1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
4 #include <linux/module.h>
5 #include <linux/device.h>
7 #include <linux/ptp_classify.h>
11 #define INCVALUE_MASK 0x7fffffff
12 #define ISGN 0x80000000
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits. As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
38 * +--------------+ +---+---+------+
39 * 82576 | 32 | | 8 | 5 | 19 |
40 * +--------------+ +---+---+------+
41 * \________ 45 bits _______/ fract
43 * +----------+---+ +--------------+
44 * 82580 | 24 | 8 | | 32 |
45 * +----------+---+ +--------------+
46 * reserved \______ 40 bits _____/
49 * The 45 bit 82576 SYSTIM overflows every
50 * 2^45 * 10^-9 / 3600 = 9.77 hours.
52 * The 40 bit 82580 SYSTIM overflows every
53 * 2^40 * 10^-9 / 60 = 18.3 minutes.
56 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
57 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
58 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
59 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
60 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
61 #define IGB_NBITS_82580 40
63 static void igb_ptp_tx_hwtstamp(struct igb_adapter
*adapter
);
65 /* SYSTIM read access for the 82576 */
66 static u64
igb_ptp_read_82576(const struct cyclecounter
*cc
)
68 struct igb_adapter
*igb
= container_of(cc
, struct igb_adapter
, cc
);
69 struct e1000_hw
*hw
= &igb
->hw
;
73 lo
= rd32(E1000_SYSTIML
);
74 hi
= rd32(E1000_SYSTIMH
);
76 val
= ((u64
) hi
) << 32;
82 /* SYSTIM read access for the 82580 */
83 static u64
igb_ptp_read_82580(const struct cyclecounter
*cc
)
85 struct igb_adapter
*igb
= container_of(cc
, struct igb_adapter
, cc
);
86 struct e1000_hw
*hw
= &igb
->hw
;
90 /* The timestamp latches on lowest register read. For the 82580
91 * the lowest register is SYSTIMR instead of SYSTIML. However we only
92 * need to provide nanosecond resolution, so we just ignore it.
95 lo
= rd32(E1000_SYSTIML
);
96 hi
= rd32(E1000_SYSTIMH
);
98 val
= ((u64
) hi
) << 32;
104 /* SYSTIM read access for I210/I211 */
105 static void igb_ptp_read_i210(struct igb_adapter
*adapter
,
106 struct timespec64
*ts
)
108 struct e1000_hw
*hw
= &adapter
->hw
;
111 /* The timestamp latches on lowest register read. For I210/I211, the
112 * lowest register is SYSTIMR. Since we only need to provide nanosecond
113 * resolution, we can ignore it.
116 nsec
= rd32(E1000_SYSTIML
);
117 sec
= rd32(E1000_SYSTIMH
);
123 static void igb_ptp_write_i210(struct igb_adapter
*adapter
,
124 const struct timespec64
*ts
)
126 struct e1000_hw
*hw
= &adapter
->hw
;
128 /* Writing the SYSTIMR register is not necessary as it only provides
129 * sub-nanosecond resolution.
131 wr32(E1000_SYSTIML
, ts
->tv_nsec
);
132 wr32(E1000_SYSTIMH
, (u32
)ts
->tv_sec
);
136 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
137 * @adapter: board private structure
138 * @hwtstamps: timestamp structure to update
139 * @systim: unsigned 64bit system time value.
141 * We need to convert the system time value stored in the RX/TXSTMP registers
142 * into a hwtstamp which can be used by the upper level timestamping functions.
144 * The 'tmreg_lock' spinlock is used to protect the consistency of the
145 * system time value. This is needed because reading the 64 bit time
146 * value involves reading two (or three) 32 bit registers. The first
147 * read latches the value. Ditto for writing.
149 * In addition, here have extended the system time with an overflow
150 * counter in software.
152 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter
*adapter
,
153 struct skb_shared_hwtstamps
*hwtstamps
,
159 switch (adapter
->hw
.mac
.type
) {
164 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
166 ns
= timecounter_cyc2time(&adapter
->tc
, systim
);
168 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
170 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
171 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
175 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
176 /* Upper 32 bits contain s, lower 32 bits contain ns. */
177 hwtstamps
->hwtstamp
= ktime_set(systim
>> 32,
178 systim
& 0xFFFFFFFF);
185 /* PTP clock operations */
186 static int igb_ptp_adjfreq_82576(struct ptp_clock_info
*ptp
, s32 ppb
)
188 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
190 struct e1000_hw
*hw
= &igb
->hw
;
201 rate
= div_u64(rate
, 1953125);
203 incvalue
= 16 << IGB_82576_TSYNC_SHIFT
;
210 wr32(E1000_TIMINCA
, INCPERIOD_82576
| (incvalue
& INCVALUE_82576_MASK
));
215 static int igb_ptp_adjfine_82580(struct ptp_clock_info
*ptp
, long scaled_ppm
)
217 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
219 struct e1000_hw
*hw
= &igb
->hw
;
224 if (scaled_ppm
< 0) {
226 scaled_ppm
= -scaled_ppm
;
230 rate
= div_u64(rate
, 15625);
232 inca
= rate
& INCVALUE_MASK
;
236 wr32(E1000_TIMINCA
, inca
);
241 static int igb_ptp_adjtime_82576(struct ptp_clock_info
*ptp
, s64 delta
)
243 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
247 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
248 timecounter_adjtime(&igb
->tc
, delta
);
249 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
254 static int igb_ptp_adjtime_i210(struct ptp_clock_info
*ptp
, s64 delta
)
256 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
259 struct timespec64 now
, then
= ns_to_timespec64(delta
);
261 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
263 igb_ptp_read_i210(igb
, &now
);
264 now
= timespec64_add(now
, then
);
265 igb_ptp_write_i210(igb
, (const struct timespec64
*)&now
);
267 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
272 static int igb_ptp_gettime_82576(struct ptp_clock_info
*ptp
,
273 struct timespec64
*ts
)
275 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
280 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
282 ns
= timecounter_read(&igb
->tc
);
284 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
286 *ts
= ns_to_timespec64(ns
);
291 static int igb_ptp_gettime_i210(struct ptp_clock_info
*ptp
,
292 struct timespec64
*ts
)
294 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
298 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
300 igb_ptp_read_i210(igb
, ts
);
302 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
307 static int igb_ptp_settime_82576(struct ptp_clock_info
*ptp
,
308 const struct timespec64
*ts
)
310 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
315 ns
= timespec64_to_ns(ts
);
317 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
319 timecounter_init(&igb
->tc
, &igb
->cc
, ns
);
321 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
326 static int igb_ptp_settime_i210(struct ptp_clock_info
*ptp
,
327 const struct timespec64
*ts
)
329 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
333 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
335 igb_ptp_write_i210(igb
, ts
);
337 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
342 static void igb_pin_direction(int pin
, int input
, u32
*ctrl
, u32
*ctrl_ext
)
344 u32
*ptr
= pin
< 2 ? ctrl
: ctrl_ext
;
345 static const u32 mask
[IGB_N_SDP
] = {
348 E1000_CTRL_EXT_SDP2_DIR
,
349 E1000_CTRL_EXT_SDP3_DIR
,
358 static void igb_pin_extts(struct igb_adapter
*igb
, int chan
, int pin
)
360 static const u32 aux0_sel_sdp
[IGB_N_SDP
] = {
361 AUX0_SEL_SDP0
, AUX0_SEL_SDP1
, AUX0_SEL_SDP2
, AUX0_SEL_SDP3
,
363 static const u32 aux1_sel_sdp
[IGB_N_SDP
] = {
364 AUX1_SEL_SDP0
, AUX1_SEL_SDP1
, AUX1_SEL_SDP2
, AUX1_SEL_SDP3
,
366 static const u32 ts_sdp_en
[IGB_N_SDP
] = {
367 TS_SDP0_EN
, TS_SDP1_EN
, TS_SDP2_EN
, TS_SDP3_EN
,
369 struct e1000_hw
*hw
= &igb
->hw
;
370 u32 ctrl
, ctrl_ext
, tssdp
= 0;
372 ctrl
= rd32(E1000_CTRL
);
373 ctrl_ext
= rd32(E1000_CTRL_EXT
);
374 tssdp
= rd32(E1000_TSSDP
);
376 igb_pin_direction(pin
, 1, &ctrl
, &ctrl_ext
);
378 /* Make sure this pin is not enabled as an output. */
379 tssdp
&= ~ts_sdp_en
[pin
];
382 tssdp
&= ~AUX1_SEL_SDP3
;
383 tssdp
|= aux1_sel_sdp
[pin
] | AUX1_TS_SDP_EN
;
385 tssdp
&= ~AUX0_SEL_SDP3
;
386 tssdp
|= aux0_sel_sdp
[pin
] | AUX0_TS_SDP_EN
;
389 wr32(E1000_TSSDP
, tssdp
);
390 wr32(E1000_CTRL
, ctrl
);
391 wr32(E1000_CTRL_EXT
, ctrl_ext
);
394 static void igb_pin_perout(struct igb_adapter
*igb
, int chan
, int pin
, int freq
)
396 static const u32 aux0_sel_sdp
[IGB_N_SDP
] = {
397 AUX0_SEL_SDP0
, AUX0_SEL_SDP1
, AUX0_SEL_SDP2
, AUX0_SEL_SDP3
,
399 static const u32 aux1_sel_sdp
[IGB_N_SDP
] = {
400 AUX1_SEL_SDP0
, AUX1_SEL_SDP1
, AUX1_SEL_SDP2
, AUX1_SEL_SDP3
,
402 static const u32 ts_sdp_en
[IGB_N_SDP
] = {
403 TS_SDP0_EN
, TS_SDP1_EN
, TS_SDP2_EN
, TS_SDP3_EN
,
405 static const u32 ts_sdp_sel_tt0
[IGB_N_SDP
] = {
406 TS_SDP0_SEL_TT0
, TS_SDP1_SEL_TT0
,
407 TS_SDP2_SEL_TT0
, TS_SDP3_SEL_TT0
,
409 static const u32 ts_sdp_sel_tt1
[IGB_N_SDP
] = {
410 TS_SDP0_SEL_TT1
, TS_SDP1_SEL_TT1
,
411 TS_SDP2_SEL_TT1
, TS_SDP3_SEL_TT1
,
413 static const u32 ts_sdp_sel_fc0
[IGB_N_SDP
] = {
414 TS_SDP0_SEL_FC0
, TS_SDP1_SEL_FC0
,
415 TS_SDP2_SEL_FC0
, TS_SDP3_SEL_FC0
,
417 static const u32 ts_sdp_sel_fc1
[IGB_N_SDP
] = {
418 TS_SDP0_SEL_FC1
, TS_SDP1_SEL_FC1
,
419 TS_SDP2_SEL_FC1
, TS_SDP3_SEL_FC1
,
421 static const u32 ts_sdp_sel_clr
[IGB_N_SDP
] = {
422 TS_SDP0_SEL_FC1
, TS_SDP1_SEL_FC1
,
423 TS_SDP2_SEL_FC1
, TS_SDP3_SEL_FC1
,
425 struct e1000_hw
*hw
= &igb
->hw
;
426 u32 ctrl
, ctrl_ext
, tssdp
= 0;
428 ctrl
= rd32(E1000_CTRL
);
429 ctrl_ext
= rd32(E1000_CTRL_EXT
);
430 tssdp
= rd32(E1000_TSSDP
);
432 igb_pin_direction(pin
, 0, &ctrl
, &ctrl_ext
);
434 /* Make sure this pin is not enabled as an input. */
435 if ((tssdp
& AUX0_SEL_SDP3
) == aux0_sel_sdp
[pin
])
436 tssdp
&= ~AUX0_TS_SDP_EN
;
438 if ((tssdp
& AUX1_SEL_SDP3
) == aux1_sel_sdp
[pin
])
439 tssdp
&= ~AUX1_TS_SDP_EN
;
441 tssdp
&= ~ts_sdp_sel_clr
[pin
];
444 tssdp
|= ts_sdp_sel_fc1
[pin
];
446 tssdp
|= ts_sdp_sel_fc0
[pin
];
449 tssdp
|= ts_sdp_sel_tt1
[pin
];
451 tssdp
|= ts_sdp_sel_tt0
[pin
];
453 tssdp
|= ts_sdp_en
[pin
];
455 wr32(E1000_TSSDP
, tssdp
);
456 wr32(E1000_CTRL
, ctrl
);
457 wr32(E1000_CTRL_EXT
, ctrl_ext
);
460 static int igb_ptp_feature_enable_i210(struct ptp_clock_info
*ptp
,
461 struct ptp_clock_request
*rq
, int on
)
463 struct igb_adapter
*igb
=
464 container_of(ptp
, struct igb_adapter
, ptp_caps
);
465 struct e1000_hw
*hw
= &igb
->hw
;
466 u32 tsauxc
, tsim
, tsauxc_mask
, tsim_mask
, trgttiml
, trgttimh
, freqout
;
468 struct timespec64 ts
;
469 int use_freq
= 0, pin
= -1;
473 case PTP_CLK_REQ_EXTTS
:
475 pin
= ptp_find_pin(igb
->ptp_clock
, PTP_PF_EXTTS
,
480 if (rq
->extts
.index
== 1) {
481 tsauxc_mask
= TSAUXC_EN_TS1
;
482 tsim_mask
= TSINTR_AUTT1
;
484 tsauxc_mask
= TSAUXC_EN_TS0
;
485 tsim_mask
= TSINTR_AUTT0
;
487 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
488 tsauxc
= rd32(E1000_TSAUXC
);
489 tsim
= rd32(E1000_TSIM
);
491 igb_pin_extts(igb
, rq
->extts
.index
, pin
);
492 tsauxc
|= tsauxc_mask
;
495 tsauxc
&= ~tsauxc_mask
;
498 wr32(E1000_TSAUXC
, tsauxc
);
499 wr32(E1000_TSIM
, tsim
);
500 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
503 case PTP_CLK_REQ_PEROUT
:
505 pin
= ptp_find_pin(igb
->ptp_clock
, PTP_PF_PEROUT
,
510 ts
.tv_sec
= rq
->perout
.period
.sec
;
511 ts
.tv_nsec
= rq
->perout
.period
.nsec
;
512 ns
= timespec64_to_ns(&ts
);
514 if (on
&& ((ns
<= 70000000LL) || (ns
== 125000000LL) ||
515 (ns
== 250000000LL) || (ns
== 500000000LL))) {
520 ts
= ns_to_timespec64(ns
);
521 if (rq
->perout
.index
== 1) {
523 tsauxc_mask
= TSAUXC_EN_CLK1
| TSAUXC_ST1
;
526 tsauxc_mask
= TSAUXC_EN_TT1
;
527 tsim_mask
= TSINTR_TT1
;
529 trgttiml
= E1000_TRGTTIML1
;
530 trgttimh
= E1000_TRGTTIMH1
;
531 freqout
= E1000_FREQOUT1
;
534 tsauxc_mask
= TSAUXC_EN_CLK0
| TSAUXC_ST0
;
537 tsauxc_mask
= TSAUXC_EN_TT0
;
538 tsim_mask
= TSINTR_TT0
;
540 trgttiml
= E1000_TRGTTIML0
;
541 trgttimh
= E1000_TRGTTIMH0
;
542 freqout
= E1000_FREQOUT0
;
544 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
545 tsauxc
= rd32(E1000_TSAUXC
);
546 tsim
= rd32(E1000_TSIM
);
547 if (rq
->perout
.index
== 1) {
548 tsauxc
&= ~(TSAUXC_EN_TT1
| TSAUXC_EN_CLK1
| TSAUXC_ST1
);
551 tsauxc
&= ~(TSAUXC_EN_TT0
| TSAUXC_EN_CLK0
| TSAUXC_ST0
);
555 int i
= rq
->perout
.index
;
556 igb_pin_perout(igb
, i
, pin
, use_freq
);
557 igb
->perout
[i
].start
.tv_sec
= rq
->perout
.start
.sec
;
558 igb
->perout
[i
].start
.tv_nsec
= rq
->perout
.start
.nsec
;
559 igb
->perout
[i
].period
.tv_sec
= ts
.tv_sec
;
560 igb
->perout
[i
].period
.tv_nsec
= ts
.tv_nsec
;
561 wr32(trgttimh
, rq
->perout
.start
.sec
);
562 wr32(trgttiml
, rq
->perout
.start
.nsec
);
565 tsauxc
|= tsauxc_mask
;
568 wr32(E1000_TSAUXC
, tsauxc
);
569 wr32(E1000_TSIM
, tsim
);
570 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
573 case PTP_CLK_REQ_PPS
:
574 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
575 tsim
= rd32(E1000_TSIM
);
577 tsim
|= TSINTR_SYS_WRAP
;
579 tsim
&= ~TSINTR_SYS_WRAP
;
580 igb
->pps_sys_wrap_on
= !!on
;
581 wr32(E1000_TSIM
, tsim
);
582 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
589 static int igb_ptp_feature_enable(struct ptp_clock_info
*ptp
,
590 struct ptp_clock_request
*rq
, int on
)
595 static int igb_ptp_verify_pin(struct ptp_clock_info
*ptp
, unsigned int pin
,
596 enum ptp_pin_function func
, unsigned int chan
)
611 * @work: pointer to work struct
613 * This work function polls the TSYNCTXCTL valid bit to determine when a
614 * timestamp has been taken for the current stored skb.
616 static void igb_ptp_tx_work(struct work_struct
*work
)
618 struct igb_adapter
*adapter
= container_of(work
, struct igb_adapter
,
620 struct e1000_hw
*hw
= &adapter
->hw
;
623 if (!adapter
->ptp_tx_skb
)
626 if (time_is_before_jiffies(adapter
->ptp_tx_start
+
627 IGB_PTP_TX_TIMEOUT
)) {
628 dev_kfree_skb_any(adapter
->ptp_tx_skb
);
629 adapter
->ptp_tx_skb
= NULL
;
630 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS
, &adapter
->state
);
631 adapter
->tx_hwtstamp_timeouts
++;
632 /* Clear the tx valid bit in TSYNCTXCTL register to enable
636 dev_warn(&adapter
->pdev
->dev
, "clearing Tx timestamp hang\n");
640 tsynctxctl
= rd32(E1000_TSYNCTXCTL
);
641 if (tsynctxctl
& E1000_TSYNCTXCTL_VALID
)
642 igb_ptp_tx_hwtstamp(adapter
);
644 /* reschedule to check later */
645 schedule_work(&adapter
->ptp_tx_work
);
648 static void igb_ptp_overflow_check(struct work_struct
*work
)
650 struct igb_adapter
*igb
=
651 container_of(work
, struct igb_adapter
, ptp_overflow_work
.work
);
652 struct timespec64 ts
;
654 igb
->ptp_caps
.gettime64(&igb
->ptp_caps
, &ts
);
656 pr_debug("igb overflow check at %lld.%09lu\n",
657 (long long) ts
.tv_sec
, ts
.tv_nsec
);
659 schedule_delayed_work(&igb
->ptp_overflow_work
,
660 IGB_SYSTIM_OVERFLOW_PERIOD
);
664 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
665 * @adapter: private network adapter structure
667 * This watchdog task is scheduled to detect error case where hardware has
668 * dropped an Rx packet that was timestamped when the ring is full. The
669 * particular error is rare but leaves the device in a state unable to timestamp
670 * any future packets.
672 void igb_ptp_rx_hang(struct igb_adapter
*adapter
)
674 struct e1000_hw
*hw
= &adapter
->hw
;
675 u32 tsyncrxctl
= rd32(E1000_TSYNCRXCTL
);
676 unsigned long rx_event
;
678 /* Other hardware uses per-packet timestamps */
679 if (hw
->mac
.type
!= e1000_82576
)
682 /* If we don't have a valid timestamp in the registers, just update the
683 * timeout counter and exit
685 if (!(tsyncrxctl
& E1000_TSYNCRXCTL_VALID
)) {
686 adapter
->last_rx_ptp_check
= jiffies
;
690 /* Determine the most recent watchdog or rx_timestamp event */
691 rx_event
= adapter
->last_rx_ptp_check
;
692 if (time_after(adapter
->last_rx_timestamp
, rx_event
))
693 rx_event
= adapter
->last_rx_timestamp
;
695 /* Only need to read the high RXSTMP register to clear the lock */
696 if (time_is_before_jiffies(rx_event
+ 5 * HZ
)) {
698 adapter
->last_rx_ptp_check
= jiffies
;
699 adapter
->rx_hwtstamp_cleared
++;
700 dev_warn(&adapter
->pdev
->dev
, "clearing Rx timestamp hang\n");
705 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
706 * @adapter: private network adapter structure
708 void igb_ptp_tx_hang(struct igb_adapter
*adapter
)
710 struct e1000_hw
*hw
= &adapter
->hw
;
711 bool timeout
= time_is_before_jiffies(adapter
->ptp_tx_start
+
714 if (!adapter
->ptp_tx_skb
)
717 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS
, &adapter
->state
))
720 /* If we haven't received a timestamp within the timeout, it is
721 * reasonable to assume that it will never occur, so we can unlock the
722 * timestamp bit when this occurs.
725 cancel_work_sync(&adapter
->ptp_tx_work
);
726 dev_kfree_skb_any(adapter
->ptp_tx_skb
);
727 adapter
->ptp_tx_skb
= NULL
;
728 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS
, &adapter
->state
);
729 adapter
->tx_hwtstamp_timeouts
++;
730 /* Clear the tx valid bit in TSYNCTXCTL register to enable
734 dev_warn(&adapter
->pdev
->dev
, "clearing Tx timestamp hang\n");
739 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
740 * @adapter: Board private structure.
742 * If we were asked to do hardware stamping and such a time stamp is
743 * available, then it must have been for this skb here because we only
744 * allow only one such packet into the queue.
746 static void igb_ptp_tx_hwtstamp(struct igb_adapter
*adapter
)
748 struct sk_buff
*skb
= adapter
->ptp_tx_skb
;
749 struct e1000_hw
*hw
= &adapter
->hw
;
750 struct skb_shared_hwtstamps shhwtstamps
;
754 regval
= rd32(E1000_TXSTMPL
);
755 regval
|= (u64
)rd32(E1000_TXSTMPH
) << 32;
757 igb_ptp_systim_to_hwtstamp(adapter
, &shhwtstamps
, regval
);
758 /* adjust timestamp for the TX latency based on link speed */
759 if (adapter
->hw
.mac
.type
== e1000_i210
) {
760 switch (adapter
->link_speed
) {
762 adjust
= IGB_I210_TX_LATENCY_10
;
765 adjust
= IGB_I210_TX_LATENCY_100
;
768 adjust
= IGB_I210_TX_LATENCY_1000
;
773 shhwtstamps
.hwtstamp
=
774 ktime_add_ns(shhwtstamps
.hwtstamp
, adjust
);
776 /* Clear the lock early before calling skb_tstamp_tx so that
777 * applications are not woken up before the lock bit is clear. We use
778 * a copy of the skb pointer to ensure other threads can't change it
779 * while we're notifying the stack.
781 adapter
->ptp_tx_skb
= NULL
;
782 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS
, &adapter
->state
);
784 /* Notify the stack and free the skb after we've unlocked */
785 skb_tstamp_tx(skb
, &shhwtstamps
);
786 dev_kfree_skb_any(skb
);
790 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
791 * @q_vector: Pointer to interrupt specific structure
792 * @va: Pointer to address containing Rx buffer
793 * @skb: Buffer containing timestamp and packet
795 * This function is meant to retrieve a timestamp from the first buffer of an
796 * incoming frame. The value is stored in little endian format starting on
799 void igb_ptp_rx_pktstamp(struct igb_q_vector
*q_vector
, void *va
,
802 __le64
*regval
= (__le64
*)va
;
803 struct igb_adapter
*adapter
= q_vector
->adapter
;
806 /* The timestamp is recorded in little endian format.
808 * Field: Reserved Reserved SYSTIML SYSTIMH
810 igb_ptp_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
),
811 le64_to_cpu(regval
[1]));
813 /* adjust timestamp for the RX latency based on link speed */
814 if (adapter
->hw
.mac
.type
== e1000_i210
) {
815 switch (adapter
->link_speed
) {
817 adjust
= IGB_I210_RX_LATENCY_10
;
820 adjust
= IGB_I210_RX_LATENCY_100
;
823 adjust
= IGB_I210_RX_LATENCY_1000
;
827 skb_hwtstamps(skb
)->hwtstamp
=
828 ktime_sub_ns(skb_hwtstamps(skb
)->hwtstamp
, adjust
);
832 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
833 * @q_vector: Pointer to interrupt specific structure
834 * @skb: Buffer containing timestamp and packet
836 * This function is meant to retrieve a timestamp from the internal registers
837 * of the adapter and store it in the skb.
839 void igb_ptp_rx_rgtstamp(struct igb_q_vector
*q_vector
,
842 struct igb_adapter
*adapter
= q_vector
->adapter
;
843 struct e1000_hw
*hw
= &adapter
->hw
;
847 /* If this bit is set, then the RX registers contain the time stamp. No
848 * other packet will be time stamped until we read these registers, so
849 * read the registers to make them available again. Because only one
850 * packet can be time stamped at a time, we know that the register
851 * values must belong to this one here and therefore we don't need to
852 * compare any of the additional attributes stored for it.
854 * If nothing went wrong, then it should have a shared tx_flags that we
855 * can turn into a skb_shared_hwtstamps.
857 if (!(rd32(E1000_TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
))
860 regval
= rd32(E1000_RXSTMPL
);
861 regval
|= (u64
)rd32(E1000_RXSTMPH
) << 32;
863 igb_ptp_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
), regval
);
865 /* adjust timestamp for the RX latency based on link speed */
866 if (adapter
->hw
.mac
.type
== e1000_i210
) {
867 switch (adapter
->link_speed
) {
869 adjust
= IGB_I210_RX_LATENCY_10
;
872 adjust
= IGB_I210_RX_LATENCY_100
;
875 adjust
= IGB_I210_RX_LATENCY_1000
;
879 skb_hwtstamps(skb
)->hwtstamp
=
880 ktime_sub_ns(skb_hwtstamps(skb
)->hwtstamp
, adjust
);
882 /* Update the last_rx_timestamp timer in order to enable watchdog check
883 * for error case of latched timestamp on a dropped packet.
885 adapter
->last_rx_timestamp
= jiffies
;
889 * igb_ptp_get_ts_config - get hardware time stamping config
893 * Get the hwtstamp_config settings to return to the user. Rather than attempt
894 * to deconstruct the settings from the registers, just return a shadow copy
895 * of the last known settings.
897 int igb_ptp_get_ts_config(struct net_device
*netdev
, struct ifreq
*ifr
)
899 struct igb_adapter
*adapter
= netdev_priv(netdev
);
900 struct hwtstamp_config
*config
= &adapter
->tstamp_config
;
902 return copy_to_user(ifr
->ifr_data
, config
, sizeof(*config
)) ?
907 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
908 * @adapter: networking device structure
909 * @config: hwtstamp configuration
911 * Outgoing time stamping can be enabled and disabled. Play nice and
912 * disable it when requested, although it shouldn't case any overhead
913 * when no packet needs it. At most one packet in the queue may be
914 * marked for time stamping, otherwise it would be impossible to tell
915 * for sure to which packet the hardware time stamp belongs.
917 * Incoming time stamping has to be configured via the hardware
918 * filters. Not all combinations are supported, in particular event
919 * type has to be specified. Matching the kind of event packet is
920 * not supported, with the exception of "all V2 events regardless of
923 static int igb_ptp_set_timestamp_mode(struct igb_adapter
*adapter
,
924 struct hwtstamp_config
*config
)
926 struct e1000_hw
*hw
= &adapter
->hw
;
927 u32 tsync_tx_ctl
= E1000_TSYNCTXCTL_ENABLED
;
928 u32 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
929 u32 tsync_rx_cfg
= 0;
934 /* reserved for future extensions */
938 switch (config
->tx_type
) {
939 case HWTSTAMP_TX_OFF
:
947 switch (config
->rx_filter
) {
948 case HWTSTAMP_FILTER_NONE
:
951 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
952 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
953 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE
;
956 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
957 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
958 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE
;
961 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
962 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
963 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
964 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
965 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
966 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
967 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
968 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
969 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
970 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
971 config
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
975 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
976 case HWTSTAMP_FILTER_NTP_ALL
:
977 case HWTSTAMP_FILTER_ALL
:
978 /* 82576 cannot timestamp all packets, which it needs to do to
979 * support both V1 Sync and Delay_Req messages
981 if (hw
->mac
.type
!= e1000_82576
) {
982 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
983 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
988 config
->rx_filter
= HWTSTAMP_FILTER_NONE
;
992 if (hw
->mac
.type
== e1000_82575
) {
993 if (tsync_rx_ctl
| tsync_tx_ctl
)
998 /* Per-packet timestamping only works if all packets are
999 * timestamped, so enable timestamping in all packets as
1000 * long as one Rx filter was configured.
1002 if ((hw
->mac
.type
>= e1000_82580
) && tsync_rx_ctl
) {
1003 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
1004 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
1005 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
1009 if ((hw
->mac
.type
== e1000_i210
) ||
1010 (hw
->mac
.type
== e1000_i211
)) {
1011 regval
= rd32(E1000_RXPBS
);
1012 regval
|= E1000_RXPBS_CFG_TS_EN
;
1013 wr32(E1000_RXPBS
, regval
);
1017 /* enable/disable TX */
1018 regval
= rd32(E1000_TSYNCTXCTL
);
1019 regval
&= ~E1000_TSYNCTXCTL_ENABLED
;
1020 regval
|= tsync_tx_ctl
;
1021 wr32(E1000_TSYNCTXCTL
, regval
);
1023 /* enable/disable RX */
1024 regval
= rd32(E1000_TSYNCRXCTL
);
1025 regval
&= ~(E1000_TSYNCRXCTL_ENABLED
| E1000_TSYNCRXCTL_TYPE_MASK
);
1026 regval
|= tsync_rx_ctl
;
1027 wr32(E1000_TSYNCRXCTL
, regval
);
1029 /* define which PTP packets are time stamped */
1030 wr32(E1000_TSYNCRXCFG
, tsync_rx_cfg
);
1032 /* define ethertype filter for timestamped packets */
1034 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588
),
1035 (E1000_ETQF_FILTER_ENABLE
| /* enable filter */
1036 E1000_ETQF_1588
| /* enable timestamping */
1037 ETH_P_1588
)); /* 1588 eth protocol type */
1039 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588
), 0);
1041 /* L4 Queue Filter[3]: filter by destination port and protocol */
1043 u32 ftqf
= (IPPROTO_UDP
/* UDP */
1044 | E1000_FTQF_VF_BP
/* VF not compared */
1045 | E1000_FTQF_1588_TIME_STAMP
/* Enable Timestamping */
1046 | E1000_FTQF_MASK
); /* mask all inputs */
1047 ftqf
&= ~E1000_FTQF_MASK_PROTO_BP
; /* enable protocol check */
1049 wr32(E1000_IMIR(3), htons(PTP_EV_PORT
));
1050 wr32(E1000_IMIREXT(3),
1051 (E1000_IMIREXT_SIZE_BP
| E1000_IMIREXT_CTRL_BP
));
1052 if (hw
->mac
.type
== e1000_82576
) {
1053 /* enable source port check */
1054 wr32(E1000_SPQF(3), htons(PTP_EV_PORT
));
1055 ftqf
&= ~E1000_FTQF_MASK_SOURCE_PORT_BP
;
1057 wr32(E1000_FTQF(3), ftqf
);
1059 wr32(E1000_FTQF(3), E1000_FTQF_MASK
);
1063 /* clear TX/RX time stamp registers, just to be sure */
1064 regval
= rd32(E1000_TXSTMPL
);
1065 regval
= rd32(E1000_TXSTMPH
);
1066 regval
= rd32(E1000_RXSTMPL
);
1067 regval
= rd32(E1000_RXSTMPH
);
1073 * igb_ptp_set_ts_config - set hardware time stamping config
1078 int igb_ptp_set_ts_config(struct net_device
*netdev
, struct ifreq
*ifr
)
1080 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1081 struct hwtstamp_config config
;
1084 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
1087 err
= igb_ptp_set_timestamp_mode(adapter
, &config
);
1091 /* save these settings for future reference */
1092 memcpy(&adapter
->tstamp_config
, &config
,
1093 sizeof(adapter
->tstamp_config
));
1095 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
1100 * igb_ptp_init - Initialize PTP functionality
1101 * @adapter: Board private structure
1103 * This function is called at device probe to initialize the PTP
1106 void igb_ptp_init(struct igb_adapter
*adapter
)
1108 struct e1000_hw
*hw
= &adapter
->hw
;
1109 struct net_device
*netdev
= adapter
->netdev
;
1112 switch (hw
->mac
.type
) {
1114 snprintf(adapter
->ptp_caps
.name
, 16, "%pm", netdev
->dev_addr
);
1115 adapter
->ptp_caps
.owner
= THIS_MODULE
;
1116 adapter
->ptp_caps
.max_adj
= 999999881;
1117 adapter
->ptp_caps
.n_ext_ts
= 0;
1118 adapter
->ptp_caps
.pps
= 0;
1119 adapter
->ptp_caps
.adjfreq
= igb_ptp_adjfreq_82576
;
1120 adapter
->ptp_caps
.adjtime
= igb_ptp_adjtime_82576
;
1121 adapter
->ptp_caps
.gettime64
= igb_ptp_gettime_82576
;
1122 adapter
->ptp_caps
.settime64
= igb_ptp_settime_82576
;
1123 adapter
->ptp_caps
.enable
= igb_ptp_feature_enable
;
1124 adapter
->cc
.read
= igb_ptp_read_82576
;
1125 adapter
->cc
.mask
= CYCLECOUNTER_MASK(64);
1126 adapter
->cc
.mult
= 1;
1127 adapter
->cc
.shift
= IGB_82576_TSYNC_SHIFT
;
1128 adapter
->ptp_flags
|= IGB_PTP_OVERFLOW_CHECK
;
1133 snprintf(adapter
->ptp_caps
.name
, 16, "%pm", netdev
->dev_addr
);
1134 adapter
->ptp_caps
.owner
= THIS_MODULE
;
1135 adapter
->ptp_caps
.max_adj
= 62499999;
1136 adapter
->ptp_caps
.n_ext_ts
= 0;
1137 adapter
->ptp_caps
.pps
= 0;
1138 adapter
->ptp_caps
.adjfine
= igb_ptp_adjfine_82580
;
1139 adapter
->ptp_caps
.adjtime
= igb_ptp_adjtime_82576
;
1140 adapter
->ptp_caps
.gettime64
= igb_ptp_gettime_82576
;
1141 adapter
->ptp_caps
.settime64
= igb_ptp_settime_82576
;
1142 adapter
->ptp_caps
.enable
= igb_ptp_feature_enable
;
1143 adapter
->cc
.read
= igb_ptp_read_82580
;
1144 adapter
->cc
.mask
= CYCLECOUNTER_MASK(IGB_NBITS_82580
);
1145 adapter
->cc
.mult
= 1;
1146 adapter
->cc
.shift
= 0;
1147 adapter
->ptp_flags
|= IGB_PTP_OVERFLOW_CHECK
;
1151 for (i
= 0; i
< IGB_N_SDP
; i
++) {
1152 struct ptp_pin_desc
*ppd
= &adapter
->sdp_config
[i
];
1154 snprintf(ppd
->name
, sizeof(ppd
->name
), "SDP%d", i
);
1156 ppd
->func
= PTP_PF_NONE
;
1158 snprintf(adapter
->ptp_caps
.name
, 16, "%pm", netdev
->dev_addr
);
1159 adapter
->ptp_caps
.owner
= THIS_MODULE
;
1160 adapter
->ptp_caps
.max_adj
= 62499999;
1161 adapter
->ptp_caps
.n_ext_ts
= IGB_N_EXTTS
;
1162 adapter
->ptp_caps
.n_per_out
= IGB_N_PEROUT
;
1163 adapter
->ptp_caps
.n_pins
= IGB_N_SDP
;
1164 adapter
->ptp_caps
.pps
= 1;
1165 adapter
->ptp_caps
.pin_config
= adapter
->sdp_config
;
1166 adapter
->ptp_caps
.adjfine
= igb_ptp_adjfine_82580
;
1167 adapter
->ptp_caps
.adjtime
= igb_ptp_adjtime_i210
;
1168 adapter
->ptp_caps
.gettime64
= igb_ptp_gettime_i210
;
1169 adapter
->ptp_caps
.settime64
= igb_ptp_settime_i210
;
1170 adapter
->ptp_caps
.enable
= igb_ptp_feature_enable_i210
;
1171 adapter
->ptp_caps
.verify
= igb_ptp_verify_pin
;
1174 adapter
->ptp_clock
= NULL
;
1178 spin_lock_init(&adapter
->tmreg_lock
);
1179 INIT_WORK(&adapter
->ptp_tx_work
, igb_ptp_tx_work
);
1181 if (adapter
->ptp_flags
& IGB_PTP_OVERFLOW_CHECK
)
1182 INIT_DELAYED_WORK(&adapter
->ptp_overflow_work
,
1183 igb_ptp_overflow_check
);
1185 adapter
->tstamp_config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
1186 adapter
->tstamp_config
.tx_type
= HWTSTAMP_TX_OFF
;
1188 igb_ptp_reset(adapter
);
1190 adapter
->ptp_clock
= ptp_clock_register(&adapter
->ptp_caps
,
1191 &adapter
->pdev
->dev
);
1192 if (IS_ERR(adapter
->ptp_clock
)) {
1193 adapter
->ptp_clock
= NULL
;
1194 dev_err(&adapter
->pdev
->dev
, "ptp_clock_register failed\n");
1195 } else if (adapter
->ptp_clock
) {
1196 dev_info(&adapter
->pdev
->dev
, "added PHC on %s\n",
1197 adapter
->netdev
->name
);
1198 adapter
->ptp_flags
|= IGB_PTP_ENABLED
;
1203 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1204 * @adapter: Board private structure
1206 * This function stops the overflow check work and PTP Tx timestamp work, and
1207 * will prepare the device for OS suspend.
1209 void igb_ptp_suspend(struct igb_adapter
*adapter
)
1211 if (!(adapter
->ptp_flags
& IGB_PTP_ENABLED
))
1214 if (adapter
->ptp_flags
& IGB_PTP_OVERFLOW_CHECK
)
1215 cancel_delayed_work_sync(&adapter
->ptp_overflow_work
);
1217 cancel_work_sync(&adapter
->ptp_tx_work
);
1218 if (adapter
->ptp_tx_skb
) {
1219 dev_kfree_skb_any(adapter
->ptp_tx_skb
);
1220 adapter
->ptp_tx_skb
= NULL
;
1221 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS
, &adapter
->state
);
1226 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1227 * @adapter: Board private structure.
1229 * This function stops the PTP support and cancels the delayed work.
1231 void igb_ptp_stop(struct igb_adapter
*adapter
)
1233 igb_ptp_suspend(adapter
);
1235 if (adapter
->ptp_clock
) {
1236 ptp_clock_unregister(adapter
->ptp_clock
);
1237 dev_info(&adapter
->pdev
->dev
, "removed PHC on %s\n",
1238 adapter
->netdev
->name
);
1239 adapter
->ptp_flags
&= ~IGB_PTP_ENABLED
;
1244 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1245 * @adapter: Board private structure.
1247 * This function handles the reset work required to re-enable the PTP device.
1249 void igb_ptp_reset(struct igb_adapter
*adapter
)
1251 struct e1000_hw
*hw
= &adapter
->hw
;
1252 unsigned long flags
;
1254 /* reset the tstamp_config */
1255 igb_ptp_set_timestamp_mode(adapter
, &adapter
->tstamp_config
);
1257 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
1259 switch (adapter
->hw
.mac
.type
) {
1261 /* Dial the nominal frequency. */
1262 wr32(E1000_TIMINCA
, INCPERIOD_82576
| INCVALUE_82576
);
1269 wr32(E1000_TSAUXC
, 0x0);
1270 wr32(E1000_TSSDP
, 0x0);
1273 (adapter
->pps_sys_wrap_on
? TSINTR_SYS_WRAP
: 0));
1274 wr32(E1000_IMS
, E1000_IMS_TS
);
1277 /* No work to do. */
1281 /* Re-initialize the timer. */
1282 if ((hw
->mac
.type
== e1000_i210
) || (hw
->mac
.type
== e1000_i211
)) {
1283 struct timespec64 ts
= ktime_to_timespec64(ktime_get_real());
1285 igb_ptp_write_i210(adapter
, &ts
);
1287 timecounter_init(&adapter
->tc
, &adapter
->cc
,
1288 ktime_to_ns(ktime_get_real()));
1291 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
1295 if (adapter
->ptp_flags
& IGB_PTP_OVERFLOW_CHECK
)
1296 schedule_delayed_work(&adapter
->ptp_overflow_work
,
1297 IGB_SYSTIM_OVERFLOW_PERIOD
);