staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / drivers / net / ethernet / intel / igb / igb_main.c
bloba32c576c1e656c0102989413cad114d1d8f03771
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
41 #define MAJ 5
42 #define MIN 4
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
47 enum queue_mode {
48 QUEUE_MODE_STRICT_PRIORITY,
49 QUEUE_MODE_STREAM_RESERVATION,
52 enum tx_queue_prio {
53 TX_QUEUE_PRIO_HIGH,
54 TX_QUEUE_PRIO_LOW,
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60 "Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62 "Copyright (c) 2007-2014 Intel Corporation.";
64 static const struct e1000_info *igb_info_tbl[] = {
65 [board_82575] = &e1000_82575_info,
68 static const struct pci_device_id igb_pci_tbl[] = {
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104 /* required last entry */
105 {0, }
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133 struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152 netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172 bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196 igb_runtime_idle)
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 .notifier_call = igb_notify_dca,
204 .next = NULL,
205 .priority = 0
207 #endif
208 #ifdef CONFIG_NET_POLL_CONTROLLER
209 /* for netdump / net console */
210 static void igb_netpoll(struct net_device *);
211 #endif
212 #ifdef CONFIG_PCI_IOV
213 static unsigned int max_vfs;
214 module_param(max_vfs, uint, 0);
215 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
216 #endif /* CONFIG_PCI_IOV */
218 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219 pci_channel_state_t);
220 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221 static void igb_io_resume(struct pci_dev *);
223 static const struct pci_error_handlers igb_err_handler = {
224 .error_detected = igb_io_error_detected,
225 .slot_reset = igb_io_slot_reset,
226 .resume = igb_io_resume,
229 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
231 static struct pci_driver igb_driver = {
232 .name = igb_driver_name,
233 .id_table = igb_pci_tbl,
234 .probe = igb_probe,
235 .remove = igb_remove,
236 #ifdef CONFIG_PM
237 .driver.pm = &igb_pm_ops,
238 #endif
239 .shutdown = igb_shutdown,
240 .sriov_configure = igb_pci_sriov_configure,
241 .err_handler = &igb_err_handler
244 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246 MODULE_LICENSE("GPL");
247 MODULE_VERSION(DRV_VERSION);
249 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250 static int debug = -1;
251 module_param(debug, int, 0);
252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
254 struct igb_reg_info {
255 u32 ofs;
256 char *name;
259 static const struct igb_reg_info igb_reg_info_tbl[] = {
261 /* General Registers */
262 {E1000_CTRL, "CTRL"},
263 {E1000_STATUS, "STATUS"},
264 {E1000_CTRL_EXT, "CTRL_EXT"},
266 /* Interrupt Registers */
267 {E1000_ICR, "ICR"},
269 /* RX Registers */
270 {E1000_RCTL, "RCTL"},
271 {E1000_RDLEN(0), "RDLEN"},
272 {E1000_RDH(0), "RDH"},
273 {E1000_RDT(0), "RDT"},
274 {E1000_RXDCTL(0), "RXDCTL"},
275 {E1000_RDBAL(0), "RDBAL"},
276 {E1000_RDBAH(0), "RDBAH"},
278 /* TX Registers */
279 {E1000_TCTL, "TCTL"},
280 {E1000_TDBAL(0), "TDBAL"},
281 {E1000_TDBAH(0), "TDBAH"},
282 {E1000_TDLEN(0), "TDLEN"},
283 {E1000_TDH(0), "TDH"},
284 {E1000_TDT(0), "TDT"},
285 {E1000_TXDCTL(0), "TXDCTL"},
286 {E1000_TDFH, "TDFH"},
287 {E1000_TDFT, "TDFT"},
288 {E1000_TDFHS, "TDFHS"},
289 {E1000_TDFPC, "TDFPC"},
291 /* List Terminator */
295 /* igb_regdump - register printout routine */
296 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
298 int n = 0;
299 char rname[16];
300 u32 regs[8];
302 switch (reginfo->ofs) {
303 case E1000_RDLEN(0):
304 for (n = 0; n < 4; n++)
305 regs[n] = rd32(E1000_RDLEN(n));
306 break;
307 case E1000_RDH(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDH(n));
310 break;
311 case E1000_RDT(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RDT(n));
314 break;
315 case E1000_RXDCTL(0):
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RXDCTL(n));
318 break;
319 case E1000_RDBAL(0):
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RDBAL(n));
322 break;
323 case E1000_RDBAH(0):
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAH(n));
326 break;
327 case E1000_TDBAL(0):
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_RDBAL(n));
330 break;
331 case E1000_TDBAH(0):
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_TDBAH(n));
334 break;
335 case E1000_TDLEN(0):
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDLEN(n));
338 break;
339 case E1000_TDH(0):
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDH(n));
342 break;
343 case E1000_TDT(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TDT(n));
346 break;
347 case E1000_TXDCTL(0):
348 for (n = 0; n < 4; n++)
349 regs[n] = rd32(E1000_TXDCTL(n));
350 break;
351 default:
352 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
353 return;
356 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
357 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
358 regs[2], regs[3]);
361 /* igb_dump - Print registers, Tx-rings and Rx-rings */
362 static void igb_dump(struct igb_adapter *adapter)
364 struct net_device *netdev = adapter->netdev;
365 struct e1000_hw *hw = &adapter->hw;
366 struct igb_reg_info *reginfo;
367 struct igb_ring *tx_ring;
368 union e1000_adv_tx_desc *tx_desc;
369 struct my_u0 { u64 a; u64 b; } *u0;
370 struct igb_ring *rx_ring;
371 union e1000_adv_rx_desc *rx_desc;
372 u32 staterr;
373 u16 i, n;
375 if (!netif_msg_hw(adapter))
376 return;
378 /* Print netdevice Info */
379 if (netdev) {
380 dev_info(&adapter->pdev->dev, "Net device Info\n");
381 pr_info("Device Name state trans_start\n");
382 pr_info("%-15s %016lX %016lX\n", netdev->name,
383 netdev->state, dev_trans_start(netdev));
386 /* Print Registers */
387 dev_info(&adapter->pdev->dev, "Register Dump\n");
388 pr_info(" Register Name Value\n");
389 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390 reginfo->name; reginfo++) {
391 igb_regdump(hw, reginfo);
394 /* Print TX Ring Summary */
395 if (!netdev || !netif_running(netdev))
396 goto exit;
398 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
400 for (n = 0; n < adapter->num_tx_queues; n++) {
401 struct igb_tx_buffer *buffer_info;
402 tx_ring = adapter->tx_ring[n];
403 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405 n, tx_ring->next_to_use, tx_ring->next_to_clean,
406 (u64)dma_unmap_addr(buffer_info, dma),
407 dma_unmap_len(buffer_info, len),
408 buffer_info->next_to_watch,
409 (u64)buffer_info->time_stamp);
412 /* Print TX Rings */
413 if (!netif_msg_tx_done(adapter))
414 goto rx_ring_summary;
416 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
418 /* Transmit Descriptor Formats
420 * Advanced Transmit Descriptor
421 * +--------------------------------------------------------------+
422 * 0 | Buffer Address [63:0] |
423 * +--------------------------------------------------------------+
424 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
425 * +--------------------------------------------------------------+
426 * 63 46 45 40 39 38 36 35 32 31 24 15 0
429 for (n = 0; n < adapter->num_tx_queues; n++) {
430 tx_ring = adapter->tx_ring[n];
431 pr_info("------------------------------------\n");
432 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433 pr_info("------------------------------------\n");
434 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
436 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
437 const char *next_desc;
438 struct igb_tx_buffer *buffer_info;
439 tx_desc = IGB_TX_DESC(tx_ring, i);
440 buffer_info = &tx_ring->tx_buffer_info[i];
441 u0 = (struct my_u0 *)tx_desc;
442 if (i == tx_ring->next_to_use &&
443 i == tx_ring->next_to_clean)
444 next_desc = " NTC/U";
445 else if (i == tx_ring->next_to_use)
446 next_desc = " NTU";
447 else if (i == tx_ring->next_to_clean)
448 next_desc = " NTC";
449 else
450 next_desc = "";
452 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
453 i, le64_to_cpu(u0->a),
454 le64_to_cpu(u0->b),
455 (u64)dma_unmap_addr(buffer_info, dma),
456 dma_unmap_len(buffer_info, len),
457 buffer_info->next_to_watch,
458 (u64)buffer_info->time_stamp,
459 buffer_info->skb, next_desc);
461 if (netif_msg_pktdata(adapter) && buffer_info->skb)
462 print_hex_dump(KERN_INFO, "",
463 DUMP_PREFIX_ADDRESS,
464 16, 1, buffer_info->skb->data,
465 dma_unmap_len(buffer_info, len),
466 true);
470 /* Print RX Rings Summary */
471 rx_ring_summary:
472 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
473 pr_info("Queue [NTU] [NTC]\n");
474 for (n = 0; n < adapter->num_rx_queues; n++) {
475 rx_ring = adapter->rx_ring[n];
476 pr_info(" %5d %5X %5X\n",
477 n, rx_ring->next_to_use, rx_ring->next_to_clean);
480 /* Print RX Rings */
481 if (!netif_msg_rx_status(adapter))
482 goto exit;
484 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
486 /* Advanced Receive Descriptor (Read) Format
487 * 63 1 0
488 * +-----------------------------------------------------+
489 * 0 | Packet Buffer Address [63:1] |A0/NSE|
490 * +----------------------------------------------+------+
491 * 8 | Header Buffer Address [63:1] | DD |
492 * +-----------------------------------------------------+
495 * Advanced Receive Descriptor (Write-Back) Format
497 * 63 48 47 32 31 30 21 20 17 16 4 3 0
498 * +------------------------------------------------------+
499 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
500 * | Checksum Ident | | | | Type | Type |
501 * +------------------------------------------------------+
502 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
503 * +------------------------------------------------------+
504 * 63 48 47 32 31 20 19 0
507 for (n = 0; n < adapter->num_rx_queues; n++) {
508 rx_ring = adapter->rx_ring[n];
509 pr_info("------------------------------------\n");
510 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
511 pr_info("------------------------------------\n");
512 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
513 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
515 for (i = 0; i < rx_ring->count; i++) {
516 const char *next_desc;
517 struct igb_rx_buffer *buffer_info;
518 buffer_info = &rx_ring->rx_buffer_info[i];
519 rx_desc = IGB_RX_DESC(rx_ring, i);
520 u0 = (struct my_u0 *)rx_desc;
521 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
523 if (i == rx_ring->next_to_use)
524 next_desc = " NTU";
525 else if (i == rx_ring->next_to_clean)
526 next_desc = " NTC";
527 else
528 next_desc = "";
530 if (staterr & E1000_RXD_STAT_DD) {
531 /* Descriptor Done */
532 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
533 "RWB", i,
534 le64_to_cpu(u0->a),
535 le64_to_cpu(u0->b),
536 next_desc);
537 } else {
538 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
539 "R ", i,
540 le64_to_cpu(u0->a),
541 le64_to_cpu(u0->b),
542 (u64)buffer_info->dma,
543 next_desc);
545 if (netif_msg_pktdata(adapter) &&
546 buffer_info->dma && buffer_info->page) {
547 print_hex_dump(KERN_INFO, "",
548 DUMP_PREFIX_ADDRESS,
549 16, 1,
550 page_address(buffer_info->page) +
551 buffer_info->page_offset,
552 igb_rx_bufsz(rx_ring), true);
558 exit:
559 return;
563 * igb_get_i2c_data - Reads the I2C SDA data bit
564 * @hw: pointer to hardware structure
565 * @i2cctl: Current value of I2CCTL register
567 * Returns the I2C data bit value
569 static int igb_get_i2c_data(void *data)
571 struct igb_adapter *adapter = (struct igb_adapter *)data;
572 struct e1000_hw *hw = &adapter->hw;
573 s32 i2cctl = rd32(E1000_I2CPARAMS);
575 return !!(i2cctl & E1000_I2C_DATA_IN);
579 * igb_set_i2c_data - Sets the I2C data bit
580 * @data: pointer to hardware structure
581 * @state: I2C data value (0 or 1) to set
583 * Sets the I2C data bit
585 static void igb_set_i2c_data(void *data, int state)
587 struct igb_adapter *adapter = (struct igb_adapter *)data;
588 struct e1000_hw *hw = &adapter->hw;
589 s32 i2cctl = rd32(E1000_I2CPARAMS);
591 if (state)
592 i2cctl |= E1000_I2C_DATA_OUT;
593 else
594 i2cctl &= ~E1000_I2C_DATA_OUT;
596 i2cctl &= ~E1000_I2C_DATA_OE_N;
597 i2cctl |= E1000_I2C_CLK_OE_N;
598 wr32(E1000_I2CPARAMS, i2cctl);
599 wrfl();
604 * igb_set_i2c_clk - Sets the I2C SCL clock
605 * @data: pointer to hardware structure
606 * @state: state to set clock
608 * Sets the I2C clock line to state
610 static void igb_set_i2c_clk(void *data, int state)
612 struct igb_adapter *adapter = (struct igb_adapter *)data;
613 struct e1000_hw *hw = &adapter->hw;
614 s32 i2cctl = rd32(E1000_I2CPARAMS);
616 if (state) {
617 i2cctl |= E1000_I2C_CLK_OUT;
618 i2cctl &= ~E1000_I2C_CLK_OE_N;
619 } else {
620 i2cctl &= ~E1000_I2C_CLK_OUT;
621 i2cctl &= ~E1000_I2C_CLK_OE_N;
623 wr32(E1000_I2CPARAMS, i2cctl);
624 wrfl();
628 * igb_get_i2c_clk - Gets the I2C SCL clock state
629 * @data: pointer to hardware structure
631 * Gets the I2C clock state
633 static int igb_get_i2c_clk(void *data)
635 struct igb_adapter *adapter = (struct igb_adapter *)data;
636 struct e1000_hw *hw = &adapter->hw;
637 s32 i2cctl = rd32(E1000_I2CPARAMS);
639 return !!(i2cctl & E1000_I2C_CLK_IN);
642 static const struct i2c_algo_bit_data igb_i2c_algo = {
643 .setsda = igb_set_i2c_data,
644 .setscl = igb_set_i2c_clk,
645 .getsda = igb_get_i2c_data,
646 .getscl = igb_get_i2c_clk,
647 .udelay = 5,
648 .timeout = 20,
652 * igb_get_hw_dev - return device
653 * @hw: pointer to hardware structure
655 * used by hardware layer to print debugging information
657 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
659 struct igb_adapter *adapter = hw->back;
660 return adapter->netdev;
664 * igb_init_module - Driver Registration Routine
666 * igb_init_module is the first routine called when the driver is
667 * loaded. All it does is register with the PCI subsystem.
669 static int __init igb_init_module(void)
671 int ret;
673 pr_info("%s - version %s\n",
674 igb_driver_string, igb_driver_version);
675 pr_info("%s\n", igb_copyright);
677 #ifdef CONFIG_IGB_DCA
678 dca_register_notify(&dca_notifier);
679 #endif
680 ret = pci_register_driver(&igb_driver);
681 return ret;
684 module_init(igb_init_module);
687 * igb_exit_module - Driver Exit Cleanup Routine
689 * igb_exit_module is called just before the driver is removed
690 * from memory.
692 static void __exit igb_exit_module(void)
694 #ifdef CONFIG_IGB_DCA
695 dca_unregister_notify(&dca_notifier);
696 #endif
697 pci_unregister_driver(&igb_driver);
700 module_exit(igb_exit_module);
702 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
704 * igb_cache_ring_register - Descriptor ring to register mapping
705 * @adapter: board private structure to initialize
707 * Once we know the feature-set enabled for the device, we'll cache
708 * the register offset the descriptor ring is assigned to.
710 static void igb_cache_ring_register(struct igb_adapter *adapter)
712 int i = 0, j = 0;
713 u32 rbase_offset = adapter->vfs_allocated_count;
715 switch (adapter->hw.mac.type) {
716 case e1000_82576:
717 /* The queues are allocated for virtualization such that VF 0
718 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
719 * In order to avoid collision we start at the first free queue
720 * and continue consuming queues in the same sequence
722 if (adapter->vfs_allocated_count) {
723 for (; i < adapter->rss_queues; i++)
724 adapter->rx_ring[i]->reg_idx = rbase_offset +
725 Q_IDX_82576(i);
727 /* Fall through */
728 case e1000_82575:
729 case e1000_82580:
730 case e1000_i350:
731 case e1000_i354:
732 case e1000_i210:
733 case e1000_i211:
734 /* Fall through */
735 default:
736 for (; i < adapter->num_rx_queues; i++)
737 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738 for (; j < adapter->num_tx_queues; j++)
739 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740 break;
744 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
746 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
747 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
748 u32 value = 0;
750 if (E1000_REMOVED(hw_addr))
751 return ~value;
753 value = readl(&hw_addr[reg]);
755 /* reads should not return all F's */
756 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
757 struct net_device *netdev = igb->netdev;
758 hw->hw_addr = NULL;
759 netdev_err(netdev, "PCIe link lost\n");
762 return value;
766 * igb_write_ivar - configure ivar for given MSI-X vector
767 * @hw: pointer to the HW structure
768 * @msix_vector: vector number we are allocating to a given ring
769 * @index: row index of IVAR register to write within IVAR table
770 * @offset: column offset of in IVAR, should be multiple of 8
772 * This function is intended to handle the writing of the IVAR register
773 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
774 * each containing an cause allocation for an Rx and Tx ring, and a
775 * variable number of rows depending on the number of queues supported.
777 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
778 int index, int offset)
780 u32 ivar = array_rd32(E1000_IVAR0, index);
782 /* clear any bits that are currently set */
783 ivar &= ~((u32)0xFF << offset);
785 /* write vector and valid bit */
786 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
788 array_wr32(E1000_IVAR0, index, ivar);
791 #define IGB_N0_QUEUE -1
792 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
794 struct igb_adapter *adapter = q_vector->adapter;
795 struct e1000_hw *hw = &adapter->hw;
796 int rx_queue = IGB_N0_QUEUE;
797 int tx_queue = IGB_N0_QUEUE;
798 u32 msixbm = 0;
800 if (q_vector->rx.ring)
801 rx_queue = q_vector->rx.ring->reg_idx;
802 if (q_vector->tx.ring)
803 tx_queue = q_vector->tx.ring->reg_idx;
805 switch (hw->mac.type) {
806 case e1000_82575:
807 /* The 82575 assigns vectors using a bitmask, which matches the
808 * bitmask for the EICR/EIMS/EIMC registers. To assign one
809 * or more queues to a vector, we write the appropriate bits
810 * into the MSIXBM register for that vector.
812 if (rx_queue > IGB_N0_QUEUE)
813 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
814 if (tx_queue > IGB_N0_QUEUE)
815 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
816 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
817 msixbm |= E1000_EIMS_OTHER;
818 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
819 q_vector->eims_value = msixbm;
820 break;
821 case e1000_82576:
822 /* 82576 uses a table that essentially consists of 2 columns
823 * with 8 rows. The ordering is column-major so we use the
824 * lower 3 bits as the row index, and the 4th bit as the
825 * column offset.
827 if (rx_queue > IGB_N0_QUEUE)
828 igb_write_ivar(hw, msix_vector,
829 rx_queue & 0x7,
830 (rx_queue & 0x8) << 1);
831 if (tx_queue > IGB_N0_QUEUE)
832 igb_write_ivar(hw, msix_vector,
833 tx_queue & 0x7,
834 ((tx_queue & 0x8) << 1) + 8);
835 q_vector->eims_value = BIT(msix_vector);
836 break;
837 case e1000_82580:
838 case e1000_i350:
839 case e1000_i354:
840 case e1000_i210:
841 case e1000_i211:
842 /* On 82580 and newer adapters the scheme is similar to 82576
843 * however instead of ordering column-major we have things
844 * ordered row-major. So we traverse the table by using
845 * bit 0 as the column offset, and the remaining bits as the
846 * row index.
848 if (rx_queue > IGB_N0_QUEUE)
849 igb_write_ivar(hw, msix_vector,
850 rx_queue >> 1,
851 (rx_queue & 0x1) << 4);
852 if (tx_queue > IGB_N0_QUEUE)
853 igb_write_ivar(hw, msix_vector,
854 tx_queue >> 1,
855 ((tx_queue & 0x1) << 4) + 8);
856 q_vector->eims_value = BIT(msix_vector);
857 break;
858 default:
859 BUG();
860 break;
863 /* add q_vector eims value to global eims_enable_mask */
864 adapter->eims_enable_mask |= q_vector->eims_value;
866 /* configure q_vector to set itr on first interrupt */
867 q_vector->set_itr = 1;
871 * igb_configure_msix - Configure MSI-X hardware
872 * @adapter: board private structure to initialize
874 * igb_configure_msix sets up the hardware to properly
875 * generate MSI-X interrupts.
877 static void igb_configure_msix(struct igb_adapter *adapter)
879 u32 tmp;
880 int i, vector = 0;
881 struct e1000_hw *hw = &adapter->hw;
883 adapter->eims_enable_mask = 0;
885 /* set vector for other causes, i.e. link changes */
886 switch (hw->mac.type) {
887 case e1000_82575:
888 tmp = rd32(E1000_CTRL_EXT);
889 /* enable MSI-X PBA support*/
890 tmp |= E1000_CTRL_EXT_PBA_CLR;
892 /* Auto-Mask interrupts upon ICR read. */
893 tmp |= E1000_CTRL_EXT_EIAME;
894 tmp |= E1000_CTRL_EXT_IRCA;
896 wr32(E1000_CTRL_EXT, tmp);
898 /* enable msix_other interrupt */
899 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
900 adapter->eims_other = E1000_EIMS_OTHER;
902 break;
904 case e1000_82576:
905 case e1000_82580:
906 case e1000_i350:
907 case e1000_i354:
908 case e1000_i210:
909 case e1000_i211:
910 /* Turn on MSI-X capability first, or our settings
911 * won't stick. And it will take days to debug.
913 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
914 E1000_GPIE_PBA | E1000_GPIE_EIAME |
915 E1000_GPIE_NSICR);
917 /* enable msix_other interrupt */
918 adapter->eims_other = BIT(vector);
919 tmp = (vector++ | E1000_IVAR_VALID) << 8;
921 wr32(E1000_IVAR_MISC, tmp);
922 break;
923 default:
924 /* do nothing, since nothing else supports MSI-X */
925 break;
926 } /* switch (hw->mac.type) */
928 adapter->eims_enable_mask |= adapter->eims_other;
930 for (i = 0; i < adapter->num_q_vectors; i++)
931 igb_assign_vector(adapter->q_vector[i], vector++);
933 wrfl();
937 * igb_request_msix - Initialize MSI-X interrupts
938 * @adapter: board private structure to initialize
940 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
941 * kernel.
943 static int igb_request_msix(struct igb_adapter *adapter)
945 struct net_device *netdev = adapter->netdev;
946 int i, err = 0, vector = 0, free_vector = 0;
948 err = request_irq(adapter->msix_entries[vector].vector,
949 igb_msix_other, 0, netdev->name, adapter);
950 if (err)
951 goto err_out;
953 for (i = 0; i < adapter->num_q_vectors; i++) {
954 struct igb_q_vector *q_vector = adapter->q_vector[i];
956 vector++;
958 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
960 if (q_vector->rx.ring && q_vector->tx.ring)
961 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
962 q_vector->rx.ring->queue_index);
963 else if (q_vector->tx.ring)
964 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
965 q_vector->tx.ring->queue_index);
966 else if (q_vector->rx.ring)
967 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
968 q_vector->rx.ring->queue_index);
969 else
970 sprintf(q_vector->name, "%s-unused", netdev->name);
972 err = request_irq(adapter->msix_entries[vector].vector,
973 igb_msix_ring, 0, q_vector->name,
974 q_vector);
975 if (err)
976 goto err_free;
979 igb_configure_msix(adapter);
980 return 0;
982 err_free:
983 /* free already assigned IRQs */
984 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
986 vector--;
987 for (i = 0; i < vector; i++) {
988 free_irq(adapter->msix_entries[free_vector++].vector,
989 adapter->q_vector[i]);
991 err_out:
992 return err;
996 * igb_free_q_vector - Free memory allocated for specific interrupt vector
997 * @adapter: board private structure to initialize
998 * @v_idx: Index of vector to be freed
1000 * This function frees the memory allocated to the q_vector.
1002 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1004 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1006 adapter->q_vector[v_idx] = NULL;
1008 /* igb_get_stats64() might access the rings on this vector,
1009 * we must wait a grace period before freeing it.
1011 if (q_vector)
1012 kfree_rcu(q_vector, rcu);
1016 * igb_reset_q_vector - Reset config for interrupt vector
1017 * @adapter: board private structure to initialize
1018 * @v_idx: Index of vector to be reset
1020 * If NAPI is enabled it will delete any references to the
1021 * NAPI struct. This is preparation for igb_free_q_vector.
1023 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1025 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1027 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1028 * allocated. So, q_vector is NULL so we should stop here.
1030 if (!q_vector)
1031 return;
1033 if (q_vector->tx.ring)
1034 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1036 if (q_vector->rx.ring)
1037 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1039 netif_napi_del(&q_vector->napi);
1043 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1045 int v_idx = adapter->num_q_vectors;
1047 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1048 pci_disable_msix(adapter->pdev);
1049 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1050 pci_disable_msi(adapter->pdev);
1052 while (v_idx--)
1053 igb_reset_q_vector(adapter, v_idx);
1057 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1058 * @adapter: board private structure to initialize
1060 * This function frees the memory allocated to the q_vectors. In addition if
1061 * NAPI is enabled it will delete any references to the NAPI struct prior
1062 * to freeing the q_vector.
1064 static void igb_free_q_vectors(struct igb_adapter *adapter)
1066 int v_idx = adapter->num_q_vectors;
1068 adapter->num_tx_queues = 0;
1069 adapter->num_rx_queues = 0;
1070 adapter->num_q_vectors = 0;
1072 while (v_idx--) {
1073 igb_reset_q_vector(adapter, v_idx);
1074 igb_free_q_vector(adapter, v_idx);
1079 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1080 * @adapter: board private structure to initialize
1082 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1083 * MSI-X interrupts allocated.
1085 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1087 igb_free_q_vectors(adapter);
1088 igb_reset_interrupt_capability(adapter);
1092 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1093 * @adapter: board private structure to initialize
1094 * @msix: boolean value of MSIX capability
1096 * Attempt to configure interrupts using the best available
1097 * capabilities of the hardware and kernel.
1099 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1101 int err;
1102 int numvecs, i;
1104 if (!msix)
1105 goto msi_only;
1106 adapter->flags |= IGB_FLAG_HAS_MSIX;
1108 /* Number of supported queues. */
1109 adapter->num_rx_queues = adapter->rss_queues;
1110 if (adapter->vfs_allocated_count)
1111 adapter->num_tx_queues = 1;
1112 else
1113 adapter->num_tx_queues = adapter->rss_queues;
1115 /* start with one vector for every Rx queue */
1116 numvecs = adapter->num_rx_queues;
1118 /* if Tx handler is separate add 1 for every Tx queue */
1119 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1120 numvecs += adapter->num_tx_queues;
1122 /* store the number of vectors reserved for queues */
1123 adapter->num_q_vectors = numvecs;
1125 /* add 1 vector for link status interrupts */
1126 numvecs++;
1127 for (i = 0; i < numvecs; i++)
1128 adapter->msix_entries[i].entry = i;
1130 err = pci_enable_msix_range(adapter->pdev,
1131 adapter->msix_entries,
1132 numvecs,
1133 numvecs);
1134 if (err > 0)
1135 return;
1137 igb_reset_interrupt_capability(adapter);
1139 /* If we can't do MSI-X, try MSI */
1140 msi_only:
1141 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1142 #ifdef CONFIG_PCI_IOV
1143 /* disable SR-IOV for non MSI-X configurations */
1144 if (adapter->vf_data) {
1145 struct e1000_hw *hw = &adapter->hw;
1146 /* disable iov and allow time for transactions to clear */
1147 pci_disable_sriov(adapter->pdev);
1148 msleep(500);
1150 kfree(adapter->vf_mac_list);
1151 adapter->vf_mac_list = NULL;
1152 kfree(adapter->vf_data);
1153 adapter->vf_data = NULL;
1154 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1155 wrfl();
1156 msleep(100);
1157 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159 #endif
1160 adapter->vfs_allocated_count = 0;
1161 adapter->rss_queues = 1;
1162 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1163 adapter->num_rx_queues = 1;
1164 adapter->num_tx_queues = 1;
1165 adapter->num_q_vectors = 1;
1166 if (!pci_enable_msi(adapter->pdev))
1167 adapter->flags |= IGB_FLAG_HAS_MSI;
1170 static void igb_add_ring(struct igb_ring *ring,
1171 struct igb_ring_container *head)
1173 head->ring = ring;
1174 head->count++;
1178 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1179 * @adapter: board private structure to initialize
1180 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1181 * @v_idx: index of vector in adapter struct
1182 * @txr_count: total number of Tx rings to allocate
1183 * @txr_idx: index of first Tx ring to allocate
1184 * @rxr_count: total number of Rx rings to allocate
1185 * @rxr_idx: index of first Rx ring to allocate
1187 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1189 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1190 int v_count, int v_idx,
1191 int txr_count, int txr_idx,
1192 int rxr_count, int rxr_idx)
1194 struct igb_q_vector *q_vector;
1195 struct igb_ring *ring;
1196 int ring_count, size;
1198 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1199 if (txr_count > 1 || rxr_count > 1)
1200 return -ENOMEM;
1202 ring_count = txr_count + rxr_count;
1203 size = sizeof(struct igb_q_vector) +
1204 (sizeof(struct igb_ring) * ring_count);
1206 /* allocate q_vector and rings */
1207 q_vector = adapter->q_vector[v_idx];
1208 if (!q_vector) {
1209 q_vector = kzalloc(size, GFP_KERNEL);
1210 } else if (size > ksize(q_vector)) {
1211 kfree_rcu(q_vector, rcu);
1212 q_vector = kzalloc(size, GFP_KERNEL);
1213 } else {
1214 memset(q_vector, 0, size);
1216 if (!q_vector)
1217 return -ENOMEM;
1219 /* initialize NAPI */
1220 netif_napi_add(adapter->netdev, &q_vector->napi,
1221 igb_poll, 64);
1223 /* tie q_vector and adapter together */
1224 adapter->q_vector[v_idx] = q_vector;
1225 q_vector->adapter = adapter;
1227 /* initialize work limits */
1228 q_vector->tx.work_limit = adapter->tx_work_limit;
1230 /* initialize ITR configuration */
1231 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1232 q_vector->itr_val = IGB_START_ITR;
1234 /* initialize pointer to rings */
1235 ring = q_vector->ring;
1237 /* intialize ITR */
1238 if (rxr_count) {
1239 /* rx or rx/tx vector */
1240 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1241 q_vector->itr_val = adapter->rx_itr_setting;
1242 } else {
1243 /* tx only vector */
1244 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1245 q_vector->itr_val = adapter->tx_itr_setting;
1248 if (txr_count) {
1249 /* assign generic ring traits */
1250 ring->dev = &adapter->pdev->dev;
1251 ring->netdev = adapter->netdev;
1253 /* configure backlink on ring */
1254 ring->q_vector = q_vector;
1256 /* update q_vector Tx values */
1257 igb_add_ring(ring, &q_vector->tx);
1259 /* For 82575, context index must be unique per ring. */
1260 if (adapter->hw.mac.type == e1000_82575)
1261 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1263 /* apply Tx specific ring traits */
1264 ring->count = adapter->tx_ring_count;
1265 ring->queue_index = txr_idx;
1267 ring->cbs_enable = false;
1268 ring->idleslope = 0;
1269 ring->sendslope = 0;
1270 ring->hicredit = 0;
1271 ring->locredit = 0;
1273 u64_stats_init(&ring->tx_syncp);
1274 u64_stats_init(&ring->tx_syncp2);
1276 /* assign ring to adapter */
1277 adapter->tx_ring[txr_idx] = ring;
1279 /* push pointer to next ring */
1280 ring++;
1283 if (rxr_count) {
1284 /* assign generic ring traits */
1285 ring->dev = &adapter->pdev->dev;
1286 ring->netdev = adapter->netdev;
1288 /* configure backlink on ring */
1289 ring->q_vector = q_vector;
1291 /* update q_vector Rx values */
1292 igb_add_ring(ring, &q_vector->rx);
1294 /* set flag indicating ring supports SCTP checksum offload */
1295 if (adapter->hw.mac.type >= e1000_82576)
1296 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1298 /* On i350, i354, i210, and i211, loopback VLAN packets
1299 * have the tag byte-swapped.
1301 if (adapter->hw.mac.type >= e1000_i350)
1302 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1304 /* apply Rx specific ring traits */
1305 ring->count = adapter->rx_ring_count;
1306 ring->queue_index = rxr_idx;
1308 u64_stats_init(&ring->rx_syncp);
1310 /* assign ring to adapter */
1311 adapter->rx_ring[rxr_idx] = ring;
1314 return 0;
1319 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1320 * @adapter: board private structure to initialize
1322 * We allocate one q_vector per queue interrupt. If allocation fails we
1323 * return -ENOMEM.
1325 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1327 int q_vectors = adapter->num_q_vectors;
1328 int rxr_remaining = adapter->num_rx_queues;
1329 int txr_remaining = adapter->num_tx_queues;
1330 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1331 int err;
1333 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1334 for (; rxr_remaining; v_idx++) {
1335 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1336 0, 0, 1, rxr_idx);
1338 if (err)
1339 goto err_out;
1341 /* update counts and index */
1342 rxr_remaining--;
1343 rxr_idx++;
1347 for (; v_idx < q_vectors; v_idx++) {
1348 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1349 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1351 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1352 tqpv, txr_idx, rqpv, rxr_idx);
1354 if (err)
1355 goto err_out;
1357 /* update counts and index */
1358 rxr_remaining -= rqpv;
1359 txr_remaining -= tqpv;
1360 rxr_idx++;
1361 txr_idx++;
1364 return 0;
1366 err_out:
1367 adapter->num_tx_queues = 0;
1368 adapter->num_rx_queues = 0;
1369 adapter->num_q_vectors = 0;
1371 while (v_idx--)
1372 igb_free_q_vector(adapter, v_idx);
1374 return -ENOMEM;
1378 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1379 * @adapter: board private structure to initialize
1380 * @msix: boolean value of MSIX capability
1382 * This function initializes the interrupts and allocates all of the queues.
1384 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1386 struct pci_dev *pdev = adapter->pdev;
1387 int err;
1389 igb_set_interrupt_capability(adapter, msix);
1391 err = igb_alloc_q_vectors(adapter);
1392 if (err) {
1393 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1394 goto err_alloc_q_vectors;
1397 igb_cache_ring_register(adapter);
1399 return 0;
1401 err_alloc_q_vectors:
1402 igb_reset_interrupt_capability(adapter);
1403 return err;
1407 * igb_request_irq - initialize interrupts
1408 * @adapter: board private structure to initialize
1410 * Attempts to configure interrupts using the best available
1411 * capabilities of the hardware and kernel.
1413 static int igb_request_irq(struct igb_adapter *adapter)
1415 struct net_device *netdev = adapter->netdev;
1416 struct pci_dev *pdev = adapter->pdev;
1417 int err = 0;
1419 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1420 err = igb_request_msix(adapter);
1421 if (!err)
1422 goto request_done;
1423 /* fall back to MSI */
1424 igb_free_all_tx_resources(adapter);
1425 igb_free_all_rx_resources(adapter);
1427 igb_clear_interrupt_scheme(adapter);
1428 err = igb_init_interrupt_scheme(adapter, false);
1429 if (err)
1430 goto request_done;
1432 igb_setup_all_tx_resources(adapter);
1433 igb_setup_all_rx_resources(adapter);
1434 igb_configure(adapter);
1437 igb_assign_vector(adapter->q_vector[0], 0);
1439 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1440 err = request_irq(pdev->irq, igb_intr_msi, 0,
1441 netdev->name, adapter);
1442 if (!err)
1443 goto request_done;
1445 /* fall back to legacy interrupts */
1446 igb_reset_interrupt_capability(adapter);
1447 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1450 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1451 netdev->name, adapter);
1453 if (err)
1454 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1455 err);
1457 request_done:
1458 return err;
1461 static void igb_free_irq(struct igb_adapter *adapter)
1463 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1464 int vector = 0, i;
1466 free_irq(adapter->msix_entries[vector++].vector, adapter);
1468 for (i = 0; i < adapter->num_q_vectors; i++)
1469 free_irq(adapter->msix_entries[vector++].vector,
1470 adapter->q_vector[i]);
1471 } else {
1472 free_irq(adapter->pdev->irq, adapter);
1477 * igb_irq_disable - Mask off interrupt generation on the NIC
1478 * @adapter: board private structure
1480 static void igb_irq_disable(struct igb_adapter *adapter)
1482 struct e1000_hw *hw = &adapter->hw;
1484 /* we need to be careful when disabling interrupts. The VFs are also
1485 * mapped into these registers and so clearing the bits can cause
1486 * issues on the VF drivers so we only need to clear what we set
1488 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489 u32 regval = rd32(E1000_EIAM);
1491 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1492 wr32(E1000_EIMC, adapter->eims_enable_mask);
1493 regval = rd32(E1000_EIAC);
1494 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1497 wr32(E1000_IAM, 0);
1498 wr32(E1000_IMC, ~0);
1499 wrfl();
1500 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1501 int i;
1503 for (i = 0; i < adapter->num_q_vectors; i++)
1504 synchronize_irq(adapter->msix_entries[i].vector);
1505 } else {
1506 synchronize_irq(adapter->pdev->irq);
1511 * igb_irq_enable - Enable default interrupt generation settings
1512 * @adapter: board private structure
1514 static void igb_irq_enable(struct igb_adapter *adapter)
1516 struct e1000_hw *hw = &adapter->hw;
1518 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1519 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1520 u32 regval = rd32(E1000_EIAC);
1522 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1523 regval = rd32(E1000_EIAM);
1524 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1525 wr32(E1000_EIMS, adapter->eims_enable_mask);
1526 if (adapter->vfs_allocated_count) {
1527 wr32(E1000_MBVFIMR, 0xFF);
1528 ims |= E1000_IMS_VMMB;
1530 wr32(E1000_IMS, ims);
1531 } else {
1532 wr32(E1000_IMS, IMS_ENABLE_MASK |
1533 E1000_IMS_DRSTA);
1534 wr32(E1000_IAM, IMS_ENABLE_MASK |
1535 E1000_IMS_DRSTA);
1539 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1541 struct e1000_hw *hw = &adapter->hw;
1542 u16 pf_id = adapter->vfs_allocated_count;
1543 u16 vid = adapter->hw.mng_cookie.vlan_id;
1544 u16 old_vid = adapter->mng_vlan_id;
1546 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1547 /* add VID to filter table */
1548 igb_vfta_set(hw, vid, pf_id, true, true);
1549 adapter->mng_vlan_id = vid;
1550 } else {
1551 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1554 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1555 (vid != old_vid) &&
1556 !test_bit(old_vid, adapter->active_vlans)) {
1557 /* remove VID from filter table */
1558 igb_vfta_set(hw, vid, pf_id, false, true);
1563 * igb_release_hw_control - release control of the h/w to f/w
1564 * @adapter: address of board private structure
1566 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1567 * For ASF and Pass Through versions of f/w this means that the
1568 * driver is no longer loaded.
1570 static void igb_release_hw_control(struct igb_adapter *adapter)
1572 struct e1000_hw *hw = &adapter->hw;
1573 u32 ctrl_ext;
1575 /* Let firmware take over control of h/w */
1576 ctrl_ext = rd32(E1000_CTRL_EXT);
1577 wr32(E1000_CTRL_EXT,
1578 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1582 * igb_get_hw_control - get control of the h/w from f/w
1583 * @adapter: address of board private structure
1585 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1586 * For ASF and Pass Through versions of f/w this means that
1587 * the driver is loaded.
1589 static void igb_get_hw_control(struct igb_adapter *adapter)
1591 struct e1000_hw *hw = &adapter->hw;
1592 u32 ctrl_ext;
1594 /* Let firmware know the driver has taken over */
1595 ctrl_ext = rd32(E1000_CTRL_EXT);
1596 wr32(E1000_CTRL_EXT,
1597 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1600 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1602 struct net_device *netdev = adapter->netdev;
1603 struct e1000_hw *hw = &adapter->hw;
1605 WARN_ON(hw->mac.type != e1000_i210);
1607 if (enable)
1608 adapter->flags |= IGB_FLAG_FQTSS;
1609 else
1610 adapter->flags &= ~IGB_FLAG_FQTSS;
1612 if (netif_running(netdev))
1613 schedule_work(&adapter->reset_task);
1616 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1618 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1621 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1622 enum tx_queue_prio prio)
1624 u32 val;
1626 WARN_ON(hw->mac.type != e1000_i210);
1627 WARN_ON(queue < 0 || queue > 4);
1629 val = rd32(E1000_I210_TXDCTL(queue));
1631 if (prio == TX_QUEUE_PRIO_HIGH)
1632 val |= E1000_TXDCTL_PRIORITY;
1633 else
1634 val &= ~E1000_TXDCTL_PRIORITY;
1636 wr32(E1000_I210_TXDCTL(queue), val);
1639 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1641 u32 val;
1643 WARN_ON(hw->mac.type != e1000_i210);
1644 WARN_ON(queue < 0 || queue > 1);
1646 val = rd32(E1000_I210_TQAVCC(queue));
1648 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1649 val |= E1000_TQAVCC_QUEUEMODE;
1650 else
1651 val &= ~E1000_TQAVCC_QUEUEMODE;
1653 wr32(E1000_I210_TQAVCC(queue), val);
1656 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1658 int i;
1660 for (i = 0; i < adapter->num_tx_queues; i++) {
1661 if (adapter->tx_ring[i]->cbs_enable)
1662 return true;
1665 return false;
1668 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1670 int i;
1672 for (i = 0; i < adapter->num_tx_queues; i++) {
1673 if (adapter->tx_ring[i]->launchtime_enable)
1674 return true;
1677 return false;
1681 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1682 * @adapter: pointer to adapter struct
1683 * @queue: queue number
1685 * Configure CBS and Launchtime for a given hardware queue.
1686 * Parameters are retrieved from the correct Tx ring, so
1687 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1688 * for setting those correctly prior to this function being called.
1690 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1692 struct igb_ring *ring = adapter->tx_ring[queue];
1693 struct net_device *netdev = adapter->netdev;
1694 struct e1000_hw *hw = &adapter->hw;
1695 u32 tqavcc, tqavctrl;
1696 u16 value;
1698 WARN_ON(hw->mac.type != e1000_i210);
1699 WARN_ON(queue < 0 || queue > 1);
1701 /* If any of the Qav features is enabled, configure queues as SR and
1702 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1703 * as SP.
1705 if (ring->cbs_enable || ring->launchtime_enable) {
1706 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1707 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1708 } else {
1709 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1710 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1713 /* If CBS is enabled, set DataTranARB and config its parameters. */
1714 if (ring->cbs_enable || queue == 0) {
1715 /* i210 does not allow the queue 0 to be in the Strict
1716 * Priority mode while the Qav mode is enabled, so,
1717 * instead of disabling strict priority mode, we give
1718 * queue 0 the maximum of credits possible.
1720 * See section 8.12.19 of the i210 datasheet, "Note:
1721 * Queue0 QueueMode must be set to 1b when
1722 * TransmitMode is set to Qav."
1724 if (queue == 0 && !ring->cbs_enable) {
1725 /* max "linkspeed" idleslope in kbps */
1726 ring->idleslope = 1000000;
1727 ring->hicredit = ETH_FRAME_LEN;
1730 /* Always set data transfer arbitration to credit-based
1731 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1732 * the queues.
1734 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1735 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1736 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1738 /* According to i210 datasheet section 7.2.7.7, we should set
1739 * the 'idleSlope' field from TQAVCC register following the
1740 * equation:
1742 * For 100 Mbps link speed:
1744 * value = BW * 0x7735 * 0.2 (E1)
1746 * For 1000Mbps link speed:
1748 * value = BW * 0x7735 * 2 (E2)
1750 * E1 and E2 can be merged into one equation as shown below.
1751 * Note that 'link-speed' is in Mbps.
1753 * value = BW * 0x7735 * 2 * link-speed
1754 * -------------- (E3)
1755 * 1000
1757 * 'BW' is the percentage bandwidth out of full link speed
1758 * which can be found with the following equation. Note that
1759 * idleSlope here is the parameter from this function which
1760 * is in kbps.
1762 * BW = idleSlope
1763 * ----------------- (E4)
1764 * link-speed * 1000
1766 * That said, we can come up with a generic equation to
1767 * calculate the value we should set it TQAVCC register by
1768 * replacing 'BW' in E3 by E4. The resulting equation is:
1770 * value = idleSlope * 0x7735 * 2 * link-speed
1771 * ----------------- -------------- (E5)
1772 * link-speed * 1000 1000
1774 * 'link-speed' is present in both sides of the fraction so
1775 * it is canceled out. The final equation is the following:
1777 * value = idleSlope * 61034
1778 * ----------------- (E6)
1779 * 1000000
1781 * NOTE: For i210, given the above, we can see that idleslope
1782 * is represented in 16.38431 kbps units by the value at
1783 * the TQAVCC register (1Gbps / 61034), which reduces
1784 * the granularity for idleslope increments.
1785 * For instance, if you want to configure a 2576kbps
1786 * idleslope, the value to be written on the register
1787 * would have to be 157.23. If rounded down, you end
1788 * up with less bandwidth available than originally
1789 * required (~2572 kbps). If rounded up, you end up
1790 * with a higher bandwidth (~2589 kbps). Below the
1791 * approach we take is to always round up the
1792 * calculated value, so the resulting bandwidth might
1793 * be slightly higher for some configurations.
1795 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1797 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1798 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1799 tqavcc |= value;
1800 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1802 wr32(E1000_I210_TQAVHC(queue),
1803 0x80000000 + ring->hicredit * 0x7735);
1804 } else {
1806 /* Set idleSlope to zero. */
1807 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1808 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1809 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1811 /* Set hiCredit to zero. */
1812 wr32(E1000_I210_TQAVHC(queue), 0);
1814 /* If CBS is not enabled for any queues anymore, then return to
1815 * the default state of Data Transmission Arbitration on
1816 * TQAVCTRL.
1818 if (!is_any_cbs_enabled(adapter)) {
1819 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1820 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1821 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1825 /* If LaunchTime is enabled, set DataTranTIM. */
1826 if (ring->launchtime_enable) {
1827 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1828 * for any of the SR queues, and configure fetchtime delta.
1829 * XXX NOTE:
1830 * - LaunchTime will be enabled for all SR queues.
1831 * - A fixed offset can be added relative to the launch
1832 * time of all packets if configured at reg LAUNCH_OS0.
1833 * We are keeping it as 0 for now (default value).
1835 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1836 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1837 E1000_TQAVCTRL_FETCHTIME_DELTA;
1838 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1839 } else {
1840 /* If Launchtime is not enabled for any SR queues anymore,
1841 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1842 * effectively disabling Launchtime.
1844 if (!is_any_txtime_enabled(adapter)) {
1845 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1846 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1847 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1848 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1852 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1853 * CBS are not configurable by software so we don't do any 'controller
1854 * configuration' in respect to these parameters.
1857 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d \
1858 idleslope %d sendslope %d hiCredit %d \
1859 locredit %d\n",
1860 (ring->cbs_enable) ? "enabled" : "disabled",
1861 (ring->launchtime_enable) ? "enabled" : "disabled", queue,
1862 ring->idleslope, ring->sendslope, ring->hicredit,
1863 ring->locredit);
1866 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1867 bool enable)
1869 struct igb_ring *ring;
1871 if (queue < 0 || queue > adapter->num_tx_queues)
1872 return -EINVAL;
1874 ring = adapter->tx_ring[queue];
1875 ring->launchtime_enable = enable;
1877 return 0;
1880 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1881 bool enable, int idleslope, int sendslope,
1882 int hicredit, int locredit)
1884 struct igb_ring *ring;
1886 if (queue < 0 || queue > adapter->num_tx_queues)
1887 return -EINVAL;
1889 ring = adapter->tx_ring[queue];
1891 ring->cbs_enable = enable;
1892 ring->idleslope = idleslope;
1893 ring->sendslope = sendslope;
1894 ring->hicredit = hicredit;
1895 ring->locredit = locredit;
1897 return 0;
1901 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1902 * @adapter: pointer to adapter struct
1904 * Configure TQAVCTRL register switching the controller's Tx mode
1905 * if FQTSS mode is enabled or disabled. Additionally, will issue
1906 * a call to igb_config_tx_modes() per queue so any previously saved
1907 * Tx parameters are applied.
1909 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1911 struct net_device *netdev = adapter->netdev;
1912 struct e1000_hw *hw = &adapter->hw;
1913 u32 val;
1915 /* Only i210 controller supports changing the transmission mode. */
1916 if (hw->mac.type != e1000_i210)
1917 return;
1919 if (is_fqtss_enabled(adapter)) {
1920 int i, max_queue;
1922 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1923 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1924 * so SP queues wait for SR ones.
1926 val = rd32(E1000_I210_TQAVCTRL);
1927 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1928 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1929 wr32(E1000_I210_TQAVCTRL, val);
1931 /* Configure Tx and Rx packet buffers sizes as described in
1932 * i210 datasheet section 7.2.7.7.
1934 val = rd32(E1000_TXPBS);
1935 val &= ~I210_TXPBSIZE_MASK;
1936 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1937 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1938 wr32(E1000_TXPBS, val);
1940 val = rd32(E1000_RXPBS);
1941 val &= ~I210_RXPBSIZE_MASK;
1942 val |= I210_RXPBSIZE_PB_32KB;
1943 wr32(E1000_RXPBS, val);
1945 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1946 * register should not exceed the buffer size programmed in
1947 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1948 * so according to the datasheet we should set MAX_TPKT_SIZE to
1949 * 4kB / 64.
1951 * However, when we do so, no frame from queue 2 and 3 are
1952 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1953 * or _equal_ to the buffer size programmed in TXPBS. For this
1954 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1956 val = (4096 - 1) / 64;
1957 wr32(E1000_I210_DTXMXPKTSZ, val);
1959 /* Since FQTSS mode is enabled, apply any CBS configuration
1960 * previously set. If no previous CBS configuration has been
1961 * done, then the initial configuration is applied, which means
1962 * CBS is disabled.
1964 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1965 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1967 for (i = 0; i < max_queue; i++) {
1968 igb_config_tx_modes(adapter, i);
1970 } else {
1971 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1972 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1973 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1975 val = rd32(E1000_I210_TQAVCTRL);
1976 /* According to Section 8.12.21, the other flags we've set when
1977 * enabling FQTSS are not relevant when disabling FQTSS so we
1978 * don't set they here.
1980 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1981 wr32(E1000_I210_TQAVCTRL, val);
1984 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1985 "enabled" : "disabled");
1989 * igb_configure - configure the hardware for RX and TX
1990 * @adapter: private board structure
1992 static void igb_configure(struct igb_adapter *adapter)
1994 struct net_device *netdev = adapter->netdev;
1995 int i;
1997 igb_get_hw_control(adapter);
1998 igb_set_rx_mode(netdev);
1999 igb_setup_tx_mode(adapter);
2001 igb_restore_vlan(adapter);
2003 igb_setup_tctl(adapter);
2004 igb_setup_mrqc(adapter);
2005 igb_setup_rctl(adapter);
2007 igb_nfc_filter_restore(adapter);
2008 igb_configure_tx(adapter);
2009 igb_configure_rx(adapter);
2011 igb_rx_fifo_flush_82575(&adapter->hw);
2013 /* call igb_desc_unused which always leaves
2014 * at least 1 descriptor unused to make sure
2015 * next_to_use != next_to_clean
2017 for (i = 0; i < adapter->num_rx_queues; i++) {
2018 struct igb_ring *ring = adapter->rx_ring[i];
2019 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2024 * igb_power_up_link - Power up the phy/serdes link
2025 * @adapter: address of board private structure
2027 void igb_power_up_link(struct igb_adapter *adapter)
2029 igb_reset_phy(&adapter->hw);
2031 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2032 igb_power_up_phy_copper(&adapter->hw);
2033 else
2034 igb_power_up_serdes_link_82575(&adapter->hw);
2036 igb_setup_link(&adapter->hw);
2040 * igb_power_down_link - Power down the phy/serdes link
2041 * @adapter: address of board private structure
2043 static void igb_power_down_link(struct igb_adapter *adapter)
2045 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2046 igb_power_down_phy_copper_82575(&adapter->hw);
2047 else
2048 igb_shutdown_serdes_link_82575(&adapter->hw);
2052 * Detect and switch function for Media Auto Sense
2053 * @adapter: address of the board private structure
2055 static void igb_check_swap_media(struct igb_adapter *adapter)
2057 struct e1000_hw *hw = &adapter->hw;
2058 u32 ctrl_ext, connsw;
2059 bool swap_now = false;
2061 ctrl_ext = rd32(E1000_CTRL_EXT);
2062 connsw = rd32(E1000_CONNSW);
2064 /* need to live swap if current media is copper and we have fiber/serdes
2065 * to go to.
2068 if ((hw->phy.media_type == e1000_media_type_copper) &&
2069 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2070 swap_now = true;
2071 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
2072 /* copper signal takes time to appear */
2073 if (adapter->copper_tries < 4) {
2074 adapter->copper_tries++;
2075 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2076 wr32(E1000_CONNSW, connsw);
2077 return;
2078 } else {
2079 adapter->copper_tries = 0;
2080 if ((connsw & E1000_CONNSW_PHYSD) &&
2081 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2082 swap_now = true;
2083 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2084 wr32(E1000_CONNSW, connsw);
2089 if (!swap_now)
2090 return;
2092 switch (hw->phy.media_type) {
2093 case e1000_media_type_copper:
2094 netdev_info(adapter->netdev,
2095 "MAS: changing media to fiber/serdes\n");
2096 ctrl_ext |=
2097 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2098 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2099 adapter->copper_tries = 0;
2100 break;
2101 case e1000_media_type_internal_serdes:
2102 case e1000_media_type_fiber:
2103 netdev_info(adapter->netdev,
2104 "MAS: changing media to copper\n");
2105 ctrl_ext &=
2106 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2107 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2108 break;
2109 default:
2110 /* shouldn't get here during regular operation */
2111 netdev_err(adapter->netdev,
2112 "AMS: Invalid media type found, returning\n");
2113 break;
2115 wr32(E1000_CTRL_EXT, ctrl_ext);
2119 * igb_up - Open the interface and prepare it to handle traffic
2120 * @adapter: board private structure
2122 int igb_up(struct igb_adapter *adapter)
2124 struct e1000_hw *hw = &adapter->hw;
2125 int i;
2127 /* hardware has been reset, we need to reload some things */
2128 igb_configure(adapter);
2130 clear_bit(__IGB_DOWN, &adapter->state);
2132 for (i = 0; i < adapter->num_q_vectors; i++)
2133 napi_enable(&(adapter->q_vector[i]->napi));
2135 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2136 igb_configure_msix(adapter);
2137 else
2138 igb_assign_vector(adapter->q_vector[0], 0);
2140 /* Clear any pending interrupts. */
2141 rd32(E1000_TSICR);
2142 rd32(E1000_ICR);
2143 igb_irq_enable(adapter);
2145 /* notify VFs that reset has been completed */
2146 if (adapter->vfs_allocated_count) {
2147 u32 reg_data = rd32(E1000_CTRL_EXT);
2149 reg_data |= E1000_CTRL_EXT_PFRSTD;
2150 wr32(E1000_CTRL_EXT, reg_data);
2153 netif_tx_start_all_queues(adapter->netdev);
2155 /* start the watchdog. */
2156 hw->mac.get_link_status = 1;
2157 schedule_work(&adapter->watchdog_task);
2159 if ((adapter->flags & IGB_FLAG_EEE) &&
2160 (!hw->dev_spec._82575.eee_disable))
2161 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2163 return 0;
2166 void igb_down(struct igb_adapter *adapter)
2168 struct net_device *netdev = adapter->netdev;
2169 struct e1000_hw *hw = &adapter->hw;
2170 u32 tctl, rctl;
2171 int i;
2173 /* signal that we're down so the interrupt handler does not
2174 * reschedule our watchdog timer
2176 set_bit(__IGB_DOWN, &adapter->state);
2178 /* disable receives in the hardware */
2179 rctl = rd32(E1000_RCTL);
2180 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2181 /* flush and sleep below */
2183 igb_nfc_filter_exit(adapter);
2185 netif_carrier_off(netdev);
2186 netif_tx_stop_all_queues(netdev);
2188 /* disable transmits in the hardware */
2189 tctl = rd32(E1000_TCTL);
2190 tctl &= ~E1000_TCTL_EN;
2191 wr32(E1000_TCTL, tctl);
2192 /* flush both disables and wait for them to finish */
2193 wrfl();
2194 usleep_range(10000, 11000);
2196 igb_irq_disable(adapter);
2198 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2200 for (i = 0; i < adapter->num_q_vectors; i++) {
2201 if (adapter->q_vector[i]) {
2202 napi_synchronize(&adapter->q_vector[i]->napi);
2203 napi_disable(&adapter->q_vector[i]->napi);
2207 del_timer_sync(&adapter->watchdog_timer);
2208 del_timer_sync(&adapter->phy_info_timer);
2210 /* record the stats before reset*/
2211 spin_lock(&adapter->stats64_lock);
2212 igb_update_stats(adapter);
2213 spin_unlock(&adapter->stats64_lock);
2215 adapter->link_speed = 0;
2216 adapter->link_duplex = 0;
2218 if (!pci_channel_offline(adapter->pdev))
2219 igb_reset(adapter);
2221 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2222 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2224 igb_clean_all_tx_rings(adapter);
2225 igb_clean_all_rx_rings(adapter);
2226 #ifdef CONFIG_IGB_DCA
2228 /* since we reset the hardware DCA settings were cleared */
2229 igb_setup_dca(adapter);
2230 #endif
2233 void igb_reinit_locked(struct igb_adapter *adapter)
2235 WARN_ON(in_interrupt());
2236 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2237 usleep_range(1000, 2000);
2238 igb_down(adapter);
2239 igb_up(adapter);
2240 clear_bit(__IGB_RESETTING, &adapter->state);
2243 /** igb_enable_mas - Media Autosense re-enable after swap
2245 * @adapter: adapter struct
2247 static void igb_enable_mas(struct igb_adapter *adapter)
2249 struct e1000_hw *hw = &adapter->hw;
2250 u32 connsw = rd32(E1000_CONNSW);
2252 /* configure for SerDes media detect */
2253 if ((hw->phy.media_type == e1000_media_type_copper) &&
2254 (!(connsw & E1000_CONNSW_SERDESD))) {
2255 connsw |= E1000_CONNSW_ENRGSRC;
2256 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2257 wr32(E1000_CONNSW, connsw);
2258 wrfl();
2262 void igb_reset(struct igb_adapter *adapter)
2264 struct pci_dev *pdev = adapter->pdev;
2265 struct e1000_hw *hw = &adapter->hw;
2266 struct e1000_mac_info *mac = &hw->mac;
2267 struct e1000_fc_info *fc = &hw->fc;
2268 u32 pba, hwm;
2270 /* Repartition Pba for greater than 9k mtu
2271 * To take effect CTRL.RST is required.
2273 switch (mac->type) {
2274 case e1000_i350:
2275 case e1000_i354:
2276 case e1000_82580:
2277 pba = rd32(E1000_RXPBS);
2278 pba = igb_rxpbs_adjust_82580(pba);
2279 break;
2280 case e1000_82576:
2281 pba = rd32(E1000_RXPBS);
2282 pba &= E1000_RXPBS_SIZE_MASK_82576;
2283 break;
2284 case e1000_82575:
2285 case e1000_i210:
2286 case e1000_i211:
2287 default:
2288 pba = E1000_PBA_34K;
2289 break;
2292 if (mac->type == e1000_82575) {
2293 u32 min_rx_space, min_tx_space, needed_tx_space;
2295 /* write Rx PBA so that hardware can report correct Tx PBA */
2296 wr32(E1000_PBA, pba);
2298 /* To maintain wire speed transmits, the Tx FIFO should be
2299 * large enough to accommodate two full transmit packets,
2300 * rounded up to the next 1KB and expressed in KB. Likewise,
2301 * the Rx FIFO should be large enough to accommodate at least
2302 * one full receive packet and is similarly rounded up and
2303 * expressed in KB.
2305 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2307 /* The Tx FIFO also stores 16 bytes of information about the Tx
2308 * but don't include Ethernet FCS because hardware appends it.
2309 * We only need to round down to the nearest 512 byte block
2310 * count since the value we care about is 2 frames, not 1.
2312 min_tx_space = adapter->max_frame_size;
2313 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2314 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2316 /* upper 16 bits has Tx packet buffer allocation size in KB */
2317 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2319 /* If current Tx allocation is less than the min Tx FIFO size,
2320 * and the min Tx FIFO size is less than the current Rx FIFO
2321 * allocation, take space away from current Rx allocation.
2323 if (needed_tx_space < pba) {
2324 pba -= needed_tx_space;
2326 /* if short on Rx space, Rx wins and must trump Tx
2327 * adjustment
2329 if (pba < min_rx_space)
2330 pba = min_rx_space;
2333 /* adjust PBA for jumbo frames */
2334 wr32(E1000_PBA, pba);
2337 /* flow control settings
2338 * The high water mark must be low enough to fit one full frame
2339 * after transmitting the pause frame. As such we must have enough
2340 * space to allow for us to complete our current transmit and then
2341 * receive the frame that is in progress from the link partner.
2342 * Set it to:
2343 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2345 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2347 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2348 fc->low_water = fc->high_water - 16;
2349 fc->pause_time = 0xFFFF;
2350 fc->send_xon = 1;
2351 fc->current_mode = fc->requested_mode;
2353 /* disable receive for all VFs and wait one second */
2354 if (adapter->vfs_allocated_count) {
2355 int i;
2357 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2358 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2360 /* ping all the active vfs to let them know we are going down */
2361 igb_ping_all_vfs(adapter);
2363 /* disable transmits and receives */
2364 wr32(E1000_VFRE, 0);
2365 wr32(E1000_VFTE, 0);
2368 /* Allow time for pending master requests to run */
2369 hw->mac.ops.reset_hw(hw);
2370 wr32(E1000_WUC, 0);
2372 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2373 /* need to resetup here after media swap */
2374 adapter->ei.get_invariants(hw);
2375 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2377 if ((mac->type == e1000_82575) &&
2378 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2379 igb_enable_mas(adapter);
2381 if (hw->mac.ops.init_hw(hw))
2382 dev_err(&pdev->dev, "Hardware Error\n");
2384 /* RAR registers were cleared during init_hw, clear mac table */
2385 igb_flush_mac_table(adapter);
2386 __dev_uc_unsync(adapter->netdev, NULL);
2388 /* Recover default RAR entry */
2389 igb_set_default_mac_filter(adapter);
2391 /* Flow control settings reset on hardware reset, so guarantee flow
2392 * control is off when forcing speed.
2394 if (!hw->mac.autoneg)
2395 igb_force_mac_fc(hw);
2397 igb_init_dmac(adapter, pba);
2398 #ifdef CONFIG_IGB_HWMON
2399 /* Re-initialize the thermal sensor on i350 devices. */
2400 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2401 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2402 /* If present, re-initialize the external thermal sensor
2403 * interface.
2405 if (adapter->ets)
2406 mac->ops.init_thermal_sensor_thresh(hw);
2409 #endif
2410 /* Re-establish EEE setting */
2411 if (hw->phy.media_type == e1000_media_type_copper) {
2412 switch (mac->type) {
2413 case e1000_i350:
2414 case e1000_i210:
2415 case e1000_i211:
2416 igb_set_eee_i350(hw, true, true);
2417 break;
2418 case e1000_i354:
2419 igb_set_eee_i354(hw, true, true);
2420 break;
2421 default:
2422 break;
2425 if (!netif_running(adapter->netdev))
2426 igb_power_down_link(adapter);
2428 igb_update_mng_vlan(adapter);
2430 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2431 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2433 /* Re-enable PTP, where applicable. */
2434 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2435 igb_ptp_reset(adapter);
2437 igb_get_phy_info(hw);
2440 static netdev_features_t igb_fix_features(struct net_device *netdev,
2441 netdev_features_t features)
2443 /* Since there is no support for separate Rx/Tx vlan accel
2444 * enable/disable make sure Tx flag is always in same state as Rx.
2446 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2447 features |= NETIF_F_HW_VLAN_CTAG_TX;
2448 else
2449 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2451 return features;
2454 static int igb_set_features(struct net_device *netdev,
2455 netdev_features_t features)
2457 netdev_features_t changed = netdev->features ^ features;
2458 struct igb_adapter *adapter = netdev_priv(netdev);
2460 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2461 igb_vlan_mode(netdev, features);
2463 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2464 return 0;
2466 if (!(features & NETIF_F_NTUPLE)) {
2467 struct hlist_node *node2;
2468 struct igb_nfc_filter *rule;
2470 spin_lock(&adapter->nfc_lock);
2471 hlist_for_each_entry_safe(rule, node2,
2472 &adapter->nfc_filter_list, nfc_node) {
2473 igb_erase_filter(adapter, rule);
2474 hlist_del(&rule->nfc_node);
2475 kfree(rule);
2477 spin_unlock(&adapter->nfc_lock);
2478 adapter->nfc_filter_count = 0;
2481 netdev->features = features;
2483 if (netif_running(netdev))
2484 igb_reinit_locked(adapter);
2485 else
2486 igb_reset(adapter);
2488 return 0;
2491 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2492 struct net_device *dev,
2493 const unsigned char *addr, u16 vid,
2494 u16 flags)
2496 /* guarantee we can provide a unique filter for the unicast address */
2497 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2498 struct igb_adapter *adapter = netdev_priv(dev);
2499 int vfn = adapter->vfs_allocated_count;
2501 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2502 return -ENOMEM;
2505 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2508 #define IGB_MAX_MAC_HDR_LEN 127
2509 #define IGB_MAX_NETWORK_HDR_LEN 511
2511 static netdev_features_t
2512 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2513 netdev_features_t features)
2515 unsigned int network_hdr_len, mac_hdr_len;
2517 /* Make certain the headers can be described by a context descriptor */
2518 mac_hdr_len = skb_network_header(skb) - skb->data;
2519 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2520 return features & ~(NETIF_F_HW_CSUM |
2521 NETIF_F_SCTP_CRC |
2522 NETIF_F_HW_VLAN_CTAG_TX |
2523 NETIF_F_TSO |
2524 NETIF_F_TSO6);
2526 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2527 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2528 return features & ~(NETIF_F_HW_CSUM |
2529 NETIF_F_SCTP_CRC |
2530 NETIF_F_TSO |
2531 NETIF_F_TSO6);
2533 /* We can only support IPV4 TSO in tunnels if we can mangle the
2534 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2536 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2537 features &= ~NETIF_F_TSO;
2539 return features;
2542 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2544 if (!is_fqtss_enabled(adapter)) {
2545 enable_fqtss(adapter, true);
2546 return;
2549 igb_config_tx_modes(adapter, queue);
2551 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2552 enable_fqtss(adapter, false);
2555 static int igb_offload_cbs(struct igb_adapter *adapter,
2556 struct tc_cbs_qopt_offload *qopt)
2558 struct e1000_hw *hw = &adapter->hw;
2559 int err;
2561 /* CBS offloading is only supported by i210 controller. */
2562 if (hw->mac.type != e1000_i210)
2563 return -EOPNOTSUPP;
2565 /* CBS offloading is only supported by queue 0 and queue 1. */
2566 if (qopt->queue < 0 || qopt->queue > 1)
2567 return -EINVAL;
2569 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2570 qopt->idleslope, qopt->sendslope,
2571 qopt->hicredit, qopt->locredit);
2572 if (err)
2573 return err;
2575 igb_offload_apply(adapter, qopt->queue);
2577 return 0;
2580 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2581 #define VLAN_PRIO_FULL_MASK (0x07)
2583 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2584 struct tc_cls_flower_offload *f,
2585 int traffic_class,
2586 struct igb_nfc_filter *input)
2588 struct netlink_ext_ack *extack = f->common.extack;
2590 if (f->dissector->used_keys &
2591 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2592 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2593 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2594 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2595 NL_SET_ERR_MSG_MOD(extack,
2596 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2597 return -EOPNOTSUPP;
2600 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2601 struct flow_dissector_key_eth_addrs *key, *mask;
2603 key = skb_flow_dissector_target(f->dissector,
2604 FLOW_DISSECTOR_KEY_ETH_ADDRS,
2605 f->key);
2606 mask = skb_flow_dissector_target(f->dissector,
2607 FLOW_DISSECTOR_KEY_ETH_ADDRS,
2608 f->mask);
2610 if (!is_zero_ether_addr(mask->dst)) {
2611 if (!is_broadcast_ether_addr(mask->dst)) {
2612 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2613 return -EINVAL;
2616 input->filter.match_flags |=
2617 IGB_FILTER_FLAG_DST_MAC_ADDR;
2618 ether_addr_copy(input->filter.dst_addr, key->dst);
2621 if (!is_zero_ether_addr(mask->src)) {
2622 if (!is_broadcast_ether_addr(mask->src)) {
2623 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2624 return -EINVAL;
2627 input->filter.match_flags |=
2628 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2629 ether_addr_copy(input->filter.src_addr, key->src);
2633 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
2634 struct flow_dissector_key_basic *key, *mask;
2636 key = skb_flow_dissector_target(f->dissector,
2637 FLOW_DISSECTOR_KEY_BASIC,
2638 f->key);
2639 mask = skb_flow_dissector_target(f->dissector,
2640 FLOW_DISSECTOR_KEY_BASIC,
2641 f->mask);
2643 if (mask->n_proto) {
2644 if (mask->n_proto != ETHER_TYPE_FULL_MASK) {
2645 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2646 return -EINVAL;
2649 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2650 input->filter.etype = key->n_proto;
2654 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) {
2655 struct flow_dissector_key_vlan *key, *mask;
2657 key = skb_flow_dissector_target(f->dissector,
2658 FLOW_DISSECTOR_KEY_VLAN,
2659 f->key);
2660 mask = skb_flow_dissector_target(f->dissector,
2661 FLOW_DISSECTOR_KEY_VLAN,
2662 f->mask);
2664 if (mask->vlan_priority) {
2665 if (mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2666 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2667 return -EINVAL;
2670 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2671 input->filter.vlan_tci = key->vlan_priority;
2675 input->action = traffic_class;
2676 input->cookie = f->cookie;
2678 return 0;
2681 static int igb_configure_clsflower(struct igb_adapter *adapter,
2682 struct tc_cls_flower_offload *cls_flower)
2684 struct netlink_ext_ack *extack = cls_flower->common.extack;
2685 struct igb_nfc_filter *filter, *f;
2686 int err, tc;
2688 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2689 if (tc < 0) {
2690 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2691 return -EINVAL;
2694 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2695 if (!filter)
2696 return -ENOMEM;
2698 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2699 if (err < 0)
2700 goto err_parse;
2702 spin_lock(&adapter->nfc_lock);
2704 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2705 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2706 err = -EEXIST;
2707 NL_SET_ERR_MSG_MOD(extack,
2708 "This filter is already set in ethtool");
2709 goto err_locked;
2713 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2714 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2715 err = -EEXIST;
2716 NL_SET_ERR_MSG_MOD(extack,
2717 "This filter is already set in cls_flower");
2718 goto err_locked;
2722 err = igb_add_filter(adapter, filter);
2723 if (err < 0) {
2724 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2725 goto err_locked;
2728 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2730 spin_unlock(&adapter->nfc_lock);
2732 return 0;
2734 err_locked:
2735 spin_unlock(&adapter->nfc_lock);
2737 err_parse:
2738 kfree(filter);
2740 return err;
2743 static int igb_delete_clsflower(struct igb_adapter *adapter,
2744 struct tc_cls_flower_offload *cls_flower)
2746 struct igb_nfc_filter *filter;
2747 int err;
2749 spin_lock(&adapter->nfc_lock);
2751 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2752 if (filter->cookie == cls_flower->cookie)
2753 break;
2755 if (!filter) {
2756 err = -ENOENT;
2757 goto out;
2760 err = igb_erase_filter(adapter, filter);
2761 if (err < 0)
2762 goto out;
2764 hlist_del(&filter->nfc_node);
2765 kfree(filter);
2767 out:
2768 spin_unlock(&adapter->nfc_lock);
2770 return err;
2773 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2774 struct tc_cls_flower_offload *cls_flower)
2776 switch (cls_flower->command) {
2777 case TC_CLSFLOWER_REPLACE:
2778 return igb_configure_clsflower(adapter, cls_flower);
2779 case TC_CLSFLOWER_DESTROY:
2780 return igb_delete_clsflower(adapter, cls_flower);
2781 case TC_CLSFLOWER_STATS:
2782 return -EOPNOTSUPP;
2783 default:
2784 return -EOPNOTSUPP;
2788 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2789 void *cb_priv)
2791 struct igb_adapter *adapter = cb_priv;
2793 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2794 return -EOPNOTSUPP;
2796 switch (type) {
2797 case TC_SETUP_CLSFLOWER:
2798 return igb_setup_tc_cls_flower(adapter, type_data);
2800 default:
2801 return -EOPNOTSUPP;
2805 static int igb_setup_tc_block(struct igb_adapter *adapter,
2806 struct tc_block_offload *f)
2808 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2809 return -EOPNOTSUPP;
2811 switch (f->command) {
2812 case TC_BLOCK_BIND:
2813 return tcf_block_cb_register(f->block, igb_setup_tc_block_cb,
2814 adapter, adapter, f->extack);
2815 case TC_BLOCK_UNBIND:
2816 tcf_block_cb_unregister(f->block, igb_setup_tc_block_cb,
2817 adapter);
2818 return 0;
2819 default:
2820 return -EOPNOTSUPP;
2824 static int igb_offload_txtime(struct igb_adapter *adapter,
2825 struct tc_etf_qopt_offload *qopt)
2827 struct e1000_hw *hw = &adapter->hw;
2828 int err;
2830 /* Launchtime offloading is only supported by i210 controller. */
2831 if (hw->mac.type != e1000_i210)
2832 return -EOPNOTSUPP;
2834 /* Launchtime offloading is only supported by queues 0 and 1. */
2835 if (qopt->queue < 0 || qopt->queue > 1)
2836 return -EINVAL;
2838 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2839 if (err)
2840 return err;
2842 igb_offload_apply(adapter, qopt->queue);
2844 return 0;
2847 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2848 void *type_data)
2850 struct igb_adapter *adapter = netdev_priv(dev);
2852 switch (type) {
2853 case TC_SETUP_QDISC_CBS:
2854 return igb_offload_cbs(adapter, type_data);
2855 case TC_SETUP_BLOCK:
2856 return igb_setup_tc_block(adapter, type_data);
2857 case TC_SETUP_QDISC_ETF:
2858 return igb_offload_txtime(adapter, type_data);
2860 default:
2861 return -EOPNOTSUPP;
2865 static const struct net_device_ops igb_netdev_ops = {
2866 .ndo_open = igb_open,
2867 .ndo_stop = igb_close,
2868 .ndo_start_xmit = igb_xmit_frame,
2869 .ndo_get_stats64 = igb_get_stats64,
2870 .ndo_set_rx_mode = igb_set_rx_mode,
2871 .ndo_set_mac_address = igb_set_mac,
2872 .ndo_change_mtu = igb_change_mtu,
2873 .ndo_do_ioctl = igb_ioctl,
2874 .ndo_tx_timeout = igb_tx_timeout,
2875 .ndo_validate_addr = eth_validate_addr,
2876 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2877 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2878 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2879 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2880 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2881 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2882 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
2883 .ndo_get_vf_config = igb_ndo_get_vf_config,
2884 #ifdef CONFIG_NET_POLL_CONTROLLER
2885 .ndo_poll_controller = igb_netpoll,
2886 #endif
2887 .ndo_fix_features = igb_fix_features,
2888 .ndo_set_features = igb_set_features,
2889 .ndo_fdb_add = igb_ndo_fdb_add,
2890 .ndo_features_check = igb_features_check,
2891 .ndo_setup_tc = igb_setup_tc,
2895 * igb_set_fw_version - Configure version string for ethtool
2896 * @adapter: adapter struct
2898 void igb_set_fw_version(struct igb_adapter *adapter)
2900 struct e1000_hw *hw = &adapter->hw;
2901 struct e1000_fw_version fw;
2903 igb_get_fw_version(hw, &fw);
2905 switch (hw->mac.type) {
2906 case e1000_i210:
2907 case e1000_i211:
2908 if (!(igb_get_flash_presence_i210(hw))) {
2909 snprintf(adapter->fw_version,
2910 sizeof(adapter->fw_version),
2911 "%2d.%2d-%d",
2912 fw.invm_major, fw.invm_minor,
2913 fw.invm_img_type);
2914 break;
2916 /* fall through */
2917 default:
2918 /* if option is rom valid, display its version too */
2919 if (fw.or_valid) {
2920 snprintf(adapter->fw_version,
2921 sizeof(adapter->fw_version),
2922 "%d.%d, 0x%08x, %d.%d.%d",
2923 fw.eep_major, fw.eep_minor, fw.etrack_id,
2924 fw.or_major, fw.or_build, fw.or_patch);
2925 /* no option rom */
2926 } else if (fw.etrack_id != 0X0000) {
2927 snprintf(adapter->fw_version,
2928 sizeof(adapter->fw_version),
2929 "%d.%d, 0x%08x",
2930 fw.eep_major, fw.eep_minor, fw.etrack_id);
2931 } else {
2932 snprintf(adapter->fw_version,
2933 sizeof(adapter->fw_version),
2934 "%d.%d.%d",
2935 fw.eep_major, fw.eep_minor, fw.eep_build);
2937 break;
2942 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2944 * @adapter: adapter struct
2946 static void igb_init_mas(struct igb_adapter *adapter)
2948 struct e1000_hw *hw = &adapter->hw;
2949 u16 eeprom_data;
2951 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2952 switch (hw->bus.func) {
2953 case E1000_FUNC_0:
2954 if (eeprom_data & IGB_MAS_ENABLE_0) {
2955 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2956 netdev_info(adapter->netdev,
2957 "MAS: Enabling Media Autosense for port %d\n",
2958 hw->bus.func);
2960 break;
2961 case E1000_FUNC_1:
2962 if (eeprom_data & IGB_MAS_ENABLE_1) {
2963 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2964 netdev_info(adapter->netdev,
2965 "MAS: Enabling Media Autosense for port %d\n",
2966 hw->bus.func);
2968 break;
2969 case E1000_FUNC_2:
2970 if (eeprom_data & IGB_MAS_ENABLE_2) {
2971 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2972 netdev_info(adapter->netdev,
2973 "MAS: Enabling Media Autosense for port %d\n",
2974 hw->bus.func);
2976 break;
2977 case E1000_FUNC_3:
2978 if (eeprom_data & IGB_MAS_ENABLE_3) {
2979 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2980 netdev_info(adapter->netdev,
2981 "MAS: Enabling Media Autosense for port %d\n",
2982 hw->bus.func);
2984 break;
2985 default:
2986 /* Shouldn't get here */
2987 netdev_err(adapter->netdev,
2988 "MAS: Invalid port configuration, returning\n");
2989 break;
2994 * igb_init_i2c - Init I2C interface
2995 * @adapter: pointer to adapter structure
2997 static s32 igb_init_i2c(struct igb_adapter *adapter)
2999 s32 status = 0;
3001 /* I2C interface supported on i350 devices */
3002 if (adapter->hw.mac.type != e1000_i350)
3003 return 0;
3005 /* Initialize the i2c bus which is controlled by the registers.
3006 * This bus will use the i2c_algo_bit structue that implements
3007 * the protocol through toggling of the 4 bits in the register.
3009 adapter->i2c_adap.owner = THIS_MODULE;
3010 adapter->i2c_algo = igb_i2c_algo;
3011 adapter->i2c_algo.data = adapter;
3012 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3013 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3014 strlcpy(adapter->i2c_adap.name, "igb BB",
3015 sizeof(adapter->i2c_adap.name));
3016 status = i2c_bit_add_bus(&adapter->i2c_adap);
3017 return status;
3021 * igb_probe - Device Initialization Routine
3022 * @pdev: PCI device information struct
3023 * @ent: entry in igb_pci_tbl
3025 * Returns 0 on success, negative on failure
3027 * igb_probe initializes an adapter identified by a pci_dev structure.
3028 * The OS initialization, configuring of the adapter private structure,
3029 * and a hardware reset occur.
3031 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3033 struct net_device *netdev;
3034 struct igb_adapter *adapter;
3035 struct e1000_hw *hw;
3036 u16 eeprom_data = 0;
3037 s32 ret_val;
3038 static int global_quad_port_a; /* global quad port a indication */
3039 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3040 int err, pci_using_dac;
3041 u8 part_str[E1000_PBANUM_LENGTH];
3043 /* Catch broken hardware that put the wrong VF device ID in
3044 * the PCIe SR-IOV capability.
3046 if (pdev->is_virtfn) {
3047 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3048 pci_name(pdev), pdev->vendor, pdev->device);
3049 return -EINVAL;
3052 err = pci_enable_device_mem(pdev);
3053 if (err)
3054 return err;
3056 pci_using_dac = 0;
3057 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3058 if (!err) {
3059 pci_using_dac = 1;
3060 } else {
3061 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3062 if (err) {
3063 dev_err(&pdev->dev,
3064 "No usable DMA configuration, aborting\n");
3065 goto err_dma;
3069 err = pci_request_mem_regions(pdev, igb_driver_name);
3070 if (err)
3071 goto err_pci_reg;
3073 pci_enable_pcie_error_reporting(pdev);
3075 pci_set_master(pdev);
3076 pci_save_state(pdev);
3078 err = -ENOMEM;
3079 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3080 IGB_MAX_TX_QUEUES);
3081 if (!netdev)
3082 goto err_alloc_etherdev;
3084 SET_NETDEV_DEV(netdev, &pdev->dev);
3086 pci_set_drvdata(pdev, netdev);
3087 adapter = netdev_priv(netdev);
3088 adapter->netdev = netdev;
3089 adapter->pdev = pdev;
3090 hw = &adapter->hw;
3091 hw->back = adapter;
3092 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3094 err = -EIO;
3095 adapter->io_addr = pci_iomap(pdev, 0, 0);
3096 if (!adapter->io_addr)
3097 goto err_ioremap;
3098 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3099 hw->hw_addr = adapter->io_addr;
3101 netdev->netdev_ops = &igb_netdev_ops;
3102 igb_set_ethtool_ops(netdev);
3103 netdev->watchdog_timeo = 5 * HZ;
3105 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3107 netdev->mem_start = pci_resource_start(pdev, 0);
3108 netdev->mem_end = pci_resource_end(pdev, 0);
3110 /* PCI config space info */
3111 hw->vendor_id = pdev->vendor;
3112 hw->device_id = pdev->device;
3113 hw->revision_id = pdev->revision;
3114 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3115 hw->subsystem_device_id = pdev->subsystem_device;
3117 /* Copy the default MAC, PHY and NVM function pointers */
3118 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3119 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3120 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3121 /* Initialize skew-specific constants */
3122 err = ei->get_invariants(hw);
3123 if (err)
3124 goto err_sw_init;
3126 /* setup the private structure */
3127 err = igb_sw_init(adapter);
3128 if (err)
3129 goto err_sw_init;
3131 igb_get_bus_info_pcie(hw);
3133 hw->phy.autoneg_wait_to_complete = false;
3135 /* Copper options */
3136 if (hw->phy.media_type == e1000_media_type_copper) {
3137 hw->phy.mdix = AUTO_ALL_MODES;
3138 hw->phy.disable_polarity_correction = false;
3139 hw->phy.ms_type = e1000_ms_hw_default;
3142 if (igb_check_reset_block(hw))
3143 dev_info(&pdev->dev,
3144 "PHY reset is blocked due to SOL/IDER session.\n");
3146 /* features is initialized to 0 in allocation, it might have bits
3147 * set by igb_sw_init so we should use an or instead of an
3148 * assignment.
3150 netdev->features |= NETIF_F_SG |
3151 NETIF_F_TSO |
3152 NETIF_F_TSO6 |
3153 NETIF_F_RXHASH |
3154 NETIF_F_RXCSUM |
3155 NETIF_F_HW_CSUM;
3157 if (hw->mac.type >= e1000_82576)
3158 netdev->features |= NETIF_F_SCTP_CRC;
3160 if (hw->mac.type >= e1000_i350)
3161 netdev->features |= NETIF_F_HW_TC;
3163 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3164 NETIF_F_GSO_GRE_CSUM | \
3165 NETIF_F_GSO_IPXIP4 | \
3166 NETIF_F_GSO_IPXIP6 | \
3167 NETIF_F_GSO_UDP_TUNNEL | \
3168 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3170 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3171 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3173 /* copy netdev features into list of user selectable features */
3174 netdev->hw_features |= netdev->features |
3175 NETIF_F_HW_VLAN_CTAG_RX |
3176 NETIF_F_HW_VLAN_CTAG_TX |
3177 NETIF_F_RXALL;
3179 if (hw->mac.type >= e1000_i350)
3180 netdev->hw_features |= NETIF_F_NTUPLE;
3182 if (pci_using_dac)
3183 netdev->features |= NETIF_F_HIGHDMA;
3185 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3186 netdev->mpls_features |= NETIF_F_HW_CSUM;
3187 netdev->hw_enc_features |= netdev->vlan_features;
3189 /* set this bit last since it cannot be part of vlan_features */
3190 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3191 NETIF_F_HW_VLAN_CTAG_RX |
3192 NETIF_F_HW_VLAN_CTAG_TX;
3194 netdev->priv_flags |= IFF_SUPP_NOFCS;
3196 netdev->priv_flags |= IFF_UNICAST_FLT;
3198 /* MTU range: 68 - 9216 */
3199 netdev->min_mtu = ETH_MIN_MTU;
3200 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3202 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3204 /* before reading the NVM, reset the controller to put the device in a
3205 * known good starting state
3207 hw->mac.ops.reset_hw(hw);
3209 /* make sure the NVM is good , i211/i210 parts can have special NVM
3210 * that doesn't contain a checksum
3212 switch (hw->mac.type) {
3213 case e1000_i210:
3214 case e1000_i211:
3215 if (igb_get_flash_presence_i210(hw)) {
3216 if (hw->nvm.ops.validate(hw) < 0) {
3217 dev_err(&pdev->dev,
3218 "The NVM Checksum Is Not Valid\n");
3219 err = -EIO;
3220 goto err_eeprom;
3223 break;
3224 default:
3225 if (hw->nvm.ops.validate(hw) < 0) {
3226 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3227 err = -EIO;
3228 goto err_eeprom;
3230 break;
3233 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3234 /* copy the MAC address out of the NVM */
3235 if (hw->mac.ops.read_mac_addr(hw))
3236 dev_err(&pdev->dev, "NVM Read Error\n");
3239 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3241 if (!is_valid_ether_addr(netdev->dev_addr)) {
3242 dev_err(&pdev->dev, "Invalid MAC Address\n");
3243 err = -EIO;
3244 goto err_eeprom;
3247 igb_set_default_mac_filter(adapter);
3249 /* get firmware version for ethtool -i */
3250 igb_set_fw_version(adapter);
3252 /* configure RXPBSIZE and TXPBSIZE */
3253 if (hw->mac.type == e1000_i210) {
3254 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3255 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3258 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3259 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3261 INIT_WORK(&adapter->reset_task, igb_reset_task);
3262 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3264 /* Initialize link properties that are user-changeable */
3265 adapter->fc_autoneg = true;
3266 hw->mac.autoneg = true;
3267 hw->phy.autoneg_advertised = 0x2f;
3269 hw->fc.requested_mode = e1000_fc_default;
3270 hw->fc.current_mode = e1000_fc_default;
3272 igb_validate_mdi_setting(hw);
3274 /* By default, support wake on port A */
3275 if (hw->bus.func == 0)
3276 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3278 /* Check the NVM for wake support on non-port A ports */
3279 if (hw->mac.type >= e1000_82580)
3280 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3281 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3282 &eeprom_data);
3283 else if (hw->bus.func == 1)
3284 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3286 if (eeprom_data & IGB_EEPROM_APME)
3287 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3289 /* now that we have the eeprom settings, apply the special cases where
3290 * the eeprom may be wrong or the board simply won't support wake on
3291 * lan on a particular port
3293 switch (pdev->device) {
3294 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3295 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3296 break;
3297 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3298 case E1000_DEV_ID_82576_FIBER:
3299 case E1000_DEV_ID_82576_SERDES:
3300 /* Wake events only supported on port A for dual fiber
3301 * regardless of eeprom setting
3303 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3304 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3305 break;
3306 case E1000_DEV_ID_82576_QUAD_COPPER:
3307 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3308 /* if quad port adapter, disable WoL on all but port A */
3309 if (global_quad_port_a != 0)
3310 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3311 else
3312 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3313 /* Reset for multiple quad port adapters */
3314 if (++global_quad_port_a == 4)
3315 global_quad_port_a = 0;
3316 break;
3317 default:
3318 /* If the device can't wake, don't set software support */
3319 if (!device_can_wakeup(&adapter->pdev->dev))
3320 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3323 /* initialize the wol settings based on the eeprom settings */
3324 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3325 adapter->wol |= E1000_WUFC_MAG;
3327 /* Some vendors want WoL disabled by default, but still supported */
3328 if ((hw->mac.type == e1000_i350) &&
3329 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3330 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3331 adapter->wol = 0;
3334 /* Some vendors want the ability to Use the EEPROM setting as
3335 * enable/disable only, and not for capability
3337 if (((hw->mac.type == e1000_i350) ||
3338 (hw->mac.type == e1000_i354)) &&
3339 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3340 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3341 adapter->wol = 0;
3343 if (hw->mac.type == e1000_i350) {
3344 if (((pdev->subsystem_device == 0x5001) ||
3345 (pdev->subsystem_device == 0x5002)) &&
3346 (hw->bus.func == 0)) {
3347 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3348 adapter->wol = 0;
3350 if (pdev->subsystem_device == 0x1F52)
3351 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3354 device_set_wakeup_enable(&adapter->pdev->dev,
3355 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3357 /* reset the hardware with the new settings */
3358 igb_reset(adapter);
3360 /* Init the I2C interface */
3361 err = igb_init_i2c(adapter);
3362 if (err) {
3363 dev_err(&pdev->dev, "failed to init i2c interface\n");
3364 goto err_eeprom;
3367 /* let the f/w know that the h/w is now under the control of the
3368 * driver.
3370 igb_get_hw_control(adapter);
3372 strcpy(netdev->name, "eth%d");
3373 err = register_netdev(netdev);
3374 if (err)
3375 goto err_register;
3377 /* carrier off reporting is important to ethtool even BEFORE open */
3378 netif_carrier_off(netdev);
3380 #ifdef CONFIG_IGB_DCA
3381 if (dca_add_requester(&pdev->dev) == 0) {
3382 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3383 dev_info(&pdev->dev, "DCA enabled\n");
3384 igb_setup_dca(adapter);
3387 #endif
3388 #ifdef CONFIG_IGB_HWMON
3389 /* Initialize the thermal sensor on i350 devices. */
3390 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3391 u16 ets_word;
3393 /* Read the NVM to determine if this i350 device supports an
3394 * external thermal sensor.
3396 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3397 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3398 adapter->ets = true;
3399 else
3400 adapter->ets = false;
3401 if (igb_sysfs_init(adapter))
3402 dev_err(&pdev->dev,
3403 "failed to allocate sysfs resources\n");
3404 } else {
3405 adapter->ets = false;
3407 #endif
3408 /* Check if Media Autosense is enabled */
3409 adapter->ei = *ei;
3410 if (hw->dev_spec._82575.mas_capable)
3411 igb_init_mas(adapter);
3413 /* do hw tstamp init after resetting */
3414 igb_ptp_init(adapter);
3416 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3417 /* print bus type/speed/width info, not applicable to i354 */
3418 if (hw->mac.type != e1000_i354) {
3419 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3420 netdev->name,
3421 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3422 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3423 "unknown"),
3424 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3425 "Width x4" :
3426 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3427 "Width x2" :
3428 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3429 "Width x1" : "unknown"), netdev->dev_addr);
3432 if ((hw->mac.type >= e1000_i210 ||
3433 igb_get_flash_presence_i210(hw))) {
3434 ret_val = igb_read_part_string(hw, part_str,
3435 E1000_PBANUM_LENGTH);
3436 } else {
3437 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3440 if (ret_val)
3441 strcpy(part_str, "Unknown");
3442 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3443 dev_info(&pdev->dev,
3444 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3445 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3446 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3447 adapter->num_rx_queues, adapter->num_tx_queues);
3448 if (hw->phy.media_type == e1000_media_type_copper) {
3449 switch (hw->mac.type) {
3450 case e1000_i350:
3451 case e1000_i210:
3452 case e1000_i211:
3453 /* Enable EEE for internal copper PHY devices */
3454 err = igb_set_eee_i350(hw, true, true);
3455 if ((!err) &&
3456 (!hw->dev_spec._82575.eee_disable)) {
3457 adapter->eee_advert =
3458 MDIO_EEE_100TX | MDIO_EEE_1000T;
3459 adapter->flags |= IGB_FLAG_EEE;
3461 break;
3462 case e1000_i354:
3463 if ((rd32(E1000_CTRL_EXT) &
3464 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3465 err = igb_set_eee_i354(hw, true, true);
3466 if ((!err) &&
3467 (!hw->dev_spec._82575.eee_disable)) {
3468 adapter->eee_advert =
3469 MDIO_EEE_100TX | MDIO_EEE_1000T;
3470 adapter->flags |= IGB_FLAG_EEE;
3473 break;
3474 default:
3475 break;
3478 pm_runtime_put_noidle(&pdev->dev);
3479 return 0;
3481 err_register:
3482 igb_release_hw_control(adapter);
3483 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3484 err_eeprom:
3485 if (!igb_check_reset_block(hw))
3486 igb_reset_phy(hw);
3488 if (hw->flash_address)
3489 iounmap(hw->flash_address);
3490 err_sw_init:
3491 kfree(adapter->mac_table);
3492 kfree(adapter->shadow_vfta);
3493 igb_clear_interrupt_scheme(adapter);
3494 #ifdef CONFIG_PCI_IOV
3495 igb_disable_sriov(pdev);
3496 #endif
3497 pci_iounmap(pdev, adapter->io_addr);
3498 err_ioremap:
3499 free_netdev(netdev);
3500 err_alloc_etherdev:
3501 pci_release_mem_regions(pdev);
3502 err_pci_reg:
3503 err_dma:
3504 pci_disable_device(pdev);
3505 return err;
3508 #ifdef CONFIG_PCI_IOV
3509 static int igb_disable_sriov(struct pci_dev *pdev)
3511 struct net_device *netdev = pci_get_drvdata(pdev);
3512 struct igb_adapter *adapter = netdev_priv(netdev);
3513 struct e1000_hw *hw = &adapter->hw;
3515 /* reclaim resources allocated to VFs */
3516 if (adapter->vf_data) {
3517 /* disable iov and allow time for transactions to clear */
3518 if (pci_vfs_assigned(pdev)) {
3519 dev_warn(&pdev->dev,
3520 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3521 return -EPERM;
3522 } else {
3523 pci_disable_sriov(pdev);
3524 msleep(500);
3527 kfree(adapter->vf_mac_list);
3528 adapter->vf_mac_list = NULL;
3529 kfree(adapter->vf_data);
3530 adapter->vf_data = NULL;
3531 adapter->vfs_allocated_count = 0;
3532 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3533 wrfl();
3534 msleep(100);
3535 dev_info(&pdev->dev, "IOV Disabled\n");
3537 /* Re-enable DMA Coalescing flag since IOV is turned off */
3538 adapter->flags |= IGB_FLAG_DMAC;
3541 return 0;
3544 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3546 struct net_device *netdev = pci_get_drvdata(pdev);
3547 struct igb_adapter *adapter = netdev_priv(netdev);
3548 int old_vfs = pci_num_vf(pdev);
3549 struct vf_mac_filter *mac_list;
3550 int err = 0;
3551 int num_vf_mac_filters, i;
3553 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3554 err = -EPERM;
3555 goto out;
3557 if (!num_vfs)
3558 goto out;
3560 if (old_vfs) {
3561 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3562 old_vfs, max_vfs);
3563 adapter->vfs_allocated_count = old_vfs;
3564 } else
3565 adapter->vfs_allocated_count = num_vfs;
3567 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3568 sizeof(struct vf_data_storage), GFP_KERNEL);
3570 /* if allocation failed then we do not support SR-IOV */
3571 if (!adapter->vf_data) {
3572 adapter->vfs_allocated_count = 0;
3573 err = -ENOMEM;
3574 goto out;
3577 /* Due to the limited number of RAR entries calculate potential
3578 * number of MAC filters available for the VFs. Reserve entries
3579 * for PF default MAC, PF MAC filters and at least one RAR entry
3580 * for each VF for VF MAC.
3582 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3583 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3584 adapter->vfs_allocated_count);
3586 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3587 sizeof(struct vf_mac_filter),
3588 GFP_KERNEL);
3590 mac_list = adapter->vf_mac_list;
3591 INIT_LIST_HEAD(&adapter->vf_macs.l);
3593 if (adapter->vf_mac_list) {
3594 /* Initialize list of VF MAC filters */
3595 for (i = 0; i < num_vf_mac_filters; i++) {
3596 mac_list->vf = -1;
3597 mac_list->free = true;
3598 list_add(&mac_list->l, &adapter->vf_macs.l);
3599 mac_list++;
3601 } else {
3602 /* If we could not allocate memory for the VF MAC filters
3603 * we can continue without this feature but warn user.
3605 dev_err(&pdev->dev,
3606 "Unable to allocate memory for VF MAC filter list\n");
3609 /* only call pci_enable_sriov() if no VFs are allocated already */
3610 if (!old_vfs) {
3611 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3612 if (err)
3613 goto err_out;
3615 dev_info(&pdev->dev, "%d VFs allocated\n",
3616 adapter->vfs_allocated_count);
3617 for (i = 0; i < adapter->vfs_allocated_count; i++)
3618 igb_vf_configure(adapter, i);
3620 /* DMA Coalescing is not supported in IOV mode. */
3621 adapter->flags &= ~IGB_FLAG_DMAC;
3622 goto out;
3624 err_out:
3625 kfree(adapter->vf_mac_list);
3626 adapter->vf_mac_list = NULL;
3627 kfree(adapter->vf_data);
3628 adapter->vf_data = NULL;
3629 adapter->vfs_allocated_count = 0;
3630 out:
3631 return err;
3634 #endif
3636 * igb_remove_i2c - Cleanup I2C interface
3637 * @adapter: pointer to adapter structure
3639 static void igb_remove_i2c(struct igb_adapter *adapter)
3641 /* free the adapter bus structure */
3642 i2c_del_adapter(&adapter->i2c_adap);
3646 * igb_remove - Device Removal Routine
3647 * @pdev: PCI device information struct
3649 * igb_remove is called by the PCI subsystem to alert the driver
3650 * that it should release a PCI device. The could be caused by a
3651 * Hot-Plug event, or because the driver is going to be removed from
3652 * memory.
3654 static void igb_remove(struct pci_dev *pdev)
3656 struct net_device *netdev = pci_get_drvdata(pdev);
3657 struct igb_adapter *adapter = netdev_priv(netdev);
3658 struct e1000_hw *hw = &adapter->hw;
3660 pm_runtime_get_noresume(&pdev->dev);
3661 #ifdef CONFIG_IGB_HWMON
3662 igb_sysfs_exit(adapter);
3663 #endif
3664 igb_remove_i2c(adapter);
3665 igb_ptp_stop(adapter);
3666 /* The watchdog timer may be rescheduled, so explicitly
3667 * disable watchdog from being rescheduled.
3669 set_bit(__IGB_DOWN, &adapter->state);
3670 del_timer_sync(&adapter->watchdog_timer);
3671 del_timer_sync(&adapter->phy_info_timer);
3673 cancel_work_sync(&adapter->reset_task);
3674 cancel_work_sync(&adapter->watchdog_task);
3676 #ifdef CONFIG_IGB_DCA
3677 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3678 dev_info(&pdev->dev, "DCA disabled\n");
3679 dca_remove_requester(&pdev->dev);
3680 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3681 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3683 #endif
3685 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3686 * would have already happened in close and is redundant.
3688 igb_release_hw_control(adapter);
3690 #ifdef CONFIG_PCI_IOV
3691 igb_disable_sriov(pdev);
3692 #endif
3694 unregister_netdev(netdev);
3696 igb_clear_interrupt_scheme(adapter);
3698 pci_iounmap(pdev, adapter->io_addr);
3699 if (hw->flash_address)
3700 iounmap(hw->flash_address);
3701 pci_release_mem_regions(pdev);
3703 kfree(adapter->mac_table);
3704 kfree(adapter->shadow_vfta);
3705 free_netdev(netdev);
3707 pci_disable_pcie_error_reporting(pdev);
3709 pci_disable_device(pdev);
3713 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3714 * @adapter: board private structure to initialize
3716 * This function initializes the vf specific data storage and then attempts to
3717 * allocate the VFs. The reason for ordering it this way is because it is much
3718 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3719 * the memory for the VFs.
3721 static void igb_probe_vfs(struct igb_adapter *adapter)
3723 #ifdef CONFIG_PCI_IOV
3724 struct pci_dev *pdev = adapter->pdev;
3725 struct e1000_hw *hw = &adapter->hw;
3727 /* Virtualization features not supported on i210 family. */
3728 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3729 return;
3731 /* Of the below we really only want the effect of getting
3732 * IGB_FLAG_HAS_MSIX set (if available), without which
3733 * igb_enable_sriov() has no effect.
3735 igb_set_interrupt_capability(adapter, true);
3736 igb_reset_interrupt_capability(adapter);
3738 pci_sriov_set_totalvfs(pdev, 7);
3739 igb_enable_sriov(pdev, max_vfs);
3741 #endif /* CONFIG_PCI_IOV */
3744 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3746 struct e1000_hw *hw = &adapter->hw;
3747 unsigned int max_rss_queues;
3749 /* Determine the maximum number of RSS queues supported. */
3750 switch (hw->mac.type) {
3751 case e1000_i211:
3752 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3753 break;
3754 case e1000_82575:
3755 case e1000_i210:
3756 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3757 break;
3758 case e1000_i350:
3759 /* I350 cannot do RSS and SR-IOV at the same time */
3760 if (!!adapter->vfs_allocated_count) {
3761 max_rss_queues = 1;
3762 break;
3764 /* fall through */
3765 case e1000_82576:
3766 if (!!adapter->vfs_allocated_count) {
3767 max_rss_queues = 2;
3768 break;
3770 /* fall through */
3771 case e1000_82580:
3772 case e1000_i354:
3773 default:
3774 max_rss_queues = IGB_MAX_RX_QUEUES;
3775 break;
3778 return max_rss_queues;
3781 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3783 u32 max_rss_queues;
3785 max_rss_queues = igb_get_max_rss_queues(adapter);
3786 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3788 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3791 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3792 const u32 max_rss_queues)
3794 struct e1000_hw *hw = &adapter->hw;
3796 /* Determine if we need to pair queues. */
3797 switch (hw->mac.type) {
3798 case e1000_82575:
3799 case e1000_i211:
3800 /* Device supports enough interrupts without queue pairing. */
3801 break;
3802 case e1000_82576:
3803 case e1000_82580:
3804 case e1000_i350:
3805 case e1000_i354:
3806 case e1000_i210:
3807 default:
3808 /* If rss_queues > half of max_rss_queues, pair the queues in
3809 * order to conserve interrupts due to limited supply.
3811 if (adapter->rss_queues > (max_rss_queues / 2))
3812 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3813 else
3814 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3815 break;
3820 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3821 * @adapter: board private structure to initialize
3823 * igb_sw_init initializes the Adapter private data structure.
3824 * Fields are initialized based on PCI device information and
3825 * OS network device settings (MTU size).
3827 static int igb_sw_init(struct igb_adapter *adapter)
3829 struct e1000_hw *hw = &adapter->hw;
3830 struct net_device *netdev = adapter->netdev;
3831 struct pci_dev *pdev = adapter->pdev;
3833 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3835 /* set default ring sizes */
3836 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3837 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3839 /* set default ITR values */
3840 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3841 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3843 /* set default work limits */
3844 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3846 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3847 VLAN_HLEN;
3848 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3850 spin_lock_init(&adapter->nfc_lock);
3851 spin_lock_init(&adapter->stats64_lock);
3852 #ifdef CONFIG_PCI_IOV
3853 switch (hw->mac.type) {
3854 case e1000_82576:
3855 case e1000_i350:
3856 if (max_vfs > 7) {
3857 dev_warn(&pdev->dev,
3858 "Maximum of 7 VFs per PF, using max\n");
3859 max_vfs = adapter->vfs_allocated_count = 7;
3860 } else
3861 adapter->vfs_allocated_count = max_vfs;
3862 if (adapter->vfs_allocated_count)
3863 dev_warn(&pdev->dev,
3864 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3865 break;
3866 default:
3867 break;
3869 #endif /* CONFIG_PCI_IOV */
3871 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3872 adapter->flags |= IGB_FLAG_HAS_MSIX;
3874 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3875 sizeof(struct igb_mac_addr),
3876 GFP_KERNEL);
3877 if (!adapter->mac_table)
3878 return -ENOMEM;
3880 igb_probe_vfs(adapter);
3882 igb_init_queue_configuration(adapter);
3884 /* Setup and initialize a copy of the hw vlan table array */
3885 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3886 GFP_KERNEL);
3887 if (!adapter->shadow_vfta)
3888 return -ENOMEM;
3890 /* This call may decrease the number of queues */
3891 if (igb_init_interrupt_scheme(adapter, true)) {
3892 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3893 return -ENOMEM;
3896 /* Explicitly disable IRQ since the NIC can be in any state. */
3897 igb_irq_disable(adapter);
3899 if (hw->mac.type >= e1000_i350)
3900 adapter->flags &= ~IGB_FLAG_DMAC;
3902 set_bit(__IGB_DOWN, &adapter->state);
3903 return 0;
3907 * igb_open - Called when a network interface is made active
3908 * @netdev: network interface device structure
3910 * Returns 0 on success, negative value on failure
3912 * The open entry point is called when a network interface is made
3913 * active by the system (IFF_UP). At this point all resources needed
3914 * for transmit and receive operations are allocated, the interrupt
3915 * handler is registered with the OS, the watchdog timer is started,
3916 * and the stack is notified that the interface is ready.
3918 static int __igb_open(struct net_device *netdev, bool resuming)
3920 struct igb_adapter *adapter = netdev_priv(netdev);
3921 struct e1000_hw *hw = &adapter->hw;
3922 struct pci_dev *pdev = adapter->pdev;
3923 int err;
3924 int i;
3926 /* disallow open during test */
3927 if (test_bit(__IGB_TESTING, &adapter->state)) {
3928 WARN_ON(resuming);
3929 return -EBUSY;
3932 if (!resuming)
3933 pm_runtime_get_sync(&pdev->dev);
3935 netif_carrier_off(netdev);
3937 /* allocate transmit descriptors */
3938 err = igb_setup_all_tx_resources(adapter);
3939 if (err)
3940 goto err_setup_tx;
3942 /* allocate receive descriptors */
3943 err = igb_setup_all_rx_resources(adapter);
3944 if (err)
3945 goto err_setup_rx;
3947 igb_power_up_link(adapter);
3949 /* before we allocate an interrupt, we must be ready to handle it.
3950 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3951 * as soon as we call pci_request_irq, so we have to setup our
3952 * clean_rx handler before we do so.
3954 igb_configure(adapter);
3956 err = igb_request_irq(adapter);
3957 if (err)
3958 goto err_req_irq;
3960 /* Notify the stack of the actual queue counts. */
3961 err = netif_set_real_num_tx_queues(adapter->netdev,
3962 adapter->num_tx_queues);
3963 if (err)
3964 goto err_set_queues;
3966 err = netif_set_real_num_rx_queues(adapter->netdev,
3967 adapter->num_rx_queues);
3968 if (err)
3969 goto err_set_queues;
3971 /* From here on the code is the same as igb_up() */
3972 clear_bit(__IGB_DOWN, &adapter->state);
3974 for (i = 0; i < adapter->num_q_vectors; i++)
3975 napi_enable(&(adapter->q_vector[i]->napi));
3977 /* Clear any pending interrupts. */
3978 rd32(E1000_TSICR);
3979 rd32(E1000_ICR);
3981 igb_irq_enable(adapter);
3983 /* notify VFs that reset has been completed */
3984 if (adapter->vfs_allocated_count) {
3985 u32 reg_data = rd32(E1000_CTRL_EXT);
3987 reg_data |= E1000_CTRL_EXT_PFRSTD;
3988 wr32(E1000_CTRL_EXT, reg_data);
3991 netif_tx_start_all_queues(netdev);
3993 if (!resuming)
3994 pm_runtime_put(&pdev->dev);
3996 /* start the watchdog. */
3997 hw->mac.get_link_status = 1;
3998 schedule_work(&adapter->watchdog_task);
4000 return 0;
4002 err_set_queues:
4003 igb_free_irq(adapter);
4004 err_req_irq:
4005 igb_release_hw_control(adapter);
4006 igb_power_down_link(adapter);
4007 igb_free_all_rx_resources(adapter);
4008 err_setup_rx:
4009 igb_free_all_tx_resources(adapter);
4010 err_setup_tx:
4011 igb_reset(adapter);
4012 if (!resuming)
4013 pm_runtime_put(&pdev->dev);
4015 return err;
4018 int igb_open(struct net_device *netdev)
4020 return __igb_open(netdev, false);
4024 * igb_close - Disables a network interface
4025 * @netdev: network interface device structure
4027 * Returns 0, this is not allowed to fail
4029 * The close entry point is called when an interface is de-activated
4030 * by the OS. The hardware is still under the driver's control, but
4031 * needs to be disabled. A global MAC reset is issued to stop the
4032 * hardware, and all transmit and receive resources are freed.
4034 static int __igb_close(struct net_device *netdev, bool suspending)
4036 struct igb_adapter *adapter = netdev_priv(netdev);
4037 struct pci_dev *pdev = adapter->pdev;
4039 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4041 if (!suspending)
4042 pm_runtime_get_sync(&pdev->dev);
4044 igb_down(adapter);
4045 igb_free_irq(adapter);
4047 igb_free_all_tx_resources(adapter);
4048 igb_free_all_rx_resources(adapter);
4050 if (!suspending)
4051 pm_runtime_put_sync(&pdev->dev);
4052 return 0;
4055 int igb_close(struct net_device *netdev)
4057 if (netif_device_present(netdev) || netdev->dismantle)
4058 return __igb_close(netdev, false);
4059 return 0;
4063 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4064 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4066 * Return 0 on success, negative on failure
4068 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4070 struct device *dev = tx_ring->dev;
4071 int size;
4073 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4075 tx_ring->tx_buffer_info = vmalloc(size);
4076 if (!tx_ring->tx_buffer_info)
4077 goto err;
4079 /* round up to nearest 4K */
4080 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4081 tx_ring->size = ALIGN(tx_ring->size, 4096);
4083 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4084 &tx_ring->dma, GFP_KERNEL);
4085 if (!tx_ring->desc)
4086 goto err;
4088 tx_ring->next_to_use = 0;
4089 tx_ring->next_to_clean = 0;
4091 return 0;
4093 err:
4094 vfree(tx_ring->tx_buffer_info);
4095 tx_ring->tx_buffer_info = NULL;
4096 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4097 return -ENOMEM;
4101 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4102 * (Descriptors) for all queues
4103 * @adapter: board private structure
4105 * Return 0 on success, negative on failure
4107 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4109 struct pci_dev *pdev = adapter->pdev;
4110 int i, err = 0;
4112 for (i = 0; i < adapter->num_tx_queues; i++) {
4113 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4114 if (err) {
4115 dev_err(&pdev->dev,
4116 "Allocation for Tx Queue %u failed\n", i);
4117 for (i--; i >= 0; i--)
4118 igb_free_tx_resources(adapter->tx_ring[i]);
4119 break;
4123 return err;
4127 * igb_setup_tctl - configure the transmit control registers
4128 * @adapter: Board private structure
4130 void igb_setup_tctl(struct igb_adapter *adapter)
4132 struct e1000_hw *hw = &adapter->hw;
4133 u32 tctl;
4135 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4136 wr32(E1000_TXDCTL(0), 0);
4138 /* Program the Transmit Control Register */
4139 tctl = rd32(E1000_TCTL);
4140 tctl &= ~E1000_TCTL_CT;
4141 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4142 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4144 igb_config_collision_dist(hw);
4146 /* Enable transmits */
4147 tctl |= E1000_TCTL_EN;
4149 wr32(E1000_TCTL, tctl);
4153 * igb_configure_tx_ring - Configure transmit ring after Reset
4154 * @adapter: board private structure
4155 * @ring: tx ring to configure
4157 * Configure a transmit ring after a reset.
4159 void igb_configure_tx_ring(struct igb_adapter *adapter,
4160 struct igb_ring *ring)
4162 struct e1000_hw *hw = &adapter->hw;
4163 u32 txdctl = 0;
4164 u64 tdba = ring->dma;
4165 int reg_idx = ring->reg_idx;
4167 wr32(E1000_TDLEN(reg_idx),
4168 ring->count * sizeof(union e1000_adv_tx_desc));
4169 wr32(E1000_TDBAL(reg_idx),
4170 tdba & 0x00000000ffffffffULL);
4171 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4173 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4174 wr32(E1000_TDH(reg_idx), 0);
4175 writel(0, ring->tail);
4177 txdctl |= IGB_TX_PTHRESH;
4178 txdctl |= IGB_TX_HTHRESH << 8;
4179 txdctl |= IGB_TX_WTHRESH << 16;
4181 /* reinitialize tx_buffer_info */
4182 memset(ring->tx_buffer_info, 0,
4183 sizeof(struct igb_tx_buffer) * ring->count);
4185 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4186 wr32(E1000_TXDCTL(reg_idx), txdctl);
4190 * igb_configure_tx - Configure transmit Unit after Reset
4191 * @adapter: board private structure
4193 * Configure the Tx unit of the MAC after a reset.
4195 static void igb_configure_tx(struct igb_adapter *adapter)
4197 struct e1000_hw *hw = &adapter->hw;
4198 int i;
4200 /* disable the queues */
4201 for (i = 0; i < adapter->num_tx_queues; i++)
4202 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4204 wrfl();
4205 usleep_range(10000, 20000);
4207 for (i = 0; i < adapter->num_tx_queues; i++)
4208 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4212 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4213 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4215 * Returns 0 on success, negative on failure
4217 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4219 struct device *dev = rx_ring->dev;
4220 int size;
4222 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4224 rx_ring->rx_buffer_info = vmalloc(size);
4225 if (!rx_ring->rx_buffer_info)
4226 goto err;
4228 /* Round up to nearest 4K */
4229 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4230 rx_ring->size = ALIGN(rx_ring->size, 4096);
4232 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4233 &rx_ring->dma, GFP_KERNEL);
4234 if (!rx_ring->desc)
4235 goto err;
4237 rx_ring->next_to_alloc = 0;
4238 rx_ring->next_to_clean = 0;
4239 rx_ring->next_to_use = 0;
4241 return 0;
4243 err:
4244 vfree(rx_ring->rx_buffer_info);
4245 rx_ring->rx_buffer_info = NULL;
4246 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4247 return -ENOMEM;
4251 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4252 * (Descriptors) for all queues
4253 * @adapter: board private structure
4255 * Return 0 on success, negative on failure
4257 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4259 struct pci_dev *pdev = adapter->pdev;
4260 int i, err = 0;
4262 for (i = 0; i < adapter->num_rx_queues; i++) {
4263 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4264 if (err) {
4265 dev_err(&pdev->dev,
4266 "Allocation for Rx Queue %u failed\n", i);
4267 for (i--; i >= 0; i--)
4268 igb_free_rx_resources(adapter->rx_ring[i]);
4269 break;
4273 return err;
4277 * igb_setup_mrqc - configure the multiple receive queue control registers
4278 * @adapter: Board private structure
4280 static void igb_setup_mrqc(struct igb_adapter *adapter)
4282 struct e1000_hw *hw = &adapter->hw;
4283 u32 mrqc, rxcsum;
4284 u32 j, num_rx_queues;
4285 u32 rss_key[10];
4287 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4288 for (j = 0; j < 10; j++)
4289 wr32(E1000_RSSRK(j), rss_key[j]);
4291 num_rx_queues = adapter->rss_queues;
4293 switch (hw->mac.type) {
4294 case e1000_82576:
4295 /* 82576 supports 2 RSS queues for SR-IOV */
4296 if (adapter->vfs_allocated_count)
4297 num_rx_queues = 2;
4298 break;
4299 default:
4300 break;
4303 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4304 for (j = 0; j < IGB_RETA_SIZE; j++)
4305 adapter->rss_indir_tbl[j] =
4306 (j * num_rx_queues) / IGB_RETA_SIZE;
4307 adapter->rss_indir_tbl_init = num_rx_queues;
4309 igb_write_rss_indir_tbl(adapter);
4311 /* Disable raw packet checksumming so that RSS hash is placed in
4312 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4313 * offloads as they are enabled by default
4315 rxcsum = rd32(E1000_RXCSUM);
4316 rxcsum |= E1000_RXCSUM_PCSD;
4318 if (adapter->hw.mac.type >= e1000_82576)
4319 /* Enable Receive Checksum Offload for SCTP */
4320 rxcsum |= E1000_RXCSUM_CRCOFL;
4322 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4323 wr32(E1000_RXCSUM, rxcsum);
4325 /* Generate RSS hash based on packet types, TCP/UDP
4326 * port numbers and/or IPv4/v6 src and dst addresses
4328 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4329 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4330 E1000_MRQC_RSS_FIELD_IPV6 |
4331 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4332 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4334 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4335 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4336 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4337 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4339 /* If VMDq is enabled then we set the appropriate mode for that, else
4340 * we default to RSS so that an RSS hash is calculated per packet even
4341 * if we are only using one queue
4343 if (adapter->vfs_allocated_count) {
4344 if (hw->mac.type > e1000_82575) {
4345 /* Set the default pool for the PF's first queue */
4346 u32 vtctl = rd32(E1000_VT_CTL);
4348 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4349 E1000_VT_CTL_DISABLE_DEF_POOL);
4350 vtctl |= adapter->vfs_allocated_count <<
4351 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4352 wr32(E1000_VT_CTL, vtctl);
4354 if (adapter->rss_queues > 1)
4355 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4356 else
4357 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4358 } else {
4359 if (hw->mac.type != e1000_i211)
4360 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4362 igb_vmm_control(adapter);
4364 wr32(E1000_MRQC, mrqc);
4368 * igb_setup_rctl - configure the receive control registers
4369 * @adapter: Board private structure
4371 void igb_setup_rctl(struct igb_adapter *adapter)
4373 struct e1000_hw *hw = &adapter->hw;
4374 u32 rctl;
4376 rctl = rd32(E1000_RCTL);
4378 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4379 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4381 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4382 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4384 /* enable stripping of CRC. It's unlikely this will break BMC
4385 * redirection as it did with e1000. Newer features require
4386 * that the HW strips the CRC.
4388 rctl |= E1000_RCTL_SECRC;
4390 /* disable store bad packets and clear size bits. */
4391 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4393 /* enable LPE to allow for reception of jumbo frames */
4394 rctl |= E1000_RCTL_LPE;
4396 /* disable queue 0 to prevent tail write w/o re-config */
4397 wr32(E1000_RXDCTL(0), 0);
4399 /* Attention!!! For SR-IOV PF driver operations you must enable
4400 * queue drop for all VF and PF queues to prevent head of line blocking
4401 * if an un-trusted VF does not provide descriptors to hardware.
4403 if (adapter->vfs_allocated_count) {
4404 /* set all queue drop enable bits */
4405 wr32(E1000_QDE, ALL_QUEUES);
4408 /* This is useful for sniffing bad packets. */
4409 if (adapter->netdev->features & NETIF_F_RXALL) {
4410 /* UPE and MPE will be handled by normal PROMISC logic
4411 * in e1000e_set_rx_mode
4413 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4414 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4415 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4417 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4418 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4419 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4420 * and that breaks VLANs.
4424 wr32(E1000_RCTL, rctl);
4427 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4428 int vfn)
4430 struct e1000_hw *hw = &adapter->hw;
4431 u32 vmolr;
4433 if (size > MAX_JUMBO_FRAME_SIZE)
4434 size = MAX_JUMBO_FRAME_SIZE;
4436 vmolr = rd32(E1000_VMOLR(vfn));
4437 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4438 vmolr |= size | E1000_VMOLR_LPE;
4439 wr32(E1000_VMOLR(vfn), vmolr);
4441 return 0;
4444 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4445 int vfn, bool enable)
4447 struct e1000_hw *hw = &adapter->hw;
4448 u32 val, reg;
4450 if (hw->mac.type < e1000_82576)
4451 return;
4453 if (hw->mac.type == e1000_i350)
4454 reg = E1000_DVMOLR(vfn);
4455 else
4456 reg = E1000_VMOLR(vfn);
4458 val = rd32(reg);
4459 if (enable)
4460 val |= E1000_VMOLR_STRVLAN;
4461 else
4462 val &= ~(E1000_VMOLR_STRVLAN);
4463 wr32(reg, val);
4466 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4467 int vfn, bool aupe)
4469 struct e1000_hw *hw = &adapter->hw;
4470 u32 vmolr;
4472 /* This register exists only on 82576 and newer so if we are older then
4473 * we should exit and do nothing
4475 if (hw->mac.type < e1000_82576)
4476 return;
4478 vmolr = rd32(E1000_VMOLR(vfn));
4479 if (aupe)
4480 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4481 else
4482 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4484 /* clear all bits that might not be set */
4485 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4487 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4488 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4489 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4490 * multicast packets
4492 if (vfn <= adapter->vfs_allocated_count)
4493 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4495 wr32(E1000_VMOLR(vfn), vmolr);
4499 * igb_configure_rx_ring - Configure a receive ring after Reset
4500 * @adapter: board private structure
4501 * @ring: receive ring to be configured
4503 * Configure the Rx unit of the MAC after a reset.
4505 void igb_configure_rx_ring(struct igb_adapter *adapter,
4506 struct igb_ring *ring)
4508 struct e1000_hw *hw = &adapter->hw;
4509 union e1000_adv_rx_desc *rx_desc;
4510 u64 rdba = ring->dma;
4511 int reg_idx = ring->reg_idx;
4512 u32 srrctl = 0, rxdctl = 0;
4514 /* disable the queue */
4515 wr32(E1000_RXDCTL(reg_idx), 0);
4517 /* Set DMA base address registers */
4518 wr32(E1000_RDBAL(reg_idx),
4519 rdba & 0x00000000ffffffffULL);
4520 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4521 wr32(E1000_RDLEN(reg_idx),
4522 ring->count * sizeof(union e1000_adv_rx_desc));
4524 /* initialize head and tail */
4525 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4526 wr32(E1000_RDH(reg_idx), 0);
4527 writel(0, ring->tail);
4529 /* set descriptor configuration */
4530 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4531 if (ring_uses_large_buffer(ring))
4532 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4533 else
4534 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4535 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4536 if (hw->mac.type >= e1000_82580)
4537 srrctl |= E1000_SRRCTL_TIMESTAMP;
4538 /* Only set Drop Enable if we are supporting multiple queues */
4539 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4540 srrctl |= E1000_SRRCTL_DROP_EN;
4542 wr32(E1000_SRRCTL(reg_idx), srrctl);
4544 /* set filtering for VMDQ pools */
4545 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4547 rxdctl |= IGB_RX_PTHRESH;
4548 rxdctl |= IGB_RX_HTHRESH << 8;
4549 rxdctl |= IGB_RX_WTHRESH << 16;
4551 /* initialize rx_buffer_info */
4552 memset(ring->rx_buffer_info, 0,
4553 sizeof(struct igb_rx_buffer) * ring->count);
4555 /* initialize Rx descriptor 0 */
4556 rx_desc = IGB_RX_DESC(ring, 0);
4557 rx_desc->wb.upper.length = 0;
4559 /* enable receive descriptor fetching */
4560 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4561 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4564 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4565 struct igb_ring *rx_ring)
4567 /* set build_skb and buffer size flags */
4568 clear_ring_build_skb_enabled(rx_ring);
4569 clear_ring_uses_large_buffer(rx_ring);
4571 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4572 return;
4574 set_ring_build_skb_enabled(rx_ring);
4576 #if (PAGE_SIZE < 8192)
4577 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4578 return;
4580 set_ring_uses_large_buffer(rx_ring);
4581 #endif
4585 * igb_configure_rx - Configure receive Unit after Reset
4586 * @adapter: board private structure
4588 * Configure the Rx unit of the MAC after a reset.
4590 static void igb_configure_rx(struct igb_adapter *adapter)
4592 int i;
4594 /* set the correct pool for the PF default MAC address in entry 0 */
4595 igb_set_default_mac_filter(adapter);
4597 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4598 * the Base and Length of the Rx Descriptor Ring
4600 for (i = 0; i < adapter->num_rx_queues; i++) {
4601 struct igb_ring *rx_ring = adapter->rx_ring[i];
4603 igb_set_rx_buffer_len(adapter, rx_ring);
4604 igb_configure_rx_ring(adapter, rx_ring);
4609 * igb_free_tx_resources - Free Tx Resources per Queue
4610 * @tx_ring: Tx descriptor ring for a specific queue
4612 * Free all transmit software resources
4614 void igb_free_tx_resources(struct igb_ring *tx_ring)
4616 igb_clean_tx_ring(tx_ring);
4618 vfree(tx_ring->tx_buffer_info);
4619 tx_ring->tx_buffer_info = NULL;
4621 /* if not set, then don't free */
4622 if (!tx_ring->desc)
4623 return;
4625 dma_free_coherent(tx_ring->dev, tx_ring->size,
4626 tx_ring->desc, tx_ring->dma);
4628 tx_ring->desc = NULL;
4632 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4633 * @adapter: board private structure
4635 * Free all transmit software resources
4637 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4639 int i;
4641 for (i = 0; i < adapter->num_tx_queues; i++)
4642 if (adapter->tx_ring[i])
4643 igb_free_tx_resources(adapter->tx_ring[i]);
4647 * igb_clean_tx_ring - Free Tx Buffers
4648 * @tx_ring: ring to be cleaned
4650 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4652 u16 i = tx_ring->next_to_clean;
4653 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4655 while (i != tx_ring->next_to_use) {
4656 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4658 /* Free all the Tx ring sk_buffs */
4659 dev_kfree_skb_any(tx_buffer->skb);
4661 /* unmap skb header data */
4662 dma_unmap_single(tx_ring->dev,
4663 dma_unmap_addr(tx_buffer, dma),
4664 dma_unmap_len(tx_buffer, len),
4665 DMA_TO_DEVICE);
4667 /* check for eop_desc to determine the end of the packet */
4668 eop_desc = tx_buffer->next_to_watch;
4669 tx_desc = IGB_TX_DESC(tx_ring, i);
4671 /* unmap remaining buffers */
4672 while (tx_desc != eop_desc) {
4673 tx_buffer++;
4674 tx_desc++;
4675 i++;
4676 if (unlikely(i == tx_ring->count)) {
4677 i = 0;
4678 tx_buffer = tx_ring->tx_buffer_info;
4679 tx_desc = IGB_TX_DESC(tx_ring, 0);
4682 /* unmap any remaining paged data */
4683 if (dma_unmap_len(tx_buffer, len))
4684 dma_unmap_page(tx_ring->dev,
4685 dma_unmap_addr(tx_buffer, dma),
4686 dma_unmap_len(tx_buffer, len),
4687 DMA_TO_DEVICE);
4690 /* move us one more past the eop_desc for start of next pkt */
4691 tx_buffer++;
4692 i++;
4693 if (unlikely(i == tx_ring->count)) {
4694 i = 0;
4695 tx_buffer = tx_ring->tx_buffer_info;
4699 /* reset BQL for queue */
4700 netdev_tx_reset_queue(txring_txq(tx_ring));
4702 /* reset next_to_use and next_to_clean */
4703 tx_ring->next_to_use = 0;
4704 tx_ring->next_to_clean = 0;
4708 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4709 * @adapter: board private structure
4711 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4713 int i;
4715 for (i = 0; i < adapter->num_tx_queues; i++)
4716 if (adapter->tx_ring[i])
4717 igb_clean_tx_ring(adapter->tx_ring[i]);
4721 * igb_free_rx_resources - Free Rx Resources
4722 * @rx_ring: ring to clean the resources from
4724 * Free all receive software resources
4726 void igb_free_rx_resources(struct igb_ring *rx_ring)
4728 igb_clean_rx_ring(rx_ring);
4730 vfree(rx_ring->rx_buffer_info);
4731 rx_ring->rx_buffer_info = NULL;
4733 /* if not set, then don't free */
4734 if (!rx_ring->desc)
4735 return;
4737 dma_free_coherent(rx_ring->dev, rx_ring->size,
4738 rx_ring->desc, rx_ring->dma);
4740 rx_ring->desc = NULL;
4744 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4745 * @adapter: board private structure
4747 * Free all receive software resources
4749 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4751 int i;
4753 for (i = 0; i < adapter->num_rx_queues; i++)
4754 if (adapter->rx_ring[i])
4755 igb_free_rx_resources(adapter->rx_ring[i]);
4759 * igb_clean_rx_ring - Free Rx Buffers per Queue
4760 * @rx_ring: ring to free buffers from
4762 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4764 u16 i = rx_ring->next_to_clean;
4766 if (rx_ring->skb)
4767 dev_kfree_skb(rx_ring->skb);
4768 rx_ring->skb = NULL;
4770 /* Free all the Rx ring sk_buffs */
4771 while (i != rx_ring->next_to_alloc) {
4772 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4774 /* Invalidate cache lines that may have been written to by
4775 * device so that we avoid corrupting memory.
4777 dma_sync_single_range_for_cpu(rx_ring->dev,
4778 buffer_info->dma,
4779 buffer_info->page_offset,
4780 igb_rx_bufsz(rx_ring),
4781 DMA_FROM_DEVICE);
4783 /* free resources associated with mapping */
4784 dma_unmap_page_attrs(rx_ring->dev,
4785 buffer_info->dma,
4786 igb_rx_pg_size(rx_ring),
4787 DMA_FROM_DEVICE,
4788 IGB_RX_DMA_ATTR);
4789 __page_frag_cache_drain(buffer_info->page,
4790 buffer_info->pagecnt_bias);
4792 i++;
4793 if (i == rx_ring->count)
4794 i = 0;
4797 rx_ring->next_to_alloc = 0;
4798 rx_ring->next_to_clean = 0;
4799 rx_ring->next_to_use = 0;
4803 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4804 * @adapter: board private structure
4806 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4808 int i;
4810 for (i = 0; i < adapter->num_rx_queues; i++)
4811 if (adapter->rx_ring[i])
4812 igb_clean_rx_ring(adapter->rx_ring[i]);
4816 * igb_set_mac - Change the Ethernet Address of the NIC
4817 * @netdev: network interface device structure
4818 * @p: pointer to an address structure
4820 * Returns 0 on success, negative on failure
4822 static int igb_set_mac(struct net_device *netdev, void *p)
4824 struct igb_adapter *adapter = netdev_priv(netdev);
4825 struct e1000_hw *hw = &adapter->hw;
4826 struct sockaddr *addr = p;
4828 if (!is_valid_ether_addr(addr->sa_data))
4829 return -EADDRNOTAVAIL;
4831 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4832 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4834 /* set the correct pool for the new PF MAC address in entry 0 */
4835 igb_set_default_mac_filter(adapter);
4837 return 0;
4841 * igb_write_mc_addr_list - write multicast addresses to MTA
4842 * @netdev: network interface device structure
4844 * Writes multicast address list to the MTA hash table.
4845 * Returns: -ENOMEM on failure
4846 * 0 on no addresses written
4847 * X on writing X addresses to MTA
4849 static int igb_write_mc_addr_list(struct net_device *netdev)
4851 struct igb_adapter *adapter = netdev_priv(netdev);
4852 struct e1000_hw *hw = &adapter->hw;
4853 struct netdev_hw_addr *ha;
4854 u8 *mta_list;
4855 int i;
4857 if (netdev_mc_empty(netdev)) {
4858 /* nothing to program, so clear mc list */
4859 igb_update_mc_addr_list(hw, NULL, 0);
4860 igb_restore_vf_multicasts(adapter);
4861 return 0;
4864 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4865 if (!mta_list)
4866 return -ENOMEM;
4868 /* The shared function expects a packed array of only addresses. */
4869 i = 0;
4870 netdev_for_each_mc_addr(ha, netdev)
4871 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4873 igb_update_mc_addr_list(hw, mta_list, i);
4874 kfree(mta_list);
4876 return netdev_mc_count(netdev);
4879 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4881 struct e1000_hw *hw = &adapter->hw;
4882 u32 i, pf_id;
4884 switch (hw->mac.type) {
4885 case e1000_i210:
4886 case e1000_i211:
4887 case e1000_i350:
4888 /* VLAN filtering needed for VLAN prio filter */
4889 if (adapter->netdev->features & NETIF_F_NTUPLE)
4890 break;
4891 /* fall through */
4892 case e1000_82576:
4893 case e1000_82580:
4894 case e1000_i354:
4895 /* VLAN filtering needed for pool filtering */
4896 if (adapter->vfs_allocated_count)
4897 break;
4898 /* fall through */
4899 default:
4900 return 1;
4903 /* We are already in VLAN promisc, nothing to do */
4904 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4905 return 0;
4907 if (!adapter->vfs_allocated_count)
4908 goto set_vfta;
4910 /* Add PF to all active pools */
4911 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4913 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4914 u32 vlvf = rd32(E1000_VLVF(i));
4916 vlvf |= BIT(pf_id);
4917 wr32(E1000_VLVF(i), vlvf);
4920 set_vfta:
4921 /* Set all bits in the VLAN filter table array */
4922 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4923 hw->mac.ops.write_vfta(hw, i, ~0U);
4925 /* Set flag so we don't redo unnecessary work */
4926 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4928 return 0;
4931 #define VFTA_BLOCK_SIZE 8
4932 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4934 struct e1000_hw *hw = &adapter->hw;
4935 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4936 u32 vid_start = vfta_offset * 32;
4937 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4938 u32 i, vid, word, bits, pf_id;
4940 /* guarantee that we don't scrub out management VLAN */
4941 vid = adapter->mng_vlan_id;
4942 if (vid >= vid_start && vid < vid_end)
4943 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4945 if (!adapter->vfs_allocated_count)
4946 goto set_vfta;
4948 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4950 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4951 u32 vlvf = rd32(E1000_VLVF(i));
4953 /* pull VLAN ID from VLVF */
4954 vid = vlvf & VLAN_VID_MASK;
4956 /* only concern ourselves with a certain range */
4957 if (vid < vid_start || vid >= vid_end)
4958 continue;
4960 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4961 /* record VLAN ID in VFTA */
4962 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4964 /* if PF is part of this then continue */
4965 if (test_bit(vid, adapter->active_vlans))
4966 continue;
4969 /* remove PF from the pool */
4970 bits = ~BIT(pf_id);
4971 bits &= rd32(E1000_VLVF(i));
4972 wr32(E1000_VLVF(i), bits);
4975 set_vfta:
4976 /* extract values from active_vlans and write back to VFTA */
4977 for (i = VFTA_BLOCK_SIZE; i--;) {
4978 vid = (vfta_offset + i) * 32;
4979 word = vid / BITS_PER_LONG;
4980 bits = vid % BITS_PER_LONG;
4982 vfta[i] |= adapter->active_vlans[word] >> bits;
4984 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4988 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4990 u32 i;
4992 /* We are not in VLAN promisc, nothing to do */
4993 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4994 return;
4996 /* Set flag so we don't redo unnecessary work */
4997 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4999 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5000 igb_scrub_vfta(adapter, i);
5004 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5005 * @netdev: network interface device structure
5007 * The set_rx_mode entry point is called whenever the unicast or multicast
5008 * address lists or the network interface flags are updated. This routine is
5009 * responsible for configuring the hardware for proper unicast, multicast,
5010 * promiscuous mode, and all-multi behavior.
5012 static void igb_set_rx_mode(struct net_device *netdev)
5014 struct igb_adapter *adapter = netdev_priv(netdev);
5015 struct e1000_hw *hw = &adapter->hw;
5016 unsigned int vfn = adapter->vfs_allocated_count;
5017 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5018 int count;
5020 /* Check for Promiscuous and All Multicast modes */
5021 if (netdev->flags & IFF_PROMISC) {
5022 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5023 vmolr |= E1000_VMOLR_MPME;
5025 /* enable use of UTA filter to force packets to default pool */
5026 if (hw->mac.type == e1000_82576)
5027 vmolr |= E1000_VMOLR_ROPE;
5028 } else {
5029 if (netdev->flags & IFF_ALLMULTI) {
5030 rctl |= E1000_RCTL_MPE;
5031 vmolr |= E1000_VMOLR_MPME;
5032 } else {
5033 /* Write addresses to the MTA, if the attempt fails
5034 * then we should just turn on promiscuous mode so
5035 * that we can at least receive multicast traffic
5037 count = igb_write_mc_addr_list(netdev);
5038 if (count < 0) {
5039 rctl |= E1000_RCTL_MPE;
5040 vmolr |= E1000_VMOLR_MPME;
5041 } else if (count) {
5042 vmolr |= E1000_VMOLR_ROMPE;
5047 /* Write addresses to available RAR registers, if there is not
5048 * sufficient space to store all the addresses then enable
5049 * unicast promiscuous mode
5051 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5052 rctl |= E1000_RCTL_UPE;
5053 vmolr |= E1000_VMOLR_ROPE;
5056 /* enable VLAN filtering by default */
5057 rctl |= E1000_RCTL_VFE;
5059 /* disable VLAN filtering for modes that require it */
5060 if ((netdev->flags & IFF_PROMISC) ||
5061 (netdev->features & NETIF_F_RXALL)) {
5062 /* if we fail to set all rules then just clear VFE */
5063 if (igb_vlan_promisc_enable(adapter))
5064 rctl &= ~E1000_RCTL_VFE;
5065 } else {
5066 igb_vlan_promisc_disable(adapter);
5069 /* update state of unicast, multicast, and VLAN filtering modes */
5070 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5071 E1000_RCTL_VFE);
5072 wr32(E1000_RCTL, rctl);
5074 #if (PAGE_SIZE < 8192)
5075 if (!adapter->vfs_allocated_count) {
5076 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5077 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5079 #endif
5080 wr32(E1000_RLPML, rlpml);
5082 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5083 * the VMOLR to enable the appropriate modes. Without this workaround
5084 * we will have issues with VLAN tag stripping not being done for frames
5085 * that are only arriving because we are the default pool
5087 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5088 return;
5090 /* set UTA to appropriate mode */
5091 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5093 vmolr |= rd32(E1000_VMOLR(vfn)) &
5094 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5096 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5097 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5098 #if (PAGE_SIZE < 8192)
5099 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5100 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5101 else
5102 #endif
5103 vmolr |= MAX_JUMBO_FRAME_SIZE;
5104 vmolr |= E1000_VMOLR_LPE;
5106 wr32(E1000_VMOLR(vfn), vmolr);
5108 igb_restore_vf_multicasts(adapter);
5111 static void igb_check_wvbr(struct igb_adapter *adapter)
5113 struct e1000_hw *hw = &adapter->hw;
5114 u32 wvbr = 0;
5116 switch (hw->mac.type) {
5117 case e1000_82576:
5118 case e1000_i350:
5119 wvbr = rd32(E1000_WVBR);
5120 if (!wvbr)
5121 return;
5122 break;
5123 default:
5124 break;
5127 adapter->wvbr |= wvbr;
5130 #define IGB_STAGGERED_QUEUE_OFFSET 8
5132 static void igb_spoof_check(struct igb_adapter *adapter)
5134 int j;
5136 if (!adapter->wvbr)
5137 return;
5139 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5140 if (adapter->wvbr & BIT(j) ||
5141 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5142 dev_warn(&adapter->pdev->dev,
5143 "Spoof event(s) detected on VF %d\n", j);
5144 adapter->wvbr &=
5145 ~(BIT(j) |
5146 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5151 /* Need to wait a few seconds after link up to get diagnostic information from
5152 * the phy
5154 static void igb_update_phy_info(struct timer_list *t)
5156 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5157 igb_get_phy_info(&adapter->hw);
5161 * igb_has_link - check shared code for link and determine up/down
5162 * @adapter: pointer to driver private info
5164 bool igb_has_link(struct igb_adapter *adapter)
5166 struct e1000_hw *hw = &adapter->hw;
5167 bool link_active = false;
5169 /* get_link_status is set on LSC (link status) interrupt or
5170 * rx sequence error interrupt. get_link_status will stay
5171 * false until the e1000_check_for_link establishes link
5172 * for copper adapters ONLY
5174 switch (hw->phy.media_type) {
5175 case e1000_media_type_copper:
5176 if (!hw->mac.get_link_status)
5177 return true;
5178 /* fall through */
5179 case e1000_media_type_internal_serdes:
5180 hw->mac.ops.check_for_link(hw);
5181 link_active = !hw->mac.get_link_status;
5182 break;
5183 default:
5184 case e1000_media_type_unknown:
5185 break;
5188 if (((hw->mac.type == e1000_i210) ||
5189 (hw->mac.type == e1000_i211)) &&
5190 (hw->phy.id == I210_I_PHY_ID)) {
5191 if (!netif_carrier_ok(adapter->netdev)) {
5192 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5193 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5194 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5195 adapter->link_check_timeout = jiffies;
5199 return link_active;
5202 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5204 bool ret = false;
5205 u32 ctrl_ext, thstat;
5207 /* check for thermal sensor event on i350 copper only */
5208 if (hw->mac.type == e1000_i350) {
5209 thstat = rd32(E1000_THSTAT);
5210 ctrl_ext = rd32(E1000_CTRL_EXT);
5212 if ((hw->phy.media_type == e1000_media_type_copper) &&
5213 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5214 ret = !!(thstat & event);
5217 return ret;
5221 * igb_check_lvmmc - check for malformed packets received
5222 * and indicated in LVMMC register
5223 * @adapter: pointer to adapter
5225 static void igb_check_lvmmc(struct igb_adapter *adapter)
5227 struct e1000_hw *hw = &adapter->hw;
5228 u32 lvmmc;
5230 lvmmc = rd32(E1000_LVMMC);
5231 if (lvmmc) {
5232 if (unlikely(net_ratelimit())) {
5233 netdev_warn(adapter->netdev,
5234 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5235 lvmmc);
5241 * igb_watchdog - Timer Call-back
5242 * @data: pointer to adapter cast into an unsigned long
5244 static void igb_watchdog(struct timer_list *t)
5246 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5247 /* Do the rest outside of interrupt context */
5248 schedule_work(&adapter->watchdog_task);
5251 static void igb_watchdog_task(struct work_struct *work)
5253 struct igb_adapter *adapter = container_of(work,
5254 struct igb_adapter,
5255 watchdog_task);
5256 struct e1000_hw *hw = &adapter->hw;
5257 struct e1000_phy_info *phy = &hw->phy;
5258 struct net_device *netdev = adapter->netdev;
5259 u32 link;
5260 int i;
5261 u32 connsw;
5262 u16 phy_data, retry_count = 20;
5264 link = igb_has_link(adapter);
5266 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5267 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5268 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5269 else
5270 link = false;
5273 /* Force link down if we have fiber to swap to */
5274 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5275 if (hw->phy.media_type == e1000_media_type_copper) {
5276 connsw = rd32(E1000_CONNSW);
5277 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5278 link = 0;
5281 if (link) {
5282 /* Perform a reset if the media type changed. */
5283 if (hw->dev_spec._82575.media_changed) {
5284 hw->dev_spec._82575.media_changed = false;
5285 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5286 igb_reset(adapter);
5288 /* Cancel scheduled suspend requests. */
5289 pm_runtime_resume(netdev->dev.parent);
5291 if (!netif_carrier_ok(netdev)) {
5292 u32 ctrl;
5294 hw->mac.ops.get_speed_and_duplex(hw,
5295 &adapter->link_speed,
5296 &adapter->link_duplex);
5298 ctrl = rd32(E1000_CTRL);
5299 /* Links status message must follow this format */
5300 netdev_info(netdev,
5301 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5302 netdev->name,
5303 adapter->link_speed,
5304 adapter->link_duplex == FULL_DUPLEX ?
5305 "Full" : "Half",
5306 (ctrl & E1000_CTRL_TFCE) &&
5307 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5308 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5309 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5311 /* disable EEE if enabled */
5312 if ((adapter->flags & IGB_FLAG_EEE) &&
5313 (adapter->link_duplex == HALF_DUPLEX)) {
5314 dev_info(&adapter->pdev->dev,
5315 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5316 adapter->hw.dev_spec._82575.eee_disable = true;
5317 adapter->flags &= ~IGB_FLAG_EEE;
5320 /* check if SmartSpeed worked */
5321 igb_check_downshift(hw);
5322 if (phy->speed_downgraded)
5323 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5325 /* check for thermal sensor event */
5326 if (igb_thermal_sensor_event(hw,
5327 E1000_THSTAT_LINK_THROTTLE))
5328 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5330 /* adjust timeout factor according to speed/duplex */
5331 adapter->tx_timeout_factor = 1;
5332 switch (adapter->link_speed) {
5333 case SPEED_10:
5334 adapter->tx_timeout_factor = 14;
5335 break;
5336 case SPEED_100:
5337 /* maybe add some timeout factor ? */
5338 break;
5341 if (adapter->link_speed != SPEED_1000)
5342 goto no_wait;
5344 /* wait for Remote receiver status OK */
5345 retry_read_status:
5346 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5347 &phy_data)) {
5348 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5349 retry_count) {
5350 msleep(100);
5351 retry_count--;
5352 goto retry_read_status;
5353 } else if (!retry_count) {
5354 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5356 } else {
5357 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5359 no_wait:
5360 netif_carrier_on(netdev);
5362 igb_ping_all_vfs(adapter);
5363 igb_check_vf_rate_limit(adapter);
5365 /* link state has changed, schedule phy info update */
5366 if (!test_bit(__IGB_DOWN, &adapter->state))
5367 mod_timer(&adapter->phy_info_timer,
5368 round_jiffies(jiffies + 2 * HZ));
5370 } else {
5371 if (netif_carrier_ok(netdev)) {
5372 adapter->link_speed = 0;
5373 adapter->link_duplex = 0;
5375 /* check for thermal sensor event */
5376 if (igb_thermal_sensor_event(hw,
5377 E1000_THSTAT_PWR_DOWN)) {
5378 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5381 /* Links status message must follow this format */
5382 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5383 netdev->name);
5384 netif_carrier_off(netdev);
5386 igb_ping_all_vfs(adapter);
5388 /* link state has changed, schedule phy info update */
5389 if (!test_bit(__IGB_DOWN, &adapter->state))
5390 mod_timer(&adapter->phy_info_timer,
5391 round_jiffies(jiffies + 2 * HZ));
5393 /* link is down, time to check for alternate media */
5394 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5395 igb_check_swap_media(adapter);
5396 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5397 schedule_work(&adapter->reset_task);
5398 /* return immediately */
5399 return;
5402 pm_schedule_suspend(netdev->dev.parent,
5403 MSEC_PER_SEC * 5);
5405 /* also check for alternate media here */
5406 } else if (!netif_carrier_ok(netdev) &&
5407 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5408 igb_check_swap_media(adapter);
5409 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5410 schedule_work(&adapter->reset_task);
5411 /* return immediately */
5412 return;
5417 spin_lock(&adapter->stats64_lock);
5418 igb_update_stats(adapter);
5419 spin_unlock(&adapter->stats64_lock);
5421 for (i = 0; i < adapter->num_tx_queues; i++) {
5422 struct igb_ring *tx_ring = adapter->tx_ring[i];
5423 if (!netif_carrier_ok(netdev)) {
5424 /* We've lost link, so the controller stops DMA,
5425 * but we've got queued Tx work that's never going
5426 * to get done, so reset controller to flush Tx.
5427 * (Do the reset outside of interrupt context).
5429 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5430 adapter->tx_timeout_count++;
5431 schedule_work(&adapter->reset_task);
5432 /* return immediately since reset is imminent */
5433 return;
5437 /* Force detection of hung controller every watchdog period */
5438 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5441 /* Cause software interrupt to ensure Rx ring is cleaned */
5442 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5443 u32 eics = 0;
5445 for (i = 0; i < adapter->num_q_vectors; i++)
5446 eics |= adapter->q_vector[i]->eims_value;
5447 wr32(E1000_EICS, eics);
5448 } else {
5449 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5452 igb_spoof_check(adapter);
5453 igb_ptp_rx_hang(adapter);
5454 igb_ptp_tx_hang(adapter);
5456 /* Check LVMMC register on i350/i354 only */
5457 if ((adapter->hw.mac.type == e1000_i350) ||
5458 (adapter->hw.mac.type == e1000_i354))
5459 igb_check_lvmmc(adapter);
5461 /* Reset the timer */
5462 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5463 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5464 mod_timer(&adapter->watchdog_timer,
5465 round_jiffies(jiffies + HZ));
5466 else
5467 mod_timer(&adapter->watchdog_timer,
5468 round_jiffies(jiffies + 2 * HZ));
5472 enum latency_range {
5473 lowest_latency = 0,
5474 low_latency = 1,
5475 bulk_latency = 2,
5476 latency_invalid = 255
5480 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5481 * @q_vector: pointer to q_vector
5483 * Stores a new ITR value based on strictly on packet size. This
5484 * algorithm is less sophisticated than that used in igb_update_itr,
5485 * due to the difficulty of synchronizing statistics across multiple
5486 * receive rings. The divisors and thresholds used by this function
5487 * were determined based on theoretical maximum wire speed and testing
5488 * data, in order to minimize response time while increasing bulk
5489 * throughput.
5490 * This functionality is controlled by ethtool's coalescing settings.
5491 * NOTE: This function is called only when operating in a multiqueue
5492 * receive environment.
5494 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5496 int new_val = q_vector->itr_val;
5497 int avg_wire_size = 0;
5498 struct igb_adapter *adapter = q_vector->adapter;
5499 unsigned int packets;
5501 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5502 * ints/sec - ITR timer value of 120 ticks.
5504 if (adapter->link_speed != SPEED_1000) {
5505 new_val = IGB_4K_ITR;
5506 goto set_itr_val;
5509 packets = q_vector->rx.total_packets;
5510 if (packets)
5511 avg_wire_size = q_vector->rx.total_bytes / packets;
5513 packets = q_vector->tx.total_packets;
5514 if (packets)
5515 avg_wire_size = max_t(u32, avg_wire_size,
5516 q_vector->tx.total_bytes / packets);
5518 /* if avg_wire_size isn't set no work was done */
5519 if (!avg_wire_size)
5520 goto clear_counts;
5522 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5523 avg_wire_size += 24;
5525 /* Don't starve jumbo frames */
5526 avg_wire_size = min(avg_wire_size, 3000);
5528 /* Give a little boost to mid-size frames */
5529 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5530 new_val = avg_wire_size / 3;
5531 else
5532 new_val = avg_wire_size / 2;
5534 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5535 if (new_val < IGB_20K_ITR &&
5536 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5537 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5538 new_val = IGB_20K_ITR;
5540 set_itr_val:
5541 if (new_val != q_vector->itr_val) {
5542 q_vector->itr_val = new_val;
5543 q_vector->set_itr = 1;
5545 clear_counts:
5546 q_vector->rx.total_bytes = 0;
5547 q_vector->rx.total_packets = 0;
5548 q_vector->tx.total_bytes = 0;
5549 q_vector->tx.total_packets = 0;
5553 * igb_update_itr - update the dynamic ITR value based on statistics
5554 * @q_vector: pointer to q_vector
5555 * @ring_container: ring info to update the itr for
5557 * Stores a new ITR value based on packets and byte
5558 * counts during the last interrupt. The advantage of per interrupt
5559 * computation is faster updates and more accurate ITR for the current
5560 * traffic pattern. Constants in this function were computed
5561 * based on theoretical maximum wire speed and thresholds were set based
5562 * on testing data as well as attempting to minimize response time
5563 * while increasing bulk throughput.
5564 * This functionality is controlled by ethtool's coalescing settings.
5565 * NOTE: These calculations are only valid when operating in a single-
5566 * queue environment.
5568 static void igb_update_itr(struct igb_q_vector *q_vector,
5569 struct igb_ring_container *ring_container)
5571 unsigned int packets = ring_container->total_packets;
5572 unsigned int bytes = ring_container->total_bytes;
5573 u8 itrval = ring_container->itr;
5575 /* no packets, exit with status unchanged */
5576 if (packets == 0)
5577 return;
5579 switch (itrval) {
5580 case lowest_latency:
5581 /* handle TSO and jumbo frames */
5582 if (bytes/packets > 8000)
5583 itrval = bulk_latency;
5584 else if ((packets < 5) && (bytes > 512))
5585 itrval = low_latency;
5586 break;
5587 case low_latency: /* 50 usec aka 20000 ints/s */
5588 if (bytes > 10000) {
5589 /* this if handles the TSO accounting */
5590 if (bytes/packets > 8000)
5591 itrval = bulk_latency;
5592 else if ((packets < 10) || ((bytes/packets) > 1200))
5593 itrval = bulk_latency;
5594 else if ((packets > 35))
5595 itrval = lowest_latency;
5596 } else if (bytes/packets > 2000) {
5597 itrval = bulk_latency;
5598 } else if (packets <= 2 && bytes < 512) {
5599 itrval = lowest_latency;
5601 break;
5602 case bulk_latency: /* 250 usec aka 4000 ints/s */
5603 if (bytes > 25000) {
5604 if (packets > 35)
5605 itrval = low_latency;
5606 } else if (bytes < 1500) {
5607 itrval = low_latency;
5609 break;
5612 /* clear work counters since we have the values we need */
5613 ring_container->total_bytes = 0;
5614 ring_container->total_packets = 0;
5616 /* write updated itr to ring container */
5617 ring_container->itr = itrval;
5620 static void igb_set_itr(struct igb_q_vector *q_vector)
5622 struct igb_adapter *adapter = q_vector->adapter;
5623 u32 new_itr = q_vector->itr_val;
5624 u8 current_itr = 0;
5626 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5627 if (adapter->link_speed != SPEED_1000) {
5628 current_itr = 0;
5629 new_itr = IGB_4K_ITR;
5630 goto set_itr_now;
5633 igb_update_itr(q_vector, &q_vector->tx);
5634 igb_update_itr(q_vector, &q_vector->rx);
5636 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5638 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5639 if (current_itr == lowest_latency &&
5640 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5641 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5642 current_itr = low_latency;
5644 switch (current_itr) {
5645 /* counts and packets in update_itr are dependent on these numbers */
5646 case lowest_latency:
5647 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5648 break;
5649 case low_latency:
5650 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5651 break;
5652 case bulk_latency:
5653 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5654 break;
5655 default:
5656 break;
5659 set_itr_now:
5660 if (new_itr != q_vector->itr_val) {
5661 /* this attempts to bias the interrupt rate towards Bulk
5662 * by adding intermediate steps when interrupt rate is
5663 * increasing
5665 new_itr = new_itr > q_vector->itr_val ?
5666 max((new_itr * q_vector->itr_val) /
5667 (new_itr + (q_vector->itr_val >> 2)),
5668 new_itr) : new_itr;
5669 /* Don't write the value here; it resets the adapter's
5670 * internal timer, and causes us to delay far longer than
5671 * we should between interrupts. Instead, we write the ITR
5672 * value at the beginning of the next interrupt so the timing
5673 * ends up being correct.
5675 q_vector->itr_val = new_itr;
5676 q_vector->set_itr = 1;
5680 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5681 struct igb_tx_buffer *first,
5682 u32 vlan_macip_lens, u32 type_tucmd,
5683 u32 mss_l4len_idx)
5685 struct e1000_adv_tx_context_desc *context_desc;
5686 u16 i = tx_ring->next_to_use;
5687 struct timespec64 ts;
5689 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5691 i++;
5692 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5694 /* set bits to identify this as an advanced context descriptor */
5695 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5697 /* For 82575, context index must be unique per ring. */
5698 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5699 mss_l4len_idx |= tx_ring->reg_idx << 4;
5701 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5702 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5703 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5705 /* We assume there is always a valid tx time available. Invalid times
5706 * should have been handled by the upper layers.
5708 if (tx_ring->launchtime_enable) {
5709 ts = ns_to_timespec64(first->skb->tstamp);
5710 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5711 } else {
5712 context_desc->seqnum_seed = 0;
5716 static int igb_tso(struct igb_ring *tx_ring,
5717 struct igb_tx_buffer *first,
5718 u8 *hdr_len)
5720 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5721 struct sk_buff *skb = first->skb;
5722 union {
5723 struct iphdr *v4;
5724 struct ipv6hdr *v6;
5725 unsigned char *hdr;
5726 } ip;
5727 union {
5728 struct tcphdr *tcp;
5729 unsigned char *hdr;
5730 } l4;
5731 u32 paylen, l4_offset;
5732 int err;
5734 if (skb->ip_summed != CHECKSUM_PARTIAL)
5735 return 0;
5737 if (!skb_is_gso(skb))
5738 return 0;
5740 err = skb_cow_head(skb, 0);
5741 if (err < 0)
5742 return err;
5744 ip.hdr = skb_network_header(skb);
5745 l4.hdr = skb_checksum_start(skb);
5747 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5748 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5750 /* initialize outer IP header fields */
5751 if (ip.v4->version == 4) {
5752 unsigned char *csum_start = skb_checksum_start(skb);
5753 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5755 /* IP header will have to cancel out any data that
5756 * is not a part of the outer IP header
5758 ip.v4->check = csum_fold(csum_partial(trans_start,
5759 csum_start - trans_start,
5760 0));
5761 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5763 ip.v4->tot_len = 0;
5764 first->tx_flags |= IGB_TX_FLAGS_TSO |
5765 IGB_TX_FLAGS_CSUM |
5766 IGB_TX_FLAGS_IPV4;
5767 } else {
5768 ip.v6->payload_len = 0;
5769 first->tx_flags |= IGB_TX_FLAGS_TSO |
5770 IGB_TX_FLAGS_CSUM;
5773 /* determine offset of inner transport header */
5774 l4_offset = l4.hdr - skb->data;
5776 /* compute length of segmentation header */
5777 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5779 /* remove payload length from inner checksum */
5780 paylen = skb->len - l4_offset;
5781 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5783 /* update gso size and bytecount with header size */
5784 first->gso_segs = skb_shinfo(skb)->gso_segs;
5785 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5787 /* MSS L4LEN IDX */
5788 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5789 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5791 /* VLAN MACLEN IPLEN */
5792 vlan_macip_lens = l4.hdr - ip.hdr;
5793 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5794 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5796 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5797 type_tucmd, mss_l4len_idx);
5799 return 1;
5802 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5804 unsigned int offset = 0;
5806 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5808 return offset == skb_checksum_start_offset(skb);
5811 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5813 struct sk_buff *skb = first->skb;
5814 u32 vlan_macip_lens = 0;
5815 u32 type_tucmd = 0;
5817 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5818 csum_failed:
5819 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5820 !tx_ring->launchtime_enable)
5821 return;
5822 goto no_csum;
5825 switch (skb->csum_offset) {
5826 case offsetof(struct tcphdr, check):
5827 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5828 /* fall through */
5829 case offsetof(struct udphdr, check):
5830 break;
5831 case offsetof(struct sctphdr, checksum):
5832 /* validate that this is actually an SCTP request */
5833 if (((first->protocol == htons(ETH_P_IP)) &&
5834 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5835 ((first->protocol == htons(ETH_P_IPV6)) &&
5836 igb_ipv6_csum_is_sctp(skb))) {
5837 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5838 break;
5840 /* fall through */
5841 default:
5842 skb_checksum_help(skb);
5843 goto csum_failed;
5846 /* update TX checksum flag */
5847 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5848 vlan_macip_lens = skb_checksum_start_offset(skb) -
5849 skb_network_offset(skb);
5850 no_csum:
5851 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5852 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5854 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5857 #define IGB_SET_FLAG(_input, _flag, _result) \
5858 ((_flag <= _result) ? \
5859 ((u32)(_input & _flag) * (_result / _flag)) : \
5860 ((u32)(_input & _flag) / (_flag / _result)))
5862 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5864 /* set type for advanced descriptor with frame checksum insertion */
5865 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5866 E1000_ADVTXD_DCMD_DEXT |
5867 E1000_ADVTXD_DCMD_IFCS;
5869 /* set HW vlan bit if vlan is present */
5870 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5871 (E1000_ADVTXD_DCMD_VLE));
5873 /* set segmentation bits for TSO */
5874 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5875 (E1000_ADVTXD_DCMD_TSE));
5877 /* set timestamp bit if present */
5878 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5879 (E1000_ADVTXD_MAC_TSTAMP));
5881 /* insert frame checksum */
5882 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5884 return cmd_type;
5887 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5888 union e1000_adv_tx_desc *tx_desc,
5889 u32 tx_flags, unsigned int paylen)
5891 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5893 /* 82575 requires a unique index per ring */
5894 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5895 olinfo_status |= tx_ring->reg_idx << 4;
5897 /* insert L4 checksum */
5898 olinfo_status |= IGB_SET_FLAG(tx_flags,
5899 IGB_TX_FLAGS_CSUM,
5900 (E1000_TXD_POPTS_TXSM << 8));
5902 /* insert IPv4 checksum */
5903 olinfo_status |= IGB_SET_FLAG(tx_flags,
5904 IGB_TX_FLAGS_IPV4,
5905 (E1000_TXD_POPTS_IXSM << 8));
5907 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5910 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5912 struct net_device *netdev = tx_ring->netdev;
5914 netif_stop_subqueue(netdev, tx_ring->queue_index);
5916 /* Herbert's original patch had:
5917 * smp_mb__after_netif_stop_queue();
5918 * but since that doesn't exist yet, just open code it.
5920 smp_mb();
5922 /* We need to check again in a case another CPU has just
5923 * made room available.
5925 if (igb_desc_unused(tx_ring) < size)
5926 return -EBUSY;
5928 /* A reprieve! */
5929 netif_wake_subqueue(netdev, tx_ring->queue_index);
5931 u64_stats_update_begin(&tx_ring->tx_syncp2);
5932 tx_ring->tx_stats.restart_queue2++;
5933 u64_stats_update_end(&tx_ring->tx_syncp2);
5935 return 0;
5938 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5940 if (igb_desc_unused(tx_ring) >= size)
5941 return 0;
5942 return __igb_maybe_stop_tx(tx_ring, size);
5945 static int igb_tx_map(struct igb_ring *tx_ring,
5946 struct igb_tx_buffer *first,
5947 const u8 hdr_len)
5949 struct sk_buff *skb = first->skb;
5950 struct igb_tx_buffer *tx_buffer;
5951 union e1000_adv_tx_desc *tx_desc;
5952 struct skb_frag_struct *frag;
5953 dma_addr_t dma;
5954 unsigned int data_len, size;
5955 u32 tx_flags = first->tx_flags;
5956 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5957 u16 i = tx_ring->next_to_use;
5959 tx_desc = IGB_TX_DESC(tx_ring, i);
5961 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5963 size = skb_headlen(skb);
5964 data_len = skb->data_len;
5966 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5968 tx_buffer = first;
5970 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5971 if (dma_mapping_error(tx_ring->dev, dma))
5972 goto dma_error;
5974 /* record length, and DMA address */
5975 dma_unmap_len_set(tx_buffer, len, size);
5976 dma_unmap_addr_set(tx_buffer, dma, dma);
5978 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5980 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5981 tx_desc->read.cmd_type_len =
5982 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5984 i++;
5985 tx_desc++;
5986 if (i == tx_ring->count) {
5987 tx_desc = IGB_TX_DESC(tx_ring, 0);
5988 i = 0;
5990 tx_desc->read.olinfo_status = 0;
5992 dma += IGB_MAX_DATA_PER_TXD;
5993 size -= IGB_MAX_DATA_PER_TXD;
5995 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5998 if (likely(!data_len))
5999 break;
6001 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6003 i++;
6004 tx_desc++;
6005 if (i == tx_ring->count) {
6006 tx_desc = IGB_TX_DESC(tx_ring, 0);
6007 i = 0;
6009 tx_desc->read.olinfo_status = 0;
6011 size = skb_frag_size(frag);
6012 data_len -= size;
6014 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6015 size, DMA_TO_DEVICE);
6017 tx_buffer = &tx_ring->tx_buffer_info[i];
6020 /* write last descriptor with RS and EOP bits */
6021 cmd_type |= size | IGB_TXD_DCMD;
6022 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6024 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6026 /* set the timestamp */
6027 first->time_stamp = jiffies;
6029 /* Force memory writes to complete before letting h/w know there
6030 * are new descriptors to fetch. (Only applicable for weak-ordered
6031 * memory model archs, such as IA-64).
6033 * We also need this memory barrier to make certain all of the
6034 * status bits have been updated before next_to_watch is written.
6036 dma_wmb();
6038 /* set next_to_watch value indicating a packet is present */
6039 first->next_to_watch = tx_desc;
6041 i++;
6042 if (i == tx_ring->count)
6043 i = 0;
6045 tx_ring->next_to_use = i;
6047 /* Make sure there is space in the ring for the next send. */
6048 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6050 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
6051 writel(i, tx_ring->tail);
6053 /* we need this if more than one processor can write to our tail
6054 * at a time, it synchronizes IO on IA64/Altix systems
6056 mmiowb();
6058 return 0;
6060 dma_error:
6061 dev_err(tx_ring->dev, "TX DMA map failed\n");
6062 tx_buffer = &tx_ring->tx_buffer_info[i];
6064 /* clear dma mappings for failed tx_buffer_info map */
6065 while (tx_buffer != first) {
6066 if (dma_unmap_len(tx_buffer, len))
6067 dma_unmap_page(tx_ring->dev,
6068 dma_unmap_addr(tx_buffer, dma),
6069 dma_unmap_len(tx_buffer, len),
6070 DMA_TO_DEVICE);
6071 dma_unmap_len_set(tx_buffer, len, 0);
6073 if (i-- == 0)
6074 i += tx_ring->count;
6075 tx_buffer = &tx_ring->tx_buffer_info[i];
6078 if (dma_unmap_len(tx_buffer, len))
6079 dma_unmap_single(tx_ring->dev,
6080 dma_unmap_addr(tx_buffer, dma),
6081 dma_unmap_len(tx_buffer, len),
6082 DMA_TO_DEVICE);
6083 dma_unmap_len_set(tx_buffer, len, 0);
6085 dev_kfree_skb_any(tx_buffer->skb);
6086 tx_buffer->skb = NULL;
6088 tx_ring->next_to_use = i;
6090 return -1;
6093 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6094 struct igb_ring *tx_ring)
6096 struct igb_tx_buffer *first;
6097 int tso;
6098 u32 tx_flags = 0;
6099 unsigned short f;
6100 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6101 __be16 protocol = vlan_get_protocol(skb);
6102 u8 hdr_len = 0;
6104 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6105 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6106 * + 2 desc gap to keep tail from touching head,
6107 * + 1 desc for context descriptor,
6108 * otherwise try next time
6110 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6111 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
6113 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6114 /* this is a hard error */
6115 return NETDEV_TX_BUSY;
6118 /* record the location of the first descriptor for this packet */
6119 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6120 first->skb = skb;
6121 first->bytecount = skb->len;
6122 first->gso_segs = 1;
6124 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6125 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6127 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6128 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6129 &adapter->state)) {
6130 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6131 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6133 adapter->ptp_tx_skb = skb_get(skb);
6134 adapter->ptp_tx_start = jiffies;
6135 if (adapter->hw.mac.type == e1000_82576)
6136 schedule_work(&adapter->ptp_tx_work);
6137 } else {
6138 adapter->tx_hwtstamp_skipped++;
6142 if (skb_vlan_tag_present(skb)) {
6143 tx_flags |= IGB_TX_FLAGS_VLAN;
6144 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6147 /* record initial flags and protocol */
6148 first->tx_flags = tx_flags;
6149 first->protocol = protocol;
6151 tso = igb_tso(tx_ring, first, &hdr_len);
6152 if (tso < 0)
6153 goto out_drop;
6154 else if (!tso)
6155 igb_tx_csum(tx_ring, first);
6157 skb_tx_timestamp(skb);
6159 if (igb_tx_map(tx_ring, first, hdr_len))
6160 goto cleanup_tx_tstamp;
6162 return NETDEV_TX_OK;
6164 out_drop:
6165 dev_kfree_skb_any(first->skb);
6166 first->skb = NULL;
6167 cleanup_tx_tstamp:
6168 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6169 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6171 dev_kfree_skb_any(adapter->ptp_tx_skb);
6172 adapter->ptp_tx_skb = NULL;
6173 if (adapter->hw.mac.type == e1000_82576)
6174 cancel_work_sync(&adapter->ptp_tx_work);
6175 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6178 return NETDEV_TX_OK;
6181 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6182 struct sk_buff *skb)
6184 unsigned int r_idx = skb->queue_mapping;
6186 if (r_idx >= adapter->num_tx_queues)
6187 r_idx = r_idx % adapter->num_tx_queues;
6189 return adapter->tx_ring[r_idx];
6192 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6193 struct net_device *netdev)
6195 struct igb_adapter *adapter = netdev_priv(netdev);
6197 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6198 * in order to meet this minimum size requirement.
6200 if (skb_put_padto(skb, 17))
6201 return NETDEV_TX_OK;
6203 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6207 * igb_tx_timeout - Respond to a Tx Hang
6208 * @netdev: network interface device structure
6210 static void igb_tx_timeout(struct net_device *netdev)
6212 struct igb_adapter *adapter = netdev_priv(netdev);
6213 struct e1000_hw *hw = &adapter->hw;
6215 /* Do the reset outside of interrupt context */
6216 adapter->tx_timeout_count++;
6218 if (hw->mac.type >= e1000_82580)
6219 hw->dev_spec._82575.global_device_reset = true;
6221 schedule_work(&adapter->reset_task);
6222 wr32(E1000_EICS,
6223 (adapter->eims_enable_mask & ~adapter->eims_other));
6226 static void igb_reset_task(struct work_struct *work)
6228 struct igb_adapter *adapter;
6229 adapter = container_of(work, struct igb_adapter, reset_task);
6231 igb_dump(adapter);
6232 netdev_err(adapter->netdev, "Reset adapter\n");
6233 igb_reinit_locked(adapter);
6237 * igb_get_stats64 - Get System Network Statistics
6238 * @netdev: network interface device structure
6239 * @stats: rtnl_link_stats64 pointer
6241 static void igb_get_stats64(struct net_device *netdev,
6242 struct rtnl_link_stats64 *stats)
6244 struct igb_adapter *adapter = netdev_priv(netdev);
6246 spin_lock(&adapter->stats64_lock);
6247 igb_update_stats(adapter);
6248 memcpy(stats, &adapter->stats64, sizeof(*stats));
6249 spin_unlock(&adapter->stats64_lock);
6253 * igb_change_mtu - Change the Maximum Transfer Unit
6254 * @netdev: network interface device structure
6255 * @new_mtu: new value for maximum frame size
6257 * Returns 0 on success, negative on failure
6259 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6261 struct igb_adapter *adapter = netdev_priv(netdev);
6262 struct pci_dev *pdev = adapter->pdev;
6263 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6265 /* adjust max frame to be at least the size of a standard frame */
6266 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6267 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6269 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6270 usleep_range(1000, 2000);
6272 /* igb_down has a dependency on max_frame_size */
6273 adapter->max_frame_size = max_frame;
6275 if (netif_running(netdev))
6276 igb_down(adapter);
6278 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6279 netdev->mtu, new_mtu);
6280 netdev->mtu = new_mtu;
6282 if (netif_running(netdev))
6283 igb_up(adapter);
6284 else
6285 igb_reset(adapter);
6287 clear_bit(__IGB_RESETTING, &adapter->state);
6289 return 0;
6293 * igb_update_stats - Update the board statistics counters
6294 * @adapter: board private structure
6296 void igb_update_stats(struct igb_adapter *adapter)
6298 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6299 struct e1000_hw *hw = &adapter->hw;
6300 struct pci_dev *pdev = adapter->pdev;
6301 u32 reg, mpc;
6302 int i;
6303 u64 bytes, packets;
6304 unsigned int start;
6305 u64 _bytes, _packets;
6307 /* Prevent stats update while adapter is being reset, or if the pci
6308 * connection is down.
6310 if (adapter->link_speed == 0)
6311 return;
6312 if (pci_channel_offline(pdev))
6313 return;
6315 bytes = 0;
6316 packets = 0;
6318 rcu_read_lock();
6319 for (i = 0; i < adapter->num_rx_queues; i++) {
6320 struct igb_ring *ring = adapter->rx_ring[i];
6321 u32 rqdpc = rd32(E1000_RQDPC(i));
6322 if (hw->mac.type >= e1000_i210)
6323 wr32(E1000_RQDPC(i), 0);
6325 if (rqdpc) {
6326 ring->rx_stats.drops += rqdpc;
6327 net_stats->rx_fifo_errors += rqdpc;
6330 do {
6331 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6332 _bytes = ring->rx_stats.bytes;
6333 _packets = ring->rx_stats.packets;
6334 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6335 bytes += _bytes;
6336 packets += _packets;
6339 net_stats->rx_bytes = bytes;
6340 net_stats->rx_packets = packets;
6342 bytes = 0;
6343 packets = 0;
6344 for (i = 0; i < adapter->num_tx_queues; i++) {
6345 struct igb_ring *ring = adapter->tx_ring[i];
6346 do {
6347 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6348 _bytes = ring->tx_stats.bytes;
6349 _packets = ring->tx_stats.packets;
6350 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6351 bytes += _bytes;
6352 packets += _packets;
6354 net_stats->tx_bytes = bytes;
6355 net_stats->tx_packets = packets;
6356 rcu_read_unlock();
6358 /* read stats registers */
6359 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6360 adapter->stats.gprc += rd32(E1000_GPRC);
6361 adapter->stats.gorc += rd32(E1000_GORCL);
6362 rd32(E1000_GORCH); /* clear GORCL */
6363 adapter->stats.bprc += rd32(E1000_BPRC);
6364 adapter->stats.mprc += rd32(E1000_MPRC);
6365 adapter->stats.roc += rd32(E1000_ROC);
6367 adapter->stats.prc64 += rd32(E1000_PRC64);
6368 adapter->stats.prc127 += rd32(E1000_PRC127);
6369 adapter->stats.prc255 += rd32(E1000_PRC255);
6370 adapter->stats.prc511 += rd32(E1000_PRC511);
6371 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6372 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6373 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6374 adapter->stats.sec += rd32(E1000_SEC);
6376 mpc = rd32(E1000_MPC);
6377 adapter->stats.mpc += mpc;
6378 net_stats->rx_fifo_errors += mpc;
6379 adapter->stats.scc += rd32(E1000_SCC);
6380 adapter->stats.ecol += rd32(E1000_ECOL);
6381 adapter->stats.mcc += rd32(E1000_MCC);
6382 adapter->stats.latecol += rd32(E1000_LATECOL);
6383 adapter->stats.dc += rd32(E1000_DC);
6384 adapter->stats.rlec += rd32(E1000_RLEC);
6385 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6386 adapter->stats.xontxc += rd32(E1000_XONTXC);
6387 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6388 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6389 adapter->stats.fcruc += rd32(E1000_FCRUC);
6390 adapter->stats.gptc += rd32(E1000_GPTC);
6391 adapter->stats.gotc += rd32(E1000_GOTCL);
6392 rd32(E1000_GOTCH); /* clear GOTCL */
6393 adapter->stats.rnbc += rd32(E1000_RNBC);
6394 adapter->stats.ruc += rd32(E1000_RUC);
6395 adapter->stats.rfc += rd32(E1000_RFC);
6396 adapter->stats.rjc += rd32(E1000_RJC);
6397 adapter->stats.tor += rd32(E1000_TORH);
6398 adapter->stats.tot += rd32(E1000_TOTH);
6399 adapter->stats.tpr += rd32(E1000_TPR);
6401 adapter->stats.ptc64 += rd32(E1000_PTC64);
6402 adapter->stats.ptc127 += rd32(E1000_PTC127);
6403 adapter->stats.ptc255 += rd32(E1000_PTC255);
6404 adapter->stats.ptc511 += rd32(E1000_PTC511);
6405 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6406 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6408 adapter->stats.mptc += rd32(E1000_MPTC);
6409 adapter->stats.bptc += rd32(E1000_BPTC);
6411 adapter->stats.tpt += rd32(E1000_TPT);
6412 adapter->stats.colc += rd32(E1000_COLC);
6414 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6415 /* read internal phy specific stats */
6416 reg = rd32(E1000_CTRL_EXT);
6417 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6418 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6420 /* this stat has invalid values on i210/i211 */
6421 if ((hw->mac.type != e1000_i210) &&
6422 (hw->mac.type != e1000_i211))
6423 adapter->stats.tncrs += rd32(E1000_TNCRS);
6426 adapter->stats.tsctc += rd32(E1000_TSCTC);
6427 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6429 adapter->stats.iac += rd32(E1000_IAC);
6430 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6431 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6432 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6433 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6434 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6435 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6436 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6437 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6439 /* Fill out the OS statistics structure */
6440 net_stats->multicast = adapter->stats.mprc;
6441 net_stats->collisions = adapter->stats.colc;
6443 /* Rx Errors */
6445 /* RLEC on some newer hardware can be incorrect so build
6446 * our own version based on RUC and ROC
6448 net_stats->rx_errors = adapter->stats.rxerrc +
6449 adapter->stats.crcerrs + adapter->stats.algnerrc +
6450 adapter->stats.ruc + adapter->stats.roc +
6451 adapter->stats.cexterr;
6452 net_stats->rx_length_errors = adapter->stats.ruc +
6453 adapter->stats.roc;
6454 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6455 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6456 net_stats->rx_missed_errors = adapter->stats.mpc;
6458 /* Tx Errors */
6459 net_stats->tx_errors = adapter->stats.ecol +
6460 adapter->stats.latecol;
6461 net_stats->tx_aborted_errors = adapter->stats.ecol;
6462 net_stats->tx_window_errors = adapter->stats.latecol;
6463 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6465 /* Tx Dropped needs to be maintained elsewhere */
6467 /* Management Stats */
6468 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6469 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6470 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6472 /* OS2BMC Stats */
6473 reg = rd32(E1000_MANC);
6474 if (reg & E1000_MANC_EN_BMC2OS) {
6475 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6476 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6477 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6478 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6482 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6484 struct e1000_hw *hw = &adapter->hw;
6485 struct ptp_clock_event event;
6486 struct timespec64 ts;
6487 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6489 if (tsicr & TSINTR_SYS_WRAP) {
6490 event.type = PTP_CLOCK_PPS;
6491 if (adapter->ptp_caps.pps)
6492 ptp_clock_event(adapter->ptp_clock, &event);
6493 ack |= TSINTR_SYS_WRAP;
6496 if (tsicr & E1000_TSICR_TXTS) {
6497 /* retrieve hardware timestamp */
6498 schedule_work(&adapter->ptp_tx_work);
6499 ack |= E1000_TSICR_TXTS;
6502 if (tsicr & TSINTR_TT0) {
6503 spin_lock(&adapter->tmreg_lock);
6504 ts = timespec64_add(adapter->perout[0].start,
6505 adapter->perout[0].period);
6506 /* u32 conversion of tv_sec is safe until y2106 */
6507 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6508 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6509 tsauxc = rd32(E1000_TSAUXC);
6510 tsauxc |= TSAUXC_EN_TT0;
6511 wr32(E1000_TSAUXC, tsauxc);
6512 adapter->perout[0].start = ts;
6513 spin_unlock(&adapter->tmreg_lock);
6514 ack |= TSINTR_TT0;
6517 if (tsicr & TSINTR_TT1) {
6518 spin_lock(&adapter->tmreg_lock);
6519 ts = timespec64_add(adapter->perout[1].start,
6520 adapter->perout[1].period);
6521 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6522 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6523 tsauxc = rd32(E1000_TSAUXC);
6524 tsauxc |= TSAUXC_EN_TT1;
6525 wr32(E1000_TSAUXC, tsauxc);
6526 adapter->perout[1].start = ts;
6527 spin_unlock(&adapter->tmreg_lock);
6528 ack |= TSINTR_TT1;
6531 if (tsicr & TSINTR_AUTT0) {
6532 nsec = rd32(E1000_AUXSTMPL0);
6533 sec = rd32(E1000_AUXSTMPH0);
6534 event.type = PTP_CLOCK_EXTTS;
6535 event.index = 0;
6536 event.timestamp = sec * 1000000000ULL + nsec;
6537 ptp_clock_event(adapter->ptp_clock, &event);
6538 ack |= TSINTR_AUTT0;
6541 if (tsicr & TSINTR_AUTT1) {
6542 nsec = rd32(E1000_AUXSTMPL1);
6543 sec = rd32(E1000_AUXSTMPH1);
6544 event.type = PTP_CLOCK_EXTTS;
6545 event.index = 1;
6546 event.timestamp = sec * 1000000000ULL + nsec;
6547 ptp_clock_event(adapter->ptp_clock, &event);
6548 ack |= TSINTR_AUTT1;
6551 /* acknowledge the interrupts */
6552 wr32(E1000_TSICR, ack);
6555 static irqreturn_t igb_msix_other(int irq, void *data)
6557 struct igb_adapter *adapter = data;
6558 struct e1000_hw *hw = &adapter->hw;
6559 u32 icr = rd32(E1000_ICR);
6560 /* reading ICR causes bit 31 of EICR to be cleared */
6562 if (icr & E1000_ICR_DRSTA)
6563 schedule_work(&adapter->reset_task);
6565 if (icr & E1000_ICR_DOUTSYNC) {
6566 /* HW is reporting DMA is out of sync */
6567 adapter->stats.doosync++;
6568 /* The DMA Out of Sync is also indication of a spoof event
6569 * in IOV mode. Check the Wrong VM Behavior register to
6570 * see if it is really a spoof event.
6572 igb_check_wvbr(adapter);
6575 /* Check for a mailbox event */
6576 if (icr & E1000_ICR_VMMB)
6577 igb_msg_task(adapter);
6579 if (icr & E1000_ICR_LSC) {
6580 hw->mac.get_link_status = 1;
6581 /* guard against interrupt when we're going down */
6582 if (!test_bit(__IGB_DOWN, &adapter->state))
6583 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6586 if (icr & E1000_ICR_TS)
6587 igb_tsync_interrupt(adapter);
6589 wr32(E1000_EIMS, adapter->eims_other);
6591 return IRQ_HANDLED;
6594 static void igb_write_itr(struct igb_q_vector *q_vector)
6596 struct igb_adapter *adapter = q_vector->adapter;
6597 u32 itr_val = q_vector->itr_val & 0x7FFC;
6599 if (!q_vector->set_itr)
6600 return;
6602 if (!itr_val)
6603 itr_val = 0x4;
6605 if (adapter->hw.mac.type == e1000_82575)
6606 itr_val |= itr_val << 16;
6607 else
6608 itr_val |= E1000_EITR_CNT_IGNR;
6610 writel(itr_val, q_vector->itr_register);
6611 q_vector->set_itr = 0;
6614 static irqreturn_t igb_msix_ring(int irq, void *data)
6616 struct igb_q_vector *q_vector = data;
6618 /* Write the ITR value calculated from the previous interrupt. */
6619 igb_write_itr(q_vector);
6621 napi_schedule(&q_vector->napi);
6623 return IRQ_HANDLED;
6626 #ifdef CONFIG_IGB_DCA
6627 static void igb_update_tx_dca(struct igb_adapter *adapter,
6628 struct igb_ring *tx_ring,
6629 int cpu)
6631 struct e1000_hw *hw = &adapter->hw;
6632 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6634 if (hw->mac.type != e1000_82575)
6635 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6637 /* We can enable relaxed ordering for reads, but not writes when
6638 * DCA is enabled. This is due to a known issue in some chipsets
6639 * which will cause the DCA tag to be cleared.
6641 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6642 E1000_DCA_TXCTRL_DATA_RRO_EN |
6643 E1000_DCA_TXCTRL_DESC_DCA_EN;
6645 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6648 static void igb_update_rx_dca(struct igb_adapter *adapter,
6649 struct igb_ring *rx_ring,
6650 int cpu)
6652 struct e1000_hw *hw = &adapter->hw;
6653 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6655 if (hw->mac.type != e1000_82575)
6656 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6658 /* We can enable relaxed ordering for reads, but not writes when
6659 * DCA is enabled. This is due to a known issue in some chipsets
6660 * which will cause the DCA tag to be cleared.
6662 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6663 E1000_DCA_RXCTRL_DESC_DCA_EN;
6665 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6668 static void igb_update_dca(struct igb_q_vector *q_vector)
6670 struct igb_adapter *adapter = q_vector->adapter;
6671 int cpu = get_cpu();
6673 if (q_vector->cpu == cpu)
6674 goto out_no_update;
6676 if (q_vector->tx.ring)
6677 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6679 if (q_vector->rx.ring)
6680 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6682 q_vector->cpu = cpu;
6683 out_no_update:
6684 put_cpu();
6687 static void igb_setup_dca(struct igb_adapter *adapter)
6689 struct e1000_hw *hw = &adapter->hw;
6690 int i;
6692 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6693 return;
6695 /* Always use CB2 mode, difference is masked in the CB driver. */
6696 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6698 for (i = 0; i < adapter->num_q_vectors; i++) {
6699 adapter->q_vector[i]->cpu = -1;
6700 igb_update_dca(adapter->q_vector[i]);
6704 static int __igb_notify_dca(struct device *dev, void *data)
6706 struct net_device *netdev = dev_get_drvdata(dev);
6707 struct igb_adapter *adapter = netdev_priv(netdev);
6708 struct pci_dev *pdev = adapter->pdev;
6709 struct e1000_hw *hw = &adapter->hw;
6710 unsigned long event = *(unsigned long *)data;
6712 switch (event) {
6713 case DCA_PROVIDER_ADD:
6714 /* if already enabled, don't do it again */
6715 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6716 break;
6717 if (dca_add_requester(dev) == 0) {
6718 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6719 dev_info(&pdev->dev, "DCA enabled\n");
6720 igb_setup_dca(adapter);
6721 break;
6723 /* Fall Through since DCA is disabled. */
6724 case DCA_PROVIDER_REMOVE:
6725 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6726 /* without this a class_device is left
6727 * hanging around in the sysfs model
6729 dca_remove_requester(dev);
6730 dev_info(&pdev->dev, "DCA disabled\n");
6731 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6732 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6734 break;
6737 return 0;
6740 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6741 void *p)
6743 int ret_val;
6745 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6746 __igb_notify_dca);
6748 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6750 #endif /* CONFIG_IGB_DCA */
6752 #ifdef CONFIG_PCI_IOV
6753 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6755 unsigned char mac_addr[ETH_ALEN];
6757 eth_zero_addr(mac_addr);
6758 igb_set_vf_mac(adapter, vf, mac_addr);
6760 /* By default spoof check is enabled for all VFs */
6761 adapter->vf_data[vf].spoofchk_enabled = true;
6763 /* By default VFs are not trusted */
6764 adapter->vf_data[vf].trusted = false;
6766 return 0;
6769 #endif
6770 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6772 struct e1000_hw *hw = &adapter->hw;
6773 u32 ping;
6774 int i;
6776 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6777 ping = E1000_PF_CONTROL_MSG;
6778 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6779 ping |= E1000_VT_MSGTYPE_CTS;
6780 igb_write_mbx(hw, &ping, 1, i);
6784 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6786 struct e1000_hw *hw = &adapter->hw;
6787 u32 vmolr = rd32(E1000_VMOLR(vf));
6788 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6790 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6791 IGB_VF_FLAG_MULTI_PROMISC);
6792 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6794 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6795 vmolr |= E1000_VMOLR_MPME;
6796 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6797 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6798 } else {
6799 /* if we have hashes and we are clearing a multicast promisc
6800 * flag we need to write the hashes to the MTA as this step
6801 * was previously skipped
6803 if (vf_data->num_vf_mc_hashes > 30) {
6804 vmolr |= E1000_VMOLR_MPME;
6805 } else if (vf_data->num_vf_mc_hashes) {
6806 int j;
6808 vmolr |= E1000_VMOLR_ROMPE;
6809 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6810 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6814 wr32(E1000_VMOLR(vf), vmolr);
6816 /* there are flags left unprocessed, likely not supported */
6817 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6818 return -EINVAL;
6820 return 0;
6823 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6824 u32 *msgbuf, u32 vf)
6826 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6827 u16 *hash_list = (u16 *)&msgbuf[1];
6828 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6829 int i;
6831 /* salt away the number of multicast addresses assigned
6832 * to this VF for later use to restore when the PF multi cast
6833 * list changes
6835 vf_data->num_vf_mc_hashes = n;
6837 /* only up to 30 hash values supported */
6838 if (n > 30)
6839 n = 30;
6841 /* store the hashes for later use */
6842 for (i = 0; i < n; i++)
6843 vf_data->vf_mc_hashes[i] = hash_list[i];
6845 /* Flush and reset the mta with the new values */
6846 igb_set_rx_mode(adapter->netdev);
6848 return 0;
6851 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6853 struct e1000_hw *hw = &adapter->hw;
6854 struct vf_data_storage *vf_data;
6855 int i, j;
6857 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6858 u32 vmolr = rd32(E1000_VMOLR(i));
6860 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6862 vf_data = &adapter->vf_data[i];
6864 if ((vf_data->num_vf_mc_hashes > 30) ||
6865 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6866 vmolr |= E1000_VMOLR_MPME;
6867 } else if (vf_data->num_vf_mc_hashes) {
6868 vmolr |= E1000_VMOLR_ROMPE;
6869 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6870 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6872 wr32(E1000_VMOLR(i), vmolr);
6876 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6878 struct e1000_hw *hw = &adapter->hw;
6879 u32 pool_mask, vlvf_mask, i;
6881 /* create mask for VF and other pools */
6882 pool_mask = E1000_VLVF_POOLSEL_MASK;
6883 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6885 /* drop PF from pool bits */
6886 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6887 adapter->vfs_allocated_count);
6889 /* Find the vlan filter for this id */
6890 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6891 u32 vlvf = rd32(E1000_VLVF(i));
6892 u32 vfta_mask, vid, vfta;
6894 /* remove the vf from the pool */
6895 if (!(vlvf & vlvf_mask))
6896 continue;
6898 /* clear out bit from VLVF */
6899 vlvf ^= vlvf_mask;
6901 /* if other pools are present, just remove ourselves */
6902 if (vlvf & pool_mask)
6903 goto update_vlvfb;
6905 /* if PF is present, leave VFTA */
6906 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6907 goto update_vlvf;
6909 vid = vlvf & E1000_VLVF_VLANID_MASK;
6910 vfta_mask = BIT(vid % 32);
6912 /* clear bit from VFTA */
6913 vfta = adapter->shadow_vfta[vid / 32];
6914 if (vfta & vfta_mask)
6915 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6916 update_vlvf:
6917 /* clear pool selection enable */
6918 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6919 vlvf &= E1000_VLVF_POOLSEL_MASK;
6920 else
6921 vlvf = 0;
6922 update_vlvfb:
6923 /* clear pool bits */
6924 wr32(E1000_VLVF(i), vlvf);
6928 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6930 u32 vlvf;
6931 int idx;
6933 /* short cut the special case */
6934 if (vlan == 0)
6935 return 0;
6937 /* Search for the VLAN id in the VLVF entries */
6938 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6939 vlvf = rd32(E1000_VLVF(idx));
6940 if ((vlvf & VLAN_VID_MASK) == vlan)
6941 break;
6944 return idx;
6947 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6949 struct e1000_hw *hw = &adapter->hw;
6950 u32 bits, pf_id;
6951 int idx;
6953 idx = igb_find_vlvf_entry(hw, vid);
6954 if (!idx)
6955 return;
6957 /* See if any other pools are set for this VLAN filter
6958 * entry other than the PF.
6960 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6961 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6962 bits &= rd32(E1000_VLVF(idx));
6964 /* Disable the filter so this falls into the default pool. */
6965 if (!bits) {
6966 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6967 wr32(E1000_VLVF(idx), BIT(pf_id));
6968 else
6969 wr32(E1000_VLVF(idx), 0);
6973 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6974 bool add, u32 vf)
6976 int pf_id = adapter->vfs_allocated_count;
6977 struct e1000_hw *hw = &adapter->hw;
6978 int err;
6980 /* If VLAN overlaps with one the PF is currently monitoring make
6981 * sure that we are able to allocate a VLVF entry. This may be
6982 * redundant but it guarantees PF will maintain visibility to
6983 * the VLAN.
6985 if (add && test_bit(vid, adapter->active_vlans)) {
6986 err = igb_vfta_set(hw, vid, pf_id, true, false);
6987 if (err)
6988 return err;
6991 err = igb_vfta_set(hw, vid, vf, add, false);
6993 if (add && !err)
6994 return err;
6996 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6997 * we may need to drop the PF pool bit in order to allow us to free
6998 * up the VLVF resources.
7000 if (test_bit(vid, adapter->active_vlans) ||
7001 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7002 igb_update_pf_vlvf(adapter, vid);
7004 return err;
7007 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7009 struct e1000_hw *hw = &adapter->hw;
7011 if (vid)
7012 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7013 else
7014 wr32(E1000_VMVIR(vf), 0);
7017 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7018 u16 vlan, u8 qos)
7020 int err;
7022 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7023 if (err)
7024 return err;
7026 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7027 igb_set_vmolr(adapter, vf, !vlan);
7029 /* revoke access to previous VLAN */
7030 if (vlan != adapter->vf_data[vf].pf_vlan)
7031 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7032 false, vf);
7034 adapter->vf_data[vf].pf_vlan = vlan;
7035 adapter->vf_data[vf].pf_qos = qos;
7036 igb_set_vf_vlan_strip(adapter, vf, true);
7037 dev_info(&adapter->pdev->dev,
7038 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7039 if (test_bit(__IGB_DOWN, &adapter->state)) {
7040 dev_warn(&adapter->pdev->dev,
7041 "The VF VLAN has been set, but the PF device is not up.\n");
7042 dev_warn(&adapter->pdev->dev,
7043 "Bring the PF device up before attempting to use the VF device.\n");
7046 return err;
7049 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7051 /* Restore tagless access via VLAN 0 */
7052 igb_set_vf_vlan(adapter, 0, true, vf);
7054 igb_set_vmvir(adapter, 0, vf);
7055 igb_set_vmolr(adapter, vf, true);
7057 /* Remove any PF assigned VLAN */
7058 if (adapter->vf_data[vf].pf_vlan)
7059 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7060 false, vf);
7062 adapter->vf_data[vf].pf_vlan = 0;
7063 adapter->vf_data[vf].pf_qos = 0;
7064 igb_set_vf_vlan_strip(adapter, vf, false);
7066 return 0;
7069 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7070 u16 vlan, u8 qos, __be16 vlan_proto)
7072 struct igb_adapter *adapter = netdev_priv(netdev);
7074 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7075 return -EINVAL;
7077 if (vlan_proto != htons(ETH_P_8021Q))
7078 return -EPROTONOSUPPORT;
7080 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7081 igb_disable_port_vlan(adapter, vf);
7084 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7086 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7087 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7088 int ret;
7090 if (adapter->vf_data[vf].pf_vlan)
7091 return -1;
7093 /* VLAN 0 is a special case, don't allow it to be removed */
7094 if (!vid && !add)
7095 return 0;
7097 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7098 if (!ret)
7099 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7100 return ret;
7103 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7105 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7107 /* clear flags - except flag that indicates PF has set the MAC */
7108 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7109 vf_data->last_nack = jiffies;
7111 /* reset vlans for device */
7112 igb_clear_vf_vfta(adapter, vf);
7113 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7114 igb_set_vmvir(adapter, vf_data->pf_vlan |
7115 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7116 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7117 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7119 /* reset multicast table array for vf */
7120 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7122 /* Flush and reset the mta with the new values */
7123 igb_set_rx_mode(adapter->netdev);
7126 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7128 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7130 /* clear mac address as we were hotplug removed/added */
7131 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7132 eth_zero_addr(vf_mac);
7134 /* process remaining reset events */
7135 igb_vf_reset(adapter, vf);
7138 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7140 struct e1000_hw *hw = &adapter->hw;
7141 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7142 u32 reg, msgbuf[3];
7143 u8 *addr = (u8 *)(&msgbuf[1]);
7145 /* process all the same items cleared in a function level reset */
7146 igb_vf_reset(adapter, vf);
7148 /* set vf mac address */
7149 igb_set_vf_mac(adapter, vf, vf_mac);
7151 /* enable transmit and receive for vf */
7152 reg = rd32(E1000_VFTE);
7153 wr32(E1000_VFTE, reg | BIT(vf));
7154 reg = rd32(E1000_VFRE);
7155 wr32(E1000_VFRE, reg | BIT(vf));
7157 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7159 /* reply to reset with ack and vf mac address */
7160 if (!is_zero_ether_addr(vf_mac)) {
7161 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7162 memcpy(addr, vf_mac, ETH_ALEN);
7163 } else {
7164 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7166 igb_write_mbx(hw, msgbuf, 3, vf);
7169 static void igb_flush_mac_table(struct igb_adapter *adapter)
7171 struct e1000_hw *hw = &adapter->hw;
7172 int i;
7174 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7175 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7176 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7177 adapter->mac_table[i].queue = 0;
7178 igb_rar_set_index(adapter, i);
7182 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7184 struct e1000_hw *hw = &adapter->hw;
7185 /* do not count rar entries reserved for VFs MAC addresses */
7186 int rar_entries = hw->mac.rar_entry_count -
7187 adapter->vfs_allocated_count;
7188 int i, count = 0;
7190 for (i = 0; i < rar_entries; i++) {
7191 /* do not count default entries */
7192 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7193 continue;
7195 /* do not count "in use" entries for different queues */
7196 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7197 (adapter->mac_table[i].queue != queue))
7198 continue;
7200 count++;
7203 return count;
7206 /* Set default MAC address for the PF in the first RAR entry */
7207 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7209 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7211 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7212 mac_table->queue = adapter->vfs_allocated_count;
7213 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7215 igb_rar_set_index(adapter, 0);
7218 /* If the filter to be added and an already existing filter express
7219 * the same address and address type, it should be possible to only
7220 * override the other configurations, for example the queue to steer
7221 * traffic.
7223 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7224 const u8 *addr, const u8 flags)
7226 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7227 return true;
7229 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7230 (flags & IGB_MAC_STATE_SRC_ADDR))
7231 return false;
7233 if (!ether_addr_equal(addr, entry->addr))
7234 return false;
7236 return true;
7239 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7240 * 'flags' is used to indicate what kind of match is made, match is by
7241 * default for the destination address, if matching by source address
7242 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7244 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7245 const u8 *addr, const u8 queue,
7246 const u8 flags)
7248 struct e1000_hw *hw = &adapter->hw;
7249 int rar_entries = hw->mac.rar_entry_count -
7250 adapter->vfs_allocated_count;
7251 int i;
7253 if (is_zero_ether_addr(addr))
7254 return -EINVAL;
7256 /* Search for the first empty entry in the MAC table.
7257 * Do not touch entries at the end of the table reserved for the VF MAC
7258 * addresses.
7260 for (i = 0; i < rar_entries; i++) {
7261 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7262 addr, flags))
7263 continue;
7265 ether_addr_copy(adapter->mac_table[i].addr, addr);
7266 adapter->mac_table[i].queue = queue;
7267 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7269 igb_rar_set_index(adapter, i);
7270 return i;
7273 return -ENOSPC;
7276 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7277 const u8 queue)
7279 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7282 /* Remove a MAC filter for 'addr' directing matching traffic to
7283 * 'queue', 'flags' is used to indicate what kind of match need to be
7284 * removed, match is by default for the destination address, if
7285 * matching by source address is to be removed the flag
7286 * IGB_MAC_STATE_SRC_ADDR can be used.
7288 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7289 const u8 *addr, const u8 queue,
7290 const u8 flags)
7292 struct e1000_hw *hw = &adapter->hw;
7293 int rar_entries = hw->mac.rar_entry_count -
7294 adapter->vfs_allocated_count;
7295 int i;
7297 if (is_zero_ether_addr(addr))
7298 return -EINVAL;
7300 /* Search for matching entry in the MAC table based on given address
7301 * and queue. Do not touch entries at the end of the table reserved
7302 * for the VF MAC addresses.
7304 for (i = 0; i < rar_entries; i++) {
7305 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7306 continue;
7307 if ((adapter->mac_table[i].state & flags) != flags)
7308 continue;
7309 if (adapter->mac_table[i].queue != queue)
7310 continue;
7311 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7312 continue;
7314 /* When a filter for the default address is "deleted",
7315 * we return it to its initial configuration
7317 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7318 adapter->mac_table[i].state =
7319 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7320 adapter->mac_table[i].queue =
7321 adapter->vfs_allocated_count;
7322 } else {
7323 adapter->mac_table[i].state = 0;
7324 adapter->mac_table[i].queue = 0;
7325 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7328 igb_rar_set_index(adapter, i);
7329 return 0;
7332 return -ENOENT;
7335 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7336 const u8 queue)
7338 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7341 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7342 const u8 *addr, u8 queue, u8 flags)
7344 struct e1000_hw *hw = &adapter->hw;
7346 /* In theory, this should be supported on 82575 as well, but
7347 * that part wasn't easily accessible during development.
7349 if (hw->mac.type != e1000_i210)
7350 return -EOPNOTSUPP;
7352 return igb_add_mac_filter_flags(adapter, addr, queue,
7353 IGB_MAC_STATE_QUEUE_STEERING | flags);
7356 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7357 const u8 *addr, u8 queue, u8 flags)
7359 return igb_del_mac_filter_flags(adapter, addr, queue,
7360 IGB_MAC_STATE_QUEUE_STEERING | flags);
7363 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7365 struct igb_adapter *adapter = netdev_priv(netdev);
7366 int ret;
7368 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7370 return min_t(int, ret, 0);
7373 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7375 struct igb_adapter *adapter = netdev_priv(netdev);
7377 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7379 return 0;
7382 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7383 const u32 info, const u8 *addr)
7385 struct pci_dev *pdev = adapter->pdev;
7386 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7387 struct list_head *pos;
7388 struct vf_mac_filter *entry = NULL;
7389 int ret = 0;
7391 switch (info) {
7392 case E1000_VF_MAC_FILTER_CLR:
7393 /* remove all unicast MAC filters related to the current VF */
7394 list_for_each(pos, &adapter->vf_macs.l) {
7395 entry = list_entry(pos, struct vf_mac_filter, l);
7396 if (entry->vf == vf) {
7397 entry->vf = -1;
7398 entry->free = true;
7399 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7402 break;
7403 case E1000_VF_MAC_FILTER_ADD:
7404 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7405 !vf_data->trusted) {
7406 dev_warn(&pdev->dev,
7407 "VF %d requested MAC filter but is administratively denied\n",
7408 vf);
7409 return -EINVAL;
7411 if (!is_valid_ether_addr(addr)) {
7412 dev_warn(&pdev->dev,
7413 "VF %d attempted to set invalid MAC filter\n",
7414 vf);
7415 return -EINVAL;
7418 /* try to find empty slot in the list */
7419 list_for_each(pos, &adapter->vf_macs.l) {
7420 entry = list_entry(pos, struct vf_mac_filter, l);
7421 if (entry->free)
7422 break;
7425 if (entry && entry->free) {
7426 entry->free = false;
7427 entry->vf = vf;
7428 ether_addr_copy(entry->vf_mac, addr);
7430 ret = igb_add_mac_filter(adapter, addr, vf);
7431 ret = min_t(int, ret, 0);
7432 } else {
7433 ret = -ENOSPC;
7436 if (ret == -ENOSPC)
7437 dev_warn(&pdev->dev,
7438 "VF %d has requested MAC filter but there is no space for it\n",
7439 vf);
7440 break;
7441 default:
7442 ret = -EINVAL;
7443 break;
7446 return ret;
7449 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7451 struct pci_dev *pdev = adapter->pdev;
7452 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7453 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7455 /* The VF MAC Address is stored in a packed array of bytes
7456 * starting at the second 32 bit word of the msg array
7458 unsigned char *addr = (unsigned char *)&msg[1];
7459 int ret = 0;
7461 if (!info) {
7462 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7463 !vf_data->trusted) {
7464 dev_warn(&pdev->dev,
7465 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7466 vf);
7467 return -EINVAL;
7470 if (!is_valid_ether_addr(addr)) {
7471 dev_warn(&pdev->dev,
7472 "VF %d attempted to set invalid MAC\n",
7473 vf);
7474 return -EINVAL;
7477 ret = igb_set_vf_mac(adapter, vf, addr);
7478 } else {
7479 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7482 return ret;
7485 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7487 struct e1000_hw *hw = &adapter->hw;
7488 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7489 u32 msg = E1000_VT_MSGTYPE_NACK;
7491 /* if device isn't clear to send it shouldn't be reading either */
7492 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7493 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7494 igb_write_mbx(hw, &msg, 1, vf);
7495 vf_data->last_nack = jiffies;
7499 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7501 struct pci_dev *pdev = adapter->pdev;
7502 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7503 struct e1000_hw *hw = &adapter->hw;
7504 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7505 s32 retval;
7507 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7509 if (retval) {
7510 /* if receive failed revoke VF CTS stats and restart init */
7511 dev_err(&pdev->dev, "Error receiving message from VF\n");
7512 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7513 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7514 goto unlock;
7515 goto out;
7518 /* this is a message we already processed, do nothing */
7519 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7520 goto unlock;
7522 /* until the vf completes a reset it should not be
7523 * allowed to start any configuration.
7525 if (msgbuf[0] == E1000_VF_RESET) {
7526 /* unlocks mailbox */
7527 igb_vf_reset_msg(adapter, vf);
7528 return;
7531 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7532 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7533 goto unlock;
7534 retval = -1;
7535 goto out;
7538 switch ((msgbuf[0] & 0xFFFF)) {
7539 case E1000_VF_SET_MAC_ADDR:
7540 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7541 break;
7542 case E1000_VF_SET_PROMISC:
7543 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7544 break;
7545 case E1000_VF_SET_MULTICAST:
7546 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7547 break;
7548 case E1000_VF_SET_LPE:
7549 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7550 break;
7551 case E1000_VF_SET_VLAN:
7552 retval = -1;
7553 if (vf_data->pf_vlan)
7554 dev_warn(&pdev->dev,
7555 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7556 vf);
7557 else
7558 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7559 break;
7560 default:
7561 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7562 retval = -1;
7563 break;
7566 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7567 out:
7568 /* notify the VF of the results of what it sent us */
7569 if (retval)
7570 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7571 else
7572 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7574 /* unlocks mailbox */
7575 igb_write_mbx(hw, msgbuf, 1, vf);
7576 return;
7578 unlock:
7579 igb_unlock_mbx(hw, vf);
7582 static void igb_msg_task(struct igb_adapter *adapter)
7584 struct e1000_hw *hw = &adapter->hw;
7585 u32 vf;
7587 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7588 /* process any reset requests */
7589 if (!igb_check_for_rst(hw, vf))
7590 igb_vf_reset_event(adapter, vf);
7592 /* process any messages pending */
7593 if (!igb_check_for_msg(hw, vf))
7594 igb_rcv_msg_from_vf(adapter, vf);
7596 /* process any acks */
7597 if (!igb_check_for_ack(hw, vf))
7598 igb_rcv_ack_from_vf(adapter, vf);
7603 * igb_set_uta - Set unicast filter table address
7604 * @adapter: board private structure
7605 * @set: boolean indicating if we are setting or clearing bits
7607 * The unicast table address is a register array of 32-bit registers.
7608 * The table is meant to be used in a way similar to how the MTA is used
7609 * however due to certain limitations in the hardware it is necessary to
7610 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7611 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7613 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7615 struct e1000_hw *hw = &adapter->hw;
7616 u32 uta = set ? ~0 : 0;
7617 int i;
7619 /* we only need to do this if VMDq is enabled */
7620 if (!adapter->vfs_allocated_count)
7621 return;
7623 for (i = hw->mac.uta_reg_count; i--;)
7624 array_wr32(E1000_UTA, i, uta);
7628 * igb_intr_msi - Interrupt Handler
7629 * @irq: interrupt number
7630 * @data: pointer to a network interface device structure
7632 static irqreturn_t igb_intr_msi(int irq, void *data)
7634 struct igb_adapter *adapter = data;
7635 struct igb_q_vector *q_vector = adapter->q_vector[0];
7636 struct e1000_hw *hw = &adapter->hw;
7637 /* read ICR disables interrupts using IAM */
7638 u32 icr = rd32(E1000_ICR);
7640 igb_write_itr(q_vector);
7642 if (icr & E1000_ICR_DRSTA)
7643 schedule_work(&adapter->reset_task);
7645 if (icr & E1000_ICR_DOUTSYNC) {
7646 /* HW is reporting DMA is out of sync */
7647 adapter->stats.doosync++;
7650 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7651 hw->mac.get_link_status = 1;
7652 if (!test_bit(__IGB_DOWN, &adapter->state))
7653 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7656 if (icr & E1000_ICR_TS)
7657 igb_tsync_interrupt(adapter);
7659 napi_schedule(&q_vector->napi);
7661 return IRQ_HANDLED;
7665 * igb_intr - Legacy Interrupt Handler
7666 * @irq: interrupt number
7667 * @data: pointer to a network interface device structure
7669 static irqreturn_t igb_intr(int irq, void *data)
7671 struct igb_adapter *adapter = data;
7672 struct igb_q_vector *q_vector = adapter->q_vector[0];
7673 struct e1000_hw *hw = &adapter->hw;
7674 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7675 * need for the IMC write
7677 u32 icr = rd32(E1000_ICR);
7679 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7680 * not set, then the adapter didn't send an interrupt
7682 if (!(icr & E1000_ICR_INT_ASSERTED))
7683 return IRQ_NONE;
7685 igb_write_itr(q_vector);
7687 if (icr & E1000_ICR_DRSTA)
7688 schedule_work(&adapter->reset_task);
7690 if (icr & E1000_ICR_DOUTSYNC) {
7691 /* HW is reporting DMA is out of sync */
7692 adapter->stats.doosync++;
7695 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7696 hw->mac.get_link_status = 1;
7697 /* guard against interrupt when we're going down */
7698 if (!test_bit(__IGB_DOWN, &adapter->state))
7699 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7702 if (icr & E1000_ICR_TS)
7703 igb_tsync_interrupt(adapter);
7705 napi_schedule(&q_vector->napi);
7707 return IRQ_HANDLED;
7710 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7712 struct igb_adapter *adapter = q_vector->adapter;
7713 struct e1000_hw *hw = &adapter->hw;
7715 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7716 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7717 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7718 igb_set_itr(q_vector);
7719 else
7720 igb_update_ring_itr(q_vector);
7723 if (!test_bit(__IGB_DOWN, &adapter->state)) {
7724 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7725 wr32(E1000_EIMS, q_vector->eims_value);
7726 else
7727 igb_irq_enable(adapter);
7732 * igb_poll - NAPI Rx polling callback
7733 * @napi: napi polling structure
7734 * @budget: count of how many packets we should handle
7736 static int igb_poll(struct napi_struct *napi, int budget)
7738 struct igb_q_vector *q_vector = container_of(napi,
7739 struct igb_q_vector,
7740 napi);
7741 bool clean_complete = true;
7742 int work_done = 0;
7744 #ifdef CONFIG_IGB_DCA
7745 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7746 igb_update_dca(q_vector);
7747 #endif
7748 if (q_vector->tx.ring)
7749 clean_complete = igb_clean_tx_irq(q_vector, budget);
7751 if (q_vector->rx.ring) {
7752 int cleaned = igb_clean_rx_irq(q_vector, budget);
7754 work_done += cleaned;
7755 if (cleaned >= budget)
7756 clean_complete = false;
7759 /* If all work not completed, return budget and keep polling */
7760 if (!clean_complete)
7761 return budget;
7763 /* If not enough Rx work done, exit the polling mode */
7764 napi_complete_done(napi, work_done);
7765 igb_ring_irq_enable(q_vector);
7767 return 0;
7771 * igb_clean_tx_irq - Reclaim resources after transmit completes
7772 * @q_vector: pointer to q_vector containing needed info
7773 * @napi_budget: Used to determine if we are in netpoll
7775 * returns true if ring is completely cleaned
7777 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7779 struct igb_adapter *adapter = q_vector->adapter;
7780 struct igb_ring *tx_ring = q_vector->tx.ring;
7781 struct igb_tx_buffer *tx_buffer;
7782 union e1000_adv_tx_desc *tx_desc;
7783 unsigned int total_bytes = 0, total_packets = 0;
7784 unsigned int budget = q_vector->tx.work_limit;
7785 unsigned int i = tx_ring->next_to_clean;
7787 if (test_bit(__IGB_DOWN, &adapter->state))
7788 return true;
7790 tx_buffer = &tx_ring->tx_buffer_info[i];
7791 tx_desc = IGB_TX_DESC(tx_ring, i);
7792 i -= tx_ring->count;
7794 do {
7795 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7797 /* if next_to_watch is not set then there is no work pending */
7798 if (!eop_desc)
7799 break;
7801 /* prevent any other reads prior to eop_desc */
7802 smp_rmb();
7804 /* if DD is not set pending work has not been completed */
7805 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7806 break;
7808 /* clear next_to_watch to prevent false hangs */
7809 tx_buffer->next_to_watch = NULL;
7811 /* update the statistics for this packet */
7812 total_bytes += tx_buffer->bytecount;
7813 total_packets += tx_buffer->gso_segs;
7815 /* free the skb */
7816 napi_consume_skb(tx_buffer->skb, napi_budget);
7818 /* unmap skb header data */
7819 dma_unmap_single(tx_ring->dev,
7820 dma_unmap_addr(tx_buffer, dma),
7821 dma_unmap_len(tx_buffer, len),
7822 DMA_TO_DEVICE);
7824 /* clear tx_buffer data */
7825 dma_unmap_len_set(tx_buffer, len, 0);
7827 /* clear last DMA location and unmap remaining buffers */
7828 while (tx_desc != eop_desc) {
7829 tx_buffer++;
7830 tx_desc++;
7831 i++;
7832 if (unlikely(!i)) {
7833 i -= tx_ring->count;
7834 tx_buffer = tx_ring->tx_buffer_info;
7835 tx_desc = IGB_TX_DESC(tx_ring, 0);
7838 /* unmap any remaining paged data */
7839 if (dma_unmap_len(tx_buffer, len)) {
7840 dma_unmap_page(tx_ring->dev,
7841 dma_unmap_addr(tx_buffer, dma),
7842 dma_unmap_len(tx_buffer, len),
7843 DMA_TO_DEVICE);
7844 dma_unmap_len_set(tx_buffer, len, 0);
7848 /* move us one more past the eop_desc for start of next pkt */
7849 tx_buffer++;
7850 tx_desc++;
7851 i++;
7852 if (unlikely(!i)) {
7853 i -= tx_ring->count;
7854 tx_buffer = tx_ring->tx_buffer_info;
7855 tx_desc = IGB_TX_DESC(tx_ring, 0);
7858 /* issue prefetch for next Tx descriptor */
7859 prefetch(tx_desc);
7861 /* update budget accounting */
7862 budget--;
7863 } while (likely(budget));
7865 netdev_tx_completed_queue(txring_txq(tx_ring),
7866 total_packets, total_bytes);
7867 i += tx_ring->count;
7868 tx_ring->next_to_clean = i;
7869 u64_stats_update_begin(&tx_ring->tx_syncp);
7870 tx_ring->tx_stats.bytes += total_bytes;
7871 tx_ring->tx_stats.packets += total_packets;
7872 u64_stats_update_end(&tx_ring->tx_syncp);
7873 q_vector->tx.total_bytes += total_bytes;
7874 q_vector->tx.total_packets += total_packets;
7876 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7877 struct e1000_hw *hw = &adapter->hw;
7879 /* Detect a transmit hang in hardware, this serializes the
7880 * check with the clearing of time_stamp and movement of i
7882 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7883 if (tx_buffer->next_to_watch &&
7884 time_after(jiffies, tx_buffer->time_stamp +
7885 (adapter->tx_timeout_factor * HZ)) &&
7886 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7888 /* detected Tx unit hang */
7889 dev_err(tx_ring->dev,
7890 "Detected Tx Unit Hang\n"
7891 " Tx Queue <%d>\n"
7892 " TDH <%x>\n"
7893 " TDT <%x>\n"
7894 " next_to_use <%x>\n"
7895 " next_to_clean <%x>\n"
7896 "buffer_info[next_to_clean]\n"
7897 " time_stamp <%lx>\n"
7898 " next_to_watch <%p>\n"
7899 " jiffies <%lx>\n"
7900 " desc.status <%x>\n",
7901 tx_ring->queue_index,
7902 rd32(E1000_TDH(tx_ring->reg_idx)),
7903 readl(tx_ring->tail),
7904 tx_ring->next_to_use,
7905 tx_ring->next_to_clean,
7906 tx_buffer->time_stamp,
7907 tx_buffer->next_to_watch,
7908 jiffies,
7909 tx_buffer->next_to_watch->wb.status);
7910 netif_stop_subqueue(tx_ring->netdev,
7911 tx_ring->queue_index);
7913 /* we are about to reset, no point in enabling stuff */
7914 return true;
7918 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7919 if (unlikely(total_packets &&
7920 netif_carrier_ok(tx_ring->netdev) &&
7921 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7922 /* Make sure that anybody stopping the queue after this
7923 * sees the new next_to_clean.
7925 smp_mb();
7926 if (__netif_subqueue_stopped(tx_ring->netdev,
7927 tx_ring->queue_index) &&
7928 !(test_bit(__IGB_DOWN, &adapter->state))) {
7929 netif_wake_subqueue(tx_ring->netdev,
7930 tx_ring->queue_index);
7932 u64_stats_update_begin(&tx_ring->tx_syncp);
7933 tx_ring->tx_stats.restart_queue++;
7934 u64_stats_update_end(&tx_ring->tx_syncp);
7938 return !!budget;
7942 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7943 * @rx_ring: rx descriptor ring to store buffers on
7944 * @old_buff: donor buffer to have page reused
7946 * Synchronizes page for reuse by the adapter
7948 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7949 struct igb_rx_buffer *old_buff)
7951 struct igb_rx_buffer *new_buff;
7952 u16 nta = rx_ring->next_to_alloc;
7954 new_buff = &rx_ring->rx_buffer_info[nta];
7956 /* update, and store next to alloc */
7957 nta++;
7958 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7960 /* Transfer page from old buffer to new buffer.
7961 * Move each member individually to avoid possible store
7962 * forwarding stalls.
7964 new_buff->dma = old_buff->dma;
7965 new_buff->page = old_buff->page;
7966 new_buff->page_offset = old_buff->page_offset;
7967 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
7970 static inline bool igb_page_is_reserved(struct page *page)
7972 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7975 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7977 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7978 struct page *page = rx_buffer->page;
7980 /* avoid re-using remote pages */
7981 if (unlikely(igb_page_is_reserved(page)))
7982 return false;
7984 #if (PAGE_SIZE < 8192)
7985 /* if we are only owner of page we can reuse it */
7986 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7987 return false;
7988 #else
7989 #define IGB_LAST_OFFSET \
7990 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7992 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7993 return false;
7994 #endif
7996 /* If we have drained the page fragment pool we need to update
7997 * the pagecnt_bias and page count so that we fully restock the
7998 * number of references the driver holds.
8000 if (unlikely(!pagecnt_bias)) {
8001 page_ref_add(page, USHRT_MAX);
8002 rx_buffer->pagecnt_bias = USHRT_MAX;
8005 return true;
8009 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8010 * @rx_ring: rx descriptor ring to transact packets on
8011 * @rx_buffer: buffer containing page to add
8012 * @skb: sk_buff to place the data into
8013 * @size: size of buffer to be added
8015 * This function will add the data contained in rx_buffer->page to the skb.
8017 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8018 struct igb_rx_buffer *rx_buffer,
8019 struct sk_buff *skb,
8020 unsigned int size)
8022 #if (PAGE_SIZE < 8192)
8023 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8024 #else
8025 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8026 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8027 SKB_DATA_ALIGN(size);
8028 #endif
8029 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8030 rx_buffer->page_offset, size, truesize);
8031 #if (PAGE_SIZE < 8192)
8032 rx_buffer->page_offset ^= truesize;
8033 #else
8034 rx_buffer->page_offset += truesize;
8035 #endif
8038 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8039 struct igb_rx_buffer *rx_buffer,
8040 union e1000_adv_rx_desc *rx_desc,
8041 unsigned int size)
8043 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8044 #if (PAGE_SIZE < 8192)
8045 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8046 #else
8047 unsigned int truesize = SKB_DATA_ALIGN(size);
8048 #endif
8049 unsigned int headlen;
8050 struct sk_buff *skb;
8052 /* prefetch first cache line of first page */
8053 prefetch(va);
8054 #if L1_CACHE_BYTES < 128
8055 prefetch(va + L1_CACHE_BYTES);
8056 #endif
8058 /* allocate a skb to store the frags */
8059 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8060 if (unlikely(!skb))
8061 return NULL;
8063 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8064 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8065 va += IGB_TS_HDR_LEN;
8066 size -= IGB_TS_HDR_LEN;
8069 /* Determine available headroom for copy */
8070 headlen = size;
8071 if (headlen > IGB_RX_HDR_LEN)
8072 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
8074 /* align pull length to size of long to optimize memcpy performance */
8075 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8077 /* update all of the pointers */
8078 size -= headlen;
8079 if (size) {
8080 skb_add_rx_frag(skb, 0, rx_buffer->page,
8081 (va + headlen) - page_address(rx_buffer->page),
8082 size, truesize);
8083 #if (PAGE_SIZE < 8192)
8084 rx_buffer->page_offset ^= truesize;
8085 #else
8086 rx_buffer->page_offset += truesize;
8087 #endif
8088 } else {
8089 rx_buffer->pagecnt_bias++;
8092 return skb;
8095 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8096 struct igb_rx_buffer *rx_buffer,
8097 union e1000_adv_rx_desc *rx_desc,
8098 unsigned int size)
8100 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8101 #if (PAGE_SIZE < 8192)
8102 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8103 #else
8104 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8105 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8106 #endif
8107 struct sk_buff *skb;
8109 /* prefetch first cache line of first page */
8110 prefetch(va);
8111 #if L1_CACHE_BYTES < 128
8112 prefetch(va + L1_CACHE_BYTES);
8113 #endif
8115 /* build an skb around the page buffer */
8116 skb = build_skb(va - IGB_SKB_PAD, truesize);
8117 if (unlikely(!skb))
8118 return NULL;
8120 /* update pointers within the skb to store the data */
8121 skb_reserve(skb, IGB_SKB_PAD);
8122 __skb_put(skb, size);
8124 /* pull timestamp out of packet data */
8125 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8126 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8127 __skb_pull(skb, IGB_TS_HDR_LEN);
8130 /* update buffer offset */
8131 #if (PAGE_SIZE < 8192)
8132 rx_buffer->page_offset ^= truesize;
8133 #else
8134 rx_buffer->page_offset += truesize;
8135 #endif
8137 return skb;
8140 static inline void igb_rx_checksum(struct igb_ring *ring,
8141 union e1000_adv_rx_desc *rx_desc,
8142 struct sk_buff *skb)
8144 skb_checksum_none_assert(skb);
8146 /* Ignore Checksum bit is set */
8147 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8148 return;
8150 /* Rx checksum disabled via ethtool */
8151 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8152 return;
8154 /* TCP/UDP checksum error bit is set */
8155 if (igb_test_staterr(rx_desc,
8156 E1000_RXDEXT_STATERR_TCPE |
8157 E1000_RXDEXT_STATERR_IPE)) {
8158 /* work around errata with sctp packets where the TCPE aka
8159 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8160 * packets, (aka let the stack check the crc32c)
8162 if (!((skb->len == 60) &&
8163 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8164 u64_stats_update_begin(&ring->rx_syncp);
8165 ring->rx_stats.csum_err++;
8166 u64_stats_update_end(&ring->rx_syncp);
8168 /* let the stack verify checksum errors */
8169 return;
8171 /* It must be a TCP or UDP packet with a valid checksum */
8172 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8173 E1000_RXD_STAT_UDPCS))
8174 skb->ip_summed = CHECKSUM_UNNECESSARY;
8176 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8177 le32_to_cpu(rx_desc->wb.upper.status_error));
8180 static inline void igb_rx_hash(struct igb_ring *ring,
8181 union e1000_adv_rx_desc *rx_desc,
8182 struct sk_buff *skb)
8184 if (ring->netdev->features & NETIF_F_RXHASH)
8185 skb_set_hash(skb,
8186 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8187 PKT_HASH_TYPE_L3);
8191 * igb_is_non_eop - process handling of non-EOP buffers
8192 * @rx_ring: Rx ring being processed
8193 * @rx_desc: Rx descriptor for current buffer
8194 * @skb: current socket buffer containing buffer in progress
8196 * This function updates next to clean. If the buffer is an EOP buffer
8197 * this function exits returning false, otherwise it will place the
8198 * sk_buff in the next buffer to be chained and return true indicating
8199 * that this is in fact a non-EOP buffer.
8201 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8202 union e1000_adv_rx_desc *rx_desc)
8204 u32 ntc = rx_ring->next_to_clean + 1;
8206 /* fetch, update, and store next to clean */
8207 ntc = (ntc < rx_ring->count) ? ntc : 0;
8208 rx_ring->next_to_clean = ntc;
8210 prefetch(IGB_RX_DESC(rx_ring, ntc));
8212 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8213 return false;
8215 return true;
8219 * igb_cleanup_headers - Correct corrupted or empty headers
8220 * @rx_ring: rx descriptor ring packet is being transacted on
8221 * @rx_desc: pointer to the EOP Rx descriptor
8222 * @skb: pointer to current skb being fixed
8224 * Address the case where we are pulling data in on pages only
8225 * and as such no data is present in the skb header.
8227 * In addition if skb is not at least 60 bytes we need to pad it so that
8228 * it is large enough to qualify as a valid Ethernet frame.
8230 * Returns true if an error was encountered and skb was freed.
8232 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8233 union e1000_adv_rx_desc *rx_desc,
8234 struct sk_buff *skb)
8236 if (unlikely((igb_test_staterr(rx_desc,
8237 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8238 struct net_device *netdev = rx_ring->netdev;
8239 if (!(netdev->features & NETIF_F_RXALL)) {
8240 dev_kfree_skb_any(skb);
8241 return true;
8245 /* if eth_skb_pad returns an error the skb was freed */
8246 if (eth_skb_pad(skb))
8247 return true;
8249 return false;
8253 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8254 * @rx_ring: rx descriptor ring packet is being transacted on
8255 * @rx_desc: pointer to the EOP Rx descriptor
8256 * @skb: pointer to current skb being populated
8258 * This function checks the ring, descriptor, and packet information in
8259 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8260 * other fields within the skb.
8262 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8263 union e1000_adv_rx_desc *rx_desc,
8264 struct sk_buff *skb)
8266 struct net_device *dev = rx_ring->netdev;
8268 igb_rx_hash(rx_ring, rx_desc, skb);
8270 igb_rx_checksum(rx_ring, rx_desc, skb);
8272 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8273 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8274 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8276 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8277 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8278 u16 vid;
8280 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8281 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8282 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8283 else
8284 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8286 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8289 skb_record_rx_queue(skb, rx_ring->queue_index);
8291 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8294 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8295 const unsigned int size)
8297 struct igb_rx_buffer *rx_buffer;
8299 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8300 prefetchw(rx_buffer->page);
8302 /* we are reusing so sync this buffer for CPU use */
8303 dma_sync_single_range_for_cpu(rx_ring->dev,
8304 rx_buffer->dma,
8305 rx_buffer->page_offset,
8306 size,
8307 DMA_FROM_DEVICE);
8309 rx_buffer->pagecnt_bias--;
8311 return rx_buffer;
8314 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8315 struct igb_rx_buffer *rx_buffer)
8317 if (igb_can_reuse_rx_page(rx_buffer)) {
8318 /* hand second half of page back to the ring */
8319 igb_reuse_rx_page(rx_ring, rx_buffer);
8320 } else {
8321 /* We are not reusing the buffer so unmap it and free
8322 * any references we are holding to it
8324 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8325 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8326 IGB_RX_DMA_ATTR);
8327 __page_frag_cache_drain(rx_buffer->page,
8328 rx_buffer->pagecnt_bias);
8331 /* clear contents of rx_buffer */
8332 rx_buffer->page = NULL;
8335 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8337 struct igb_ring *rx_ring = q_vector->rx.ring;
8338 struct sk_buff *skb = rx_ring->skb;
8339 unsigned int total_bytes = 0, total_packets = 0;
8340 u16 cleaned_count = igb_desc_unused(rx_ring);
8342 while (likely(total_packets < budget)) {
8343 union e1000_adv_rx_desc *rx_desc;
8344 struct igb_rx_buffer *rx_buffer;
8345 unsigned int size;
8347 /* return some buffers to hardware, one at a time is too slow */
8348 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8349 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8350 cleaned_count = 0;
8353 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8354 size = le16_to_cpu(rx_desc->wb.upper.length);
8355 if (!size)
8356 break;
8358 /* This memory barrier is needed to keep us from reading
8359 * any other fields out of the rx_desc until we know the
8360 * descriptor has been written back
8362 dma_rmb();
8364 rx_buffer = igb_get_rx_buffer(rx_ring, size);
8366 /* retrieve a buffer from the ring */
8367 if (skb)
8368 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8369 else if (ring_uses_build_skb(rx_ring))
8370 skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8371 else
8372 skb = igb_construct_skb(rx_ring, rx_buffer,
8373 rx_desc, size);
8375 /* exit if we failed to retrieve a buffer */
8376 if (!skb) {
8377 rx_ring->rx_stats.alloc_failed++;
8378 rx_buffer->pagecnt_bias++;
8379 break;
8382 igb_put_rx_buffer(rx_ring, rx_buffer);
8383 cleaned_count++;
8385 /* fetch next buffer in frame if non-eop */
8386 if (igb_is_non_eop(rx_ring, rx_desc))
8387 continue;
8389 /* verify the packet layout is correct */
8390 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8391 skb = NULL;
8392 continue;
8395 /* probably a little skewed due to removing CRC */
8396 total_bytes += skb->len;
8398 /* populate checksum, timestamp, VLAN, and protocol */
8399 igb_process_skb_fields(rx_ring, rx_desc, skb);
8401 napi_gro_receive(&q_vector->napi, skb);
8403 /* reset skb pointer */
8404 skb = NULL;
8406 /* update budget accounting */
8407 total_packets++;
8410 /* place incomplete frames back on ring for completion */
8411 rx_ring->skb = skb;
8413 u64_stats_update_begin(&rx_ring->rx_syncp);
8414 rx_ring->rx_stats.packets += total_packets;
8415 rx_ring->rx_stats.bytes += total_bytes;
8416 u64_stats_update_end(&rx_ring->rx_syncp);
8417 q_vector->rx.total_packets += total_packets;
8418 q_vector->rx.total_bytes += total_bytes;
8420 if (cleaned_count)
8421 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8423 return total_packets;
8426 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8428 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8431 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8432 struct igb_rx_buffer *bi)
8434 struct page *page = bi->page;
8435 dma_addr_t dma;
8437 /* since we are recycling buffers we should seldom need to alloc */
8438 if (likely(page))
8439 return true;
8441 /* alloc new page for storage */
8442 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8443 if (unlikely(!page)) {
8444 rx_ring->rx_stats.alloc_failed++;
8445 return false;
8448 /* map page for use */
8449 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8450 igb_rx_pg_size(rx_ring),
8451 DMA_FROM_DEVICE,
8452 IGB_RX_DMA_ATTR);
8454 /* if mapping failed free memory back to system since
8455 * there isn't much point in holding memory we can't use
8457 if (dma_mapping_error(rx_ring->dev, dma)) {
8458 __free_pages(page, igb_rx_pg_order(rx_ring));
8460 rx_ring->rx_stats.alloc_failed++;
8461 return false;
8464 bi->dma = dma;
8465 bi->page = page;
8466 bi->page_offset = igb_rx_offset(rx_ring);
8467 bi->pagecnt_bias = 1;
8469 return true;
8473 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
8474 * @adapter: address of board private structure
8476 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8478 union e1000_adv_rx_desc *rx_desc;
8479 struct igb_rx_buffer *bi;
8480 u16 i = rx_ring->next_to_use;
8481 u16 bufsz;
8483 /* nothing to do */
8484 if (!cleaned_count)
8485 return;
8487 rx_desc = IGB_RX_DESC(rx_ring, i);
8488 bi = &rx_ring->rx_buffer_info[i];
8489 i -= rx_ring->count;
8491 bufsz = igb_rx_bufsz(rx_ring);
8493 do {
8494 if (!igb_alloc_mapped_page(rx_ring, bi))
8495 break;
8497 /* sync the buffer for use by the device */
8498 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8499 bi->page_offset, bufsz,
8500 DMA_FROM_DEVICE);
8502 /* Refresh the desc even if buffer_addrs didn't change
8503 * because each write-back erases this info.
8505 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8507 rx_desc++;
8508 bi++;
8509 i++;
8510 if (unlikely(!i)) {
8511 rx_desc = IGB_RX_DESC(rx_ring, 0);
8512 bi = rx_ring->rx_buffer_info;
8513 i -= rx_ring->count;
8516 /* clear the length for the next_to_use descriptor */
8517 rx_desc->wb.upper.length = 0;
8519 cleaned_count--;
8520 } while (cleaned_count);
8522 i += rx_ring->count;
8524 if (rx_ring->next_to_use != i) {
8525 /* record the next descriptor to use */
8526 rx_ring->next_to_use = i;
8528 /* update next to alloc since we have filled the ring */
8529 rx_ring->next_to_alloc = i;
8531 /* Force memory writes to complete before letting h/w
8532 * know there are new descriptors to fetch. (Only
8533 * applicable for weak-ordered memory model archs,
8534 * such as IA-64).
8536 dma_wmb();
8537 writel(i, rx_ring->tail);
8542 * igb_mii_ioctl -
8543 * @netdev:
8544 * @ifreq:
8545 * @cmd:
8547 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8549 struct igb_adapter *adapter = netdev_priv(netdev);
8550 struct mii_ioctl_data *data = if_mii(ifr);
8552 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8553 return -EOPNOTSUPP;
8555 switch (cmd) {
8556 case SIOCGMIIPHY:
8557 data->phy_id = adapter->hw.phy.addr;
8558 break;
8559 case SIOCGMIIREG:
8560 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8561 &data->val_out))
8562 return -EIO;
8563 break;
8564 case SIOCSMIIREG:
8565 default:
8566 return -EOPNOTSUPP;
8568 return 0;
8572 * igb_ioctl -
8573 * @netdev:
8574 * @ifreq:
8575 * @cmd:
8577 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8579 switch (cmd) {
8580 case SIOCGMIIPHY:
8581 case SIOCGMIIREG:
8582 case SIOCSMIIREG:
8583 return igb_mii_ioctl(netdev, ifr, cmd);
8584 case SIOCGHWTSTAMP:
8585 return igb_ptp_get_ts_config(netdev, ifr);
8586 case SIOCSHWTSTAMP:
8587 return igb_ptp_set_ts_config(netdev, ifr);
8588 default:
8589 return -EOPNOTSUPP;
8593 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8595 struct igb_adapter *adapter = hw->back;
8597 pci_read_config_word(adapter->pdev, reg, value);
8600 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8602 struct igb_adapter *adapter = hw->back;
8604 pci_write_config_word(adapter->pdev, reg, *value);
8607 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8609 struct igb_adapter *adapter = hw->back;
8611 if (pcie_capability_read_word(adapter->pdev, reg, value))
8612 return -E1000_ERR_CONFIG;
8614 return 0;
8617 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8619 struct igb_adapter *adapter = hw->back;
8621 if (pcie_capability_write_word(adapter->pdev, reg, *value))
8622 return -E1000_ERR_CONFIG;
8624 return 0;
8627 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8629 struct igb_adapter *adapter = netdev_priv(netdev);
8630 struct e1000_hw *hw = &adapter->hw;
8631 u32 ctrl, rctl;
8632 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8634 if (enable) {
8635 /* enable VLAN tag insert/strip */
8636 ctrl = rd32(E1000_CTRL);
8637 ctrl |= E1000_CTRL_VME;
8638 wr32(E1000_CTRL, ctrl);
8640 /* Disable CFI check */
8641 rctl = rd32(E1000_RCTL);
8642 rctl &= ~E1000_RCTL_CFIEN;
8643 wr32(E1000_RCTL, rctl);
8644 } else {
8645 /* disable VLAN tag insert/strip */
8646 ctrl = rd32(E1000_CTRL);
8647 ctrl &= ~E1000_CTRL_VME;
8648 wr32(E1000_CTRL, ctrl);
8651 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8654 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8655 __be16 proto, u16 vid)
8657 struct igb_adapter *adapter = netdev_priv(netdev);
8658 struct e1000_hw *hw = &adapter->hw;
8659 int pf_id = adapter->vfs_allocated_count;
8661 /* add the filter since PF can receive vlans w/o entry in vlvf */
8662 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8663 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8665 set_bit(vid, adapter->active_vlans);
8667 return 0;
8670 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8671 __be16 proto, u16 vid)
8673 struct igb_adapter *adapter = netdev_priv(netdev);
8674 int pf_id = adapter->vfs_allocated_count;
8675 struct e1000_hw *hw = &adapter->hw;
8677 /* remove VID from filter table */
8678 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8679 igb_vfta_set(hw, vid, pf_id, false, true);
8681 clear_bit(vid, adapter->active_vlans);
8683 return 0;
8686 static void igb_restore_vlan(struct igb_adapter *adapter)
8688 u16 vid = 1;
8690 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8691 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8693 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8694 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8697 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8699 struct pci_dev *pdev = adapter->pdev;
8700 struct e1000_mac_info *mac = &adapter->hw.mac;
8702 mac->autoneg = 0;
8704 /* Make sure dplx is at most 1 bit and lsb of speed is not set
8705 * for the switch() below to work
8707 if ((spd & 1) || (dplx & ~1))
8708 goto err_inval;
8710 /* Fiber NIC's only allow 1000 gbps Full duplex
8711 * and 100Mbps Full duplex for 100baseFx sfp
8713 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8714 switch (spd + dplx) {
8715 case SPEED_10 + DUPLEX_HALF:
8716 case SPEED_10 + DUPLEX_FULL:
8717 case SPEED_100 + DUPLEX_HALF:
8718 goto err_inval;
8719 default:
8720 break;
8724 switch (spd + dplx) {
8725 case SPEED_10 + DUPLEX_HALF:
8726 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8727 break;
8728 case SPEED_10 + DUPLEX_FULL:
8729 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8730 break;
8731 case SPEED_100 + DUPLEX_HALF:
8732 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8733 break;
8734 case SPEED_100 + DUPLEX_FULL:
8735 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8736 break;
8737 case SPEED_1000 + DUPLEX_FULL:
8738 mac->autoneg = 1;
8739 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8740 break;
8741 case SPEED_1000 + DUPLEX_HALF: /* not supported */
8742 default:
8743 goto err_inval;
8746 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8747 adapter->hw.phy.mdix = AUTO_ALL_MODES;
8749 return 0;
8751 err_inval:
8752 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8753 return -EINVAL;
8756 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8757 bool runtime)
8759 struct net_device *netdev = pci_get_drvdata(pdev);
8760 struct igb_adapter *adapter = netdev_priv(netdev);
8761 struct e1000_hw *hw = &adapter->hw;
8762 u32 ctrl, rctl, status;
8763 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8764 #ifdef CONFIG_PM
8765 int retval = 0;
8766 #endif
8768 rtnl_lock();
8769 netif_device_detach(netdev);
8771 if (netif_running(netdev))
8772 __igb_close(netdev, true);
8774 igb_ptp_suspend(adapter);
8776 igb_clear_interrupt_scheme(adapter);
8777 rtnl_unlock();
8779 #ifdef CONFIG_PM
8780 retval = pci_save_state(pdev);
8781 if (retval)
8782 return retval;
8783 #endif
8785 status = rd32(E1000_STATUS);
8786 if (status & E1000_STATUS_LU)
8787 wufc &= ~E1000_WUFC_LNKC;
8789 if (wufc) {
8790 igb_setup_rctl(adapter);
8791 igb_set_rx_mode(netdev);
8793 /* turn on all-multi mode if wake on multicast is enabled */
8794 if (wufc & E1000_WUFC_MC) {
8795 rctl = rd32(E1000_RCTL);
8796 rctl |= E1000_RCTL_MPE;
8797 wr32(E1000_RCTL, rctl);
8800 ctrl = rd32(E1000_CTRL);
8801 /* advertise wake from D3Cold */
8802 #define E1000_CTRL_ADVD3WUC 0x00100000
8803 /* phy power management enable */
8804 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8805 ctrl |= E1000_CTRL_ADVD3WUC;
8806 wr32(E1000_CTRL, ctrl);
8808 /* Allow time for pending master requests to run */
8809 igb_disable_pcie_master(hw);
8811 wr32(E1000_WUC, E1000_WUC_PME_EN);
8812 wr32(E1000_WUFC, wufc);
8813 } else {
8814 wr32(E1000_WUC, 0);
8815 wr32(E1000_WUFC, 0);
8818 *enable_wake = wufc || adapter->en_mng_pt;
8819 if (!*enable_wake)
8820 igb_power_down_link(adapter);
8821 else
8822 igb_power_up_link(adapter);
8824 /* Release control of h/w to f/w. If f/w is AMT enabled, this
8825 * would have already happened in close and is redundant.
8827 igb_release_hw_control(adapter);
8829 pci_disable_device(pdev);
8831 return 0;
8834 static void igb_deliver_wake_packet(struct net_device *netdev)
8836 struct igb_adapter *adapter = netdev_priv(netdev);
8837 struct e1000_hw *hw = &adapter->hw;
8838 struct sk_buff *skb;
8839 u32 wupl;
8841 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8843 /* WUPM stores only the first 128 bytes of the wake packet.
8844 * Read the packet only if we have the whole thing.
8846 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8847 return;
8849 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8850 if (!skb)
8851 return;
8853 skb_put(skb, wupl);
8855 /* Ensure reads are 32-bit aligned */
8856 wupl = roundup(wupl, 4);
8858 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8860 skb->protocol = eth_type_trans(skb, netdev);
8861 netif_rx(skb);
8864 static int __maybe_unused igb_suspend(struct device *dev)
8866 int retval;
8867 bool wake;
8868 struct pci_dev *pdev = to_pci_dev(dev);
8870 retval = __igb_shutdown(pdev, &wake, 0);
8871 if (retval)
8872 return retval;
8874 if (wake) {
8875 pci_prepare_to_sleep(pdev);
8876 } else {
8877 pci_wake_from_d3(pdev, false);
8878 pci_set_power_state(pdev, PCI_D3hot);
8881 return 0;
8884 static int __maybe_unused igb_resume(struct device *dev)
8886 struct pci_dev *pdev = to_pci_dev(dev);
8887 struct net_device *netdev = pci_get_drvdata(pdev);
8888 struct igb_adapter *adapter = netdev_priv(netdev);
8889 struct e1000_hw *hw = &adapter->hw;
8890 u32 err, val;
8892 pci_set_power_state(pdev, PCI_D0);
8893 pci_restore_state(pdev);
8894 pci_save_state(pdev);
8896 if (!pci_device_is_present(pdev))
8897 return -ENODEV;
8898 err = pci_enable_device_mem(pdev);
8899 if (err) {
8900 dev_err(&pdev->dev,
8901 "igb: Cannot enable PCI device from suspend\n");
8902 return err;
8904 pci_set_master(pdev);
8906 pci_enable_wake(pdev, PCI_D3hot, 0);
8907 pci_enable_wake(pdev, PCI_D3cold, 0);
8909 if (igb_init_interrupt_scheme(adapter, true)) {
8910 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8911 return -ENOMEM;
8914 igb_reset(adapter);
8916 /* let the f/w know that the h/w is now under the control of the
8917 * driver.
8919 igb_get_hw_control(adapter);
8921 val = rd32(E1000_WUS);
8922 if (val & WAKE_PKT_WUS)
8923 igb_deliver_wake_packet(netdev);
8925 wr32(E1000_WUS, ~0);
8927 rtnl_lock();
8928 if (!err && netif_running(netdev))
8929 err = __igb_open(netdev, true);
8931 if (!err)
8932 netif_device_attach(netdev);
8933 rtnl_unlock();
8935 return err;
8938 static int __maybe_unused igb_runtime_idle(struct device *dev)
8940 struct pci_dev *pdev = to_pci_dev(dev);
8941 struct net_device *netdev = pci_get_drvdata(pdev);
8942 struct igb_adapter *adapter = netdev_priv(netdev);
8944 if (!igb_has_link(adapter))
8945 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8947 return -EBUSY;
8950 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8952 struct pci_dev *pdev = to_pci_dev(dev);
8953 int retval;
8954 bool wake;
8956 retval = __igb_shutdown(pdev, &wake, 1);
8957 if (retval)
8958 return retval;
8960 if (wake) {
8961 pci_prepare_to_sleep(pdev);
8962 } else {
8963 pci_wake_from_d3(pdev, false);
8964 pci_set_power_state(pdev, PCI_D3hot);
8967 return 0;
8970 static int __maybe_unused igb_runtime_resume(struct device *dev)
8972 return igb_resume(dev);
8975 static void igb_shutdown(struct pci_dev *pdev)
8977 bool wake;
8979 __igb_shutdown(pdev, &wake, 0);
8981 if (system_state == SYSTEM_POWER_OFF) {
8982 pci_wake_from_d3(pdev, wake);
8983 pci_set_power_state(pdev, PCI_D3hot);
8987 #ifdef CONFIG_PCI_IOV
8988 static int igb_sriov_reinit(struct pci_dev *dev)
8990 struct net_device *netdev = pci_get_drvdata(dev);
8991 struct igb_adapter *adapter = netdev_priv(netdev);
8992 struct pci_dev *pdev = adapter->pdev;
8994 rtnl_lock();
8996 if (netif_running(netdev))
8997 igb_close(netdev);
8998 else
8999 igb_reset(adapter);
9001 igb_clear_interrupt_scheme(adapter);
9003 igb_init_queue_configuration(adapter);
9005 if (igb_init_interrupt_scheme(adapter, true)) {
9006 rtnl_unlock();
9007 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9008 return -ENOMEM;
9011 if (netif_running(netdev))
9012 igb_open(netdev);
9014 rtnl_unlock();
9016 return 0;
9019 static int igb_pci_disable_sriov(struct pci_dev *dev)
9021 int err = igb_disable_sriov(dev);
9023 if (!err)
9024 err = igb_sriov_reinit(dev);
9026 return err;
9029 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9031 int err = igb_enable_sriov(dev, num_vfs);
9033 if (err)
9034 goto out;
9036 err = igb_sriov_reinit(dev);
9037 if (!err)
9038 return num_vfs;
9040 out:
9041 return err;
9044 #endif
9045 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9047 #ifdef CONFIG_PCI_IOV
9048 if (num_vfs == 0)
9049 return igb_pci_disable_sriov(dev);
9050 else
9051 return igb_pci_enable_sriov(dev, num_vfs);
9052 #endif
9053 return 0;
9056 #ifdef CONFIG_NET_POLL_CONTROLLER
9057 /* Polling 'interrupt' - used by things like netconsole to send skbs
9058 * without having to re-enable interrupts. It's not called while
9059 * the interrupt routine is executing.
9061 static void igb_netpoll(struct net_device *netdev)
9063 struct igb_adapter *adapter = netdev_priv(netdev);
9064 struct e1000_hw *hw = &adapter->hw;
9065 struct igb_q_vector *q_vector;
9066 int i;
9068 for (i = 0; i < adapter->num_q_vectors; i++) {
9069 q_vector = adapter->q_vector[i];
9070 if (adapter->flags & IGB_FLAG_HAS_MSIX)
9071 wr32(E1000_EIMC, q_vector->eims_value);
9072 else
9073 igb_irq_disable(adapter);
9074 napi_schedule(&q_vector->napi);
9077 #endif /* CONFIG_NET_POLL_CONTROLLER */
9080 * igb_io_error_detected - called when PCI error is detected
9081 * @pdev: Pointer to PCI device
9082 * @state: The current pci connection state
9084 * This function is called after a PCI bus error affecting
9085 * this device has been detected.
9087 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9088 pci_channel_state_t state)
9090 struct net_device *netdev = pci_get_drvdata(pdev);
9091 struct igb_adapter *adapter = netdev_priv(netdev);
9093 netif_device_detach(netdev);
9095 if (state == pci_channel_io_perm_failure)
9096 return PCI_ERS_RESULT_DISCONNECT;
9098 if (netif_running(netdev))
9099 igb_down(adapter);
9100 pci_disable_device(pdev);
9102 /* Request a slot slot reset. */
9103 return PCI_ERS_RESULT_NEED_RESET;
9107 * igb_io_slot_reset - called after the pci bus has been reset.
9108 * @pdev: Pointer to PCI device
9110 * Restart the card from scratch, as if from a cold-boot. Implementation
9111 * resembles the first-half of the igb_resume routine.
9113 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9115 struct net_device *netdev = pci_get_drvdata(pdev);
9116 struct igb_adapter *adapter = netdev_priv(netdev);
9117 struct e1000_hw *hw = &adapter->hw;
9118 pci_ers_result_t result;
9119 int err;
9121 if (pci_enable_device_mem(pdev)) {
9122 dev_err(&pdev->dev,
9123 "Cannot re-enable PCI device after reset.\n");
9124 result = PCI_ERS_RESULT_DISCONNECT;
9125 } else {
9126 pci_set_master(pdev);
9127 pci_restore_state(pdev);
9128 pci_save_state(pdev);
9130 pci_enable_wake(pdev, PCI_D3hot, 0);
9131 pci_enable_wake(pdev, PCI_D3cold, 0);
9133 /* In case of PCI error, adapter lose its HW address
9134 * so we should re-assign it here.
9136 hw->hw_addr = adapter->io_addr;
9138 igb_reset(adapter);
9139 wr32(E1000_WUS, ~0);
9140 result = PCI_ERS_RESULT_RECOVERED;
9143 err = pci_cleanup_aer_uncorrect_error_status(pdev);
9144 if (err) {
9145 dev_err(&pdev->dev,
9146 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
9147 err);
9148 /* non-fatal, continue */
9151 return result;
9155 * igb_io_resume - called when traffic can start flowing again.
9156 * @pdev: Pointer to PCI device
9158 * This callback is called when the error recovery driver tells us that
9159 * its OK to resume normal operation. Implementation resembles the
9160 * second-half of the igb_resume routine.
9162 static void igb_io_resume(struct pci_dev *pdev)
9164 struct net_device *netdev = pci_get_drvdata(pdev);
9165 struct igb_adapter *adapter = netdev_priv(netdev);
9167 if (netif_running(netdev)) {
9168 if (igb_up(adapter)) {
9169 dev_err(&pdev->dev, "igb_up failed after reset\n");
9170 return;
9174 netif_device_attach(netdev);
9176 /* let the f/w know that the h/w is now under the control of the
9177 * driver.
9179 igb_get_hw_control(adapter);
9183 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9184 * @adapter: Pointer to adapter structure
9185 * @index: Index of the RAR entry which need to be synced with MAC table
9187 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9189 struct e1000_hw *hw = &adapter->hw;
9190 u32 rar_low, rar_high;
9191 u8 *addr = adapter->mac_table[index].addr;
9193 /* HW expects these to be in network order when they are plugged
9194 * into the registers which are little endian. In order to guarantee
9195 * that ordering we need to do an leXX_to_cpup here in order to be
9196 * ready for the byteswap that occurs with writel
9198 rar_low = le32_to_cpup((__le32 *)(addr));
9199 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9201 /* Indicate to hardware the Address is Valid. */
9202 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9203 if (is_valid_ether_addr(addr))
9204 rar_high |= E1000_RAH_AV;
9206 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9207 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9209 switch (hw->mac.type) {
9210 case e1000_82575:
9211 case e1000_i210:
9212 if (adapter->mac_table[index].state &
9213 IGB_MAC_STATE_QUEUE_STEERING)
9214 rar_high |= E1000_RAH_QSEL_ENABLE;
9216 rar_high |= E1000_RAH_POOL_1 *
9217 adapter->mac_table[index].queue;
9218 break;
9219 default:
9220 rar_high |= E1000_RAH_POOL_1 <<
9221 adapter->mac_table[index].queue;
9222 break;
9226 wr32(E1000_RAL(index), rar_low);
9227 wrfl();
9228 wr32(E1000_RAH(index), rar_high);
9229 wrfl();
9232 static int igb_set_vf_mac(struct igb_adapter *adapter,
9233 int vf, unsigned char *mac_addr)
9235 struct e1000_hw *hw = &adapter->hw;
9236 /* VF MAC addresses start at end of receive addresses and moves
9237 * towards the first, as a result a collision should not be possible
9239 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9240 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9242 ether_addr_copy(vf_mac_addr, mac_addr);
9243 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9244 adapter->mac_table[rar_entry].queue = vf;
9245 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9246 igb_rar_set_index(adapter, rar_entry);
9248 return 0;
9251 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9253 struct igb_adapter *adapter = netdev_priv(netdev);
9255 if (vf >= adapter->vfs_allocated_count)
9256 return -EINVAL;
9258 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9259 * flag and allows to overwrite the MAC via VF netdev. This
9260 * is necessary to allow libvirt a way to restore the original
9261 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9262 * down a VM.
9264 if (is_zero_ether_addr(mac)) {
9265 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9266 dev_info(&adapter->pdev->dev,
9267 "remove administratively set MAC on VF %d\n",
9268 vf);
9269 } else if (is_valid_ether_addr(mac)) {
9270 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9271 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9272 mac, vf);
9273 dev_info(&adapter->pdev->dev,
9274 "Reload the VF driver to make this change effective.");
9275 /* Generate additional warning if PF is down */
9276 if (test_bit(__IGB_DOWN, &adapter->state)) {
9277 dev_warn(&adapter->pdev->dev,
9278 "The VF MAC address has been set, but the PF device is not up.\n");
9279 dev_warn(&adapter->pdev->dev,
9280 "Bring the PF device up before attempting to use the VF device.\n");
9282 } else {
9283 return -EINVAL;
9285 return igb_set_vf_mac(adapter, vf, mac);
9288 static int igb_link_mbps(int internal_link_speed)
9290 switch (internal_link_speed) {
9291 case SPEED_100:
9292 return 100;
9293 case SPEED_1000:
9294 return 1000;
9295 default:
9296 return 0;
9300 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9301 int link_speed)
9303 int rf_dec, rf_int;
9304 u32 bcnrc_val;
9306 if (tx_rate != 0) {
9307 /* Calculate the rate factor values to set */
9308 rf_int = link_speed / tx_rate;
9309 rf_dec = (link_speed - (rf_int * tx_rate));
9310 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9311 tx_rate;
9313 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9314 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9315 E1000_RTTBCNRC_RF_INT_MASK);
9316 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9317 } else {
9318 bcnrc_val = 0;
9321 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9322 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9323 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9325 wr32(E1000_RTTBCNRM, 0x14);
9326 wr32(E1000_RTTBCNRC, bcnrc_val);
9329 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9331 int actual_link_speed, i;
9332 bool reset_rate = false;
9334 /* VF TX rate limit was not set or not supported */
9335 if ((adapter->vf_rate_link_speed == 0) ||
9336 (adapter->hw.mac.type != e1000_82576))
9337 return;
9339 actual_link_speed = igb_link_mbps(adapter->link_speed);
9340 if (actual_link_speed != adapter->vf_rate_link_speed) {
9341 reset_rate = true;
9342 adapter->vf_rate_link_speed = 0;
9343 dev_info(&adapter->pdev->dev,
9344 "Link speed has been changed. VF Transmit rate is disabled\n");
9347 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9348 if (reset_rate)
9349 adapter->vf_data[i].tx_rate = 0;
9351 igb_set_vf_rate_limit(&adapter->hw, i,
9352 adapter->vf_data[i].tx_rate,
9353 actual_link_speed);
9357 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9358 int min_tx_rate, int max_tx_rate)
9360 struct igb_adapter *adapter = netdev_priv(netdev);
9361 struct e1000_hw *hw = &adapter->hw;
9362 int actual_link_speed;
9364 if (hw->mac.type != e1000_82576)
9365 return -EOPNOTSUPP;
9367 if (min_tx_rate)
9368 return -EINVAL;
9370 actual_link_speed = igb_link_mbps(adapter->link_speed);
9371 if ((vf >= adapter->vfs_allocated_count) ||
9372 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9373 (max_tx_rate < 0) ||
9374 (max_tx_rate > actual_link_speed))
9375 return -EINVAL;
9377 adapter->vf_rate_link_speed = actual_link_speed;
9378 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9379 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9381 return 0;
9384 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9385 bool setting)
9387 struct igb_adapter *adapter = netdev_priv(netdev);
9388 struct e1000_hw *hw = &adapter->hw;
9389 u32 reg_val, reg_offset;
9391 if (!adapter->vfs_allocated_count)
9392 return -EOPNOTSUPP;
9394 if (vf >= adapter->vfs_allocated_count)
9395 return -EINVAL;
9397 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9398 reg_val = rd32(reg_offset);
9399 if (setting)
9400 reg_val |= (BIT(vf) |
9401 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9402 else
9403 reg_val &= ~(BIT(vf) |
9404 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9405 wr32(reg_offset, reg_val);
9407 adapter->vf_data[vf].spoofchk_enabled = setting;
9408 return 0;
9411 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9413 struct igb_adapter *adapter = netdev_priv(netdev);
9415 if (vf >= adapter->vfs_allocated_count)
9416 return -EINVAL;
9417 if (adapter->vf_data[vf].trusted == setting)
9418 return 0;
9420 adapter->vf_data[vf].trusted = setting;
9422 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9423 vf, setting ? "" : "not ");
9424 return 0;
9427 static int igb_ndo_get_vf_config(struct net_device *netdev,
9428 int vf, struct ifla_vf_info *ivi)
9430 struct igb_adapter *adapter = netdev_priv(netdev);
9431 if (vf >= adapter->vfs_allocated_count)
9432 return -EINVAL;
9433 ivi->vf = vf;
9434 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9435 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9436 ivi->min_tx_rate = 0;
9437 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9438 ivi->qos = adapter->vf_data[vf].pf_qos;
9439 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9440 ivi->trusted = adapter->vf_data[vf].trusted;
9441 return 0;
9444 static void igb_vmm_control(struct igb_adapter *adapter)
9446 struct e1000_hw *hw = &adapter->hw;
9447 u32 reg;
9449 switch (hw->mac.type) {
9450 case e1000_82575:
9451 case e1000_i210:
9452 case e1000_i211:
9453 case e1000_i354:
9454 default:
9455 /* replication is not supported for 82575 */
9456 return;
9457 case e1000_82576:
9458 /* notify HW that the MAC is adding vlan tags */
9459 reg = rd32(E1000_DTXCTL);
9460 reg |= E1000_DTXCTL_VLAN_ADDED;
9461 wr32(E1000_DTXCTL, reg);
9462 /* Fall through */
9463 case e1000_82580:
9464 /* enable replication vlan tag stripping */
9465 reg = rd32(E1000_RPLOLR);
9466 reg |= E1000_RPLOLR_STRVLAN;
9467 wr32(E1000_RPLOLR, reg);
9468 /* Fall through */
9469 case e1000_i350:
9470 /* none of the above registers are supported by i350 */
9471 break;
9474 if (adapter->vfs_allocated_count) {
9475 igb_vmdq_set_loopback_pf(hw, true);
9476 igb_vmdq_set_replication_pf(hw, true);
9477 igb_vmdq_set_anti_spoofing_pf(hw, true,
9478 adapter->vfs_allocated_count);
9479 } else {
9480 igb_vmdq_set_loopback_pf(hw, false);
9481 igb_vmdq_set_replication_pf(hw, false);
9485 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9487 struct e1000_hw *hw = &adapter->hw;
9488 u32 dmac_thr;
9489 u16 hwm;
9491 if (hw->mac.type > e1000_82580) {
9492 if (adapter->flags & IGB_FLAG_DMAC) {
9493 u32 reg;
9495 /* force threshold to 0. */
9496 wr32(E1000_DMCTXTH, 0);
9498 /* DMA Coalescing high water mark needs to be greater
9499 * than the Rx threshold. Set hwm to PBA - max frame
9500 * size in 16B units, capping it at PBA - 6KB.
9502 hwm = 64 * (pba - 6);
9503 reg = rd32(E1000_FCRTC);
9504 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9505 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9506 & E1000_FCRTC_RTH_COAL_MASK);
9507 wr32(E1000_FCRTC, reg);
9509 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9510 * frame size, capping it at PBA - 10KB.
9512 dmac_thr = pba - 10;
9513 reg = rd32(E1000_DMACR);
9514 reg &= ~E1000_DMACR_DMACTHR_MASK;
9515 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9516 & E1000_DMACR_DMACTHR_MASK);
9518 /* transition to L0x or L1 if available..*/
9519 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9521 /* watchdog timer= +-1000 usec in 32usec intervals */
9522 reg |= (1000 >> 5);
9524 /* Disable BMC-to-OS Watchdog Enable */
9525 if (hw->mac.type != e1000_i354)
9526 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9528 wr32(E1000_DMACR, reg);
9530 /* no lower threshold to disable
9531 * coalescing(smart fifb)-UTRESH=0
9533 wr32(E1000_DMCRTRH, 0);
9535 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9537 wr32(E1000_DMCTLX, reg);
9539 /* free space in tx packet buffer to wake from
9540 * DMA coal
9542 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9543 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9545 /* make low power state decision controlled
9546 * by DMA coal
9548 reg = rd32(E1000_PCIEMISC);
9549 reg &= ~E1000_PCIEMISC_LX_DECISION;
9550 wr32(E1000_PCIEMISC, reg);
9551 } /* endif adapter->dmac is not disabled */
9552 } else if (hw->mac.type == e1000_82580) {
9553 u32 reg = rd32(E1000_PCIEMISC);
9555 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9556 wr32(E1000_DMACR, 0);
9561 * igb_read_i2c_byte - Reads 8 bit word over I2C
9562 * @hw: pointer to hardware structure
9563 * @byte_offset: byte offset to read
9564 * @dev_addr: device address
9565 * @data: value read
9567 * Performs byte read operation over I2C interface at
9568 * a specified device address.
9570 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9571 u8 dev_addr, u8 *data)
9573 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9574 struct i2c_client *this_client = adapter->i2c_client;
9575 s32 status;
9576 u16 swfw_mask = 0;
9578 if (!this_client)
9579 return E1000_ERR_I2C;
9581 swfw_mask = E1000_SWFW_PHY0_SM;
9583 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9584 return E1000_ERR_SWFW_SYNC;
9586 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9587 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9589 if (status < 0)
9590 return E1000_ERR_I2C;
9591 else {
9592 *data = status;
9593 return 0;
9598 * igb_write_i2c_byte - Writes 8 bit word over I2C
9599 * @hw: pointer to hardware structure
9600 * @byte_offset: byte offset to write
9601 * @dev_addr: device address
9602 * @data: value to write
9604 * Performs byte write operation over I2C interface at
9605 * a specified device address.
9607 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9608 u8 dev_addr, u8 data)
9610 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9611 struct i2c_client *this_client = adapter->i2c_client;
9612 s32 status;
9613 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9615 if (!this_client)
9616 return E1000_ERR_I2C;
9618 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9619 return E1000_ERR_SWFW_SYNC;
9620 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9621 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9623 if (status)
9624 return E1000_ERR_I2C;
9625 else
9626 return 0;
9630 int igb_reinit_queues(struct igb_adapter *adapter)
9632 struct net_device *netdev = adapter->netdev;
9633 struct pci_dev *pdev = adapter->pdev;
9634 int err = 0;
9636 if (netif_running(netdev))
9637 igb_close(netdev);
9639 igb_reset_interrupt_capability(adapter);
9641 if (igb_init_interrupt_scheme(adapter, true)) {
9642 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9643 return -ENOMEM;
9646 if (netif_running(netdev))
9647 err = igb_open(netdev);
9649 return err;
9652 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9654 struct igb_nfc_filter *rule;
9656 spin_lock(&adapter->nfc_lock);
9658 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9659 igb_erase_filter(adapter, rule);
9661 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9662 igb_erase_filter(adapter, rule);
9664 spin_unlock(&adapter->nfc_lock);
9667 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9669 struct igb_nfc_filter *rule;
9671 spin_lock(&adapter->nfc_lock);
9673 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9674 igb_add_filter(adapter, rule);
9676 spin_unlock(&adapter->nfc_lock);
9678 /* igb_main.c */