLOW
:
2655 if (!(nfc
->data
& RXH_IP_SRC
) ||
2656 !(nfc
->data
& RXH_IP_DST
) ||
2657 (nfc
->data
& RXH_L4_B_0_1
) ||
2658 (nfc
->data
& RXH_L4_B_2_3
))
2665 /* if we changed something we need to update flags */
2666 if (flags
!= adapter
->flags
) {
2667 struct e1000_hw
*hw
= &adapter
->hw
;
2668 u32 mrqc
= rd32(E1000_MRQC
);
2670 if ((flags
& UDP_RSS_FLAGS
) &&
2671 !(adapter
->flags
& UDP_RSS_FLAGS
))
2672 dev_err(&adapter
->pdev
->dev
,
2673 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2675 adapter
->flags
= flags
;
2677 /* Perform hash on these packet types */
2678 mrqc
|= E1000_MRQC_RSS_FIELD_IPV4
|
2679 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
2680 E1000_MRQC_RSS_FIELD_IPV6
|
2681 E1000_MRQC_RSS_FIELD_IPV6_TCP
;
2683 mrqc
&= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP
|
2684 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
2686 if (flags
& IGB_FLAG_RSS_FIELD_IPV4_UDP
)
2687 mrqc
|= E1000_MRQC_RSS_FIELD_IPV4_UDP
;
2689 if (flags
& IGB_FLAG_RSS_FIELD_IPV6_UDP
)
2690 mrqc
|= E1000_MRQC_RSS_FIELD_IPV6_UDP
;
2692 wr32(E1000_MRQC
, mrqc
);
2698 static int igb_rxnfc_write_etype_filter(struct igb_adapter
*adapter
,
2699 struct igb_nfc_filter
*input
)
2701 struct e1000_hw
*hw
= &adapter
->hw
;
2706 /* find an empty etype filter register */
2707 for (i
= 0; i
< MAX_ETYPE_FILTER
; ++i
) {
2708 if (!adapter
->etype_bitmap
[i
])
2711 if (i
== MAX_ETYPE_FILTER
) {
2712 dev_err(&adapter
->pdev
->dev
, "ethtool -N: etype filters are all used.\n");
2716 adapter
->etype_bitmap
[i
] = true;
2718 etqf
= rd32(E1000_ETQF(i
));
2719 etype
= ntohs(input
->filter
.etype
& ETHER_TYPE_FULL_MASK
);
2721 etqf
|= E1000_ETQF_FILTER_ENABLE
;
2722 etqf
&= ~E1000_ETQF_ETYPE_MASK
;
2723 etqf
|= (etype
& E1000_ETQF_ETYPE_MASK
);
2725 etqf
&= ~E1000_ETQF_QUEUE_MASK
;
2726 etqf
|= ((input
->action
<< E1000_ETQF_QUEUE_SHIFT
)
2727 & E1000_ETQF_QUEUE_MASK
);
2728 etqf
|= E1000_ETQF_QUEUE_ENABLE
;
2730 wr32(E1000_ETQF(i
), etqf
);
2732 input
->etype_reg_index
= i
;
2737 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter
*adapter
,
2738 struct igb_nfc_filter
*input
)
2740 struct e1000_hw
*hw
= &adapter
->hw
;
2745 vlapqf
= rd32(E1000_VLAPQF
);
2746 vlan_priority
= (ntohs(input
->filter
.vlan_tci
) & VLAN_PRIO_MASK
)
2748 queue_index
= (vlapqf
>> (vlan_priority
* 4)) & E1000_VLAPQF_QUEUE_MASK
;
2750 /* check whether this vlan prio is already set */
2751 if ((vlapqf
& E1000_VLAPQF_P_VALID(vlan_priority
)) &&
2752 (queue_index
!= input
->action
)) {
2753 dev_err(&adapter
->pdev
->dev
, "ethtool rxnfc set vlan prio filter failed.\n");
2757 vlapqf
|= E1000_VLAPQF_P_VALID(vlan_priority
);
2758 vlapqf
|= E1000_VLAPQF_QUEUE_SEL(vlan_priority
, input
->action
);
2760 wr32(E1000_VLAPQF
, vlapqf
);
2765 int igb_add_filter(struct igb_adapter
*adapter
, struct igb_nfc_filter
*input
)
2767 struct e1000_hw
*hw
= &adapter
->hw
;
2770 if (hw
->mac
.type
== e1000_i210
&&
2771 !(input
->filter
.match_flags
& ~IGB_FILTER_FLAG_SRC_MAC_ADDR
)) {
2772 dev_err(&adapter
->pdev
->dev
,
2773 "i210 doesn't support flow classification rules specifying only source addresses.\n");
2777 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_ETHER_TYPE
) {
2778 err
= igb_rxnfc_write_etype_filter(adapter
, input
);
2783 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_DST_MAC_ADDR
) {
2784 err
= igb_add_mac_steering_filter(adapter
,
2785 input
->filter
.dst_addr
,
2787 err
= min_t(int, err
, 0);
2792 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_SRC_MAC_ADDR
) {
2793 err
= igb_add_mac_steering_filter(adapter
,
2794 input
->filter
.src_addr
,
2796 IGB_MAC_STATE_SRC_ADDR
);
2797 err
= min_t(int, err
, 0);
2802 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_VLAN_TCI
)
2803 err
= igb_rxnfc_write_vlan_prio_filter(adapter
, input
);
2808 static void igb_clear_etype_filter_regs(struct igb_adapter
*adapter
,
2811 struct e1000_hw
*hw
= &adapter
->hw
;
2812 u32 etqf
= rd32(E1000_ETQF(reg_index
));
2814 etqf
&= ~E1000_ETQF_QUEUE_ENABLE
;
2815 etqf
&= ~E1000_ETQF_QUEUE_MASK
;
2816 etqf
&= ~E1000_ETQF_FILTER_ENABLE
;
2818 wr32(E1000_ETQF(reg_index
), etqf
);
2820 adapter
->etype_bitmap
[reg_index
] = false;
2823 static void igb_clear_vlan_prio_filter(struct igb_adapter
*adapter
,
2826 struct e1000_hw
*hw
= &adapter
->hw
;
2830 vlan_priority
= (vlan_tci
& VLAN_PRIO_MASK
) >> VLAN_PRIO_SHIFT
;
2832 vlapqf
= rd32(E1000_VLAPQF
);
2833 vlapqf
&= ~E1000_VLAPQF_P_VALID(vlan_priority
);
2834 vlapqf
&= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority
,
2835 E1000_VLAPQF_QUEUE_MASK
);
2837 wr32(E1000_VLAPQF
, vlapqf
);
2840 int igb_erase_filter(struct igb_adapter
*adapter
, struct igb_nfc_filter
*input
)
2842 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_ETHER_TYPE
)
2843 igb_clear_etype_filter_regs(adapter
,
2844 input
->etype_reg_index
);
2846 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_VLAN_TCI
)
2847 igb_clear_vlan_prio_filter(adapter
,
2848 ntohs(input
->filter
.vlan_tci
));
2850 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_SRC_MAC_ADDR
)
2851 igb_del_mac_steering_filter(adapter
, input
->filter
.src_addr
,
2853 IGB_MAC_STATE_SRC_ADDR
);
2855 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_DST_MAC_ADDR
)
2856 igb_del_mac_steering_filter(adapter
, input
->filter
.dst_addr
,
2862 static int igb_update_ethtool_nfc_entry(struct igb_adapter
*adapter
,
2863 struct igb_nfc_filter
*input
,
2866 struct igb_nfc_filter
*rule
, *parent
;
2872 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
) {
2873 /* hash found, or no matching entry */
2874 if (rule
->sw_idx
>= sw_idx
)
2879 /* if there is an old rule occupying our place remove it */
2880 if (rule
&& (rule
->sw_idx
== sw_idx
)) {
2882 err
= igb_erase_filter(adapter
, rule
);
2884 hlist_del(&rule
->nfc_node
);
2886 adapter
->nfc_filter_count
--;
2889 /* If no input this was a delete, err should be 0 if a rule was
2890 * successfully found and removed from the list else -EINVAL
2895 /* initialize node */
2896 INIT_HLIST_NODE(&input
->nfc_node
);
2898 /* add filter to the list */
2900 hlist_add_behind(&input
->nfc_node
, &parent
->nfc_node
);
2902 hlist_add_head(&input
->nfc_node
, &adapter
->nfc_filter_list
);
2905 adapter
->nfc_filter_count
++;
2910 static int igb_add_ethtool_nfc_entry(struct igb_adapter
*adapter
,
2911 struct ethtool_rxnfc
*cmd
)
2913 struct net_device
*netdev
= adapter
->netdev
;
2914 struct ethtool_rx_flow_spec
*fsp
=
2915 (struct ethtool_rx_flow_spec
*)&cmd
->fs
;
2916 struct igb_nfc_filter
*input
, *rule
;
2919 if (!(netdev
->hw_features
& NETIF_F_NTUPLE
))
2922 /* Don't allow programming if the action is a queue greater than
2923 * the number of online Rx queues.
2925 if ((fsp
->ring_cookie
== RX_CLS_FLOW_DISC
) ||
2926 (fsp
->ring_cookie
>= adapter
->num_rx_queues
)) {
2927 dev_err(&adapter
->pdev
->dev
, "ethtool -N: The specified action is invalid\n");
2931 /* Don't allow indexes to exist outside of available space */
2932 if (fsp
->location
>= IGB_MAX_RXNFC_FILTERS
) {
2933 dev_err(&adapter
->pdev
->dev
, "Location out of range\n");
2937 if ((fsp
->flow_type
& ~FLOW_EXT
) != ETHER_FLOW
)
2940 input
= kzalloc(sizeof(*input
), GFP_KERNEL
);
2944 if (fsp
->m_u
.ether_spec
.h_proto
== ETHER_TYPE_FULL_MASK
) {
2945 input
->filter
.etype
= fsp
->h_u
.ether_spec
.h_proto
;
2946 input
->filter
.match_flags
= IGB_FILTER_FLAG_ETHER_TYPE
;
2949 /* Only support matching addresses by the full mask */
2950 if (is_broadcast_ether_addr(fsp
->m_u
.ether_spec
.h_source
)) {
2951 input
->filter
.match_flags
|= IGB_FILTER_FLAG_SRC_MAC_ADDR
;
2952 ether_addr_copy(input
->filter
.src_addr
,
2953 fsp
->h_u
.ether_spec
.h_source
);
2956 /* Only support matching addresses by the full mask */
2957 if (is_broadcast_ether_addr(fsp
->m_u
.ether_spec
.h_dest
)) {
2958 input
->filter
.match_flags
|= IGB_FILTER_FLAG_DST_MAC_ADDR
;
2959 ether_addr_copy(input
->filter
.dst_addr
,
2960 fsp
->h_u
.ether_spec
.h_dest
);
2963 if ((fsp
->flow_type
& FLOW_EXT
) && fsp
->m_ext
.vlan_tci
) {
2964 if (fsp
->m_ext
.vlan_tci
!= htons(VLAN_PRIO_MASK
)) {
2968 input
->filter
.vlan_tci
= fsp
->h_ext
.vlan_tci
;
2969 input
->filter
.match_flags
|= IGB_FILTER_FLAG_VLAN_TCI
;
2972 input
->action
= fsp
->ring_cookie
;
2973 input
->sw_idx
= fsp
->location
;
2975 spin_lock(&adapter
->nfc_lock
);
2977 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
) {
2978 if (!memcmp(&input
->filter
, &rule
->filter
,
2979 sizeof(input
->filter
))) {
2981 dev_err(&adapter
->pdev
->dev
,
2982 "ethtool: this filter is already set\n");
2983 goto err_out_w_lock
;
2987 err
= igb_add_filter(adapter
, input
);
2989 goto err_out_w_lock
;
2991 igb_update_ethtool_nfc_entry(adapter
, input
, input
->sw_idx
);
2993 spin_unlock(&adapter
->nfc_lock
);
2997 spin_unlock(&adapter
->nfc_lock
);
3003 static int igb_del_ethtool_nfc_entry(struct igb_adapter
*adapter
,
3004 struct ethtool_rxnfc
*cmd
)
3006 struct ethtool_rx_flow_spec
*fsp
=
3007 (struct ethtool_rx_flow_spec
*)&cmd
->fs
;
3010 spin_lock(&adapter
->nfc_lock
);
3011 err
= igb_update_ethtool_nfc_entry(adapter
, NULL
, fsp
->location
);
3012 spin_unlock(&adapter
->nfc_lock
);
3017 static int igb_set_rxnfc(struct net_device
*dev
, struct ethtool_rxnfc
*cmd
)
3019 struct igb_adapter
*adapter
= netdev_priv(dev
);
3020 int ret
= -EOPNOTSUPP
;
3024 ret
= igb_set_rss_hash_opt(adapter
, cmd
);
3026 case ETHTOOL_SRXCLSRLINS
:
3027 ret
= igb_add_ethtool_nfc_entry(adapter
, cmd
);
3029 case ETHTOOL_SRXCLSRLDEL
:
3030 ret
= igb_del_ethtool_nfc_entry(adapter
, cmd
);
3038 static int igb_get_eee(struct net_device
*netdev
, struct ethtool_eee
*edata
)
3040 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3041 struct e1000_hw
*hw
= &adapter
->hw
;
3045 if ((hw
->mac
.type
< e1000_i350
) ||
3046 (hw
->phy
.media_type
!= e1000_media_type_copper
))
3049 edata
->supported
= (SUPPORTED_1000baseT_Full
|
3050 SUPPORTED_100baseT_Full
);
3051 if (!hw
->dev_spec
._82575
.eee_disable
)
3053 mmd_eee_adv_to_ethtool_adv_t(adapter
->eee_advert
);
3055 /* The IPCNFG and EEER registers are not supported on I354. */
3056 if (hw
->mac
.type
== e1000_i354
) {
3057 igb_get_eee_status_i354(hw
, (bool *)&edata
->eee_active
);
3061 eeer
= rd32(E1000_EEER
);
3063 /* EEE status on negotiated link */
3064 if (eeer
& E1000_EEER_EEE_NEG
)
3065 edata
->eee_active
= true;
3067 if (eeer
& E1000_EEER_TX_LPI_EN
)
3068 edata
->tx_lpi_enabled
= true;
3071 /* EEE Link Partner Advertised */
3072 switch (hw
->mac
.type
) {
3074 ret_val
= igb_read_emi_reg(hw
, E1000_EEE_LP_ADV_ADDR_I350
,
3079 edata
->lp_advertised
= mmd_eee_adv_to_ethtool_adv_t(phy_data
);
3084 ret_val
= igb_read_xmdio_reg(hw
, E1000_EEE_LP_ADV_ADDR_I210
,
3085 E1000_EEE_LP_ADV_DEV_I210
,
3090 edata
->lp_advertised
= mmd_eee_adv_to_ethtool_adv_t(phy_data
);
3097 edata
->eee_enabled
= !hw
->dev_spec
._82575
.eee_disable
;
3099 if ((hw
->mac
.type
== e1000_i354
) &&
3100 (edata
->eee_enabled
))
3101 edata
->tx_lpi_enabled
= true;
3103 /* Report correct negotiated EEE status for devices that
3104 * wrongly report EEE at half-duplex
3106 if (adapter
->link_duplex
== HALF_DUPLEX
) {
3107 edata
->eee_enabled
= false;
3108 edata
->eee_active
= false;
3109 edata
->tx_lpi_enabled
= false;
3110 edata
->advertised
&= ~edata
->advertised
;
3116 static int igb_set_eee(struct net_device
*netdev
,
3117 struct ethtool_eee
*edata
)
3119 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3120 struct e1000_hw
*hw
= &adapter
->hw
;
3121 struct ethtool_eee eee_curr
;
3122 bool adv1g_eee
= true, adv100m_eee
= true;
3125 if ((hw
->mac
.type
< e1000_i350
) ||
3126 (hw
->phy
.media_type
!= e1000_media_type_copper
))
3129 memset(&eee_curr
, 0, sizeof(struct ethtool_eee
));
3131 ret_val
= igb_get_eee(netdev
, &eee_curr
);
3135 if (eee_curr
.eee_enabled
) {
3136 if (eee_curr
.tx_lpi_enabled
!= edata
->tx_lpi_enabled
) {
3137 dev_err(&adapter
->pdev
->dev
,
3138 "Setting EEE tx-lpi is not supported\n");
3142 /* Tx LPI timer is not implemented currently */
3143 if (edata
->tx_lpi_timer
) {
3144 dev_err(&adapter
->pdev
->dev
,
3145 "Setting EEE Tx LPI timer is not supported\n");
3149 if (!edata
->advertised
|| (edata
->advertised
&
3150 ~(ADVERTISE_100_FULL
| ADVERTISE_1000_FULL
))) {
3151 dev_err(&adapter
->pdev
->dev
,
3152 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3155 adv100m_eee
= !!(edata
->advertised
& ADVERTISE_100_FULL
);
3156 adv1g_eee
= !!(edata
->advertised
& ADVERTISE_1000_FULL
);
3158 } else if (!edata
->eee_enabled
) {
3159 dev_err(&adapter
->pdev
->dev
,
3160 "Setting EEE options are not supported with EEE disabled\n");
3164 adapter
->eee_advert
= ethtool_adv_to_mmd_eee_adv_t(edata
->advertised
);
3165 if (hw
->dev_spec
._82575
.eee_disable
!= !edata
->eee_enabled
) {
3166 hw
->dev_spec
._82575
.eee_disable
= !edata
->eee_enabled
;
3167 adapter
->flags
|= IGB_FLAG_EEE
;
3170 if (netif_running(netdev
))
3171 igb_reinit_locked(adapter
);
3176 if (hw
->mac
.type
== e1000_i354
)
3177 ret_val
= igb_set_eee_i354(hw
, adv1g_eee
, adv100m_eee
);
3179 ret_val
= igb_set_eee_i350(hw
, adv1g_eee
, adv100m_eee
);
3182 dev_err(&adapter
->pdev
->dev
,
3183 "Problem setting EEE advertisement options\n");
3190 static int igb_get_module_info(struct net_device
*netdev
,
3191 struct ethtool_modinfo
*modinfo
)
3193 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3194 struct e1000_hw
*hw
= &adapter
->hw
;
3196 u16 sff8472_rev
, addr_mode
;
3197 bool page_swap
= false;
3199 if ((hw
->phy
.media_type
== e1000_media_type_copper
) ||
3200 (hw
->phy
.media_type
== e1000_media_type_unknown
))
3203 /* Check whether we support SFF-8472 or not */
3204 status
= igb_read_phy_reg_i2c(hw
, IGB_SFF_8472_COMP
, &sff8472_rev
);
3208 /* addressing mode is not supported */
3209 status
= igb_read_phy_reg_i2c(hw
, IGB_SFF_8472_SWAP
, &addr_mode
);
3213 /* addressing mode is not supported */
3214 if ((addr_mode
& 0xFF) & IGB_SFF_ADDRESSING_MODE
) {
3215 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3219 if ((sff8472_rev
& 0xFF) == IGB_SFF_8472_UNSUP
|| page_swap
) {
3220 /* We have an SFP, but it does not support SFF-8472 */
3221 modinfo
->type
= ETH_MODULE_SFF_8079
;
3222 modinfo
->eeprom_len
= ETH_MODULE_SFF_8079_LEN
;
3224 /* We have an SFP which supports a revision of SFF-8472 */
3225 modinfo
->type
= ETH_MODULE_SFF_8472
;
3226 modinfo
->eeprom_len
= ETH_MODULE_SFF_8472_LEN
;
3232 static int igb_get_module_eeprom(struct net_device
*netdev
,
3233 struct ethtool_eeprom
*ee
, u8
*data
)
3235 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3236 struct e1000_hw
*hw
= &adapter
->hw
;
3239 u16 first_word
, last_word
;
3245 first_word
= ee
->offset
>> 1;
3246 last_word
= (ee
->offset
+ ee
->len
- 1) >> 1;
3248 dataword
= kmalloc_array(last_word
- first_word
+ 1, sizeof(u16
),
3253 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3254 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
3255 status
= igb_read_phy_reg_i2c(hw
, (first_word
+ i
) * 2,
3258 /* Error occurred while reading module */
3263 be16_to_cpus(&dataword
[i
]);
3266 memcpy(data
, (u8
*)dataword
+ (ee
->offset
& 1), ee
->len
);
3272 static int igb_ethtool_begin(struct net_device
*netdev
)
3274 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3275 pm_runtime_get_sync(&adapter
->pdev
->dev
);
3279 static void igb_ethtool_complete(struct net_device
*netdev
)
3281 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3282 pm_runtime_put(&adapter
->pdev
->dev
);
3285 static u32
igb_get_rxfh_indir_size(struct net_device
*netdev
)
3287 return IGB_RETA_SIZE
;
3290 static int igb_get_rxfh(struct net_device
*netdev
, u32
*indir
, u8
*key
,
3293 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3297 *hfunc
= ETH_RSS_HASH_TOP
;
3300 for (i
= 0; i
< IGB_RETA_SIZE
; i
++)
3301 indir
[i
] = adapter
->rss_indir_tbl
[i
];
3306 void igb_write_rss_indir_tbl(struct igb_adapter
*adapter
)
3308 struct e1000_hw
*hw
= &adapter
->hw
;
3309 u32 reg
= E1000_RETA(0);
3313 switch (hw
->mac
.type
) {
3318 /* 82576 supports 2 RSS queues for SR-IOV */
3319 if (adapter
->vfs_allocated_count
)
3326 while (i
< IGB_RETA_SIZE
) {
3330 for (j
= 3; j
>= 0; j
--) {
3332 val
|= adapter
->rss_indir_tbl
[i
+ j
];
3335 wr32(reg
, val
<< shift
);
3341 static int igb_set_rxfh(struct net_device
*netdev
, const u32
*indir
,
3342 const u8
*key
, const u8 hfunc
)
3344 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3345 struct e1000_hw
*hw
= &adapter
->hw
;
3349 /* We do not allow change in unsupported parameters */
3351 (hfunc
!= ETH_RSS_HASH_NO_CHANGE
&& hfunc
!= ETH_RSS_HASH_TOP
))
3356 num_queues
= adapter
->rss_queues
;
3358 switch (hw
->mac
.type
) {
3360 /* 82576 supports 2 RSS queues for SR-IOV */
3361 if (adapter
->vfs_allocated_count
)
3368 /* Verify user input. */
3369 for (i
= 0; i
< IGB_RETA_SIZE
; i
++)
3370 if (indir
[i
] >= num_queues
)
3374 for (i
= 0; i
< IGB_RETA_SIZE
; i
++)
3375 adapter
->rss_indir_tbl
[i
] = indir
[i
];
3377 igb_write_rss_indir_tbl(adapter
);
3382 static unsigned int igb_max_channels(struct igb_adapter
*adapter
)
3384 return igb_get_max_rss_queues(adapter
);
3387 static void igb_get_channels(struct net_device
*netdev
,
3388 struct ethtool_channels
*ch
)
3390 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3392 /* Report maximum channels */
3393 ch
->max_combined
= igb_max_channels(adapter
);
3395 /* Report info for other vector */
3396 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
) {
3397 ch
->max_other
= NON_Q_VECTORS
;
3398 ch
->other_count
= NON_Q_VECTORS
;
3401 ch
->combined_count
= adapter
->rss_queues
;
3404 static int igb_set_channels(struct net_device
*netdev
,
3405 struct ethtool_channels
*ch
)
3407 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3408 unsigned int count
= ch
->combined_count
;
3409 unsigned int max_combined
= 0;
3411 /* Verify they are not requesting separate vectors */
3412 if (!count
|| ch
->rx_count
|| ch
->tx_count
)
3415 /* Verify other_count is valid and has not been changed */
3416 if (ch
->other_count
!= NON_Q_VECTORS
)
3419 /* Verify the number of channels doesn't exceed hw limits */
3420 max_combined
= igb_max_channels(adapter
);
3421 if (count
> max_combined
)
3424 if (count
!= adapter
->rss_queues
) {
3425 adapter
->rss_queues
= count
;
3426 igb_set_flag_queue_pairs(adapter
, max_combined
);
3428 /* Hardware has to reinitialize queues and interrupts to
3429 * match the new configuration.
3431 return igb_reinit_queues(adapter
);
3437 static u32
igb_get_priv_flags(struct net_device
*netdev
)
3439 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3442 if (adapter
->flags
& IGB_FLAG_RX_LEGACY
)
3443 priv_flags
|= IGB_PRIV_FLAGS_LEGACY_RX
;
3448 static int igb_set_priv_flags(struct net_device
*netdev
, u32 priv_flags
)
3450 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3451 unsigned int flags
= adapter
->flags
;
3453 flags
&= ~IGB_FLAG_RX_LEGACY
;
3454 if (priv_flags
& IGB_PRIV_FLAGS_LEGACY_RX
)
3455 flags
|= IGB_FLAG_RX_LEGACY
;
3457 if (flags
!= adapter
->flags
) {
3458 adapter
->flags
= flags
;
3460 /* reset interface to repopulate queues */
3461 if (netif_running(netdev
))
3462 igb_reinit_locked(adapter
);
3468 static const struct ethtool_ops igb_ethtool_ops
= {
3469 .get_drvinfo
= igb_get_drvinfo
,
3470 .get_regs_len
= igb_get_regs_len
,
3471 .get_regs
= igb_get_regs
,
3472 .get_wol
= igb_get_wol
,
3473 .set_wol
= igb_set_wol
,
3474 .get_msglevel
= igb_get_msglevel
,
3475 .set_msglevel
= igb_set_msglevel
,
3476 .nway_reset
= igb_nway_reset
,
3477 .get_link
= igb_get_link
,
3478 .get_eeprom_len
= igb_get_eeprom_len
,
3479 .get_eeprom
= igb_get_eeprom
,
3480 .set_eeprom
= igb_set_eeprom
,
3481 .get_ringparam
= igb_get_ringparam
,
3482 .set_ringparam
= igb_set_ringparam
,
3483 .get_pauseparam
= igb_get_pauseparam
,
3484 .set_pauseparam
= igb_set_pauseparam
,
3485 .self_test
= igb_diag_test
,
3486 .get_strings
= igb_get_strings
,
3487 .set_phys_id
= igb_set_phys_id
,
3488 .get_sset_count
= igb_get_sset_count
,
3489 .get_ethtool_stats
= igb_get_ethtool_stats
,
3490 .get_coalesce
= igb_get_coalesce
,
3491 .set_coalesce
= igb_set_coalesce
,
3492 .get_ts_info
= igb_get_ts_info
,
3493 .get_rxnfc
= igb_get_rxnfc
,
3494 .set_rxnfc
= igb_set_rxnfc
,
3495 .get_eee
= igb_get_eee
,
3496 .set_eee
= igb_set_eee
,
3497 .get_module_info
= igb_get_module_info
,
3498 .get_module_eeprom
= igb_get_module_eeprom
,
3499 .get_rxfh_indir_size
= igb_get_rxfh_indir_size
,
3500 .get_rxfh
= igb_get_rxfh
,
3501 .set_rxfh
= igb_set_rxfh
,
3502 .get_channels
= igb_get_channels
,
3503 .set_channels
= igb_set_channels
,
3504 .get_priv_flags
= igb_get_priv_flags
,
3505 .set_priv_flags
= igb_set_priv_flags
,
3506 .begin
= igb_ethtool_begin
,
3507 .complete
= igb_ethtool_complete
,
3508 .get_link_ksettings
= igb_get_link_ksettings
,
3509 .set_link_ksettings
= igb_set_link_ksettings
,
3512 void igb_set_ethtool_ops(struct net_device
*netdev
)
3514 netdev
->ethtool_ops
= &igb_ethtool_ops
;