x86/mpx: remove bounds exception code
[linux/fpc-iii.git] / arch / x86 / kernel / traps.c
blob6fd5b7561444083478cd7e91b57c8946bf9b0696
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
9 /*
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
43 #endif
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <linux/atomic.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
52 #include <asm/desc.h>
53 #include <asm/fpu/internal.h>
54 #include <asm/cpu_entry_area.h>
55 #include <asm/mce.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/vm86.h>
61 #include <asm/umip.h>
63 #ifdef CONFIG_X86_64
64 #include <asm/x86_init.h>
65 #include <asm/pgalloc.h>
66 #include <asm/proto.h>
67 #else
68 #include <asm/processor-flags.h>
69 #include <asm/setup.h>
70 #include <asm/proto.h>
71 #endif
73 DECLARE_BITMAP(system_vectors, NR_VECTORS);
75 static inline void cond_local_irq_enable(struct pt_regs *regs)
77 if (regs->flags & X86_EFLAGS_IF)
78 local_irq_enable();
81 static inline void cond_local_irq_disable(struct pt_regs *regs)
83 if (regs->flags & X86_EFLAGS_IF)
84 local_irq_disable();
88 * In IST context, we explicitly disable preemption. This serves two
89 * purposes: it makes it much less likely that we would accidentally
90 * schedule in IST context and it will force a warning if we somehow
91 * manage to schedule by accident.
93 void ist_enter(struct pt_regs *regs)
95 if (user_mode(regs)) {
96 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
97 } else {
99 * We might have interrupted pretty much anything. In
100 * fact, if we're a machine check, we can even interrupt
101 * NMI processing. We don't want in_nmi() to return true,
102 * but we need to notify RCU.
104 rcu_nmi_enter();
107 preempt_disable();
109 /* This code is a bit fragile. Test it. */
110 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
112 NOKPROBE_SYMBOL(ist_enter);
114 void ist_exit(struct pt_regs *regs)
116 preempt_enable_no_resched();
118 if (!user_mode(regs))
119 rcu_nmi_exit();
123 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
124 * @regs: regs passed to the IST exception handler
126 * IST exception handlers normally cannot schedule. As a special
127 * exception, if the exception interrupted userspace code (i.e.
128 * user_mode(regs) would return true) and the exception was not
129 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
130 * begins a non-atomic section within an ist_enter()/ist_exit() region.
131 * Callers are responsible for enabling interrupts themselves inside
132 * the non-atomic section, and callers must call ist_end_non_atomic()
133 * before ist_exit().
135 void ist_begin_non_atomic(struct pt_regs *regs)
137 BUG_ON(!user_mode(regs));
140 * Sanity check: we need to be on the normal thread stack. This
141 * will catch asm bugs and any attempt to use ist_preempt_enable
142 * from double_fault.
144 BUG_ON(!on_thread_stack());
146 preempt_enable_no_resched();
150 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
152 * Ends a non-atomic section started with ist_begin_non_atomic().
154 void ist_end_non_atomic(void)
156 preempt_disable();
159 int is_valid_bugaddr(unsigned long addr)
161 unsigned short ud;
163 if (addr < TASK_SIZE_MAX)
164 return 0;
166 if (probe_kernel_address((unsigned short *)addr, ud))
167 return 0;
169 return ud == INSN_UD0 || ud == INSN_UD2;
172 int fixup_bug(struct pt_regs *regs, int trapnr)
174 if (trapnr != X86_TRAP_UD)
175 return 0;
177 switch (report_bug(regs->ip, regs)) {
178 case BUG_TRAP_TYPE_NONE:
179 case BUG_TRAP_TYPE_BUG:
180 break;
182 case BUG_TRAP_TYPE_WARN:
183 regs->ip += LEN_UD2;
184 return 1;
187 return 0;
190 static nokprobe_inline int
191 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
192 struct pt_regs *regs, long error_code)
194 if (v8086_mode(regs)) {
196 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
197 * On nmi (interrupt 2), do_trap should not be called.
199 if (trapnr < X86_TRAP_UD) {
200 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
201 error_code, trapnr))
202 return 0;
204 } else if (!user_mode(regs)) {
205 if (fixup_exception(regs, trapnr, error_code, 0))
206 return 0;
208 tsk->thread.error_code = error_code;
209 tsk->thread.trap_nr = trapnr;
210 die(str, regs, error_code);
214 * We want error_code and trap_nr set for userspace faults and
215 * kernelspace faults which result in die(), but not
216 * kernelspace faults which are fixed up. die() gives the
217 * process no chance to handle the signal and notice the
218 * kernel fault information, so that won't result in polluting
219 * the information about previously queued, but not yet
220 * delivered, faults. See also do_general_protection below.
222 tsk->thread.error_code = error_code;
223 tsk->thread.trap_nr = trapnr;
225 return -1;
228 static void show_signal(struct task_struct *tsk, int signr,
229 const char *type, const char *desc,
230 struct pt_regs *regs, long error_code)
232 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
233 printk_ratelimit()) {
234 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
235 tsk->comm, task_pid_nr(tsk), type, desc,
236 regs->ip, regs->sp, error_code);
237 print_vma_addr(KERN_CONT " in ", regs->ip);
238 pr_cont("\n");
242 static void
243 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
244 long error_code, int sicode, void __user *addr)
246 struct task_struct *tsk = current;
249 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
250 return;
252 show_signal(tsk, signr, "trap ", str, regs, error_code);
254 if (!sicode)
255 force_sig(signr);
256 else
257 force_sig_fault(signr, sicode, addr);
259 NOKPROBE_SYMBOL(do_trap);
261 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
262 unsigned long trapnr, int signr, int sicode, void __user *addr)
264 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
267 * WARN*()s end up here; fix them up before we call the
268 * notifier chain.
270 if (!user_mode(regs) && fixup_bug(regs, trapnr))
271 return;
273 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
274 NOTIFY_STOP) {
275 cond_local_irq_enable(regs);
276 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
280 #define IP ((void __user *)uprobe_get_trap_addr(regs))
281 #define DO_ERROR(trapnr, signr, sicode, addr, str, name) \
282 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
284 do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
287 DO_ERROR(X86_TRAP_DE, SIGFPE, FPE_INTDIV, IP, "divide error", divide_error)
288 DO_ERROR(X86_TRAP_OF, SIGSEGV, 0, NULL, "overflow", overflow)
289 DO_ERROR(X86_TRAP_UD, SIGILL, ILL_ILLOPN, IP, "invalid opcode", invalid_op)
290 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, 0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
291 DO_ERROR(X86_TRAP_TS, SIGSEGV, 0, NULL, "invalid TSS", invalid_TSS)
292 DO_ERROR(X86_TRAP_NP, SIGBUS, 0, NULL, "segment not present", segment_not_present)
293 DO_ERROR(X86_TRAP_SS, SIGBUS, 0, NULL, "stack segment", stack_segment)
294 DO_ERROR(X86_TRAP_AC, SIGBUS, BUS_ADRALN, NULL, "alignment check", alignment_check)
295 #undef IP
297 #ifdef CONFIG_VMAP_STACK
298 __visible void __noreturn handle_stack_overflow(const char *message,
299 struct pt_regs *regs,
300 unsigned long fault_address)
302 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
303 (void *)fault_address, current->stack,
304 (char *)current->stack + THREAD_SIZE - 1);
305 die(message, regs, 0);
307 /* Be absolutely certain we don't return. */
308 panic("%s", message);
310 #endif
312 #ifdef CONFIG_X86_64
313 /* Runs on IST stack */
314 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2)
316 static const char str[] = "double fault";
317 struct task_struct *tsk = current;
319 #ifdef CONFIG_X86_ESPFIX64
320 extern unsigned char native_irq_return_iret[];
323 * If IRET takes a non-IST fault on the espfix64 stack, then we
324 * end up promoting it to a doublefault. In that case, take
325 * advantage of the fact that we're not using the normal (TSS.sp0)
326 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
327 * and then modify our own IRET frame so that, when we return,
328 * we land directly at the #GP(0) vector with the stack already
329 * set up according to its expectations.
331 * The net result is that our #GP handler will think that we
332 * entered from usermode with the bad user context.
334 * No need for ist_enter here because we don't use RCU.
336 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
337 regs->cs == __KERNEL_CS &&
338 regs->ip == (unsigned long)native_irq_return_iret)
340 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
343 * regs->sp points to the failing IRET frame on the
344 * ESPFIX64 stack. Copy it to the entry stack. This fills
345 * in gpregs->ss through gpregs->ip.
348 memmove(&gpregs->ip, (void *)regs->sp, 5*8);
349 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
352 * Adjust our frame so that we return straight to the #GP
353 * vector with the expected RSP value. This is safe because
354 * we won't enable interupts or schedule before we invoke
355 * general_protection, so nothing will clobber the stack
356 * frame we just set up.
358 * We will enter general_protection with kernel GSBASE,
359 * which is what the stub expects, given that the faulting
360 * RIP will be the IRET instruction.
362 regs->ip = (unsigned long)general_protection;
363 regs->sp = (unsigned long)&gpregs->orig_ax;
365 return;
367 #endif
369 ist_enter(regs);
370 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
372 tsk->thread.error_code = error_code;
373 tsk->thread.trap_nr = X86_TRAP_DF;
375 #ifdef CONFIG_VMAP_STACK
377 * If we overflow the stack into a guard page, the CPU will fail
378 * to deliver #PF and will send #DF instead. Similarly, if we
379 * take any non-IST exception while too close to the bottom of
380 * the stack, the processor will get a page fault while
381 * delivering the exception and will generate a double fault.
383 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
384 * Page-Fault Exception (#PF):
386 * Processors update CR2 whenever a page fault is detected. If a
387 * second page fault occurs while an earlier page fault is being
388 * delivered, the faulting linear address of the second fault will
389 * overwrite the contents of CR2 (replacing the previous
390 * address). These updates to CR2 occur even if the page fault
391 * results in a double fault or occurs during the delivery of a
392 * double fault.
394 * The logic below has a small possibility of incorrectly diagnosing
395 * some errors as stack overflows. For example, if the IDT or GDT
396 * gets corrupted such that #GP delivery fails due to a bad descriptor
397 * causing #GP and we hit this condition while CR2 coincidentally
398 * points to the stack guard page, we'll think we overflowed the
399 * stack. Given that we're going to panic one way or another
400 * if this happens, this isn't necessarily worth fixing.
402 * If necessary, we could improve the test by only diagnosing
403 * a stack overflow if the saved RSP points within 47 bytes of
404 * the bottom of the stack: if RSP == tsk_stack + 48 and we
405 * take an exception, the stack is already aligned and there
406 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
407 * possible error code, so a stack overflow would *not* double
408 * fault. With any less space left, exception delivery could
409 * fail, and, as a practical matter, we've overflowed the
410 * stack even if the actual trigger for the double fault was
411 * something else.
413 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
414 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
415 #endif
417 #ifdef CONFIG_DOUBLEFAULT
418 df_debug(regs, error_code);
419 #endif
421 * This is always a kernel trap and never fixable (and thus must
422 * never return).
424 for (;;)
425 die(str, regs, error_code);
427 #endif
429 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
431 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
432 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
433 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
434 return;
435 cond_local_irq_enable(regs);
437 if (!user_mode(regs))
438 die("bounds", regs, error_code);
440 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
443 dotraplinkage void
444 do_general_protection(struct pt_regs *regs, long error_code)
446 const char *desc = "general protection fault";
447 struct task_struct *tsk;
449 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
450 cond_local_irq_enable(regs);
452 if (static_cpu_has(X86_FEATURE_UMIP)) {
453 if (user_mode(regs) && fixup_umip_exception(regs))
454 return;
457 if (v8086_mode(regs)) {
458 local_irq_enable();
459 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
460 return;
463 tsk = current;
464 if (!user_mode(regs)) {
465 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
466 return;
468 tsk->thread.error_code = error_code;
469 tsk->thread.trap_nr = X86_TRAP_GP;
472 * To be potentially processing a kprobe fault and to
473 * trust the result from kprobe_running(), we have to
474 * be non-preemptible.
476 if (!preemptible() && kprobe_running() &&
477 kprobe_fault_handler(regs, X86_TRAP_GP))
478 return;
480 if (notify_die(DIE_GPF, desc, regs, error_code,
481 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
482 die(desc, regs, error_code);
483 return;
486 tsk->thread.error_code = error_code;
487 tsk->thread.trap_nr = X86_TRAP_GP;
489 show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
491 force_sig(SIGSEGV);
493 NOKPROBE_SYMBOL(do_general_protection);
495 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
497 #ifdef CONFIG_DYNAMIC_FTRACE
499 * ftrace must be first, everything else may cause a recursive crash.
500 * See note by declaration of modifying_ftrace_code in ftrace.c
502 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
503 ftrace_int3_handler(regs))
504 return;
505 #endif
506 if (poke_int3_handler(regs))
507 return;
510 * Use ist_enter despite the fact that we don't use an IST stack.
511 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
512 * mode or even during context tracking state changes.
514 * This means that we can't schedule. That's okay.
516 ist_enter(regs);
517 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
518 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
519 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
520 SIGTRAP) == NOTIFY_STOP)
521 goto exit;
522 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
524 #ifdef CONFIG_KPROBES
525 if (kprobe_int3_handler(regs))
526 goto exit;
527 #endif
529 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
530 SIGTRAP) == NOTIFY_STOP)
531 goto exit;
533 cond_local_irq_enable(regs);
534 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
535 cond_local_irq_disable(regs);
537 exit:
538 ist_exit(regs);
540 NOKPROBE_SYMBOL(do_int3);
542 #ifdef CONFIG_X86_64
544 * Help handler running on a per-cpu (IST or entry trampoline) stack
545 * to switch to the normal thread stack if the interrupted code was in
546 * user mode. The actual stack switch is done in entry_64.S
548 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
550 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
551 if (regs != eregs)
552 *regs = *eregs;
553 return regs;
555 NOKPROBE_SYMBOL(sync_regs);
557 struct bad_iret_stack {
558 void *error_entry_ret;
559 struct pt_regs regs;
562 asmlinkage __visible notrace
563 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
566 * This is called from entry_64.S early in handling a fault
567 * caused by a bad iret to user mode. To handle the fault
568 * correctly, we want to move our stack frame to where it would
569 * be had we entered directly on the entry stack (rather than
570 * just below the IRET frame) and we want to pretend that the
571 * exception came from the IRET target.
573 struct bad_iret_stack *new_stack =
574 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
576 /* Copy the IRET target to the new stack. */
577 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
579 /* Copy the remainder of the stack from the current stack. */
580 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
582 BUG_ON(!user_mode(&new_stack->regs));
583 return new_stack;
585 NOKPROBE_SYMBOL(fixup_bad_iret);
586 #endif
588 static bool is_sysenter_singlestep(struct pt_regs *regs)
591 * We don't try for precision here. If we're anywhere in the region of
592 * code that can be single-stepped in the SYSENTER entry path, then
593 * assume that this is a useless single-step trap due to SYSENTER
594 * being invoked with TF set. (We don't know in advance exactly
595 * which instructions will be hit because BTF could plausibly
596 * be set.)
598 #ifdef CONFIG_X86_32
599 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
600 (unsigned long)__end_SYSENTER_singlestep_region -
601 (unsigned long)__begin_SYSENTER_singlestep_region;
602 #elif defined(CONFIG_IA32_EMULATION)
603 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
604 (unsigned long)__end_entry_SYSENTER_compat -
605 (unsigned long)entry_SYSENTER_compat;
606 #else
607 return false;
608 #endif
612 * Our handling of the processor debug registers is non-trivial.
613 * We do not clear them on entry and exit from the kernel. Therefore
614 * it is possible to get a watchpoint trap here from inside the kernel.
615 * However, the code in ./ptrace.c has ensured that the user can
616 * only set watchpoints on userspace addresses. Therefore the in-kernel
617 * watchpoint trap can only occur in code which is reading/writing
618 * from user space. Such code must not hold kernel locks (since it
619 * can equally take a page fault), therefore it is safe to call
620 * force_sig_info even though that claims and releases locks.
622 * Code in ./signal.c ensures that the debug control register
623 * is restored before we deliver any signal, and therefore that
624 * user code runs with the correct debug control register even though
625 * we clear it here.
627 * Being careful here means that we don't have to be as careful in a
628 * lot of more complicated places (task switching can be a bit lazy
629 * about restoring all the debug state, and ptrace doesn't have to
630 * find every occurrence of the TF bit that could be saved away even
631 * by user code)
633 * May run on IST stack.
635 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
637 struct task_struct *tsk = current;
638 int user_icebp = 0;
639 unsigned long dr6;
640 int si_code;
642 ist_enter(regs);
644 get_debugreg(dr6, 6);
646 * The Intel SDM says:
648 * Certain debug exceptions may clear bits 0-3. The remaining
649 * contents of the DR6 register are never cleared by the
650 * processor. To avoid confusion in identifying debug
651 * exceptions, debug handlers should clear the register before
652 * returning to the interrupted task.
654 * Keep it simple: clear DR6 immediately.
656 set_debugreg(0, 6);
658 /* Filter out all the reserved bits which are preset to 1 */
659 dr6 &= ~DR6_RESERVED;
662 * The SDM says "The processor clears the BTF flag when it
663 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
664 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
666 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
668 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
669 is_sysenter_singlestep(regs))) {
670 dr6 &= ~DR_STEP;
671 if (!dr6)
672 goto exit;
674 * else we might have gotten a single-step trap and hit a
675 * watchpoint at the same time, in which case we should fall
676 * through and handle the watchpoint.
681 * If dr6 has no reason to give us about the origin of this trap,
682 * then it's very likely the result of an icebp/int01 trap.
683 * User wants a sigtrap for that.
685 if (!dr6 && user_mode(regs))
686 user_icebp = 1;
688 /* Store the virtualized DR6 value */
689 tsk->thread.debugreg6 = dr6;
691 #ifdef CONFIG_KPROBES
692 if (kprobe_debug_handler(regs))
693 goto exit;
694 #endif
696 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
697 SIGTRAP) == NOTIFY_STOP)
698 goto exit;
701 * Let others (NMI) know that the debug stack is in use
702 * as we may switch to the interrupt stack.
704 debug_stack_usage_inc();
706 /* It's safe to allow irq's after DR6 has been saved */
707 cond_local_irq_enable(regs);
709 if (v8086_mode(regs)) {
710 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
711 X86_TRAP_DB);
712 cond_local_irq_disable(regs);
713 debug_stack_usage_dec();
714 goto exit;
717 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
719 * Historical junk that used to handle SYSENTER single-stepping.
720 * This should be unreachable now. If we survive for a while
721 * without anyone hitting this warning, we'll turn this into
722 * an oops.
724 tsk->thread.debugreg6 &= ~DR_STEP;
725 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
726 regs->flags &= ~X86_EFLAGS_TF;
728 si_code = get_si_code(tsk->thread.debugreg6);
729 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
730 send_sigtrap(regs, error_code, si_code);
731 cond_local_irq_disable(regs);
732 debug_stack_usage_dec();
734 exit:
735 ist_exit(regs);
737 NOKPROBE_SYMBOL(do_debug);
740 * Note that we play around with the 'TS' bit in an attempt to get
741 * the correct behaviour even in the presence of the asynchronous
742 * IRQ13 behaviour
744 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
746 struct task_struct *task = current;
747 struct fpu *fpu = &task->thread.fpu;
748 int si_code;
749 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
750 "simd exception";
752 cond_local_irq_enable(regs);
754 if (!user_mode(regs)) {
755 if (fixup_exception(regs, trapnr, error_code, 0))
756 return;
758 task->thread.error_code = error_code;
759 task->thread.trap_nr = trapnr;
761 if (notify_die(DIE_TRAP, str, regs, error_code,
762 trapnr, SIGFPE) != NOTIFY_STOP)
763 die(str, regs, error_code);
764 return;
768 * Save the info for the exception handler and clear the error.
770 fpu__save(fpu);
772 task->thread.trap_nr = trapnr;
773 task->thread.error_code = error_code;
775 si_code = fpu__exception_code(fpu, trapnr);
776 /* Retry when we get spurious exceptions: */
777 if (!si_code)
778 return;
780 force_sig_fault(SIGFPE, si_code,
781 (void __user *)uprobe_get_trap_addr(regs));
784 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
786 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
787 math_error(regs, error_code, X86_TRAP_MF);
790 dotraplinkage void
791 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
793 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
794 math_error(regs, error_code, X86_TRAP_XF);
797 dotraplinkage void
798 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
800 cond_local_irq_enable(regs);
803 dotraplinkage void
804 do_device_not_available(struct pt_regs *regs, long error_code)
806 unsigned long cr0 = read_cr0();
808 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
810 #ifdef CONFIG_MATH_EMULATION
811 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
812 struct math_emu_info info = { };
814 cond_local_irq_enable(regs);
816 info.regs = regs;
817 math_emulate(&info);
818 return;
820 #endif
822 /* This should not happen. */
823 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
824 /* Try to fix it up and carry on. */
825 write_cr0(cr0 & ~X86_CR0_TS);
826 } else {
828 * Something terrible happened, and we're better off trying
829 * to kill the task than getting stuck in a never-ending
830 * loop of #NM faults.
832 die("unexpected #NM exception", regs, error_code);
835 NOKPROBE_SYMBOL(do_device_not_available);
837 #ifdef CONFIG_X86_32
838 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
840 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
841 local_irq_enable();
843 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
844 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
845 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
846 ILL_BADSTK, (void __user *)NULL);
849 #endif
851 void __init trap_init(void)
853 /* Init cpu_entry_area before IST entries are set up */
854 setup_cpu_entry_areas();
856 idt_setup_traps();
859 * Set the IDT descriptor to a fixed read-only location, so that the
860 * "sidt" instruction will not leak the location of the kernel, and
861 * to defend the IDT against arbitrary memory write vulnerabilities.
862 * It will be reloaded in cpu_init() */
863 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
864 PAGE_KERNEL_RO);
865 idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
868 * Should be a barrier for any external CPU state:
870 cpu_init();
872 idt_setup_ist_traps();
874 x86_init.irqs.trap_init();
876 idt_setup_debugidt_traps();