1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include <linux/sched/signal.h>
21 #include "net_driver.h"
25 #include "farch_regs.h"
28 #include "workarounds.h"
32 /* Hardware control for SFC4000 (aka Falcon). */
34 /**************************************************************************
38 **************************************************************************
41 #define FALCON_MAC_STATS_SIZE 0x100
43 #define XgRxOctets_offset 0x0
44 #define XgRxOctets_WIDTH 48
45 #define XgRxOctetsOK_offset 0x8
46 #define XgRxOctetsOK_WIDTH 48
47 #define XgRxPkts_offset 0x10
48 #define XgRxPkts_WIDTH 32
49 #define XgRxPktsOK_offset 0x14
50 #define XgRxPktsOK_WIDTH 32
51 #define XgRxBroadcastPkts_offset 0x18
52 #define XgRxBroadcastPkts_WIDTH 32
53 #define XgRxMulticastPkts_offset 0x1C
54 #define XgRxMulticastPkts_WIDTH 32
55 #define XgRxUnicastPkts_offset 0x20
56 #define XgRxUnicastPkts_WIDTH 32
57 #define XgRxUndersizePkts_offset 0x24
58 #define XgRxUndersizePkts_WIDTH 32
59 #define XgRxOversizePkts_offset 0x28
60 #define XgRxOversizePkts_WIDTH 32
61 #define XgRxJabberPkts_offset 0x2C
62 #define XgRxJabberPkts_WIDTH 32
63 #define XgRxUndersizeFCSerrorPkts_offset 0x30
64 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
65 #define XgRxDropEvents_offset 0x34
66 #define XgRxDropEvents_WIDTH 32
67 #define XgRxFCSerrorPkts_offset 0x38
68 #define XgRxFCSerrorPkts_WIDTH 32
69 #define XgRxAlignError_offset 0x3C
70 #define XgRxAlignError_WIDTH 32
71 #define XgRxSymbolError_offset 0x40
72 #define XgRxSymbolError_WIDTH 32
73 #define XgRxInternalMACError_offset 0x44
74 #define XgRxInternalMACError_WIDTH 32
75 #define XgRxControlPkts_offset 0x48
76 #define XgRxControlPkts_WIDTH 32
77 #define XgRxPausePkts_offset 0x4C
78 #define XgRxPausePkts_WIDTH 32
79 #define XgRxPkts64Octets_offset 0x50
80 #define XgRxPkts64Octets_WIDTH 32
81 #define XgRxPkts65to127Octets_offset 0x54
82 #define XgRxPkts65to127Octets_WIDTH 32
83 #define XgRxPkts128to255Octets_offset 0x58
84 #define XgRxPkts128to255Octets_WIDTH 32
85 #define XgRxPkts256to511Octets_offset 0x5C
86 #define XgRxPkts256to511Octets_WIDTH 32
87 #define XgRxPkts512to1023Octets_offset 0x60
88 #define XgRxPkts512to1023Octets_WIDTH 32
89 #define XgRxPkts1024to15xxOctets_offset 0x64
90 #define XgRxPkts1024to15xxOctets_WIDTH 32
91 #define XgRxPkts15xxtoMaxOctets_offset 0x68
92 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
93 #define XgRxLengthError_offset 0x6C
94 #define XgRxLengthError_WIDTH 32
95 #define XgTxPkts_offset 0x80
96 #define XgTxPkts_WIDTH 32
97 #define XgTxOctets_offset 0x88
98 #define XgTxOctets_WIDTH 48
99 #define XgTxMulticastPkts_offset 0x90
100 #define XgTxMulticastPkts_WIDTH 32
101 #define XgTxBroadcastPkts_offset 0x94
102 #define XgTxBroadcastPkts_WIDTH 32
103 #define XgTxUnicastPkts_offset 0x98
104 #define XgTxUnicastPkts_WIDTH 32
105 #define XgTxControlPkts_offset 0x9C
106 #define XgTxControlPkts_WIDTH 32
107 #define XgTxPausePkts_offset 0xA0
108 #define XgTxPausePkts_WIDTH 32
109 #define XgTxPkts64Octets_offset 0xA4
110 #define XgTxPkts64Octets_WIDTH 32
111 #define XgTxPkts65to127Octets_offset 0xA8
112 #define XgTxPkts65to127Octets_WIDTH 32
113 #define XgTxPkts128to255Octets_offset 0xAC
114 #define XgTxPkts128to255Octets_WIDTH 32
115 #define XgTxPkts256to511Octets_offset 0xB0
116 #define XgTxPkts256to511Octets_WIDTH 32
117 #define XgTxPkts512to1023Octets_offset 0xB4
118 #define XgTxPkts512to1023Octets_WIDTH 32
119 #define XgTxPkts1024to15xxOctets_offset 0xB8
120 #define XgTxPkts1024to15xxOctets_WIDTH 32
121 #define XgTxPkts1519toMaxOctets_offset 0xBC
122 #define XgTxPkts1519toMaxOctets_WIDTH 32
123 #define XgTxUndersizePkts_offset 0xC0
124 #define XgTxUndersizePkts_WIDTH 32
125 #define XgTxOversizePkts_offset 0xC4
126 #define XgTxOversizePkts_WIDTH 32
127 #define XgTxNonTcpUdpPkt_offset 0xC8
128 #define XgTxNonTcpUdpPkt_WIDTH 16
129 #define XgTxMacSrcErrPkt_offset 0xCC
130 #define XgTxMacSrcErrPkt_WIDTH 16
131 #define XgTxIpSrcErrPkt_offset 0xD0
132 #define XgTxIpSrcErrPkt_WIDTH 16
133 #define XgDmaDone_offset 0xD4
134 #define XgDmaDone_WIDTH 32
136 #define FALCON_XMAC_STATS_DMA_FLAG(efx) \
137 (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
139 #define FALCON_DMA_STAT(ext_name, hw_name) \
140 [FALCON_STAT_ ## ext_name] = \
142 /* 48-bit stats are zero-padded to 64 on DMA */ \
143 hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \
144 hw_name ## _ ## offset }
145 #define FALCON_OTHER_STAT(ext_name) \
146 [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
147 #define GENERIC_SW_STAT(ext_name) \
148 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
150 static const struct ef4_hw_stat_desc falcon_stat_desc
[FALCON_STAT_COUNT
] = {
151 FALCON_DMA_STAT(tx_bytes
, XgTxOctets
),
152 FALCON_DMA_STAT(tx_packets
, XgTxPkts
),
153 FALCON_DMA_STAT(tx_pause
, XgTxPausePkts
),
154 FALCON_DMA_STAT(tx_control
, XgTxControlPkts
),
155 FALCON_DMA_STAT(tx_unicast
, XgTxUnicastPkts
),
156 FALCON_DMA_STAT(tx_multicast
, XgTxMulticastPkts
),
157 FALCON_DMA_STAT(tx_broadcast
, XgTxBroadcastPkts
),
158 FALCON_DMA_STAT(tx_lt64
, XgTxUndersizePkts
),
159 FALCON_DMA_STAT(tx_64
, XgTxPkts64Octets
),
160 FALCON_DMA_STAT(tx_65_to_127
, XgTxPkts65to127Octets
),
161 FALCON_DMA_STAT(tx_128_to_255
, XgTxPkts128to255Octets
),
162 FALCON_DMA_STAT(tx_256_to_511
, XgTxPkts256to511Octets
),
163 FALCON_DMA_STAT(tx_512_to_1023
, XgTxPkts512to1023Octets
),
164 FALCON_DMA_STAT(tx_1024_to_15xx
, XgTxPkts1024to15xxOctets
),
165 FALCON_DMA_STAT(tx_15xx_to_jumbo
, XgTxPkts1519toMaxOctets
),
166 FALCON_DMA_STAT(tx_gtjumbo
, XgTxOversizePkts
),
167 FALCON_DMA_STAT(tx_non_tcpudp
, XgTxNonTcpUdpPkt
),
168 FALCON_DMA_STAT(tx_mac_src_error
, XgTxMacSrcErrPkt
),
169 FALCON_DMA_STAT(tx_ip_src_error
, XgTxIpSrcErrPkt
),
170 FALCON_DMA_STAT(rx_bytes
, XgRxOctets
),
171 FALCON_DMA_STAT(rx_good_bytes
, XgRxOctetsOK
),
172 FALCON_OTHER_STAT(rx_bad_bytes
),
173 FALCON_DMA_STAT(rx_packets
, XgRxPkts
),
174 FALCON_DMA_STAT(rx_good
, XgRxPktsOK
),
175 FALCON_DMA_STAT(rx_bad
, XgRxFCSerrorPkts
),
176 FALCON_DMA_STAT(rx_pause
, XgRxPausePkts
),
177 FALCON_DMA_STAT(rx_control
, XgRxControlPkts
),
178 FALCON_DMA_STAT(rx_unicast
, XgRxUnicastPkts
),
179 FALCON_DMA_STAT(rx_multicast
, XgRxMulticastPkts
),
180 FALCON_DMA_STAT(rx_broadcast
, XgRxBroadcastPkts
),
181 FALCON_DMA_STAT(rx_lt64
, XgRxUndersizePkts
),
182 FALCON_DMA_STAT(rx_64
, XgRxPkts64Octets
),
183 FALCON_DMA_STAT(rx_65_to_127
, XgRxPkts65to127Octets
),
184 FALCON_DMA_STAT(rx_128_to_255
, XgRxPkts128to255Octets
),
185 FALCON_DMA_STAT(rx_256_to_511
, XgRxPkts256to511Octets
),
186 FALCON_DMA_STAT(rx_512_to_1023
, XgRxPkts512to1023Octets
),
187 FALCON_DMA_STAT(rx_1024_to_15xx
, XgRxPkts1024to15xxOctets
),
188 FALCON_DMA_STAT(rx_15xx_to_jumbo
, XgRxPkts15xxtoMaxOctets
),
189 FALCON_DMA_STAT(rx_gtjumbo
, XgRxOversizePkts
),
190 FALCON_DMA_STAT(rx_bad_lt64
, XgRxUndersizeFCSerrorPkts
),
191 FALCON_DMA_STAT(rx_bad_gtjumbo
, XgRxJabberPkts
),
192 FALCON_DMA_STAT(rx_overflow
, XgRxDropEvents
),
193 FALCON_DMA_STAT(rx_symbol_error
, XgRxSymbolError
),
194 FALCON_DMA_STAT(rx_align_error
, XgRxAlignError
),
195 FALCON_DMA_STAT(rx_length_error
, XgRxLengthError
),
196 FALCON_DMA_STAT(rx_internal_error
, XgRxInternalMACError
),
197 FALCON_OTHER_STAT(rx_nodesc_drop_cnt
),
198 GENERIC_SW_STAT(rx_nodesc_trunc
),
199 GENERIC_SW_STAT(rx_noskb_drops
),
201 static const unsigned long falcon_stat_mask
[] = {
202 [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT
) - 1] = ~0UL,
205 /**************************************************************************
207 * Basic SPI command set and bit definitions
209 *************************************************************************/
211 #define SPI_WRSR 0x01 /* Write status register */
212 #define SPI_WRITE 0x02 /* Write data to memory array */
213 #define SPI_READ 0x03 /* Read data from memory array */
214 #define SPI_WRDI 0x04 /* Reset write enable latch */
215 #define SPI_RDSR 0x05 /* Read status register */
216 #define SPI_WREN 0x06 /* Set write enable latch */
217 #define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */
219 #define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */
220 #define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */
221 #define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */
222 #define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */
223 #define SPI_STATUS_WEN 0x02 /* State of the write enable latch */
224 #define SPI_STATUS_NRDY 0x01 /* Device busy flag */
226 /**************************************************************************
228 * Non-volatile memory layout
230 **************************************************************************
233 /* SFC4000 flash is partitioned into:
234 * 0-0x400 chip and board config (see struct falcon_nvconfig)
235 * 0x400-0x8000 unused (or may contain VPD if EEPROM not present)
236 * 0x8000-end boot code (mapped to PCI expansion ROM)
237 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
238 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
239 * 0-0x400 chip and board config
241 * 0x800-0x1800 boot config
242 * Aside from the chip and board config, all of these are optional and may
243 * be absent or truncated depending on the devices used.
245 #define FALCON_NVCONFIG_END 0x400U
246 #define FALCON_FLASH_BOOTCODE_START 0x8000U
247 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
248 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
250 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
251 struct falcon_nvconfig_board_v2
{
257 __le16 asic_sub_revision
;
258 __le16 board_revision
;
261 /* Board configuration v3 extra information */
262 struct falcon_nvconfig_board_v3
{
263 __le32 spi_device_type
[2];
266 /* Bit numbers for spi_device_type */
267 #define SPI_DEV_TYPE_SIZE_LBN 0
268 #define SPI_DEV_TYPE_SIZE_WIDTH 5
269 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
270 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
271 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
272 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
273 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
274 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
275 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
276 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
277 #define SPI_DEV_TYPE_FIELD(type, field) \
278 (((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field)))
280 #define FALCON_NVCONFIG_OFFSET 0x300
282 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
283 struct falcon_nvconfig
{
284 ef4_oword_t ee_vpd_cfg_reg
; /* 0x300 */
285 u8 mac_address
[2][8]; /* 0x310 */
286 ef4_oword_t pcie_sd_ctl0123_reg
; /* 0x320 */
287 ef4_oword_t pcie_sd_ctl45_reg
; /* 0x330 */
288 ef4_oword_t pcie_pcs_ctl_stat_reg
; /* 0x340 */
289 ef4_oword_t hw_init_reg
; /* 0x350 */
290 ef4_oword_t nic_stat_reg
; /* 0x360 */
291 ef4_oword_t glb_ctl_reg
; /* 0x370 */
292 ef4_oword_t srm_cfg_reg
; /* 0x380 */
293 ef4_oword_t spare_reg
; /* 0x390 */
294 __le16 board_magic_num
; /* 0x3A0 */
295 __le16 board_struct_ver
;
296 __le16 board_checksum
;
297 struct falcon_nvconfig_board_v2 board_v2
;
298 ef4_oword_t ee_base_page_reg
; /* 0x3B0 */
299 struct falcon_nvconfig_board_v3 board_v3
; /* 0x3C0 */
302 /*************************************************************************/
304 static int falcon_reset_hw(struct ef4_nic
*efx
, enum reset_type method
);
305 static void falcon_reconfigure_mac_wrapper(struct ef4_nic
*efx
);
307 static const unsigned int
308 /* "Large" EEPROM device: Atmel AT25640 or similar
309 * 8 KB, 16-bit address, 32 B write block */
310 large_eeprom_type
= ((13 << SPI_DEV_TYPE_SIZE_LBN
)
311 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
312 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
)),
313 /* Default flash device: Atmel AT25F1024
314 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
315 default_flash_type
= ((17 << SPI_DEV_TYPE_SIZE_LBN
)
316 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
317 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN
)
318 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN
)
319 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
));
321 /**************************************************************************
323 * I2C bus - this is a bit-bashing interface using GPIO pins
324 * Note that it uses the output enables to tristate the outputs
325 * SDA is the data pin and SCL is the clock
327 **************************************************************************
329 static void falcon_setsda(void *data
, int state
)
331 struct ef4_nic
*efx
= (struct ef4_nic
*)data
;
334 ef4_reado(efx
, ®
, FR_AB_GPIO_CTL
);
335 EF4_SET_OWORD_FIELD(reg
, FRF_AB_GPIO3_OEN
, !state
);
336 ef4_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
339 static void falcon_setscl(void *data
, int state
)
341 struct ef4_nic
*efx
= (struct ef4_nic
*)data
;
344 ef4_reado(efx
, ®
, FR_AB_GPIO_CTL
);
345 EF4_SET_OWORD_FIELD(reg
, FRF_AB_GPIO0_OEN
, !state
);
346 ef4_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
349 static int falcon_getsda(void *data
)
351 struct ef4_nic
*efx
= (struct ef4_nic
*)data
;
354 ef4_reado(efx
, ®
, FR_AB_GPIO_CTL
);
355 return EF4_OWORD_FIELD(reg
, FRF_AB_GPIO3_IN
);
358 static int falcon_getscl(void *data
)
360 struct ef4_nic
*efx
= (struct ef4_nic
*)data
;
363 ef4_reado(efx
, ®
, FR_AB_GPIO_CTL
);
364 return EF4_OWORD_FIELD(reg
, FRF_AB_GPIO0_IN
);
367 static const struct i2c_algo_bit_data falcon_i2c_bit_operations
= {
368 .setsda
= falcon_setsda
,
369 .setscl
= falcon_setscl
,
370 .getsda
= falcon_getsda
,
371 .getscl
= falcon_getscl
,
373 /* Wait up to 50 ms for slave to let us pull SCL high */
374 .timeout
= DIV_ROUND_UP(HZ
, 20),
377 static void falcon_push_irq_moderation(struct ef4_channel
*channel
)
379 ef4_dword_t timer_cmd
;
380 struct ef4_nic
*efx
= channel
->efx
;
382 /* Set timer register */
383 if (channel
->irq_moderation_us
) {
386 ticks
= ef4_usecs_to_ticks(efx
, channel
->irq_moderation_us
);
387 EF4_POPULATE_DWORD_2(timer_cmd
,
388 FRF_AB_TC_TIMER_MODE
,
389 FFE_BB_TIMER_MODE_INT_HLDOFF
,
393 EF4_POPULATE_DWORD_2(timer_cmd
,
394 FRF_AB_TC_TIMER_MODE
,
395 FFE_BB_TIMER_MODE_DIS
,
396 FRF_AB_TC_TIMER_VAL
, 0);
398 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER
!= FR_BZ_TIMER_COMMAND_P0
);
399 ef4_writed_page_locked(efx
, &timer_cmd
, FR_BZ_TIMER_COMMAND_P0
,
403 static void falcon_deconfigure_mac_wrapper(struct ef4_nic
*efx
);
405 static void falcon_prepare_flush(struct ef4_nic
*efx
)
407 falcon_deconfigure_mac_wrapper(efx
);
409 /* Wait for the tx and rx fifo's to get to the next packet boundary
410 * (~1ms without back-pressure), then to drain the remainder of the
411 * fifo's at data path speeds (negligible), with a healthy margin. */
415 /* Acknowledge a legacy interrupt from Falcon
417 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
419 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
420 * BIU. Interrupt acknowledge is read sensitive so must write instead
421 * (then read to ensure the BIU collector is flushed)
423 * NB most hardware supports MSI interrupts
425 static inline void falcon_irq_ack_a1(struct ef4_nic
*efx
)
429 EF4_POPULATE_DWORD_1(reg
, FRF_AA_INT_ACK_KER_FIELD
, 0xb7eb7e);
430 ef4_writed(efx
, ®
, FR_AA_INT_ACK_KER
);
431 ef4_readd(efx
, ®
, FR_AA_WORK_AROUND_BROKEN_PCI_READS
);
434 static irqreturn_t
falcon_legacy_interrupt_a1(int irq
, void *dev_id
)
436 struct ef4_nic
*efx
= dev_id
;
437 ef4_oword_t
*int_ker
= efx
->irq_status
.addr
;
441 /* Check to see if this is our interrupt. If it isn't, we
442 * exit without having touched the hardware.
444 if (unlikely(EF4_OWORD_IS_ZERO(*int_ker
))) {
445 netif_vdbg(efx
, intr
, efx
->net_dev
,
446 "IRQ %d on CPU %d not for me\n", irq
,
447 raw_smp_processor_id());
450 efx
->last_irq_cpu
= raw_smp_processor_id();
451 netif_vdbg(efx
, intr
, efx
->net_dev
,
452 "IRQ %d on CPU %d status " EF4_OWORD_FMT
"\n",
453 irq
, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker
));
455 if (!likely(READ_ONCE(efx
->irq_soft_enabled
)))
458 /* Check to see if we have a serious error condition */
459 syserr
= EF4_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
460 if (unlikely(syserr
))
461 return ef4_farch_fatal_interrupt(efx
);
463 /* Determine interrupting queues, clear interrupt status
464 * register and acknowledge the device interrupt.
466 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH
> EF4_MAX_CHANNELS
);
467 queues
= EF4_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_INT_Q
);
468 EF4_ZERO_OWORD(*int_ker
);
469 wmb(); /* Ensure the vector is cleared before interrupt ack */
470 falcon_irq_ack_a1(efx
);
473 ef4_schedule_channel_irq(ef4_get_channel(efx
, 0));
475 ef4_schedule_channel_irq(ef4_get_channel(efx
, 1));
479 /**************************************************************************
483 **************************************************************************
485 static int dummy_rx_push_rss_config(struct ef4_nic
*efx
, bool user
,
486 const u32
*rx_indir_table
)
490 (void) rx_indir_table
;
494 static int falcon_b0_rx_push_rss_config(struct ef4_nic
*efx
, bool user
,
495 const u32
*rx_indir_table
)
500 /* Set hash key for IPv4 */
501 memcpy(&temp
, efx
->rx_hash_key
, sizeof(temp
));
502 ef4_writeo(efx
, &temp
, FR_BZ_RX_RSS_TKEY
);
504 memcpy(efx
->rx_indir_table
, rx_indir_table
,
505 sizeof(efx
->rx_indir_table
));
506 ef4_farch_rx_push_indir_table(efx
);
510 /**************************************************************************
514 **************************************************************************
517 #define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t)
519 static int falcon_spi_poll(struct ef4_nic
*efx
)
522 ef4_reado(efx
, ®
, FR_AB_EE_SPI_HCMD
);
523 return EF4_OWORD_FIELD(reg
, FRF_AB_EE_SPI_HCMD_CMD_EN
) ? -EBUSY
: 0;
526 /* Wait for SPI command completion */
527 static int falcon_spi_wait(struct ef4_nic
*efx
)
529 /* Most commands will finish quickly, so we start polling at
530 * very short intervals. Sometimes the command may have to
531 * wait for VPD or expansion ROM access outside of our
532 * control, so we allow up to 100 ms. */
533 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 10);
536 for (i
= 0; i
< 10; i
++) {
537 if (!falcon_spi_poll(efx
))
543 if (!falcon_spi_poll(efx
))
545 if (time_after_eq(jiffies
, timeout
)) {
546 netif_err(efx
, hw
, efx
->net_dev
,
547 "timed out waiting for SPI\n");
550 schedule_timeout_uninterruptible(1);
555 falcon_spi_cmd(struct ef4_nic
*efx
, const struct falcon_spi_device
*spi
,
556 unsigned int command
, int address
,
557 const void *in
, void *out
, size_t len
)
559 bool addressed
= (address
>= 0);
560 bool reading
= (out
!= NULL
);
564 /* Input validation */
565 if (len
> FALCON_SPI_MAX_LEN
)
568 /* Check that previous command is not still running */
569 rc
= falcon_spi_poll(efx
);
573 /* Program address register, if we have an address */
575 EF4_POPULATE_OWORD_1(reg
, FRF_AB_EE_SPI_HADR_ADR
, address
);
576 ef4_writeo(efx
, ®
, FR_AB_EE_SPI_HADR
);
579 /* Program data register, if we have data */
581 memcpy(®
, in
, len
);
582 ef4_writeo(efx
, ®
, FR_AB_EE_SPI_HDATA
);
585 /* Issue read/write command */
586 EF4_POPULATE_OWORD_7(reg
,
587 FRF_AB_EE_SPI_HCMD_CMD_EN
, 1,
588 FRF_AB_EE_SPI_HCMD_SF_SEL
, spi
->device_id
,
589 FRF_AB_EE_SPI_HCMD_DABCNT
, len
,
590 FRF_AB_EE_SPI_HCMD_READ
, reading
,
591 FRF_AB_EE_SPI_HCMD_DUBCNT
, 0,
592 FRF_AB_EE_SPI_HCMD_ADBCNT
,
593 (addressed
? spi
->addr_len
: 0),
594 FRF_AB_EE_SPI_HCMD_ENC
, command
);
595 ef4_writeo(efx
, ®
, FR_AB_EE_SPI_HCMD
);
597 /* Wait for read/write to complete */
598 rc
= falcon_spi_wait(efx
);
604 ef4_reado(efx
, ®
, FR_AB_EE_SPI_HDATA
);
605 memcpy(out
, ®
, len
);
612 falcon_spi_munge_command(const struct falcon_spi_device
*spi
,
613 const u8 command
, const unsigned int address
)
615 return command
| (((address
>> 8) & spi
->munge_address
) << 3);
619 falcon_spi_read(struct ef4_nic
*efx
, const struct falcon_spi_device
*spi
,
620 loff_t start
, size_t len
, size_t *retlen
, u8
*buffer
)
622 size_t block_len
, pos
= 0;
623 unsigned int command
;
627 block_len
= min(len
- pos
, FALCON_SPI_MAX_LEN
);
629 command
= falcon_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
630 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
, NULL
,
631 buffer
+ pos
, block_len
);
636 /* Avoid locking up the system */
638 if (signal_pending(current
)) {
649 #ifdef CONFIG_SFC_FALCON_MTD
651 struct falcon_mtd_partition
{
652 struct ef4_mtd_partition common
;
653 const struct falcon_spi_device
*spi
;
657 #define to_falcon_mtd_partition(mtd) \
658 container_of(mtd, struct falcon_mtd_partition, common.mtd)
661 falcon_spi_write_limit(const struct falcon_spi_device
*spi
, size_t start
)
663 return min(FALCON_SPI_MAX_LEN
,
664 (spi
->block_size
- (start
& (spi
->block_size
- 1))));
667 /* Wait up to 10 ms for buffered write completion */
669 falcon_spi_wait_write(struct ef4_nic
*efx
, const struct falcon_spi_device
*spi
)
671 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 100);
676 rc
= falcon_spi_cmd(efx
, spi
, SPI_RDSR
, -1, NULL
,
677 &status
, sizeof(status
));
680 if (!(status
& SPI_STATUS_NRDY
))
682 if (time_after_eq(jiffies
, timeout
)) {
683 netif_err(efx
, hw
, efx
->net_dev
,
684 "SPI write timeout on device %d"
685 " last status=0x%02x\n",
686 spi
->device_id
, status
);
689 schedule_timeout_uninterruptible(1);
694 falcon_spi_write(struct ef4_nic
*efx
, const struct falcon_spi_device
*spi
,
695 loff_t start
, size_t len
, size_t *retlen
, const u8
*buffer
)
697 u8 verify_buffer
[FALCON_SPI_MAX_LEN
];
698 size_t block_len
, pos
= 0;
699 unsigned int command
;
703 rc
= falcon_spi_cmd(efx
, spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
707 block_len
= min(len
- pos
,
708 falcon_spi_write_limit(spi
, start
+ pos
));
709 command
= falcon_spi_munge_command(spi
, SPI_WRITE
, start
+ pos
);
710 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
711 buffer
+ pos
, NULL
, block_len
);
715 rc
= falcon_spi_wait_write(efx
, spi
);
719 command
= falcon_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
720 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
721 NULL
, verify_buffer
, block_len
);
722 if (memcmp(verify_buffer
, buffer
+ pos
, block_len
)) {
729 /* Avoid locking up the system */
731 if (signal_pending(current
)) {
743 falcon_spi_slow_wait(struct falcon_mtd_partition
*part
, bool uninterruptible
)
745 const struct falcon_spi_device
*spi
= part
->spi
;
746 struct ef4_nic
*efx
= part
->common
.mtd
.priv
;
750 /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
751 for (i
= 0; i
< 40; i
++) {
752 __set_current_state(uninterruptible
?
753 TASK_UNINTERRUPTIBLE
: TASK_INTERRUPTIBLE
);
754 schedule_timeout(HZ
/ 10);
755 rc
= falcon_spi_cmd(efx
, spi
, SPI_RDSR
, -1, NULL
,
756 &status
, sizeof(status
));
759 if (!(status
& SPI_STATUS_NRDY
))
761 if (signal_pending(current
))
764 pr_err("%s: timed out waiting for %s\n",
765 part
->common
.name
, part
->common
.dev_type_name
);
770 falcon_spi_unlock(struct ef4_nic
*efx
, const struct falcon_spi_device
*spi
)
772 const u8 unlock_mask
= (SPI_STATUS_BP2
| SPI_STATUS_BP1
|
777 rc
= falcon_spi_cmd(efx
, spi
, SPI_RDSR
, -1, NULL
,
778 &status
, sizeof(status
));
782 if (!(status
& unlock_mask
))
783 return 0; /* already unlocked */
785 rc
= falcon_spi_cmd(efx
, spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
788 rc
= falcon_spi_cmd(efx
, spi
, SPI_SST_EWSR
, -1, NULL
, NULL
, 0);
792 status
&= ~unlock_mask
;
793 rc
= falcon_spi_cmd(efx
, spi
, SPI_WRSR
, -1, &status
,
794 NULL
, sizeof(status
));
797 rc
= falcon_spi_wait_write(efx
, spi
);
804 #define FALCON_SPI_VERIFY_BUF_LEN 16
807 falcon_spi_erase(struct falcon_mtd_partition
*part
, loff_t start
, size_t len
)
809 const struct falcon_spi_device
*spi
= part
->spi
;
810 struct ef4_nic
*efx
= part
->common
.mtd
.priv
;
811 unsigned pos
, block_len
;
812 u8 empty
[FALCON_SPI_VERIFY_BUF_LEN
];
813 u8 buffer
[FALCON_SPI_VERIFY_BUF_LEN
];
816 if (len
!= spi
->erase_size
)
819 if (spi
->erase_command
== 0)
822 rc
= falcon_spi_unlock(efx
, spi
);
825 rc
= falcon_spi_cmd(efx
, spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
828 rc
= falcon_spi_cmd(efx
, spi
, spi
->erase_command
, start
, NULL
,
832 rc
= falcon_spi_slow_wait(part
, false);
834 /* Verify the entire region has been wiped */
835 memset(empty
, 0xff, sizeof(empty
));
836 for (pos
= 0; pos
< len
; pos
+= block_len
) {
837 block_len
= min(len
- pos
, sizeof(buffer
));
838 rc
= falcon_spi_read(efx
, spi
, start
+ pos
, block_len
,
842 if (memcmp(empty
, buffer
, block_len
))
845 /* Avoid locking up the system */
847 if (signal_pending(current
))
854 static void falcon_mtd_rename(struct ef4_mtd_partition
*part
)
856 struct ef4_nic
*efx
= part
->mtd
.priv
;
858 snprintf(part
->name
, sizeof(part
->name
), "%s %s",
859 efx
->name
, part
->type_name
);
862 static int falcon_mtd_read(struct mtd_info
*mtd
, loff_t start
,
863 size_t len
, size_t *retlen
, u8
*buffer
)
865 struct falcon_mtd_partition
*part
= to_falcon_mtd_partition(mtd
);
866 struct ef4_nic
*efx
= mtd
->priv
;
867 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
870 rc
= mutex_lock_interruptible(&nic_data
->spi_lock
);
873 rc
= falcon_spi_read(efx
, part
->spi
, part
->offset
+ start
,
874 len
, retlen
, buffer
);
875 mutex_unlock(&nic_data
->spi_lock
);
879 static int falcon_mtd_erase(struct mtd_info
*mtd
, loff_t start
, size_t len
)
881 struct falcon_mtd_partition
*part
= to_falcon_mtd_partition(mtd
);
882 struct ef4_nic
*efx
= mtd
->priv
;
883 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
886 rc
= mutex_lock_interruptible(&nic_data
->spi_lock
);
889 rc
= falcon_spi_erase(part
, part
->offset
+ start
, len
);
890 mutex_unlock(&nic_data
->spi_lock
);
894 static int falcon_mtd_write(struct mtd_info
*mtd
, loff_t start
,
895 size_t len
, size_t *retlen
, const u8
*buffer
)
897 struct falcon_mtd_partition
*part
= to_falcon_mtd_partition(mtd
);
898 struct ef4_nic
*efx
= mtd
->priv
;
899 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
902 rc
= mutex_lock_interruptible(&nic_data
->spi_lock
);
905 rc
= falcon_spi_write(efx
, part
->spi
, part
->offset
+ start
,
906 len
, retlen
, buffer
);
907 mutex_unlock(&nic_data
->spi_lock
);
911 static int falcon_mtd_sync(struct mtd_info
*mtd
)
913 struct falcon_mtd_partition
*part
= to_falcon_mtd_partition(mtd
);
914 struct ef4_nic
*efx
= mtd
->priv
;
915 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
918 mutex_lock(&nic_data
->spi_lock
);
919 rc
= falcon_spi_slow_wait(part
, true);
920 mutex_unlock(&nic_data
->spi_lock
);
924 static int falcon_mtd_probe(struct ef4_nic
*efx
)
926 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
927 struct falcon_mtd_partition
*parts
;
928 struct falcon_spi_device
*spi
;
934 /* Allocate space for maximum number of partitions */
935 parts
= kcalloc(2, sizeof(*parts
), GFP_KERNEL
);
940 spi
= &nic_data
->spi_flash
;
941 if (falcon_spi_present(spi
) && spi
->size
> FALCON_FLASH_BOOTCODE_START
) {
942 parts
[n_parts
].spi
= spi
;
943 parts
[n_parts
].offset
= FALCON_FLASH_BOOTCODE_START
;
944 parts
[n_parts
].common
.dev_type_name
= "flash";
945 parts
[n_parts
].common
.type_name
= "sfc_flash_bootrom";
946 parts
[n_parts
].common
.mtd
.type
= MTD_NORFLASH
;
947 parts
[n_parts
].common
.mtd
.flags
= MTD_CAP_NORFLASH
;
948 parts
[n_parts
].common
.mtd
.size
= spi
->size
- FALCON_FLASH_BOOTCODE_START
;
949 parts
[n_parts
].common
.mtd
.erasesize
= spi
->erase_size
;
953 spi
= &nic_data
->spi_eeprom
;
954 if (falcon_spi_present(spi
) && spi
->size
> FALCON_EEPROM_BOOTCONFIG_START
) {
955 parts
[n_parts
].spi
= spi
;
956 parts
[n_parts
].offset
= FALCON_EEPROM_BOOTCONFIG_START
;
957 parts
[n_parts
].common
.dev_type_name
= "EEPROM";
958 parts
[n_parts
].common
.type_name
= "sfc_bootconfig";
959 parts
[n_parts
].common
.mtd
.type
= MTD_RAM
;
960 parts
[n_parts
].common
.mtd
.flags
= MTD_CAP_RAM
;
961 parts
[n_parts
].common
.mtd
.size
=
962 min(spi
->size
, FALCON_EEPROM_BOOTCONFIG_END
) -
963 FALCON_EEPROM_BOOTCONFIG_START
;
964 parts
[n_parts
].common
.mtd
.erasesize
= spi
->erase_size
;
968 rc
= ef4_mtd_add(efx
, &parts
[0].common
, n_parts
, sizeof(*parts
));
974 #endif /* CONFIG_SFC_FALCON_MTD */
976 /**************************************************************************
980 **************************************************************************
983 /* Configure the XAUI driver that is an output from Falcon */
984 static void falcon_setup_xaui(struct ef4_nic
*efx
)
986 ef4_oword_t sdctl
, txdrv
;
988 /* Move the XAUI into low power, unless there is no PHY, in
989 * which case the XAUI will have to drive a cable. */
990 if (efx
->phy_type
== PHY_TYPE_NONE
)
993 ef4_reado(efx
, &sdctl
, FR_AB_XX_SD_CTL
);
994 EF4_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_HIDRVD
, FFE_AB_XX_SD_CTL_DRV_DEF
);
995 EF4_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_LODRVD
, FFE_AB_XX_SD_CTL_DRV_DEF
);
996 EF4_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_HIDRVC
, FFE_AB_XX_SD_CTL_DRV_DEF
);
997 EF4_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_LODRVC
, FFE_AB_XX_SD_CTL_DRV_DEF
);
998 EF4_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_HIDRVB
, FFE_AB_XX_SD_CTL_DRV_DEF
);
999 EF4_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_LODRVB
, FFE_AB_XX_SD_CTL_DRV_DEF
);
1000 EF4_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_HIDRVA
, FFE_AB_XX_SD_CTL_DRV_DEF
);
1001 EF4_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_LODRVA
, FFE_AB_XX_SD_CTL_DRV_DEF
);
1002 ef4_writeo(efx
, &sdctl
, FR_AB_XX_SD_CTL
);
1004 EF4_POPULATE_OWORD_8(txdrv
,
1005 FRF_AB_XX_DEQD
, FFE_AB_XX_TXDRV_DEQ_DEF
,
1006 FRF_AB_XX_DEQC
, FFE_AB_XX_TXDRV_DEQ_DEF
,
1007 FRF_AB_XX_DEQB
, FFE_AB_XX_TXDRV_DEQ_DEF
,
1008 FRF_AB_XX_DEQA
, FFE_AB_XX_TXDRV_DEQ_DEF
,
1009 FRF_AB_XX_DTXD
, FFE_AB_XX_TXDRV_DTX_DEF
,
1010 FRF_AB_XX_DTXC
, FFE_AB_XX_TXDRV_DTX_DEF
,
1011 FRF_AB_XX_DTXB
, FFE_AB_XX_TXDRV_DTX_DEF
,
1012 FRF_AB_XX_DTXA
, FFE_AB_XX_TXDRV_DTX_DEF
);
1013 ef4_writeo(efx
, &txdrv
, FR_AB_XX_TXDRV_CTL
);
1016 int falcon_reset_xaui(struct ef4_nic
*efx
)
1018 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1022 /* Don't fetch MAC statistics over an XMAC reset */
1023 WARN_ON(nic_data
->stats_disable_count
== 0);
1025 /* Start reset sequence */
1026 EF4_POPULATE_OWORD_1(reg
, FRF_AB_XX_RST_XX_EN
, 1);
1027 ef4_writeo(efx
, ®
, FR_AB_XX_PWR_RST
);
1029 /* Wait up to 10 ms for completion, then reinitialise */
1030 for (count
= 0; count
< 1000; count
++) {
1031 ef4_reado(efx
, ®
, FR_AB_XX_PWR_RST
);
1032 if (EF4_OWORD_FIELD(reg
, FRF_AB_XX_RST_XX_EN
) == 0 &&
1033 EF4_OWORD_FIELD(reg
, FRF_AB_XX_SD_RST_ACT
) == 0) {
1034 falcon_setup_xaui(efx
);
1039 netif_err(efx
, hw
, efx
->net_dev
,
1040 "timed out waiting for XAUI/XGXS reset\n");
1044 static void falcon_ack_status_intr(struct ef4_nic
*efx
)
1046 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1049 if ((ef4_nic_rev(efx
) != EF4_REV_FALCON_B0
) || LOOPBACK_INTERNAL(efx
))
1052 /* We expect xgmii faults if the wireside link is down */
1053 if (!efx
->link_state
.up
)
1056 /* We can only use this interrupt to signal the negative edge of
1057 * xaui_align [we have to poll the positive edge]. */
1058 if (nic_data
->xmac_poll_required
)
1061 ef4_reado(efx
, ®
, FR_AB_XM_MGT_INT_MSK
);
1064 static bool falcon_xgxs_link_ok(struct ef4_nic
*efx
)
1067 bool align_done
, link_ok
= false;
1070 /* Read link status */
1071 ef4_reado(efx
, ®
, FR_AB_XX_CORE_STAT
);
1073 align_done
= EF4_OWORD_FIELD(reg
, FRF_AB_XX_ALIGN_DONE
);
1074 sync_status
= EF4_OWORD_FIELD(reg
, FRF_AB_XX_SYNC_STAT
);
1075 if (align_done
&& (sync_status
== FFE_AB_XX_STAT_ALL_LANES
))
1078 /* Clear link status ready for next read */
1079 EF4_SET_OWORD_FIELD(reg
, FRF_AB_XX_COMMA_DET
, FFE_AB_XX_STAT_ALL_LANES
);
1080 EF4_SET_OWORD_FIELD(reg
, FRF_AB_XX_CHAR_ERR
, FFE_AB_XX_STAT_ALL_LANES
);
1081 EF4_SET_OWORD_FIELD(reg
, FRF_AB_XX_DISPERR
, FFE_AB_XX_STAT_ALL_LANES
);
1082 ef4_writeo(efx
, ®
, FR_AB_XX_CORE_STAT
);
1087 static bool falcon_xmac_link_ok(struct ef4_nic
*efx
)
1090 * Check MAC's XGXS link status except when using XGMII loopback
1091 * which bypasses the XGXS block.
1092 * If possible, check PHY's XGXS link status except when using
1095 return (efx
->loopback_mode
== LOOPBACK_XGMII
||
1096 falcon_xgxs_link_ok(efx
)) &&
1097 (!(efx
->mdio
.mmds
& (1 << MDIO_MMD_PHYXS
)) ||
1098 LOOPBACK_INTERNAL(efx
) ||
1099 ef4_mdio_phyxgxs_lane_sync(efx
));
1102 static void falcon_reconfigure_xmac_core(struct ef4_nic
*efx
)
1104 unsigned int max_frame_len
;
1106 bool rx_fc
= !!(efx
->link_state
.fc
& EF4_FC_RX
);
1107 bool tx_fc
= !!(efx
->link_state
.fc
& EF4_FC_TX
);
1109 /* Configure MAC - cut-thru mode is hard wired on */
1110 EF4_POPULATE_OWORD_3(reg
,
1111 FRF_AB_XM_RX_JUMBO_MODE
, 1,
1112 FRF_AB_XM_TX_STAT_EN
, 1,
1113 FRF_AB_XM_RX_STAT_EN
, 1);
1114 ef4_writeo(efx
, ®
, FR_AB_XM_GLB_CFG
);
1117 EF4_POPULATE_OWORD_6(reg
,
1119 FRF_AB_XM_TX_PRMBL
, 1,
1120 FRF_AB_XM_AUTO_PAD
, 1,
1122 FRF_AB_XM_FCNTL
, tx_fc
,
1123 FRF_AB_XM_IPG
, 0x3);
1124 ef4_writeo(efx
, ®
, FR_AB_XM_TX_CFG
);
1127 EF4_POPULATE_OWORD_5(reg
,
1129 FRF_AB_XM_AUTO_DEPAD
, 0,
1130 FRF_AB_XM_ACPT_ALL_MCAST
, 1,
1131 FRF_AB_XM_ACPT_ALL_UCAST
, !efx
->unicast_filter
,
1132 FRF_AB_XM_PASS_CRC_ERR
, 1);
1133 ef4_writeo(efx
, ®
, FR_AB_XM_RX_CFG
);
1135 /* Set frame length */
1136 max_frame_len
= EF4_MAX_FRAME_LEN(efx
->net_dev
->mtu
);
1137 EF4_POPULATE_OWORD_1(reg
, FRF_AB_XM_MAX_RX_FRM_SIZE
, max_frame_len
);
1138 ef4_writeo(efx
, ®
, FR_AB_XM_RX_PARAM
);
1139 EF4_POPULATE_OWORD_2(reg
,
1140 FRF_AB_XM_MAX_TX_FRM_SIZE
, max_frame_len
,
1141 FRF_AB_XM_TX_JUMBO_MODE
, 1);
1142 ef4_writeo(efx
, ®
, FR_AB_XM_TX_PARAM
);
1144 EF4_POPULATE_OWORD_2(reg
,
1145 FRF_AB_XM_PAUSE_TIME
, 0xfffe, /* MAX PAUSE TIME */
1146 FRF_AB_XM_DIS_FCNTL
, !rx_fc
);
1147 ef4_writeo(efx
, ®
, FR_AB_XM_FC
);
1149 /* Set MAC address */
1150 memcpy(®
, &efx
->net_dev
->dev_addr
[0], 4);
1151 ef4_writeo(efx
, ®
, FR_AB_XM_ADR_LO
);
1152 memcpy(®
, &efx
->net_dev
->dev_addr
[4], 2);
1153 ef4_writeo(efx
, ®
, FR_AB_XM_ADR_HI
);
1156 static void falcon_reconfigure_xgxs_core(struct ef4_nic
*efx
)
1159 bool xgxs_loopback
= (efx
->loopback_mode
== LOOPBACK_XGXS
);
1160 bool xaui_loopback
= (efx
->loopback_mode
== LOOPBACK_XAUI
);
1161 bool xgmii_loopback
= (efx
->loopback_mode
== LOOPBACK_XGMII
);
1162 bool old_xgmii_loopback
, old_xgxs_loopback
, old_xaui_loopback
;
1164 /* XGXS block is flaky and will need to be reset if moving
1165 * into our out of XGMII, XGXS or XAUI loopbacks. */
1166 ef4_reado(efx
, ®
, FR_AB_XX_CORE_STAT
);
1167 old_xgxs_loopback
= EF4_OWORD_FIELD(reg
, FRF_AB_XX_XGXS_LB_EN
);
1168 old_xgmii_loopback
= EF4_OWORD_FIELD(reg
, FRF_AB_XX_XGMII_LB_EN
);
1170 ef4_reado(efx
, ®
, FR_AB_XX_SD_CTL
);
1171 old_xaui_loopback
= EF4_OWORD_FIELD(reg
, FRF_AB_XX_LPBKA
);
1173 /* The PHY driver may have turned XAUI off */
1174 if ((xgxs_loopback
!= old_xgxs_loopback
) ||
1175 (xaui_loopback
!= old_xaui_loopback
) ||
1176 (xgmii_loopback
!= old_xgmii_loopback
))
1177 falcon_reset_xaui(efx
);
1179 ef4_reado(efx
, ®
, FR_AB_XX_CORE_STAT
);
1180 EF4_SET_OWORD_FIELD(reg
, FRF_AB_XX_FORCE_SIG
,
1181 (xgxs_loopback
|| xaui_loopback
) ?
1182 FFE_AB_XX_FORCE_SIG_ALL_LANES
: 0);
1183 EF4_SET_OWORD_FIELD(reg
, FRF_AB_XX_XGXS_LB_EN
, xgxs_loopback
);
1184 EF4_SET_OWORD_FIELD(reg
, FRF_AB_XX_XGMII_LB_EN
, xgmii_loopback
);
1185 ef4_writeo(efx
, ®
, FR_AB_XX_CORE_STAT
);
1187 ef4_reado(efx
, ®
, FR_AB_XX_SD_CTL
);
1188 EF4_SET_OWORD_FIELD(reg
, FRF_AB_XX_LPBKD
, xaui_loopback
);
1189 EF4_SET_OWORD_FIELD(reg
, FRF_AB_XX_LPBKC
, xaui_loopback
);
1190 EF4_SET_OWORD_FIELD(reg
, FRF_AB_XX_LPBKB
, xaui_loopback
);
1191 EF4_SET_OWORD_FIELD(reg
, FRF_AB_XX_LPBKA
, xaui_loopback
);
1192 ef4_writeo(efx
, ®
, FR_AB_XX_SD_CTL
);
1196 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1197 static bool falcon_xmac_link_ok_retry(struct ef4_nic
*efx
, int tries
)
1199 bool mac_up
= falcon_xmac_link_ok(efx
);
1201 if (LOOPBACK_MASK(efx
) & LOOPBACKS_EXTERNAL(efx
) & LOOPBACKS_WS
||
1202 ef4_phy_mode_disabled(efx
->phy_mode
))
1203 /* XAUI link is expected to be down */
1206 falcon_stop_nic_stats(efx
);
1208 while (!mac_up
&& tries
) {
1209 netif_dbg(efx
, hw
, efx
->net_dev
, "bashing xaui\n");
1210 falcon_reset_xaui(efx
);
1213 mac_up
= falcon_xmac_link_ok(efx
);
1217 falcon_start_nic_stats(efx
);
1222 static bool falcon_xmac_check_fault(struct ef4_nic
*efx
)
1224 return !falcon_xmac_link_ok_retry(efx
, 5);
1227 static int falcon_reconfigure_xmac(struct ef4_nic
*efx
)
1229 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1231 ef4_farch_filter_sync_rx_mode(efx
);
1233 falcon_reconfigure_xgxs_core(efx
);
1234 falcon_reconfigure_xmac_core(efx
);
1236 falcon_reconfigure_mac_wrapper(efx
);
1238 nic_data
->xmac_poll_required
= !falcon_xmac_link_ok_retry(efx
, 5);
1239 falcon_ack_status_intr(efx
);
1244 static void falcon_poll_xmac(struct ef4_nic
*efx
)
1246 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1248 /* We expect xgmii faults if the wireside link is down */
1249 if (!efx
->link_state
.up
|| !nic_data
->xmac_poll_required
)
1252 nic_data
->xmac_poll_required
= !falcon_xmac_link_ok_retry(efx
, 1);
1253 falcon_ack_status_intr(efx
);
1256 /**************************************************************************
1260 **************************************************************************
1263 static void falcon_push_multicast_hash(struct ef4_nic
*efx
)
1265 union ef4_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
1267 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
1269 ef4_writeo(efx
, &mc_hash
->oword
[0], FR_AB_MAC_MC_HASH_REG0
);
1270 ef4_writeo(efx
, &mc_hash
->oword
[1], FR_AB_MAC_MC_HASH_REG1
);
1273 static void falcon_reset_macs(struct ef4_nic
*efx
)
1275 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1276 ef4_oword_t reg
, mac_ctrl
;
1279 if (ef4_nic_rev(efx
) < EF4_REV_FALCON_B0
) {
1280 /* It's not safe to use GLB_CTL_REG to reset the
1281 * macs, so instead use the internal MAC resets
1283 EF4_POPULATE_OWORD_1(reg
, FRF_AB_XM_CORE_RST
, 1);
1284 ef4_writeo(efx
, ®
, FR_AB_XM_GLB_CFG
);
1286 for (count
= 0; count
< 10000; count
++) {
1287 ef4_reado(efx
, ®
, FR_AB_XM_GLB_CFG
);
1288 if (EF4_OWORD_FIELD(reg
, FRF_AB_XM_CORE_RST
) ==
1294 netif_err(efx
, hw
, efx
->net_dev
,
1295 "timed out waiting for XMAC core reset\n");
1298 /* Mac stats will fail whist the TX fifo is draining */
1299 WARN_ON(nic_data
->stats_disable_count
== 0);
1301 ef4_reado(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
1302 EF4_SET_OWORD_FIELD(mac_ctrl
, FRF_BB_TXFIFO_DRAIN_EN
, 1);
1303 ef4_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
1305 ef4_reado(efx
, ®
, FR_AB_GLB_CTL
);
1306 EF4_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
, 1);
1307 EF4_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
, 1);
1308 EF4_SET_OWORD_FIELD(reg
, FRF_AB_RST_EM
, 1);
1309 ef4_writeo(efx
, ®
, FR_AB_GLB_CTL
);
1313 ef4_reado(efx
, ®
, FR_AB_GLB_CTL
);
1314 if (!EF4_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
) &&
1315 !EF4_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
) &&
1316 !EF4_OWORD_FIELD(reg
, FRF_AB_RST_EM
)) {
1317 netif_dbg(efx
, hw
, efx
->net_dev
,
1318 "Completed MAC reset after %d loops\n",
1323 netif_err(efx
, hw
, efx
->net_dev
, "MAC reset failed\n");
1330 /* Ensure the correct MAC is selected before statistics
1331 * are re-enabled by the caller */
1332 ef4_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
1334 falcon_setup_xaui(efx
);
1337 static void falcon_drain_tx_fifo(struct ef4_nic
*efx
)
1341 if ((ef4_nic_rev(efx
) < EF4_REV_FALCON_B0
) ||
1342 (efx
->loopback_mode
!= LOOPBACK_NONE
))
1345 ef4_reado(efx
, ®
, FR_AB_MAC_CTRL
);
1346 /* There is no point in draining more than once */
1347 if (EF4_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
))
1350 falcon_reset_macs(efx
);
1353 static void falcon_deconfigure_mac_wrapper(struct ef4_nic
*efx
)
1357 if (ef4_nic_rev(efx
) < EF4_REV_FALCON_B0
)
1360 /* Isolate the MAC -> RX */
1361 ef4_reado(efx
, ®
, FR_AZ_RX_CFG
);
1362 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 0);
1363 ef4_writeo(efx
, ®
, FR_AZ_RX_CFG
);
1365 /* Isolate TX -> MAC */
1366 falcon_drain_tx_fifo(efx
);
1369 static void falcon_reconfigure_mac_wrapper(struct ef4_nic
*efx
)
1371 struct ef4_link_state
*link_state
= &efx
->link_state
;
1373 int link_speed
, isolate
;
1375 isolate
= !!READ_ONCE(efx
->reset_pending
);
1377 switch (link_state
->speed
) {
1378 case 10000: link_speed
= 3; break;
1379 case 1000: link_speed
= 2; break;
1380 case 100: link_speed
= 1; break;
1381 default: link_speed
= 0; break;
1384 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1385 * as advertised. Disable to ensure packets are not
1386 * indefinitely held and TX queue can be flushed at any point
1387 * while the link is down. */
1388 EF4_POPULATE_OWORD_5(reg
,
1389 FRF_AB_MAC_XOFF_VAL
, 0xffff /* max pause time */,
1390 FRF_AB_MAC_BCAD_ACPT
, 1,
1391 FRF_AB_MAC_UC_PROM
, !efx
->unicast_filter
,
1392 FRF_AB_MAC_LINK_STATUS
, 1, /* always set */
1393 FRF_AB_MAC_SPEED
, link_speed
);
1394 /* On B0, MAC backpressure can be disabled and packets get
1396 if (ef4_nic_rev(efx
) >= EF4_REV_FALCON_B0
) {
1397 EF4_SET_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
,
1398 !link_state
->up
|| isolate
);
1401 ef4_writeo(efx
, ®
, FR_AB_MAC_CTRL
);
1403 /* Restore the multicast hash registers. */
1404 falcon_push_multicast_hash(efx
);
1406 ef4_reado(efx
, ®
, FR_AZ_RX_CFG
);
1407 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1408 * initialisation but it may read back as 0) */
1409 EF4_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
1410 /* Unisolate the MAC -> RX */
1411 if (ef4_nic_rev(efx
) >= EF4_REV_FALCON_B0
)
1412 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, !isolate
);
1413 ef4_writeo(efx
, ®
, FR_AZ_RX_CFG
);
1416 static void falcon_stats_request(struct ef4_nic
*efx
)
1418 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1421 WARN_ON(nic_data
->stats_pending
);
1422 WARN_ON(nic_data
->stats_disable_count
);
1424 FALCON_XMAC_STATS_DMA_FLAG(efx
) = 0;
1425 nic_data
->stats_pending
= true;
1426 wmb(); /* ensure done flag is clear */
1428 /* Initiate DMA transfer of stats */
1429 EF4_POPULATE_OWORD_2(reg
,
1430 FRF_AB_MAC_STAT_DMA_CMD
, 1,
1431 FRF_AB_MAC_STAT_DMA_ADR
,
1432 efx
->stats_buffer
.dma_addr
);
1433 ef4_writeo(efx
, ®
, FR_AB_MAC_STAT_DMA
);
1435 mod_timer(&nic_data
->stats_timer
, round_jiffies_up(jiffies
+ HZ
/ 2));
1438 static void falcon_stats_complete(struct ef4_nic
*efx
)
1440 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1442 if (!nic_data
->stats_pending
)
1445 nic_data
->stats_pending
= false;
1446 if (FALCON_XMAC_STATS_DMA_FLAG(efx
)) {
1447 rmb(); /* read the done flag before the stats */
1448 ef4_nic_update_stats(falcon_stat_desc
, FALCON_STAT_COUNT
,
1449 falcon_stat_mask
, nic_data
->stats
,
1450 efx
->stats_buffer
.addr
, true);
1452 netif_err(efx
, hw
, efx
->net_dev
,
1453 "timed out waiting for statistics\n");
1457 static void falcon_stats_timer_func(struct timer_list
*t
)
1459 struct falcon_nic_data
*nic_data
= from_timer(nic_data
, t
,
1461 struct ef4_nic
*efx
= nic_data
->efx
;
1463 spin_lock(&efx
->stats_lock
);
1465 falcon_stats_complete(efx
);
1466 if (nic_data
->stats_disable_count
== 0)
1467 falcon_stats_request(efx
);
1469 spin_unlock(&efx
->stats_lock
);
1472 static bool falcon_loopback_link_poll(struct ef4_nic
*efx
)
1474 struct ef4_link_state old_state
= efx
->link_state
;
1476 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
1477 WARN_ON(!LOOPBACK_INTERNAL(efx
));
1479 efx
->link_state
.fd
= true;
1480 efx
->link_state
.fc
= efx
->wanted_fc
;
1481 efx
->link_state
.up
= true;
1482 efx
->link_state
.speed
= 10000;
1484 return !ef4_link_state_equal(&efx
->link_state
, &old_state
);
1487 static int falcon_reconfigure_port(struct ef4_nic
*efx
)
1491 WARN_ON(ef4_nic_rev(efx
) > EF4_REV_FALCON_B0
);
1493 /* Poll the PHY link state *before* reconfiguring it. This means we
1494 * will pick up the correct speed (in loopback) to select the correct
1497 if (LOOPBACK_INTERNAL(efx
))
1498 falcon_loopback_link_poll(efx
);
1500 efx
->phy_op
->poll(efx
);
1502 falcon_stop_nic_stats(efx
);
1503 falcon_deconfigure_mac_wrapper(efx
);
1505 falcon_reset_macs(efx
);
1507 efx
->phy_op
->reconfigure(efx
);
1508 rc
= falcon_reconfigure_xmac(efx
);
1511 falcon_start_nic_stats(efx
);
1513 /* Synchronise efx->link_state with the kernel */
1514 ef4_link_status_changed(efx
);
1519 /* TX flow control may automatically turn itself off if the link
1520 * partner (intermittently) stops responding to pause frames. There
1521 * isn't any indication that this has happened, so the best we do is
1522 * leave it up to the user to spot this and fix it by cycling transmit
1523 * flow control on this end.
1526 static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic
*efx
)
1528 /* Schedule a reset to recover */
1529 ef4_schedule_reset(efx
, RESET_TYPE_INVISIBLE
);
1532 static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic
*efx
)
1534 /* Recover by resetting the EM block */
1535 falcon_stop_nic_stats(efx
);
1536 falcon_drain_tx_fifo(efx
);
1537 falcon_reconfigure_xmac(efx
);
1538 falcon_start_nic_stats(efx
);
1541 /**************************************************************************
1543 * PHY access via GMII
1545 **************************************************************************
1548 /* Wait for GMII access to complete */
1549 static int falcon_gmii_wait(struct ef4_nic
*efx
)
1551 ef4_oword_t md_stat
;
1554 /* wait up to 50ms - taken max from datasheet */
1555 for (count
= 0; count
< 5000; count
++) {
1556 ef4_reado(efx
, &md_stat
, FR_AB_MD_STAT
);
1557 if (EF4_OWORD_FIELD(md_stat
, FRF_AB_MD_BSY
) == 0) {
1558 if (EF4_OWORD_FIELD(md_stat
, FRF_AB_MD_LNFL
) != 0 ||
1559 EF4_OWORD_FIELD(md_stat
, FRF_AB_MD_BSERR
) != 0) {
1560 netif_err(efx
, hw
, efx
->net_dev
,
1561 "error from GMII access "
1563 EF4_OWORD_VAL(md_stat
));
1570 netif_err(efx
, hw
, efx
->net_dev
, "timed out waiting for GMII\n");
1574 /* Write an MDIO register of a PHY connected to Falcon. */
1575 static int falcon_mdio_write(struct net_device
*net_dev
,
1576 int prtad
, int devad
, u16 addr
, u16 value
)
1578 struct ef4_nic
*efx
= netdev_priv(net_dev
);
1579 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1583 netif_vdbg(efx
, hw
, efx
->net_dev
,
1584 "writing MDIO %d register %d.%d with 0x%04x\n",
1585 prtad
, devad
, addr
, value
);
1587 mutex_lock(&nic_data
->mdio_lock
);
1589 /* Check MDIO not currently being accessed */
1590 rc
= falcon_gmii_wait(efx
);
1594 /* Write the address/ID register */
1595 EF4_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
1596 ef4_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
1598 EF4_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
1599 FRF_AB_MD_DEV_ADR
, devad
);
1600 ef4_writeo(efx
, ®
, FR_AB_MD_ID
);
1603 EF4_POPULATE_OWORD_1(reg
, FRF_AB_MD_TXD
, value
);
1604 ef4_writeo(efx
, ®
, FR_AB_MD_TXD
);
1606 EF4_POPULATE_OWORD_2(reg
,
1609 ef4_writeo(efx
, ®
, FR_AB_MD_CS
);
1611 /* Wait for data to be written */
1612 rc
= falcon_gmii_wait(efx
);
1614 /* Abort the write operation */
1615 EF4_POPULATE_OWORD_2(reg
,
1618 ef4_writeo(efx
, ®
, FR_AB_MD_CS
);
1623 mutex_unlock(&nic_data
->mdio_lock
);
1627 /* Read an MDIO register of a PHY connected to Falcon. */
1628 static int falcon_mdio_read(struct net_device
*net_dev
,
1629 int prtad
, int devad
, u16 addr
)
1631 struct ef4_nic
*efx
= netdev_priv(net_dev
);
1632 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1636 mutex_lock(&nic_data
->mdio_lock
);
1638 /* Check MDIO not currently being accessed */
1639 rc
= falcon_gmii_wait(efx
);
1643 EF4_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
1644 ef4_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
1646 EF4_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
1647 FRF_AB_MD_DEV_ADR
, devad
);
1648 ef4_writeo(efx
, ®
, FR_AB_MD_ID
);
1650 /* Request data to be read */
1651 EF4_POPULATE_OWORD_2(reg
, FRF_AB_MD_RDC
, 1, FRF_AB_MD_GC
, 0);
1652 ef4_writeo(efx
, ®
, FR_AB_MD_CS
);
1654 /* Wait for data to become available */
1655 rc
= falcon_gmii_wait(efx
);
1657 ef4_reado(efx
, ®
, FR_AB_MD_RXD
);
1658 rc
= EF4_OWORD_FIELD(reg
, FRF_AB_MD_RXD
);
1659 netif_vdbg(efx
, hw
, efx
->net_dev
,
1660 "read from MDIO %d register %d.%d, got %04x\n",
1661 prtad
, devad
, addr
, rc
);
1663 /* Abort the read operation */
1664 EF4_POPULATE_OWORD_2(reg
,
1667 ef4_writeo(efx
, ®
, FR_AB_MD_CS
);
1669 netif_dbg(efx
, hw
, efx
->net_dev
,
1670 "read from MDIO %d register %d.%d, got error %d\n",
1671 prtad
, devad
, addr
, rc
);
1675 mutex_unlock(&nic_data
->mdio_lock
);
1679 /* This call is responsible for hooking in the MAC and PHY operations */
1680 static int falcon_probe_port(struct ef4_nic
*efx
)
1682 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1685 switch (efx
->phy_type
) {
1686 case PHY_TYPE_SFX7101
:
1687 efx
->phy_op
= &falcon_sfx7101_phy_ops
;
1689 case PHY_TYPE_QT2022C2
:
1690 case PHY_TYPE_QT2025C
:
1691 efx
->phy_op
= &falcon_qt202x_phy_ops
;
1693 case PHY_TYPE_TXC43128
:
1694 efx
->phy_op
= &falcon_txc_phy_ops
;
1697 netif_err(efx
, probe
, efx
->net_dev
, "Unknown PHY type %d\n",
1702 /* Fill out MDIO structure and loopback modes */
1703 mutex_init(&nic_data
->mdio_lock
);
1704 efx
->mdio
.mdio_read
= falcon_mdio_read
;
1705 efx
->mdio
.mdio_write
= falcon_mdio_write
;
1706 rc
= efx
->phy_op
->probe(efx
);
1710 /* Initial assumption */
1711 efx
->link_state
.speed
= 10000;
1712 efx
->link_state
.fd
= true;
1714 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1715 if (ef4_nic_rev(efx
) >= EF4_REV_FALCON_B0
)
1716 efx
->wanted_fc
= EF4_FC_RX
| EF4_FC_TX
;
1718 efx
->wanted_fc
= EF4_FC_RX
;
1719 if (efx
->mdio
.mmds
& MDIO_DEVS_AN
)
1720 efx
->wanted_fc
|= EF4_FC_AUTO
;
1722 /* Allocate buffer for stats */
1723 rc
= ef4_nic_alloc_buffer(efx
, &efx
->stats_buffer
,
1724 FALCON_MAC_STATS_SIZE
, GFP_KERNEL
);
1727 netif_dbg(efx
, probe
, efx
->net_dev
,
1728 "stats buffer at %llx (virt %p phys %llx)\n",
1729 (u64
)efx
->stats_buffer
.dma_addr
,
1730 efx
->stats_buffer
.addr
,
1731 (u64
)virt_to_phys(efx
->stats_buffer
.addr
));
1736 static void falcon_remove_port(struct ef4_nic
*efx
)
1738 efx
->phy_op
->remove(efx
);
1739 ef4_nic_free_buffer(efx
, &efx
->stats_buffer
);
1742 /* Global events are basically PHY events */
1744 falcon_handle_global_event(struct ef4_channel
*channel
, ef4_qword_t
*event
)
1746 struct ef4_nic
*efx
= channel
->efx
;
1747 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1749 if (EF4_QWORD_FIELD(*event
, FSF_AB_GLB_EV_G_PHY0_INTR
) ||
1750 EF4_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XG_PHY0_INTR
) ||
1751 EF4_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XFP_PHY0_INTR
))
1755 if ((ef4_nic_rev(efx
) == EF4_REV_FALCON_B0
) &&
1756 EF4_QWORD_FIELD(*event
, FSF_BB_GLB_EV_XG_MGT_INTR
)) {
1757 nic_data
->xmac_poll_required
= true;
1761 if (ef4_nic_rev(efx
) <= EF4_REV_FALCON_A1
?
1762 EF4_QWORD_FIELD(*event
, FSF_AA_GLB_EV_RX_RECOVERY
) :
1763 EF4_QWORD_FIELD(*event
, FSF_BB_GLB_EV_RX_RECOVERY
)) {
1764 netif_err(efx
, rx_err
, efx
->net_dev
,
1765 "channel %d seen global RX_RESET event. Resetting.\n",
1768 atomic_inc(&efx
->rx_reset
);
1769 ef4_schedule_reset(efx
, EF4_WORKAROUND_6555(efx
) ?
1770 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
1777 /**************************************************************************
1781 **************************************************************************/
1784 falcon_read_nvram(struct ef4_nic
*efx
, struct falcon_nvconfig
*nvconfig_out
)
1786 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1787 struct falcon_nvconfig
*nvconfig
;
1788 struct falcon_spi_device
*spi
;
1790 int rc
, magic_num
, struct_ver
;
1791 __le16
*word
, *limit
;
1794 if (falcon_spi_present(&nic_data
->spi_flash
))
1795 spi
= &nic_data
->spi_flash
;
1796 else if (falcon_spi_present(&nic_data
->spi_eeprom
))
1797 spi
= &nic_data
->spi_eeprom
;
1801 region
= kmalloc(FALCON_NVCONFIG_END
, GFP_KERNEL
);
1804 nvconfig
= region
+ FALCON_NVCONFIG_OFFSET
;
1806 mutex_lock(&nic_data
->spi_lock
);
1807 rc
= falcon_spi_read(efx
, spi
, 0, FALCON_NVCONFIG_END
, NULL
, region
);
1808 mutex_unlock(&nic_data
->spi_lock
);
1810 netif_err(efx
, hw
, efx
->net_dev
, "Failed to read %s\n",
1811 falcon_spi_present(&nic_data
->spi_flash
) ?
1812 "flash" : "EEPROM");
1817 magic_num
= le16_to_cpu(nvconfig
->board_magic_num
);
1818 struct_ver
= le16_to_cpu(nvconfig
->board_struct_ver
);
1821 if (magic_num
!= FALCON_NVCONFIG_BOARD_MAGIC_NUM
) {
1822 netif_err(efx
, hw
, efx
->net_dev
,
1823 "NVRAM bad magic 0x%x\n", magic_num
);
1826 if (struct_ver
< 2) {
1827 netif_err(efx
, hw
, efx
->net_dev
,
1828 "NVRAM has ancient version 0x%x\n", struct_ver
);
1830 } else if (struct_ver
< 4) {
1831 word
= &nvconfig
->board_magic_num
;
1832 limit
= (__le16
*) (nvconfig
+ 1);
1835 limit
= region
+ FALCON_NVCONFIG_END
;
1837 for (csum
= 0; word
< limit
; ++word
)
1838 csum
+= le16_to_cpu(*word
);
1840 if (~csum
& 0xffff) {
1841 netif_err(efx
, hw
, efx
->net_dev
,
1842 "NVRAM has incorrect checksum\n");
1848 memcpy(nvconfig_out
, nvconfig
, sizeof(*nvconfig
));
1855 static int falcon_test_nvram(struct ef4_nic
*efx
)
1857 return falcon_read_nvram(efx
, NULL
);
1860 static const struct ef4_farch_register_test falcon_b0_register_tests
[] = {
1862 EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1864 EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1866 EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1867 { FR_AZ_TX_RESERVED
,
1868 EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1870 EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1871 { FR_AZ_SRM_TX_DC_CFG
,
1872 EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1874 EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1875 { FR_AZ_RX_DC_PF_WM
,
1876 EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1878 EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1880 EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1882 EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1884 EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1886 EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1888 EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1889 { FR_AB_XM_RX_PARAM
,
1890 EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1892 EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1894 EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1896 EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1900 falcon_b0_test_chip(struct ef4_nic
*efx
, struct ef4_self_tests
*tests
)
1902 enum reset_type reset_method
= RESET_TYPE_INVISIBLE
;
1905 mutex_lock(&efx
->mac_lock
);
1906 if (efx
->loopback_modes
) {
1907 /* We need the 312 clock from the PHY to test the XMAC
1908 * registers, so move into XGMII loopback if available */
1909 if (efx
->loopback_modes
& (1 << LOOPBACK_XGMII
))
1910 efx
->loopback_mode
= LOOPBACK_XGMII
;
1912 efx
->loopback_mode
= __ffs(efx
->loopback_modes
);
1914 __ef4_reconfigure_port(efx
);
1915 mutex_unlock(&efx
->mac_lock
);
1917 ef4_reset_down(efx
, reset_method
);
1920 ef4_farch_test_registers(efx
, falcon_b0_register_tests
,
1921 ARRAY_SIZE(falcon_b0_register_tests
))
1924 rc
= falcon_reset_hw(efx
, reset_method
);
1925 rc2
= ef4_reset_up(efx
, reset_method
, rc
== 0);
1926 return rc
? rc
: rc2
;
1929 /**************************************************************************
1933 **************************************************************************
1936 static enum reset_type
falcon_map_reset_reason(enum reset_type reason
)
1939 case RESET_TYPE_RX_RECOVERY
:
1940 case RESET_TYPE_DMA_ERROR
:
1941 case RESET_TYPE_TX_SKIP
:
1942 /* These can occasionally occur due to hardware bugs.
1943 * We try to reset without disrupting the link.
1945 return RESET_TYPE_INVISIBLE
;
1947 return RESET_TYPE_ALL
;
1951 static int falcon_map_reset_flags(u32
*flags
)
1954 FALCON_RESET_INVISIBLE
= (ETH_RESET_DMA
| ETH_RESET_FILTER
|
1955 ETH_RESET_OFFLOAD
| ETH_RESET_MAC
),
1956 FALCON_RESET_ALL
= FALCON_RESET_INVISIBLE
| ETH_RESET_PHY
,
1957 FALCON_RESET_WORLD
= FALCON_RESET_ALL
| ETH_RESET_IRQ
,
1960 if ((*flags
& FALCON_RESET_WORLD
) == FALCON_RESET_WORLD
) {
1961 *flags
&= ~FALCON_RESET_WORLD
;
1962 return RESET_TYPE_WORLD
;
1965 if ((*flags
& FALCON_RESET_ALL
) == FALCON_RESET_ALL
) {
1966 *flags
&= ~FALCON_RESET_ALL
;
1967 return RESET_TYPE_ALL
;
1970 if ((*flags
& FALCON_RESET_INVISIBLE
) == FALCON_RESET_INVISIBLE
) {
1971 *flags
&= ~FALCON_RESET_INVISIBLE
;
1972 return RESET_TYPE_INVISIBLE
;
1978 /* Resets NIC to known state. This routine must be called in process
1979 * context and is allowed to sleep. */
1980 static int __falcon_reset_hw(struct ef4_nic
*efx
, enum reset_type method
)
1982 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1983 ef4_oword_t glb_ctl_reg_ker
;
1986 netif_dbg(efx
, hw
, efx
->net_dev
, "performing %s hardware reset\n",
1987 RESET_TYPE(method
));
1989 /* Initiate device reset */
1990 if (method
== RESET_TYPE_WORLD
) {
1991 rc
= pci_save_state(efx
->pci_dev
);
1993 netif_err(efx
, drv
, efx
->net_dev
,
1994 "failed to backup PCI state of primary "
1995 "function prior to hardware reset\n");
1998 if (ef4_nic_is_dual_func(efx
)) {
1999 rc
= pci_save_state(nic_data
->pci_dev2
);
2001 netif_err(efx
, drv
, efx
->net_dev
,
2002 "failed to backup PCI state of "
2003 "secondary function prior to "
2004 "hardware reset\n");
2009 EF4_POPULATE_OWORD_2(glb_ctl_reg_ker
,
2010 FRF_AB_EXT_PHY_RST_DUR
,
2011 FFE_AB_EXT_PHY_RST_DUR_10240US
,
2014 EF4_POPULATE_OWORD_7(glb_ctl_reg_ker
,
2015 /* exclude PHY from "invisible" reset */
2016 FRF_AB_EXT_PHY_RST_CTL
,
2017 method
== RESET_TYPE_INVISIBLE
,
2018 /* exclude EEPROM/flash and PCIe */
2019 FRF_AB_PCIE_CORE_RST_CTL
, 1,
2020 FRF_AB_PCIE_NSTKY_RST_CTL
, 1,
2021 FRF_AB_PCIE_SD_RST_CTL
, 1,
2022 FRF_AB_EE_RST_CTL
, 1,
2023 FRF_AB_EXT_PHY_RST_DUR
,
2024 FFE_AB_EXT_PHY_RST_DUR_10240US
,
2027 ef4_writeo(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
2029 netif_dbg(efx
, hw
, efx
->net_dev
, "waiting for hardware reset\n");
2030 schedule_timeout_uninterruptible(HZ
/ 20);
2032 /* Restore PCI configuration if needed */
2033 if (method
== RESET_TYPE_WORLD
) {
2034 if (ef4_nic_is_dual_func(efx
))
2035 pci_restore_state(nic_data
->pci_dev2
);
2036 pci_restore_state(efx
->pci_dev
);
2037 netif_dbg(efx
, drv
, efx
->net_dev
,
2038 "successfully restored PCI config\n");
2041 /* Assert that reset complete */
2042 ef4_reado(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
2043 if (EF4_OWORD_FIELD(glb_ctl_reg_ker
, FRF_AB_SWRST
) != 0) {
2045 netif_err(efx
, hw
, efx
->net_dev
,
2046 "timed out waiting for hardware reset\n");
2049 netif_dbg(efx
, hw
, efx
->net_dev
, "hardware reset complete\n");
2053 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2055 pci_restore_state(efx
->pci_dev
);
2061 static int falcon_reset_hw(struct ef4_nic
*efx
, enum reset_type method
)
2063 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2066 mutex_lock(&nic_data
->spi_lock
);
2067 rc
= __falcon_reset_hw(efx
, method
);
2068 mutex_unlock(&nic_data
->spi_lock
);
2073 static void falcon_monitor(struct ef4_nic
*efx
)
2078 BUG_ON(!mutex_is_locked(&efx
->mac_lock
));
2080 rc
= falcon_board(efx
)->type
->monitor(efx
);
2082 netif_err(efx
, hw
, efx
->net_dev
,
2083 "Board sensor %s; shutting down PHY\n",
2084 (rc
== -ERANGE
) ? "reported fault" : "failed");
2085 efx
->phy_mode
|= PHY_MODE_LOW_POWER
;
2086 rc
= __ef4_reconfigure_port(efx
);
2090 if (LOOPBACK_INTERNAL(efx
))
2091 link_changed
= falcon_loopback_link_poll(efx
);
2093 link_changed
= efx
->phy_op
->poll(efx
);
2096 falcon_stop_nic_stats(efx
);
2097 falcon_deconfigure_mac_wrapper(efx
);
2099 falcon_reset_macs(efx
);
2100 rc
= falcon_reconfigure_xmac(efx
);
2103 falcon_start_nic_stats(efx
);
2105 ef4_link_status_changed(efx
);
2108 falcon_poll_xmac(efx
);
2111 /* Zeroes out the SRAM contents. This routine must be called in
2112 * process context and is allowed to sleep.
2114 static int falcon_reset_sram(struct ef4_nic
*efx
)
2116 ef4_oword_t srm_cfg_reg_ker
, gpio_cfg_reg_ker
;
2119 /* Set the SRAM wake/sleep GPIO appropriately. */
2120 ef4_reado(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
2121 EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OEN
, 1);
2122 EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OUT
, 1);
2123 ef4_writeo(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
2125 /* Initiate SRAM reset */
2126 EF4_POPULATE_OWORD_2(srm_cfg_reg_ker
,
2127 FRF_AZ_SRM_INIT_EN
, 1,
2128 FRF_AZ_SRM_NB_SZ
, 0);
2129 ef4_writeo(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
2131 /* Wait for SRAM reset to complete */
2134 netif_dbg(efx
, hw
, efx
->net_dev
,
2135 "waiting for SRAM reset (attempt %d)...\n", count
);
2137 /* SRAM reset is slow; expect around 16ms */
2138 schedule_timeout_uninterruptible(HZ
/ 50);
2140 /* Check for reset complete */
2141 ef4_reado(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
2142 if (!EF4_OWORD_FIELD(srm_cfg_reg_ker
, FRF_AZ_SRM_INIT_EN
)) {
2143 netif_dbg(efx
, hw
, efx
->net_dev
,
2144 "SRAM reset complete\n");
2148 } while (++count
< 20); /* wait up to 0.4 sec */
2150 netif_err(efx
, hw
, efx
->net_dev
, "timed out waiting for SRAM reset\n");
2154 static void falcon_spi_device_init(struct ef4_nic
*efx
,
2155 struct falcon_spi_device
*spi_device
,
2156 unsigned int device_id
, u32 device_type
)
2158 if (device_type
!= 0) {
2159 spi_device
->device_id
= device_id
;
2161 1 << SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_SIZE
);
2162 spi_device
->addr_len
=
2163 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ADDR_LEN
);
2164 spi_device
->munge_address
= (spi_device
->size
== 1 << 9 &&
2165 spi_device
->addr_len
== 1);
2166 spi_device
->erase_command
=
2167 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ERASE_CMD
);
2168 spi_device
->erase_size
=
2169 1 << SPI_DEV_TYPE_FIELD(device_type
,
2170 SPI_DEV_TYPE_ERASE_SIZE
);
2171 spi_device
->block_size
=
2172 1 << SPI_DEV_TYPE_FIELD(device_type
,
2173 SPI_DEV_TYPE_BLOCK_SIZE
);
2175 spi_device
->size
= 0;
2179 /* Extract non-volatile configuration */
2180 static int falcon_probe_nvconfig(struct ef4_nic
*efx
)
2182 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2183 struct falcon_nvconfig
*nvconfig
;
2186 nvconfig
= kmalloc(sizeof(*nvconfig
), GFP_KERNEL
);
2190 rc
= falcon_read_nvram(efx
, nvconfig
);
2194 efx
->phy_type
= nvconfig
->board_v2
.port0_phy_type
;
2195 efx
->mdio
.prtad
= nvconfig
->board_v2
.port0_phy_addr
;
2197 if (le16_to_cpu(nvconfig
->board_struct_ver
) >= 3) {
2198 falcon_spi_device_init(
2199 efx
, &nic_data
->spi_flash
, FFE_AB_SPI_DEVICE_FLASH
,
2200 le32_to_cpu(nvconfig
->board_v3
2201 .spi_device_type
[FFE_AB_SPI_DEVICE_FLASH
]));
2202 falcon_spi_device_init(
2203 efx
, &nic_data
->spi_eeprom
, FFE_AB_SPI_DEVICE_EEPROM
,
2204 le32_to_cpu(nvconfig
->board_v3
2205 .spi_device_type
[FFE_AB_SPI_DEVICE_EEPROM
]));
2208 /* Read the MAC addresses */
2209 ether_addr_copy(efx
->net_dev
->perm_addr
, nvconfig
->mac_address
[0]);
2211 netif_dbg(efx
, probe
, efx
->net_dev
, "PHY is %d phy_id %d\n",
2212 efx
->phy_type
, efx
->mdio
.prtad
);
2214 rc
= falcon_probe_board(efx
,
2215 le16_to_cpu(nvconfig
->board_v2
.board_revision
));
2221 static int falcon_dimension_resources(struct ef4_nic
*efx
)
2223 efx
->rx_dc_base
= 0x20000;
2224 efx
->tx_dc_base
= 0x26000;
2228 /* Probe all SPI devices on the NIC */
2229 static void falcon_probe_spi_devices(struct ef4_nic
*efx
)
2231 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2232 ef4_oword_t nic_stat
, gpio_ctl
, ee_vpd_cfg
;
2235 ef4_reado(efx
, &gpio_ctl
, FR_AB_GPIO_CTL
);
2236 ef4_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
2237 ef4_reado(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
2239 if (EF4_OWORD_FIELD(gpio_ctl
, FRF_AB_GPIO3_PWRUP_VALUE
)) {
2240 boot_dev
= (EF4_OWORD_FIELD(nic_stat
, FRF_AB_SF_PRST
) ?
2241 FFE_AB_SPI_DEVICE_FLASH
: FFE_AB_SPI_DEVICE_EEPROM
);
2242 netif_dbg(efx
, probe
, efx
->net_dev
, "Booted from %s\n",
2243 boot_dev
== FFE_AB_SPI_DEVICE_FLASH
?
2244 "flash" : "EEPROM");
2246 /* Disable VPD and set clock dividers to safe
2247 * values for initial programming. */
2249 netif_dbg(efx
, probe
, efx
->net_dev
,
2250 "Booted from internal ASIC settings;"
2251 " setting SPI config\n");
2252 EF4_POPULATE_OWORD_3(ee_vpd_cfg
, FRF_AB_EE_VPD_EN
, 0,
2253 /* 125 MHz / 7 ~= 20 MHz */
2254 FRF_AB_EE_SF_CLOCK_DIV
, 7,
2255 /* 125 MHz / 63 ~= 2 MHz */
2256 FRF_AB_EE_EE_CLOCK_DIV
, 63);
2257 ef4_writeo(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
2260 mutex_init(&nic_data
->spi_lock
);
2262 if (boot_dev
== FFE_AB_SPI_DEVICE_FLASH
)
2263 falcon_spi_device_init(efx
, &nic_data
->spi_flash
,
2264 FFE_AB_SPI_DEVICE_FLASH
,
2265 default_flash_type
);
2266 if (boot_dev
== FFE_AB_SPI_DEVICE_EEPROM
)
2267 falcon_spi_device_init(efx
, &nic_data
->spi_eeprom
,
2268 FFE_AB_SPI_DEVICE_EEPROM
,
2272 static unsigned int falcon_a1_mem_map_size(struct ef4_nic
*efx
)
2277 static unsigned int falcon_b0_mem_map_size(struct ef4_nic
*efx
)
2279 /* Map everything up to and including the RSS indirection table.
2280 * The PCI core takes care of mapping the MSI-X tables.
2282 return FR_BZ_RX_INDIRECTION_TBL
+
2283 FR_BZ_RX_INDIRECTION_TBL_STEP
* FR_BZ_RX_INDIRECTION_TBL_ROWS
;
2286 static int falcon_probe_nic(struct ef4_nic
*efx
)
2288 struct falcon_nic_data
*nic_data
;
2289 struct falcon_board
*board
;
2292 efx
->primary
= efx
; /* only one usable function per controller */
2294 /* Allocate storage for hardware specific data */
2295 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
2298 efx
->nic_data
= nic_data
;
2299 nic_data
->efx
= efx
;
2303 if (ef4_farch_fpga_ver(efx
) != 0) {
2304 netif_err(efx
, probe
, efx
->net_dev
,
2305 "Falcon FPGA not supported\n");
2309 if (ef4_nic_rev(efx
) <= EF4_REV_FALCON_A1
) {
2310 ef4_oword_t nic_stat
;
2311 struct pci_dev
*dev
;
2312 u8 pci_rev
= efx
->pci_dev
->revision
;
2314 if ((pci_rev
== 0xff) || (pci_rev
== 0)) {
2315 netif_err(efx
, probe
, efx
->net_dev
,
2316 "Falcon rev A0 not supported\n");
2319 ef4_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
2320 if (EF4_OWORD_FIELD(nic_stat
, FRF_AB_STRAP_10G
) == 0) {
2321 netif_err(efx
, probe
, efx
->net_dev
,
2322 "Falcon rev A1 1G not supported\n");
2325 if (EF4_OWORD_FIELD(nic_stat
, FRF_AA_STRAP_PCIE
) == 0) {
2326 netif_err(efx
, probe
, efx
->net_dev
,
2327 "Falcon rev A1 PCI-X not supported\n");
2331 dev
= pci_dev_get(efx
->pci_dev
);
2332 while ((dev
= pci_get_device(PCI_VENDOR_ID_SOLARFLARE
,
2333 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1
,
2335 if (dev
->bus
== efx
->pci_dev
->bus
&&
2336 dev
->devfn
== efx
->pci_dev
->devfn
+ 1) {
2337 nic_data
->pci_dev2
= dev
;
2341 if (!nic_data
->pci_dev2
) {
2342 netif_err(efx
, probe
, efx
->net_dev
,
2343 "failed to find secondary function\n");
2349 /* Now we can reset the NIC */
2350 rc
= __falcon_reset_hw(efx
, RESET_TYPE_ALL
);
2352 netif_err(efx
, probe
, efx
->net_dev
, "failed to reset NIC\n");
2356 /* Allocate memory for INT_KER */
2357 rc
= ef4_nic_alloc_buffer(efx
, &efx
->irq_status
, sizeof(ef4_oword_t
),
2361 BUG_ON(efx
->irq_status
.dma_addr
& 0x0f);
2363 netif_dbg(efx
, probe
, efx
->net_dev
,
2364 "INT_KER at %llx (virt %p phys %llx)\n",
2365 (u64
)efx
->irq_status
.dma_addr
,
2366 efx
->irq_status
.addr
,
2367 (u64
)virt_to_phys(efx
->irq_status
.addr
));
2369 falcon_probe_spi_devices(efx
);
2371 /* Read in the non-volatile configuration */
2372 rc
= falcon_probe_nvconfig(efx
);
2375 netif_err(efx
, probe
, efx
->net_dev
, "NVRAM is invalid\n");
2379 efx
->max_channels
= (ef4_nic_rev(efx
) <= EF4_REV_FALCON_A1
? 4 :
2381 efx
->max_tx_channels
= efx
->max_channels
;
2382 efx
->timer_quantum_ns
= 4968; /* 621 cycles */
2383 efx
->timer_max_ns
= efx
->type
->timer_period_max
*
2384 efx
->timer_quantum_ns
;
2386 /* Initialise I2C adapter */
2387 board
= falcon_board(efx
);
2388 board
->i2c_adap
.owner
= THIS_MODULE
;
2389 board
->i2c_data
= falcon_i2c_bit_operations
;
2390 board
->i2c_data
.data
= efx
;
2391 board
->i2c_adap
.algo_data
= &board
->i2c_data
;
2392 board
->i2c_adap
.dev
.parent
= &efx
->pci_dev
->dev
;
2393 strlcpy(board
->i2c_adap
.name
, "SFC4000 GPIO",
2394 sizeof(board
->i2c_adap
.name
));
2395 rc
= i2c_bit_add_bus(&board
->i2c_adap
);
2399 rc
= falcon_board(efx
)->type
->init(efx
);
2401 netif_err(efx
, probe
, efx
->net_dev
,
2402 "failed to initialise board\n");
2406 nic_data
->stats_disable_count
= 1;
2407 timer_setup(&nic_data
->stats_timer
, falcon_stats_timer_func
, 0);
2412 i2c_del_adapter(&board
->i2c_adap
);
2413 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
2415 ef4_nic_free_buffer(efx
, &efx
->irq_status
);
2418 if (nic_data
->pci_dev2
) {
2419 pci_dev_put(nic_data
->pci_dev2
);
2420 nic_data
->pci_dev2
= NULL
;
2424 kfree(efx
->nic_data
);
2428 static void falcon_init_rx_cfg(struct ef4_nic
*efx
)
2430 /* RX control FIFO thresholds (32 entries) */
2431 const unsigned ctrl_xon_thr
= 20;
2432 const unsigned ctrl_xoff_thr
= 25;
2435 ef4_reado(efx
, ®
, FR_AZ_RX_CFG
);
2436 if (ef4_nic_rev(efx
) <= EF4_REV_FALCON_A1
) {
2437 /* Data FIFO size is 5.5K. The RX DMA engine only
2438 * supports scattering for user-mode queues, but will
2439 * split DMA writes at intervals of RX_USR_BUF_SIZE
2440 * (32-byte units) even for kernel-mode queues. We
2441 * set it to be so large that that never happens.
2443 EF4_SET_OWORD_FIELD(reg
, FRF_AA_RX_DESC_PUSH_EN
, 0);
2444 EF4_SET_OWORD_FIELD(reg
, FRF_AA_RX_USR_BUF_SIZE
,
2446 EF4_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_MAC_TH
, 512 >> 8);
2447 EF4_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_MAC_TH
, 2048 >> 8);
2448 EF4_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_TX_TH
, ctrl_xon_thr
);
2449 EF4_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
2451 /* Data FIFO size is 80K; register fields moved */
2452 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_RX_DESC_PUSH_EN
, 0);
2453 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_RX_USR_BUF_SIZE
,
2454 EF4_RX_USR_BUF_SIZE
>> 5);
2455 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2456 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_MAC_TH
, 27648 >> 8);
2457 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_MAC_TH
, 54272 >> 8);
2458 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_TX_TH
, ctrl_xon_thr
);
2459 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
2460 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 1);
2462 /* Enable hash insertion. This is broken for the
2463 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2465 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_RX_HASH_INSRT_HDR
, 1);
2466 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_RX_HASH_ALG
, 1);
2467 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_RX_IP_HASH
, 1);
2469 /* Always enable XOFF signal from RX FIFO. We enable
2470 * or disable transmission of pause frames at the MAC. */
2471 EF4_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
2472 ef4_writeo(efx
, ®
, FR_AZ_RX_CFG
);
2475 /* This call performs hardware-specific global initialisation, such as
2476 * defining the descriptor cache sizes and number of RSS channels.
2477 * It does not set up any buffers, descriptor rings or event queues.
2479 static int falcon_init_nic(struct ef4_nic
*efx
)
2484 /* Use on-chip SRAM */
2485 ef4_reado(efx
, &temp
, FR_AB_NIC_STAT
);
2486 EF4_SET_OWORD_FIELD(temp
, FRF_AB_ONCHIP_SRAM
, 1);
2487 ef4_writeo(efx
, &temp
, FR_AB_NIC_STAT
);
2489 rc
= falcon_reset_sram(efx
);
2493 /* Clear the parity enables on the TX data fifos as
2494 * they produce false parity errors because of timing issues
2496 if (EF4_WORKAROUND_5129(efx
)) {
2497 ef4_reado(efx
, &temp
, FR_AZ_CSR_SPARE
);
2498 EF4_SET_OWORD_FIELD(temp
, FRF_AB_MEM_PERR_EN_TX_DATA
, 0);
2499 ef4_writeo(efx
, &temp
, FR_AZ_CSR_SPARE
);
2502 if (EF4_WORKAROUND_7244(efx
)) {
2503 ef4_reado(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
2504 EF4_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_FULL_SRCH_LIMIT
, 8);
2505 EF4_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_WILD_SRCH_LIMIT
, 8);
2506 EF4_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_FULL_SRCH_LIMIT
, 8);
2507 EF4_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_WILD_SRCH_LIMIT
, 8);
2508 ef4_writeo(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
2511 /* XXX This is documented only for Falcon A0/A1 */
2512 /* Setup RX. Wait for descriptor is broken and must
2513 * be disabled. RXDP recovery shouldn't be needed, but is.
2515 ef4_reado(efx
, &temp
, FR_AA_RX_SELF_RST
);
2516 EF4_SET_OWORD_FIELD(temp
, FRF_AA_RX_NODESC_WAIT_DIS
, 1);
2517 EF4_SET_OWORD_FIELD(temp
, FRF_AA_RX_SELF_RST_EN
, 1);
2518 if (EF4_WORKAROUND_5583(efx
))
2519 EF4_SET_OWORD_FIELD(temp
, FRF_AA_RX_ISCSI_DIS
, 1);
2520 ef4_writeo(efx
, &temp
, FR_AA_RX_SELF_RST
);
2522 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2523 * descriptors (which is bad).
2525 ef4_reado(efx
, &temp
, FR_AZ_TX_CFG
);
2526 EF4_SET_OWORD_FIELD(temp
, FRF_AZ_TX_NO_EOP_DISC_EN
, 0);
2527 ef4_writeo(efx
, &temp
, FR_AZ_TX_CFG
);
2529 falcon_init_rx_cfg(efx
);
2531 if (ef4_nic_rev(efx
) >= EF4_REV_FALCON_B0
) {
2532 falcon_b0_rx_push_rss_config(efx
, false, efx
->rx_indir_table
);
2534 /* Set destination of both TX and RX Flush events */
2535 EF4_POPULATE_OWORD_1(temp
, FRF_BZ_FLS_EVQ_ID
, 0);
2536 ef4_writeo(efx
, &temp
, FR_BZ_DP_CTRL
);
2539 ef4_farch_init_common(efx
);
2544 static void falcon_remove_nic(struct ef4_nic
*efx
)
2546 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2547 struct falcon_board
*board
= falcon_board(efx
);
2549 board
->type
->fini(efx
);
2551 /* Remove I2C adapter and clear it in preparation for a retry */
2552 i2c_del_adapter(&board
->i2c_adap
);
2553 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
2555 ef4_nic_free_buffer(efx
, &efx
->irq_status
);
2557 __falcon_reset_hw(efx
, RESET_TYPE_ALL
);
2559 /* Release the second function after the reset */
2560 if (nic_data
->pci_dev2
) {
2561 pci_dev_put(nic_data
->pci_dev2
);
2562 nic_data
->pci_dev2
= NULL
;
2565 /* Tear down the private nic state */
2566 kfree(efx
->nic_data
);
2567 efx
->nic_data
= NULL
;
2570 static size_t falcon_describe_nic_stats(struct ef4_nic
*efx
, u8
*names
)
2572 return ef4_nic_describe_stats(falcon_stat_desc
, FALCON_STAT_COUNT
,
2573 falcon_stat_mask
, names
);
2576 static size_t falcon_update_nic_stats(struct ef4_nic
*efx
, u64
*full_stats
,
2577 struct rtnl_link_stats64
*core_stats
)
2579 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2580 u64
*stats
= nic_data
->stats
;
2583 if (!nic_data
->stats_disable_count
) {
2584 ef4_reado(efx
, &cnt
, FR_AZ_RX_NODESC_DROP
);
2585 stats
[FALCON_STAT_rx_nodesc_drop_cnt
] +=
2586 EF4_OWORD_FIELD(cnt
, FRF_AB_RX_NODESC_DROP_CNT
);
2588 if (nic_data
->stats_pending
&&
2589 FALCON_XMAC_STATS_DMA_FLAG(efx
)) {
2590 nic_data
->stats_pending
= false;
2591 rmb(); /* read the done flag before the stats */
2592 ef4_nic_update_stats(
2593 falcon_stat_desc
, FALCON_STAT_COUNT
,
2595 stats
, efx
->stats_buffer
.addr
, true);
2598 /* Update derived statistic */
2599 ef4_update_diff_stat(&stats
[FALCON_STAT_rx_bad_bytes
],
2600 stats
[FALCON_STAT_rx_bytes
] -
2601 stats
[FALCON_STAT_rx_good_bytes
] -
2602 stats
[FALCON_STAT_rx_control
] * 64);
2603 ef4_update_sw_stats(efx
, stats
);
2607 memcpy(full_stats
, stats
, sizeof(u64
) * FALCON_STAT_COUNT
);
2610 core_stats
->rx_packets
= stats
[FALCON_STAT_rx_packets
];
2611 core_stats
->tx_packets
= stats
[FALCON_STAT_tx_packets
];
2612 core_stats
->rx_bytes
= stats
[FALCON_STAT_rx_bytes
];
2613 core_stats
->tx_bytes
= stats
[FALCON_STAT_tx_bytes
];
2614 core_stats
->rx_dropped
= stats
[FALCON_STAT_rx_nodesc_drop_cnt
] +
2615 stats
[GENERIC_STAT_rx_nodesc_trunc
] +
2616 stats
[GENERIC_STAT_rx_noskb_drops
];
2617 core_stats
->multicast
= stats
[FALCON_STAT_rx_multicast
];
2618 core_stats
->rx_length_errors
=
2619 stats
[FALCON_STAT_rx_gtjumbo
] +
2620 stats
[FALCON_STAT_rx_length_error
];
2621 core_stats
->rx_crc_errors
= stats
[FALCON_STAT_rx_bad
];
2622 core_stats
->rx_frame_errors
= stats
[FALCON_STAT_rx_align_error
];
2623 core_stats
->rx_fifo_errors
= stats
[FALCON_STAT_rx_overflow
];
2625 core_stats
->rx_errors
= (core_stats
->rx_length_errors
+
2626 core_stats
->rx_crc_errors
+
2627 core_stats
->rx_frame_errors
+
2628 stats
[FALCON_STAT_rx_symbol_error
]);
2631 return FALCON_STAT_COUNT
;
2634 void falcon_start_nic_stats(struct ef4_nic
*efx
)
2636 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2638 spin_lock_bh(&efx
->stats_lock
);
2639 if (--nic_data
->stats_disable_count
== 0)
2640 falcon_stats_request(efx
);
2641 spin_unlock_bh(&efx
->stats_lock
);
2644 /* We don't acutally pull stats on falcon. Wait 10ms so that
2645 * they arrive when we call this just after start_stats
2647 static void falcon_pull_nic_stats(struct ef4_nic
*efx
)
2652 void falcon_stop_nic_stats(struct ef4_nic
*efx
)
2654 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2659 spin_lock_bh(&efx
->stats_lock
);
2660 ++nic_data
->stats_disable_count
;
2661 spin_unlock_bh(&efx
->stats_lock
);
2663 del_timer_sync(&nic_data
->stats_timer
);
2665 /* Wait enough time for the most recent transfer to
2667 for (i
= 0; i
< 4 && nic_data
->stats_pending
; i
++) {
2668 if (FALCON_XMAC_STATS_DMA_FLAG(efx
))
2673 spin_lock_bh(&efx
->stats_lock
);
2674 falcon_stats_complete(efx
);
2675 spin_unlock_bh(&efx
->stats_lock
);
2678 static void falcon_set_id_led(struct ef4_nic
*efx
, enum ef4_led_mode mode
)
2680 falcon_board(efx
)->type
->set_id_led(efx
, mode
);
2683 /**************************************************************************
2687 **************************************************************************
2690 static void falcon_get_wol(struct ef4_nic
*efx
, struct ethtool_wolinfo
*wol
)
2694 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
2697 static int falcon_set_wol(struct ef4_nic
*efx
, u32 type
)
2704 /**************************************************************************
2706 * Revision-dependent attributes used by efx.c and nic.c
2708 **************************************************************************
2711 const struct ef4_nic_type falcon_a1_nic_type
= {
2712 .mem_bar
= EF4_MEM_BAR
,
2713 .mem_map_size
= falcon_a1_mem_map_size
,
2714 .probe
= falcon_probe_nic
,
2715 .remove
= falcon_remove_nic
,
2716 .init
= falcon_init_nic
,
2717 .dimension_resources
= falcon_dimension_resources
,
2718 .fini
= falcon_irq_ack_a1
,
2719 .monitor
= falcon_monitor
,
2720 .map_reset_reason
= falcon_map_reset_reason
,
2721 .map_reset_flags
= falcon_map_reset_flags
,
2722 .reset
= falcon_reset_hw
,
2723 .probe_port
= falcon_probe_port
,
2724 .remove_port
= falcon_remove_port
,
2725 .handle_global_event
= falcon_handle_global_event
,
2726 .fini_dmaq
= ef4_farch_fini_dmaq
,
2727 .prepare_flush
= falcon_prepare_flush
,
2728 .finish_flush
= ef4_port_dummy_op_void
,
2729 .prepare_flr
= ef4_port_dummy_op_void
,
2730 .finish_flr
= ef4_farch_finish_flr
,
2731 .describe_stats
= falcon_describe_nic_stats
,
2732 .update_stats
= falcon_update_nic_stats
,
2733 .start_stats
= falcon_start_nic_stats
,
2734 .pull_stats
= falcon_pull_nic_stats
,
2735 .stop_stats
= falcon_stop_nic_stats
,
2736 .set_id_led
= falcon_set_id_led
,
2737 .push_irq_moderation
= falcon_push_irq_moderation
,
2738 .reconfigure_port
= falcon_reconfigure_port
,
2739 .prepare_enable_fc_tx
= falcon_a1_prepare_enable_fc_tx
,
2740 .reconfigure_mac
= falcon_reconfigure_xmac
,
2741 .check_mac_fault
= falcon_xmac_check_fault
,
2742 .get_wol
= falcon_get_wol
,
2743 .set_wol
= falcon_set_wol
,
2744 .resume_wol
= ef4_port_dummy_op_void
,
2745 .test_nvram
= falcon_test_nvram
,
2746 .irq_enable_master
= ef4_farch_irq_enable_master
,
2747 .irq_test_generate
= ef4_farch_irq_test_generate
,
2748 .irq_disable_non_ev
= ef4_farch_irq_disable_master
,
2749 .irq_handle_msi
= ef4_farch_msi_interrupt
,
2750 .irq_handle_legacy
= falcon_legacy_interrupt_a1
,
2751 .tx_probe
= ef4_farch_tx_probe
,
2752 .tx_init
= ef4_farch_tx_init
,
2753 .tx_remove
= ef4_farch_tx_remove
,
2754 .tx_write
= ef4_farch_tx_write
,
2755 .tx_limit_len
= ef4_farch_tx_limit_len
,
2756 .rx_push_rss_config
= dummy_rx_push_rss_config
,
2757 .rx_probe
= ef4_farch_rx_probe
,
2758 .rx_init
= ef4_farch_rx_init
,
2759 .rx_remove
= ef4_farch_rx_remove
,
2760 .rx_write
= ef4_farch_rx_write
,
2761 .rx_defer_refill
= ef4_farch_rx_defer_refill
,
2762 .ev_probe
= ef4_farch_ev_probe
,
2763 .ev_init
= ef4_farch_ev_init
,
2764 .ev_fini
= ef4_farch_ev_fini
,
2765 .ev_remove
= ef4_farch_ev_remove
,
2766 .ev_process
= ef4_farch_ev_process
,
2767 .ev_read_ack
= ef4_farch_ev_read_ack
,
2768 .ev_test_generate
= ef4_farch_ev_test_generate
,
2770 /* We don't expose the filter table on Falcon A1 as it is not
2771 * mapped into function 0, but these implementations still
2772 * work with a degenerate case of all tables set to size 0.
2774 .filter_table_probe
= ef4_farch_filter_table_probe
,
2775 .filter_table_restore
= ef4_farch_filter_table_restore
,
2776 .filter_table_remove
= ef4_farch_filter_table_remove
,
2777 .filter_insert
= ef4_farch_filter_insert
,
2778 .filter_remove_safe
= ef4_farch_filter_remove_safe
,
2779 .filter_get_safe
= ef4_farch_filter_get_safe
,
2780 .filter_clear_rx
= ef4_farch_filter_clear_rx
,
2781 .filter_count_rx_used
= ef4_farch_filter_count_rx_used
,
2782 .filter_get_rx_id_limit
= ef4_farch_filter_get_rx_id_limit
,
2783 .filter_get_rx_ids
= ef4_farch_filter_get_rx_ids
,
2785 #ifdef CONFIG_SFC_FALCON_MTD
2786 .mtd_probe
= falcon_mtd_probe
,
2787 .mtd_rename
= falcon_mtd_rename
,
2788 .mtd_read
= falcon_mtd_read
,
2789 .mtd_erase
= falcon_mtd_erase
,
2790 .mtd_write
= falcon_mtd_write
,
2791 .mtd_sync
= falcon_mtd_sync
,
2794 .revision
= EF4_REV_FALCON_A1
,
2795 .txd_ptr_tbl_base
= FR_AA_TX_DESC_PTR_TBL_KER
,
2796 .rxd_ptr_tbl_base
= FR_AA_RX_DESC_PTR_TBL_KER
,
2797 .buf_tbl_base
= FR_AA_BUF_FULL_TBL_KER
,
2798 .evq_ptr_tbl_base
= FR_AA_EVQ_PTR_TBL_KER
,
2799 .evq_rptr_tbl_base
= FR_AA_EVQ_RPTR_KER
,
2800 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
2801 .rx_buffer_padding
= 0x24,
2802 .can_rx_scatter
= false,
2803 .max_interrupt_mode
= EF4_INT_MODE_MSI
,
2804 .timer_period_max
= 1 << FRF_AB_TC_TIMER_VAL_WIDTH
,
2805 .offload_features
= NETIF_F_IP_CSUM
,
2808 const struct ef4_nic_type falcon_b0_nic_type
= {
2809 .mem_bar
= EF4_MEM_BAR
,
2810 .mem_map_size
= falcon_b0_mem_map_size
,
2811 .probe
= falcon_probe_nic
,
2812 .remove
= falcon_remove_nic
,
2813 .init
= falcon_init_nic
,
2814 .dimension_resources
= falcon_dimension_resources
,
2815 .fini
= ef4_port_dummy_op_void
,
2816 .monitor
= falcon_monitor
,
2817 .map_reset_reason
= falcon_map_reset_reason
,
2818 .map_reset_flags
= falcon_map_reset_flags
,
2819 .reset
= falcon_reset_hw
,
2820 .probe_port
= falcon_probe_port
,
2821 .remove_port
= falcon_remove_port
,
2822 .handle_global_event
= falcon_handle_global_event
,
2823 .fini_dmaq
= ef4_farch_fini_dmaq
,
2824 .prepare_flush
= falcon_prepare_flush
,
2825 .finish_flush
= ef4_port_dummy_op_void
,
2826 .prepare_flr
= ef4_port_dummy_op_void
,
2827 .finish_flr
= ef4_farch_finish_flr
,
2828 .describe_stats
= falcon_describe_nic_stats
,
2829 .update_stats
= falcon_update_nic_stats
,
2830 .start_stats
= falcon_start_nic_stats
,
2831 .pull_stats
= falcon_pull_nic_stats
,
2832 .stop_stats
= falcon_stop_nic_stats
,
2833 .set_id_led
= falcon_set_id_led
,
2834 .push_irq_moderation
= falcon_push_irq_moderation
,
2835 .reconfigure_port
= falcon_reconfigure_port
,
2836 .prepare_enable_fc_tx
= falcon_b0_prepare_enable_fc_tx
,
2837 .reconfigure_mac
= falcon_reconfigure_xmac
,
2838 .check_mac_fault
= falcon_xmac_check_fault
,
2839 .get_wol
= falcon_get_wol
,
2840 .set_wol
= falcon_set_wol
,
2841 .resume_wol
= ef4_port_dummy_op_void
,
2842 .test_chip
= falcon_b0_test_chip
,
2843 .test_nvram
= falcon_test_nvram
,
2844 .irq_enable_master
= ef4_farch_irq_enable_master
,
2845 .irq_test_generate
= ef4_farch_irq_test_generate
,
2846 .irq_disable_non_ev
= ef4_farch_irq_disable_master
,
2847 .irq_handle_msi
= ef4_farch_msi_interrupt
,
2848 .irq_handle_legacy
= ef4_farch_legacy_interrupt
,
2849 .tx_probe
= ef4_farch_tx_probe
,
2850 .tx_init
= ef4_farch_tx_init
,
2851 .tx_remove
= ef4_farch_tx_remove
,
2852 .tx_write
= ef4_farch_tx_write
,
2853 .tx_limit_len
= ef4_farch_tx_limit_len
,
2854 .rx_push_rss_config
= falcon_b0_rx_push_rss_config
,
2855 .rx_probe
= ef4_farch_rx_probe
,
2856 .rx_init
= ef4_farch_rx_init
,
2857 .rx_remove
= ef4_farch_rx_remove
,
2858 .rx_write
= ef4_farch_rx_write
,
2859 .rx_defer_refill
= ef4_farch_rx_defer_refill
,
2860 .ev_probe
= ef4_farch_ev_probe
,
2861 .ev_init
= ef4_farch_ev_init
,
2862 .ev_fini
= ef4_farch_ev_fini
,
2863 .ev_remove
= ef4_farch_ev_remove
,
2864 .ev_process
= ef4_farch_ev_process
,
2865 .ev_read_ack
= ef4_farch_ev_read_ack
,
2866 .ev_test_generate
= ef4_farch_ev_test_generate
,
2867 .filter_table_probe
= ef4_farch_filter_table_probe
,
2868 .filter_table_restore
= ef4_farch_filter_table_restore
,
2869 .filter_table_remove
= ef4_farch_filter_table_remove
,
2870 .filter_update_rx_scatter
= ef4_farch_filter_update_rx_scatter
,
2871 .filter_insert
= ef4_farch_filter_insert
,
2872 .filter_remove_safe
= ef4_farch_filter_remove_safe
,
2873 .filter_get_safe
= ef4_farch_filter_get_safe
,
2874 .filter_clear_rx
= ef4_farch_filter_clear_rx
,
2875 .filter_count_rx_used
= ef4_farch_filter_count_rx_used
,
2876 .filter_get_rx_id_limit
= ef4_farch_filter_get_rx_id_limit
,
2877 .filter_get_rx_ids
= ef4_farch_filter_get_rx_ids
,
2878 #ifdef CONFIG_RFS_ACCEL
2879 .filter_rfs_insert
= ef4_farch_filter_rfs_insert
,
2880 .filter_rfs_expire_one
= ef4_farch_filter_rfs_expire_one
,
2882 #ifdef CONFIG_SFC_FALCON_MTD
2883 .mtd_probe
= falcon_mtd_probe
,
2884 .mtd_rename
= falcon_mtd_rename
,
2885 .mtd_read
= falcon_mtd_read
,
2886 .mtd_erase
= falcon_mtd_erase
,
2887 .mtd_write
= falcon_mtd_write
,
2888 .mtd_sync
= falcon_mtd_sync
,
2891 .revision
= EF4_REV_FALCON_B0
,
2892 .txd_ptr_tbl_base
= FR_BZ_TX_DESC_PTR_TBL
,
2893 .rxd_ptr_tbl_base
= FR_BZ_RX_DESC_PTR_TBL
,
2894 .buf_tbl_base
= FR_BZ_BUF_FULL_TBL
,
2895 .evq_ptr_tbl_base
= FR_BZ_EVQ_PTR_TBL
,
2896 .evq_rptr_tbl_base
= FR_BZ_EVQ_RPTR
,
2897 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
2898 .rx_prefix_size
= FS_BZ_RX_PREFIX_SIZE
,
2899 .rx_hash_offset
= FS_BZ_RX_PREFIX_HASH_OFST
,
2900 .rx_buffer_padding
= 0,
2901 .can_rx_scatter
= true,
2902 .max_interrupt_mode
= EF4_INT_MODE_MSIX
,
2903 .timer_period_max
= 1 << FRF_AB_TC_TIMER_VAL_WIDTH
,
2904 .offload_features
= NETIF_F_IP_CSUM
| NETIF_F_RXHASH
| NETIF_F_NTUPLE
,
2905 .max_rx_ip_filters
= FR_BZ_RX_FILTER_TBL0_ROWS
,