staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
blob9f4d700e09df33cb5d3e17576859a563f9c6c52c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
9 #include "igb.h"
11 #define INCVALUE_MASK 0x7fffffff
12 #define ISGN 0x80000000
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
21 * register, TIMINCA.
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits. As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
34 * TIMINCA register.
37 * SYSTIMH SYSTIML
38 * +--------------+ +---+---+------+
39 * 82576 | 32 | | 8 | 5 | 19 |
40 * +--------------+ +---+---+------+
41 * \________ 45 bits _______/ fract
43 * +----------+---+ +--------------+
44 * 82580 | 24 | 8 | | 32 |
45 * +----------+---+ +--------------+
46 * reserved \______ 40 bits _____/
49 * The 45 bit 82576 SYSTIM overflows every
50 * 2^45 * 10^-9 / 3600 = 9.77 hours.
52 * The 40 bit 82580 SYSTIM overflows every
53 * 2^40 * 10^-9 / 60 = 18.3 minutes.
56 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
57 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
58 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
59 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
60 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
61 #define IGB_NBITS_82580 40
63 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
65 /* SYSTIM read access for the 82576 */
66 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
68 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
69 struct e1000_hw *hw = &igb->hw;
70 u64 val;
71 u32 lo, hi;
73 lo = rd32(E1000_SYSTIML);
74 hi = rd32(E1000_SYSTIMH);
76 val = ((u64) hi) << 32;
77 val |= lo;
79 return val;
82 /* SYSTIM read access for the 82580 */
83 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
85 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
86 struct e1000_hw *hw = &igb->hw;
87 u32 lo, hi;
88 u64 val;
90 /* The timestamp latches on lowest register read. For the 82580
91 * the lowest register is SYSTIMR instead of SYSTIML. However we only
92 * need to provide nanosecond resolution, so we just ignore it.
94 rd32(E1000_SYSTIMR);
95 lo = rd32(E1000_SYSTIML);
96 hi = rd32(E1000_SYSTIMH);
98 val = ((u64) hi) << 32;
99 val |= lo;
101 return val;
104 /* SYSTIM read access for I210/I211 */
105 static void igb_ptp_read_i210(struct igb_adapter *adapter,
106 struct timespec64 *ts)
108 struct e1000_hw *hw = &adapter->hw;
109 u32 sec, nsec;
111 /* The timestamp latches on lowest register read. For I210/I211, the
112 * lowest register is SYSTIMR. Since we only need to provide nanosecond
113 * resolution, we can ignore it.
115 rd32(E1000_SYSTIMR);
116 nsec = rd32(E1000_SYSTIML);
117 sec = rd32(E1000_SYSTIMH);
119 ts->tv_sec = sec;
120 ts->tv_nsec = nsec;
123 static void igb_ptp_write_i210(struct igb_adapter *adapter,
124 const struct timespec64 *ts)
126 struct e1000_hw *hw = &adapter->hw;
128 /* Writing the SYSTIMR register is not necessary as it only provides
129 * sub-nanosecond resolution.
131 wr32(E1000_SYSTIML, ts->tv_nsec);
132 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
136 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
137 * @adapter: board private structure
138 * @hwtstamps: timestamp structure to update
139 * @systim: unsigned 64bit system time value.
141 * We need to convert the system time value stored in the RX/TXSTMP registers
142 * into a hwtstamp which can be used by the upper level timestamping functions.
144 * The 'tmreg_lock' spinlock is used to protect the consistency of the
145 * system time value. This is needed because reading the 64 bit time
146 * value involves reading two (or three) 32 bit registers. The first
147 * read latches the value. Ditto for writing.
149 * In addition, here have extended the system time with an overflow
150 * counter in software.
152 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
153 struct skb_shared_hwtstamps *hwtstamps,
154 u64 systim)
156 unsigned long flags;
157 u64 ns;
159 switch (adapter->hw.mac.type) {
160 case e1000_82576:
161 case e1000_82580:
162 case e1000_i354:
163 case e1000_i350:
164 spin_lock_irqsave(&adapter->tmreg_lock, flags);
166 ns = timecounter_cyc2time(&adapter->tc, systim);
168 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
170 memset(hwtstamps, 0, sizeof(*hwtstamps));
171 hwtstamps->hwtstamp = ns_to_ktime(ns);
172 break;
173 case e1000_i210:
174 case e1000_i211:
175 memset(hwtstamps, 0, sizeof(*hwtstamps));
176 /* Upper 32 bits contain s, lower 32 bits contain ns. */
177 hwtstamps->hwtstamp = ktime_set(systim >> 32,
178 systim & 0xFFFFFFFF);
179 break;
180 default:
181 break;
185 /* PTP clock operations */
186 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
188 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
189 ptp_caps);
190 struct e1000_hw *hw = &igb->hw;
191 int neg_adj = 0;
192 u64 rate;
193 u32 incvalue;
195 if (ppb < 0) {
196 neg_adj = 1;
197 ppb = -ppb;
199 rate = ppb;
200 rate <<= 14;
201 rate = div_u64(rate, 1953125);
203 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
205 if (neg_adj)
206 incvalue -= rate;
207 else
208 incvalue += rate;
210 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
212 return 0;
215 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
217 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
218 ptp_caps);
219 struct e1000_hw *hw = &igb->hw;
220 int neg_adj = 0;
221 u64 rate;
222 u32 inca;
224 if (scaled_ppm < 0) {
225 neg_adj = 1;
226 scaled_ppm = -scaled_ppm;
228 rate = scaled_ppm;
229 rate <<= 13;
230 rate = div_u64(rate, 15625);
232 inca = rate & INCVALUE_MASK;
233 if (neg_adj)
234 inca |= ISGN;
236 wr32(E1000_TIMINCA, inca);
238 return 0;
241 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
243 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244 ptp_caps);
245 unsigned long flags;
247 spin_lock_irqsave(&igb->tmreg_lock, flags);
248 timecounter_adjtime(&igb->tc, delta);
249 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
251 return 0;
254 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
256 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257 ptp_caps);
258 unsigned long flags;
259 struct timespec64 now, then = ns_to_timespec64(delta);
261 spin_lock_irqsave(&igb->tmreg_lock, flags);
263 igb_ptp_read_i210(igb, &now);
264 now = timespec64_add(now, then);
265 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
267 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
269 return 0;
272 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
273 struct timespec64 *ts)
275 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
276 ptp_caps);
277 unsigned long flags;
278 u64 ns;
280 spin_lock_irqsave(&igb->tmreg_lock, flags);
282 ns = timecounter_read(&igb->tc);
284 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
286 *ts = ns_to_timespec64(ns);
288 return 0;
291 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
292 struct timespec64 *ts)
294 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
295 ptp_caps);
296 unsigned long flags;
298 spin_lock_irqsave(&igb->tmreg_lock, flags);
300 igb_ptp_read_i210(igb, ts);
302 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
304 return 0;
307 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
308 const struct timespec64 *ts)
310 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
311 ptp_caps);
312 unsigned long flags;
313 u64 ns;
315 ns = timespec64_to_ns(ts);
317 spin_lock_irqsave(&igb->tmreg_lock, flags);
319 timecounter_init(&igb->tc, &igb->cc, ns);
321 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
323 return 0;
326 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
327 const struct timespec64 *ts)
329 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
330 ptp_caps);
331 unsigned long flags;
333 spin_lock_irqsave(&igb->tmreg_lock, flags);
335 igb_ptp_write_i210(igb, ts);
337 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
339 return 0;
342 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
344 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
345 static const u32 mask[IGB_N_SDP] = {
346 E1000_CTRL_SDP0_DIR,
347 E1000_CTRL_SDP1_DIR,
348 E1000_CTRL_EXT_SDP2_DIR,
349 E1000_CTRL_EXT_SDP3_DIR,
352 if (input)
353 *ptr &= ~mask[pin];
354 else
355 *ptr |= mask[pin];
358 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
360 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
361 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
363 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
364 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
366 static const u32 ts_sdp_en[IGB_N_SDP] = {
367 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
369 struct e1000_hw *hw = &igb->hw;
370 u32 ctrl, ctrl_ext, tssdp = 0;
372 ctrl = rd32(E1000_CTRL);
373 ctrl_ext = rd32(E1000_CTRL_EXT);
374 tssdp = rd32(E1000_TSSDP);
376 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
378 /* Make sure this pin is not enabled as an output. */
379 tssdp &= ~ts_sdp_en[pin];
381 if (chan == 1) {
382 tssdp &= ~AUX1_SEL_SDP3;
383 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
384 } else {
385 tssdp &= ~AUX0_SEL_SDP3;
386 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
389 wr32(E1000_TSSDP, tssdp);
390 wr32(E1000_CTRL, ctrl);
391 wr32(E1000_CTRL_EXT, ctrl_ext);
394 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
396 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
397 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
399 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
400 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
402 static const u32 ts_sdp_en[IGB_N_SDP] = {
403 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
405 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
406 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
407 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
409 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
410 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
411 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
413 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
414 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
415 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
417 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
418 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
419 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
421 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
422 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
423 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
425 struct e1000_hw *hw = &igb->hw;
426 u32 ctrl, ctrl_ext, tssdp = 0;
428 ctrl = rd32(E1000_CTRL);
429 ctrl_ext = rd32(E1000_CTRL_EXT);
430 tssdp = rd32(E1000_TSSDP);
432 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
434 /* Make sure this pin is not enabled as an input. */
435 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
436 tssdp &= ~AUX0_TS_SDP_EN;
438 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
439 tssdp &= ~AUX1_TS_SDP_EN;
441 tssdp &= ~ts_sdp_sel_clr[pin];
442 if (freq) {
443 if (chan == 1)
444 tssdp |= ts_sdp_sel_fc1[pin];
445 else
446 tssdp |= ts_sdp_sel_fc0[pin];
447 } else {
448 if (chan == 1)
449 tssdp |= ts_sdp_sel_tt1[pin];
450 else
451 tssdp |= ts_sdp_sel_tt0[pin];
453 tssdp |= ts_sdp_en[pin];
455 wr32(E1000_TSSDP, tssdp);
456 wr32(E1000_CTRL, ctrl);
457 wr32(E1000_CTRL_EXT, ctrl_ext);
460 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
461 struct ptp_clock_request *rq, int on)
463 struct igb_adapter *igb =
464 container_of(ptp, struct igb_adapter, ptp_caps);
465 struct e1000_hw *hw = &igb->hw;
466 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
467 unsigned long flags;
468 struct timespec64 ts;
469 int use_freq = 0, pin = -1;
470 s64 ns;
472 switch (rq->type) {
473 case PTP_CLK_REQ_EXTTS:
474 if (on) {
475 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
476 rq->extts.index);
477 if (pin < 0)
478 return -EBUSY;
480 if (rq->extts.index == 1) {
481 tsauxc_mask = TSAUXC_EN_TS1;
482 tsim_mask = TSINTR_AUTT1;
483 } else {
484 tsauxc_mask = TSAUXC_EN_TS0;
485 tsim_mask = TSINTR_AUTT0;
487 spin_lock_irqsave(&igb->tmreg_lock, flags);
488 tsauxc = rd32(E1000_TSAUXC);
489 tsim = rd32(E1000_TSIM);
490 if (on) {
491 igb_pin_extts(igb, rq->extts.index, pin);
492 tsauxc |= tsauxc_mask;
493 tsim |= tsim_mask;
494 } else {
495 tsauxc &= ~tsauxc_mask;
496 tsim &= ~tsim_mask;
498 wr32(E1000_TSAUXC, tsauxc);
499 wr32(E1000_TSIM, tsim);
500 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
501 return 0;
503 case PTP_CLK_REQ_PEROUT:
504 if (on) {
505 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
506 rq->perout.index);
507 if (pin < 0)
508 return -EBUSY;
510 ts.tv_sec = rq->perout.period.sec;
511 ts.tv_nsec = rq->perout.period.nsec;
512 ns = timespec64_to_ns(&ts);
513 ns = ns >> 1;
514 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
515 (ns == 250000000LL) || (ns == 500000000LL))) {
516 if (ns < 8LL)
517 return -EINVAL;
518 use_freq = 1;
520 ts = ns_to_timespec64(ns);
521 if (rq->perout.index == 1) {
522 if (use_freq) {
523 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
524 tsim_mask = 0;
525 } else {
526 tsauxc_mask = TSAUXC_EN_TT1;
527 tsim_mask = TSINTR_TT1;
529 trgttiml = E1000_TRGTTIML1;
530 trgttimh = E1000_TRGTTIMH1;
531 freqout = E1000_FREQOUT1;
532 } else {
533 if (use_freq) {
534 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
535 tsim_mask = 0;
536 } else {
537 tsauxc_mask = TSAUXC_EN_TT0;
538 tsim_mask = TSINTR_TT0;
540 trgttiml = E1000_TRGTTIML0;
541 trgttimh = E1000_TRGTTIMH0;
542 freqout = E1000_FREQOUT0;
544 spin_lock_irqsave(&igb->tmreg_lock, flags);
545 tsauxc = rd32(E1000_TSAUXC);
546 tsim = rd32(E1000_TSIM);
547 if (rq->perout.index == 1) {
548 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
549 tsim &= ~TSINTR_TT1;
550 } else {
551 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
552 tsim &= ~TSINTR_TT0;
554 if (on) {
555 int i = rq->perout.index;
556 igb_pin_perout(igb, i, pin, use_freq);
557 igb->perout[i].start.tv_sec = rq->perout.start.sec;
558 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
559 igb->perout[i].period.tv_sec = ts.tv_sec;
560 igb->perout[i].period.tv_nsec = ts.tv_nsec;
561 wr32(trgttimh, rq->perout.start.sec);
562 wr32(trgttiml, rq->perout.start.nsec);
563 if (use_freq)
564 wr32(freqout, ns);
565 tsauxc |= tsauxc_mask;
566 tsim |= tsim_mask;
568 wr32(E1000_TSAUXC, tsauxc);
569 wr32(E1000_TSIM, tsim);
570 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
571 return 0;
573 case PTP_CLK_REQ_PPS:
574 spin_lock_irqsave(&igb->tmreg_lock, flags);
575 tsim = rd32(E1000_TSIM);
576 if (on)
577 tsim |= TSINTR_SYS_WRAP;
578 else
579 tsim &= ~TSINTR_SYS_WRAP;
580 igb->pps_sys_wrap_on = !!on;
581 wr32(E1000_TSIM, tsim);
582 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
583 return 0;
586 return -EOPNOTSUPP;
589 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
590 struct ptp_clock_request *rq, int on)
592 return -EOPNOTSUPP;
595 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
596 enum ptp_pin_function func, unsigned int chan)
598 switch (func) {
599 case PTP_PF_NONE:
600 case PTP_PF_EXTTS:
601 case PTP_PF_PEROUT:
602 break;
603 case PTP_PF_PHYSYNC:
604 return -1;
606 return 0;
610 * igb_ptp_tx_work
611 * @work: pointer to work struct
613 * This work function polls the TSYNCTXCTL valid bit to determine when a
614 * timestamp has been taken for the current stored skb.
616 static void igb_ptp_tx_work(struct work_struct *work)
618 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
619 ptp_tx_work);
620 struct e1000_hw *hw = &adapter->hw;
621 u32 tsynctxctl;
623 if (!adapter->ptp_tx_skb)
624 return;
626 if (time_is_before_jiffies(adapter->ptp_tx_start +
627 IGB_PTP_TX_TIMEOUT)) {
628 dev_kfree_skb_any(adapter->ptp_tx_skb);
629 adapter->ptp_tx_skb = NULL;
630 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
631 adapter->tx_hwtstamp_timeouts++;
632 /* Clear the tx valid bit in TSYNCTXCTL register to enable
633 * interrupt
635 rd32(E1000_TXSTMPH);
636 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
637 return;
640 tsynctxctl = rd32(E1000_TSYNCTXCTL);
641 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
642 igb_ptp_tx_hwtstamp(adapter);
643 else
644 /* reschedule to check later */
645 schedule_work(&adapter->ptp_tx_work);
648 static void igb_ptp_overflow_check(struct work_struct *work)
650 struct igb_adapter *igb =
651 container_of(work, struct igb_adapter, ptp_overflow_work.work);
652 struct timespec64 ts;
654 igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
656 pr_debug("igb overflow check at %lld.%09lu\n",
657 (long long) ts.tv_sec, ts.tv_nsec);
659 schedule_delayed_work(&igb->ptp_overflow_work,
660 IGB_SYSTIM_OVERFLOW_PERIOD);
664 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
665 * @adapter: private network adapter structure
667 * This watchdog task is scheduled to detect error case where hardware has
668 * dropped an Rx packet that was timestamped when the ring is full. The
669 * particular error is rare but leaves the device in a state unable to timestamp
670 * any future packets.
672 void igb_ptp_rx_hang(struct igb_adapter *adapter)
674 struct e1000_hw *hw = &adapter->hw;
675 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
676 unsigned long rx_event;
678 /* Other hardware uses per-packet timestamps */
679 if (hw->mac.type != e1000_82576)
680 return;
682 /* If we don't have a valid timestamp in the registers, just update the
683 * timeout counter and exit
685 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
686 adapter->last_rx_ptp_check = jiffies;
687 return;
690 /* Determine the most recent watchdog or rx_timestamp event */
691 rx_event = adapter->last_rx_ptp_check;
692 if (time_after(adapter->last_rx_timestamp, rx_event))
693 rx_event = adapter->last_rx_timestamp;
695 /* Only need to read the high RXSTMP register to clear the lock */
696 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
697 rd32(E1000_RXSTMPH);
698 adapter->last_rx_ptp_check = jiffies;
699 adapter->rx_hwtstamp_cleared++;
700 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
705 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
706 * @adapter: private network adapter structure
708 void igb_ptp_tx_hang(struct igb_adapter *adapter)
710 struct e1000_hw *hw = &adapter->hw;
711 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
712 IGB_PTP_TX_TIMEOUT);
714 if (!adapter->ptp_tx_skb)
715 return;
717 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
718 return;
720 /* If we haven't received a timestamp within the timeout, it is
721 * reasonable to assume that it will never occur, so we can unlock the
722 * timestamp bit when this occurs.
724 if (timeout) {
725 cancel_work_sync(&adapter->ptp_tx_work);
726 dev_kfree_skb_any(adapter->ptp_tx_skb);
727 adapter->ptp_tx_skb = NULL;
728 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
729 adapter->tx_hwtstamp_timeouts++;
730 /* Clear the tx valid bit in TSYNCTXCTL register to enable
731 * interrupt
733 rd32(E1000_TXSTMPH);
734 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
739 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
740 * @adapter: Board private structure.
742 * If we were asked to do hardware stamping and such a time stamp is
743 * available, then it must have been for this skb here because we only
744 * allow only one such packet into the queue.
746 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
748 struct sk_buff *skb = adapter->ptp_tx_skb;
749 struct e1000_hw *hw = &adapter->hw;
750 struct skb_shared_hwtstamps shhwtstamps;
751 u64 regval;
752 int adjust = 0;
754 regval = rd32(E1000_TXSTMPL);
755 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
757 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
758 /* adjust timestamp for the TX latency based on link speed */
759 if (adapter->hw.mac.type == e1000_i210) {
760 switch (adapter->link_speed) {
761 case SPEED_10:
762 adjust = IGB_I210_TX_LATENCY_10;
763 break;
764 case SPEED_100:
765 adjust = IGB_I210_TX_LATENCY_100;
766 break;
767 case SPEED_1000:
768 adjust = IGB_I210_TX_LATENCY_1000;
769 break;
773 shhwtstamps.hwtstamp =
774 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
776 /* Clear the lock early before calling skb_tstamp_tx so that
777 * applications are not woken up before the lock bit is clear. We use
778 * a copy of the skb pointer to ensure other threads can't change it
779 * while we're notifying the stack.
781 adapter->ptp_tx_skb = NULL;
782 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
784 /* Notify the stack and free the skb after we've unlocked */
785 skb_tstamp_tx(skb, &shhwtstamps);
786 dev_kfree_skb_any(skb);
790 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
791 * @q_vector: Pointer to interrupt specific structure
792 * @va: Pointer to address containing Rx buffer
793 * @skb: Buffer containing timestamp and packet
795 * This function is meant to retrieve a timestamp from the first buffer of an
796 * incoming frame. The value is stored in little endian format starting on
797 * byte 8.
799 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
800 struct sk_buff *skb)
802 __le64 *regval = (__le64 *)va;
803 struct igb_adapter *adapter = q_vector->adapter;
804 int adjust = 0;
806 /* The timestamp is recorded in little endian format.
807 * DWORD: 0 1 2 3
808 * Field: Reserved Reserved SYSTIML SYSTIMH
810 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
811 le64_to_cpu(regval[1]));
813 /* adjust timestamp for the RX latency based on link speed */
814 if (adapter->hw.mac.type == e1000_i210) {
815 switch (adapter->link_speed) {
816 case SPEED_10:
817 adjust = IGB_I210_RX_LATENCY_10;
818 break;
819 case SPEED_100:
820 adjust = IGB_I210_RX_LATENCY_100;
821 break;
822 case SPEED_1000:
823 adjust = IGB_I210_RX_LATENCY_1000;
824 break;
827 skb_hwtstamps(skb)->hwtstamp =
828 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
832 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
833 * @q_vector: Pointer to interrupt specific structure
834 * @skb: Buffer containing timestamp and packet
836 * This function is meant to retrieve a timestamp from the internal registers
837 * of the adapter and store it in the skb.
839 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
840 struct sk_buff *skb)
842 struct igb_adapter *adapter = q_vector->adapter;
843 struct e1000_hw *hw = &adapter->hw;
844 u64 regval;
845 int adjust = 0;
847 /* If this bit is set, then the RX registers contain the time stamp. No
848 * other packet will be time stamped until we read these registers, so
849 * read the registers to make them available again. Because only one
850 * packet can be time stamped at a time, we know that the register
851 * values must belong to this one here and therefore we don't need to
852 * compare any of the additional attributes stored for it.
854 * If nothing went wrong, then it should have a shared tx_flags that we
855 * can turn into a skb_shared_hwtstamps.
857 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
858 return;
860 regval = rd32(E1000_RXSTMPL);
861 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
863 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
865 /* adjust timestamp for the RX latency based on link speed */
866 if (adapter->hw.mac.type == e1000_i210) {
867 switch (adapter->link_speed) {
868 case SPEED_10:
869 adjust = IGB_I210_RX_LATENCY_10;
870 break;
871 case SPEED_100:
872 adjust = IGB_I210_RX_LATENCY_100;
873 break;
874 case SPEED_1000:
875 adjust = IGB_I210_RX_LATENCY_1000;
876 break;
879 skb_hwtstamps(skb)->hwtstamp =
880 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
882 /* Update the last_rx_timestamp timer in order to enable watchdog check
883 * for error case of latched timestamp on a dropped packet.
885 adapter->last_rx_timestamp = jiffies;
889 * igb_ptp_get_ts_config - get hardware time stamping config
890 * @netdev:
891 * @ifreq:
893 * Get the hwtstamp_config settings to return to the user. Rather than attempt
894 * to deconstruct the settings from the registers, just return a shadow copy
895 * of the last known settings.
897 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
899 struct igb_adapter *adapter = netdev_priv(netdev);
900 struct hwtstamp_config *config = &adapter->tstamp_config;
902 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
903 -EFAULT : 0;
907 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
908 * @adapter: networking device structure
909 * @config: hwtstamp configuration
911 * Outgoing time stamping can be enabled and disabled. Play nice and
912 * disable it when requested, although it shouldn't case any overhead
913 * when no packet needs it. At most one packet in the queue may be
914 * marked for time stamping, otherwise it would be impossible to tell
915 * for sure to which packet the hardware time stamp belongs.
917 * Incoming time stamping has to be configured via the hardware
918 * filters. Not all combinations are supported, in particular event
919 * type has to be specified. Matching the kind of event packet is
920 * not supported, with the exception of "all V2 events regardless of
921 * level 2 or 4".
923 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
924 struct hwtstamp_config *config)
926 struct e1000_hw *hw = &adapter->hw;
927 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
928 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
929 u32 tsync_rx_cfg = 0;
930 bool is_l4 = false;
931 bool is_l2 = false;
932 u32 regval;
934 /* reserved for future extensions */
935 if (config->flags)
936 return -EINVAL;
938 switch (config->tx_type) {
939 case HWTSTAMP_TX_OFF:
940 tsync_tx_ctl = 0;
941 case HWTSTAMP_TX_ON:
942 break;
943 default:
944 return -ERANGE;
947 switch (config->rx_filter) {
948 case HWTSTAMP_FILTER_NONE:
949 tsync_rx_ctl = 0;
950 break;
951 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
952 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
953 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
954 is_l4 = true;
955 break;
956 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
957 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
958 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
959 is_l4 = true;
960 break;
961 case HWTSTAMP_FILTER_PTP_V2_EVENT:
962 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
963 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
964 case HWTSTAMP_FILTER_PTP_V2_SYNC:
965 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
966 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
967 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
968 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
969 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
970 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
971 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
972 is_l2 = true;
973 is_l4 = true;
974 break;
975 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
976 case HWTSTAMP_FILTER_NTP_ALL:
977 case HWTSTAMP_FILTER_ALL:
978 /* 82576 cannot timestamp all packets, which it needs to do to
979 * support both V1 Sync and Delay_Req messages
981 if (hw->mac.type != e1000_82576) {
982 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
983 config->rx_filter = HWTSTAMP_FILTER_ALL;
984 break;
986 /* fall through */
987 default:
988 config->rx_filter = HWTSTAMP_FILTER_NONE;
989 return -ERANGE;
992 if (hw->mac.type == e1000_82575) {
993 if (tsync_rx_ctl | tsync_tx_ctl)
994 return -EINVAL;
995 return 0;
998 /* Per-packet timestamping only works if all packets are
999 * timestamped, so enable timestamping in all packets as
1000 * long as one Rx filter was configured.
1002 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1003 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1004 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1005 config->rx_filter = HWTSTAMP_FILTER_ALL;
1006 is_l2 = true;
1007 is_l4 = true;
1009 if ((hw->mac.type == e1000_i210) ||
1010 (hw->mac.type == e1000_i211)) {
1011 regval = rd32(E1000_RXPBS);
1012 regval |= E1000_RXPBS_CFG_TS_EN;
1013 wr32(E1000_RXPBS, regval);
1017 /* enable/disable TX */
1018 regval = rd32(E1000_TSYNCTXCTL);
1019 regval &= ~E1000_TSYNCTXCTL_ENABLED;
1020 regval |= tsync_tx_ctl;
1021 wr32(E1000_TSYNCTXCTL, regval);
1023 /* enable/disable RX */
1024 regval = rd32(E1000_TSYNCRXCTL);
1025 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1026 regval |= tsync_rx_ctl;
1027 wr32(E1000_TSYNCRXCTL, regval);
1029 /* define which PTP packets are time stamped */
1030 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1032 /* define ethertype filter for timestamped packets */
1033 if (is_l2)
1034 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1035 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1036 E1000_ETQF_1588 | /* enable timestamping */
1037 ETH_P_1588)); /* 1588 eth protocol type */
1038 else
1039 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1041 /* L4 Queue Filter[3]: filter by destination port and protocol */
1042 if (is_l4) {
1043 u32 ftqf = (IPPROTO_UDP /* UDP */
1044 | E1000_FTQF_VF_BP /* VF not compared */
1045 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1046 | E1000_FTQF_MASK); /* mask all inputs */
1047 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1049 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1050 wr32(E1000_IMIREXT(3),
1051 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1052 if (hw->mac.type == e1000_82576) {
1053 /* enable source port check */
1054 wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1055 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1057 wr32(E1000_FTQF(3), ftqf);
1058 } else {
1059 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1061 wrfl();
1063 /* clear TX/RX time stamp registers, just to be sure */
1064 regval = rd32(E1000_TXSTMPL);
1065 regval = rd32(E1000_TXSTMPH);
1066 regval = rd32(E1000_RXSTMPL);
1067 regval = rd32(E1000_RXSTMPH);
1069 return 0;
1073 * igb_ptp_set_ts_config - set hardware time stamping config
1074 * @netdev:
1075 * @ifreq:
1078 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1080 struct igb_adapter *adapter = netdev_priv(netdev);
1081 struct hwtstamp_config config;
1082 int err;
1084 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1085 return -EFAULT;
1087 err = igb_ptp_set_timestamp_mode(adapter, &config);
1088 if (err)
1089 return err;
1091 /* save these settings for future reference */
1092 memcpy(&adapter->tstamp_config, &config,
1093 sizeof(adapter->tstamp_config));
1095 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1096 -EFAULT : 0;
1100 * igb_ptp_init - Initialize PTP functionality
1101 * @adapter: Board private structure
1103 * This function is called at device probe to initialize the PTP
1104 * functionality.
1106 void igb_ptp_init(struct igb_adapter *adapter)
1108 struct e1000_hw *hw = &adapter->hw;
1109 struct net_device *netdev = adapter->netdev;
1110 int i;
1112 switch (hw->mac.type) {
1113 case e1000_82576:
1114 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1115 adapter->ptp_caps.owner = THIS_MODULE;
1116 adapter->ptp_caps.max_adj = 999999881;
1117 adapter->ptp_caps.n_ext_ts = 0;
1118 adapter->ptp_caps.pps = 0;
1119 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1120 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1121 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1122 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1123 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1124 adapter->cc.read = igb_ptp_read_82576;
1125 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1126 adapter->cc.mult = 1;
1127 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1128 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1129 break;
1130 case e1000_82580:
1131 case e1000_i354:
1132 case e1000_i350:
1133 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1134 adapter->ptp_caps.owner = THIS_MODULE;
1135 adapter->ptp_caps.max_adj = 62499999;
1136 adapter->ptp_caps.n_ext_ts = 0;
1137 adapter->ptp_caps.pps = 0;
1138 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1139 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1140 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1141 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1142 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1143 adapter->cc.read = igb_ptp_read_82580;
1144 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1145 adapter->cc.mult = 1;
1146 adapter->cc.shift = 0;
1147 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1148 break;
1149 case e1000_i210:
1150 case e1000_i211:
1151 for (i = 0; i < IGB_N_SDP; i++) {
1152 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1154 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1155 ppd->index = i;
1156 ppd->func = PTP_PF_NONE;
1158 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1159 adapter->ptp_caps.owner = THIS_MODULE;
1160 adapter->ptp_caps.max_adj = 62499999;
1161 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1162 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1163 adapter->ptp_caps.n_pins = IGB_N_SDP;
1164 adapter->ptp_caps.pps = 1;
1165 adapter->ptp_caps.pin_config = adapter->sdp_config;
1166 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1167 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1168 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1169 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1170 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1171 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1172 break;
1173 default:
1174 adapter->ptp_clock = NULL;
1175 return;
1178 spin_lock_init(&adapter->tmreg_lock);
1179 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1181 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1182 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1183 igb_ptp_overflow_check);
1185 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1186 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1188 igb_ptp_reset(adapter);
1190 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1191 &adapter->pdev->dev);
1192 if (IS_ERR(adapter->ptp_clock)) {
1193 adapter->ptp_clock = NULL;
1194 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1195 } else if (adapter->ptp_clock) {
1196 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1197 adapter->netdev->name);
1198 adapter->ptp_flags |= IGB_PTP_ENABLED;
1203 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1204 * @adapter: Board private structure
1206 * This function stops the overflow check work and PTP Tx timestamp work, and
1207 * will prepare the device for OS suspend.
1209 void igb_ptp_suspend(struct igb_adapter *adapter)
1211 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1212 return;
1214 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1215 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1217 cancel_work_sync(&adapter->ptp_tx_work);
1218 if (adapter->ptp_tx_skb) {
1219 dev_kfree_skb_any(adapter->ptp_tx_skb);
1220 adapter->ptp_tx_skb = NULL;
1221 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1226 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1227 * @adapter: Board private structure.
1229 * This function stops the PTP support and cancels the delayed work.
1231 void igb_ptp_stop(struct igb_adapter *adapter)
1233 igb_ptp_suspend(adapter);
1235 if (adapter->ptp_clock) {
1236 ptp_clock_unregister(adapter->ptp_clock);
1237 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1238 adapter->netdev->name);
1239 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1244 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1245 * @adapter: Board private structure.
1247 * This function handles the reset work required to re-enable the PTP device.
1249 void igb_ptp_reset(struct igb_adapter *adapter)
1251 struct e1000_hw *hw = &adapter->hw;
1252 unsigned long flags;
1254 /* reset the tstamp_config */
1255 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1257 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1259 switch (adapter->hw.mac.type) {
1260 case e1000_82576:
1261 /* Dial the nominal frequency. */
1262 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1263 break;
1264 case e1000_82580:
1265 case e1000_i354:
1266 case e1000_i350:
1267 case e1000_i210:
1268 case e1000_i211:
1269 wr32(E1000_TSAUXC, 0x0);
1270 wr32(E1000_TSSDP, 0x0);
1271 wr32(E1000_TSIM,
1272 TSYNC_INTERRUPTS |
1273 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1274 wr32(E1000_IMS, E1000_IMS_TS);
1275 break;
1276 default:
1277 /* No work to do. */
1278 goto out;
1281 /* Re-initialize the timer. */
1282 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1283 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1285 igb_ptp_write_i210(adapter, &ts);
1286 } else {
1287 timecounter_init(&adapter->tc, &adapter->cc,
1288 ktime_to_ns(ktime_get_real()));
1290 out:
1291 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1293 wrfl();
1295 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1296 schedule_delayed_work(&adapter->ptp_overflow_work,
1297 IGB_SYSTIM_OVERFLOW_PERIOD);