2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
11 int sched_rr_timeslice
= RR_TIMESLICE
;
13 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
15 struct rt_bandwidth def_rt_bandwidth
;
17 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
19 struct rt_bandwidth
*rt_b
=
20 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
24 raw_spin_lock(&rt_b
->rt_runtime_lock
);
26 overrun
= hrtimer_forward_now(timer
, rt_b
->rt_period
);
30 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
31 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
32 raw_spin_lock(&rt_b
->rt_runtime_lock
);
35 rt_b
->rt_period_active
= 0;
36 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
38 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
41 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
43 rt_b
->rt_period
= ns_to_ktime(period
);
44 rt_b
->rt_runtime
= runtime
;
46 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
48 hrtimer_init(&rt_b
->rt_period_timer
,
49 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
50 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
53 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
55 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
58 raw_spin_lock(&rt_b
->rt_runtime_lock
);
59 if (!rt_b
->rt_period_active
) {
60 rt_b
->rt_period_active
= 1;
62 * SCHED_DEADLINE updates the bandwidth, as a run away
63 * RT task with a DL task could hog a CPU. But DL does
64 * not reset the period. If a deadline task was running
65 * without an RT task running, it can cause RT tasks to
66 * throttle when they start up. Kick the timer right away
67 * to update the period.
69 hrtimer_forward_now(&rt_b
->rt_period_timer
, ns_to_ktime(0));
70 hrtimer_start_expires(&rt_b
->rt_period_timer
, HRTIMER_MODE_ABS_PINNED
);
72 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
75 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
76 static void push_irq_work_func(struct irq_work
*work
);
79 void init_rt_rq(struct rt_rq
*rt_rq
)
81 struct rt_prio_array
*array
;
84 array
= &rt_rq
->active
;
85 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
86 INIT_LIST_HEAD(array
->queue
+ i
);
87 __clear_bit(i
, array
->bitmap
);
89 /* delimiter for bitsearch: */
90 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
92 #if defined CONFIG_SMP
93 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
94 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
95 rt_rq
->rt_nr_migratory
= 0;
96 rt_rq
->overloaded
= 0;
97 plist_head_init(&rt_rq
->pushable_tasks
);
99 #ifdef HAVE_RT_PUSH_IPI
100 rt_rq
->push_flags
= 0;
101 rt_rq
->push_cpu
= nr_cpu_ids
;
102 raw_spin_lock_init(&rt_rq
->push_lock
);
103 init_irq_work(&rt_rq
->push_work
, push_irq_work_func
);
105 #endif /* CONFIG_SMP */
106 /* We start is dequeued state, because no RT tasks are queued */
107 rt_rq
->rt_queued
= 0;
110 rt_rq
->rt_throttled
= 0;
111 rt_rq
->rt_runtime
= 0;
112 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
115 #ifdef CONFIG_RT_GROUP_SCHED
116 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
118 hrtimer_cancel(&rt_b
->rt_period_timer
);
121 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
123 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
125 #ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
128 return container_of(rt_se
, struct task_struct
, rt
);
131 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
136 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
141 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
143 struct rt_rq
*rt_rq
= rt_se
->rt_rq
;
148 void free_rt_sched_group(struct task_group
*tg
)
153 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
155 for_each_possible_cpu(i
) {
166 void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
167 struct sched_rt_entity
*rt_se
, int cpu
,
168 struct sched_rt_entity
*parent
)
170 struct rq
*rq
= cpu_rq(cpu
);
172 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
173 rt_rq
->rt_nr_boosted
= 0;
177 tg
->rt_rq
[cpu
] = rt_rq
;
178 tg
->rt_se
[cpu
] = rt_se
;
184 rt_se
->rt_rq
= &rq
->rt
;
186 rt_se
->rt_rq
= parent
->my_q
;
189 rt_se
->parent
= parent
;
190 INIT_LIST_HEAD(&rt_se
->run_list
);
193 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
196 struct sched_rt_entity
*rt_se
;
199 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
202 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
206 init_rt_bandwidth(&tg
->rt_bandwidth
,
207 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
209 for_each_possible_cpu(i
) {
210 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
211 GFP_KERNEL
, cpu_to_node(i
));
215 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
216 GFP_KERNEL
, cpu_to_node(i
));
221 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
222 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
233 #else /* CONFIG_RT_GROUP_SCHED */
235 #define rt_entity_is_task(rt_se) (1)
237 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
239 return container_of(rt_se
, struct task_struct
, rt
);
242 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
244 return container_of(rt_rq
, struct rq
, rt
);
247 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
249 struct task_struct
*p
= rt_task_of(rt_se
);
254 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
256 struct rq
*rq
= rq_of_rt_se(rt_se
);
261 void free_rt_sched_group(struct task_group
*tg
) { }
263 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
267 #endif /* CONFIG_RT_GROUP_SCHED */
271 static void pull_rt_task(struct rq
*this_rq
);
273 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
275 /* Try to pull RT tasks here if we lower this rq's prio */
276 return rq
->rt
.highest_prio
.curr
> prev
->prio
;
279 static inline int rt_overloaded(struct rq
*rq
)
281 return atomic_read(&rq
->rd
->rto_count
);
284 static inline void rt_set_overload(struct rq
*rq
)
289 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
291 * Make sure the mask is visible before we set
292 * the overload count. That is checked to determine
293 * if we should look at the mask. It would be a shame
294 * if we looked at the mask, but the mask was not
297 * Matched by the barrier in pull_rt_task().
300 atomic_inc(&rq
->rd
->rto_count
);
303 static inline void rt_clear_overload(struct rq
*rq
)
308 /* the order here really doesn't matter */
309 atomic_dec(&rq
->rd
->rto_count
);
310 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
313 static void update_rt_migration(struct rt_rq
*rt_rq
)
315 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
316 if (!rt_rq
->overloaded
) {
317 rt_set_overload(rq_of_rt_rq(rt_rq
));
318 rt_rq
->overloaded
= 1;
320 } else if (rt_rq
->overloaded
) {
321 rt_clear_overload(rq_of_rt_rq(rt_rq
));
322 rt_rq
->overloaded
= 0;
326 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
328 struct task_struct
*p
;
330 if (!rt_entity_is_task(rt_se
))
333 p
= rt_task_of(rt_se
);
334 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
336 rt_rq
->rt_nr_total
++;
337 if (tsk_nr_cpus_allowed(p
) > 1)
338 rt_rq
->rt_nr_migratory
++;
340 update_rt_migration(rt_rq
);
343 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
345 struct task_struct
*p
;
347 if (!rt_entity_is_task(rt_se
))
350 p
= rt_task_of(rt_se
);
351 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
353 rt_rq
->rt_nr_total
--;
354 if (tsk_nr_cpus_allowed(p
) > 1)
355 rt_rq
->rt_nr_migratory
--;
357 update_rt_migration(rt_rq
);
360 static inline int has_pushable_tasks(struct rq
*rq
)
362 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
365 static DEFINE_PER_CPU(struct callback_head
, rt_push_head
);
366 static DEFINE_PER_CPU(struct callback_head
, rt_pull_head
);
368 static void push_rt_tasks(struct rq
*);
369 static void pull_rt_task(struct rq
*);
371 static inline void queue_push_tasks(struct rq
*rq
)
373 if (!has_pushable_tasks(rq
))
376 queue_balance_callback(rq
, &per_cpu(rt_push_head
, rq
->cpu
), push_rt_tasks
);
379 static inline void queue_pull_task(struct rq
*rq
)
381 queue_balance_callback(rq
, &per_cpu(rt_pull_head
, rq
->cpu
), pull_rt_task
);
384 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
386 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
387 plist_node_init(&p
->pushable_tasks
, p
->prio
);
388 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
390 /* Update the highest prio pushable task */
391 if (p
->prio
< rq
->rt
.highest_prio
.next
)
392 rq
->rt
.highest_prio
.next
= p
->prio
;
395 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
397 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
399 /* Update the new highest prio pushable task */
400 if (has_pushable_tasks(rq
)) {
401 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
402 struct task_struct
, pushable_tasks
);
403 rq
->rt
.highest_prio
.next
= p
->prio
;
405 rq
->rt
.highest_prio
.next
= MAX_RT_PRIO
;
410 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
414 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
419 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
424 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
428 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
433 static inline void pull_rt_task(struct rq
*this_rq
)
437 static inline void queue_push_tasks(struct rq
*rq
)
440 #endif /* CONFIG_SMP */
442 static void enqueue_top_rt_rq(struct rt_rq
*rt_rq
);
443 static void dequeue_top_rt_rq(struct rt_rq
*rt_rq
);
445 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
450 #ifdef CONFIG_RT_GROUP_SCHED
452 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
457 return rt_rq
->rt_runtime
;
460 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
462 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
465 typedef struct task_group
*rt_rq_iter_t
;
467 static inline struct task_group
*next_task_group(struct task_group
*tg
)
470 tg
= list_entry_rcu(tg
->list
.next
,
471 typeof(struct task_group
), list
);
472 } while (&tg
->list
!= &task_groups
&& task_group_is_autogroup(tg
));
474 if (&tg
->list
== &task_groups
)
480 #define for_each_rt_rq(rt_rq, iter, rq) \
481 for (iter = container_of(&task_groups, typeof(*iter), list); \
482 (iter = next_task_group(iter)) && \
483 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
485 #define for_each_sched_rt_entity(rt_se) \
486 for (; rt_se; rt_se = rt_se->parent)
488 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
493 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
);
494 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
);
496 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
498 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
499 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
500 struct sched_rt_entity
*rt_se
;
502 int cpu
= cpu_of(rq
);
504 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
506 if (rt_rq
->rt_nr_running
) {
508 enqueue_top_rt_rq(rt_rq
);
509 else if (!on_rt_rq(rt_se
))
510 enqueue_rt_entity(rt_se
, 0);
512 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
517 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
519 struct sched_rt_entity
*rt_se
;
520 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
522 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
525 dequeue_top_rt_rq(rt_rq
);
526 else if (on_rt_rq(rt_se
))
527 dequeue_rt_entity(rt_se
, 0);
530 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
532 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
535 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
537 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
538 struct task_struct
*p
;
541 return !!rt_rq
->rt_nr_boosted
;
543 p
= rt_task_of(rt_se
);
544 return p
->prio
!= p
->normal_prio
;
548 static inline const struct cpumask
*sched_rt_period_mask(void)
550 return this_rq()->rd
->span
;
553 static inline const struct cpumask
*sched_rt_period_mask(void)
555 return cpu_online_mask
;
560 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
562 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
565 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
567 return &rt_rq
->tg
->rt_bandwidth
;
570 #else /* !CONFIG_RT_GROUP_SCHED */
572 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
574 return rt_rq
->rt_runtime
;
577 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
579 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
582 typedef struct rt_rq
*rt_rq_iter_t
;
584 #define for_each_rt_rq(rt_rq, iter, rq) \
585 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
587 #define for_each_sched_rt_entity(rt_se) \
588 for (; rt_se; rt_se = NULL)
590 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
595 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
597 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
599 if (!rt_rq
->rt_nr_running
)
602 enqueue_top_rt_rq(rt_rq
);
606 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
608 dequeue_top_rt_rq(rt_rq
);
611 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
613 return rt_rq
->rt_throttled
;
616 static inline const struct cpumask
*sched_rt_period_mask(void)
618 return cpu_online_mask
;
622 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
624 return &cpu_rq(cpu
)->rt
;
627 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
629 return &def_rt_bandwidth
;
632 #endif /* CONFIG_RT_GROUP_SCHED */
634 bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
)
636 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
638 return (hrtimer_active(&rt_b
->rt_period_timer
) ||
639 rt_rq
->rt_time
< rt_b
->rt_runtime
);
644 * We ran out of runtime, see if we can borrow some from our neighbours.
646 static void do_balance_runtime(struct rt_rq
*rt_rq
)
648 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
649 struct root_domain
*rd
= rq_of_rt_rq(rt_rq
)->rd
;
653 weight
= cpumask_weight(rd
->span
);
655 raw_spin_lock(&rt_b
->rt_runtime_lock
);
656 rt_period
= ktime_to_ns(rt_b
->rt_period
);
657 for_each_cpu(i
, rd
->span
) {
658 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
664 raw_spin_lock(&iter
->rt_runtime_lock
);
666 * Either all rqs have inf runtime and there's nothing to steal
667 * or __disable_runtime() below sets a specific rq to inf to
668 * indicate its been disabled and disalow stealing.
670 if (iter
->rt_runtime
== RUNTIME_INF
)
674 * From runqueues with spare time, take 1/n part of their
675 * spare time, but no more than our period.
677 diff
= iter
->rt_runtime
- iter
->rt_time
;
679 diff
= div_u64((u64
)diff
, weight
);
680 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
681 diff
= rt_period
- rt_rq
->rt_runtime
;
682 iter
->rt_runtime
-= diff
;
683 rt_rq
->rt_runtime
+= diff
;
684 if (rt_rq
->rt_runtime
== rt_period
) {
685 raw_spin_unlock(&iter
->rt_runtime_lock
);
690 raw_spin_unlock(&iter
->rt_runtime_lock
);
692 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
696 * Ensure this RQ takes back all the runtime it lend to its neighbours.
698 static void __disable_runtime(struct rq
*rq
)
700 struct root_domain
*rd
= rq
->rd
;
704 if (unlikely(!scheduler_running
))
707 for_each_rt_rq(rt_rq
, iter
, rq
) {
708 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
712 raw_spin_lock(&rt_b
->rt_runtime_lock
);
713 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
715 * Either we're all inf and nobody needs to borrow, or we're
716 * already disabled and thus have nothing to do, or we have
717 * exactly the right amount of runtime to take out.
719 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
720 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
722 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
725 * Calculate the difference between what we started out with
726 * and what we current have, that's the amount of runtime
727 * we lend and now have to reclaim.
729 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
732 * Greedy reclaim, take back as much as we can.
734 for_each_cpu(i
, rd
->span
) {
735 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
739 * Can't reclaim from ourselves or disabled runqueues.
741 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
744 raw_spin_lock(&iter
->rt_runtime_lock
);
746 diff
= min_t(s64
, iter
->rt_runtime
, want
);
747 iter
->rt_runtime
-= diff
;
750 iter
->rt_runtime
-= want
;
753 raw_spin_unlock(&iter
->rt_runtime_lock
);
759 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
761 * We cannot be left wanting - that would mean some runtime
762 * leaked out of the system.
767 * Disable all the borrow logic by pretending we have inf
768 * runtime - in which case borrowing doesn't make sense.
770 rt_rq
->rt_runtime
= RUNTIME_INF
;
771 rt_rq
->rt_throttled
= 0;
772 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
773 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
775 /* Make rt_rq available for pick_next_task() */
776 sched_rt_rq_enqueue(rt_rq
);
780 static void __enable_runtime(struct rq
*rq
)
785 if (unlikely(!scheduler_running
))
789 * Reset each runqueue's bandwidth settings
791 for_each_rt_rq(rt_rq
, iter
, rq
) {
792 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
794 raw_spin_lock(&rt_b
->rt_runtime_lock
);
795 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
796 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
798 rt_rq
->rt_throttled
= 0;
799 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
800 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
804 static void balance_runtime(struct rt_rq
*rt_rq
)
806 if (!sched_feat(RT_RUNTIME_SHARE
))
809 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
810 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
811 do_balance_runtime(rt_rq
);
812 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
815 #else /* !CONFIG_SMP */
816 static inline void balance_runtime(struct rt_rq
*rt_rq
) {}
817 #endif /* CONFIG_SMP */
819 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
821 int i
, idle
= 1, throttled
= 0;
822 const struct cpumask
*span
;
824 span
= sched_rt_period_mask();
825 #ifdef CONFIG_RT_GROUP_SCHED
827 * FIXME: isolated CPUs should really leave the root task group,
828 * whether they are isolcpus or were isolated via cpusets, lest
829 * the timer run on a CPU which does not service all runqueues,
830 * potentially leaving other CPUs indefinitely throttled. If
831 * isolation is really required, the user will turn the throttle
832 * off to kill the perturbations it causes anyway. Meanwhile,
833 * this maintains functionality for boot and/or troubleshooting.
835 if (rt_b
== &root_task_group
.rt_bandwidth
)
836 span
= cpu_online_mask
;
838 for_each_cpu(i
, span
) {
840 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
841 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
843 raw_spin_lock(&rq
->lock
);
844 if (rt_rq
->rt_time
) {
847 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
848 if (rt_rq
->rt_throttled
)
849 balance_runtime(rt_rq
);
850 runtime
= rt_rq
->rt_runtime
;
851 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
852 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
853 rt_rq
->rt_throttled
= 0;
857 * When we're idle and a woken (rt) task is
858 * throttled check_preempt_curr() will set
859 * skip_update and the time between the wakeup
860 * and this unthrottle will get accounted as
863 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
864 rq_clock_skip_update(rq
, false);
866 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
868 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
869 } else if (rt_rq
->rt_nr_running
) {
871 if (!rt_rq_throttled(rt_rq
))
874 if (rt_rq
->rt_throttled
)
878 sched_rt_rq_enqueue(rt_rq
);
879 raw_spin_unlock(&rq
->lock
);
882 if (!throttled
&& (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
))
888 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
890 #ifdef CONFIG_RT_GROUP_SCHED
891 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
894 return rt_rq
->highest_prio
.curr
;
897 return rt_task_of(rt_se
)->prio
;
900 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
902 u64 runtime
= sched_rt_runtime(rt_rq
);
904 if (rt_rq
->rt_throttled
)
905 return rt_rq_throttled(rt_rq
);
907 if (runtime
>= sched_rt_period(rt_rq
))
910 balance_runtime(rt_rq
);
911 runtime
= sched_rt_runtime(rt_rq
);
912 if (runtime
== RUNTIME_INF
)
915 if (rt_rq
->rt_time
> runtime
) {
916 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
919 * Don't actually throttle groups that have no runtime assigned
920 * but accrue some time due to boosting.
922 if (likely(rt_b
->rt_runtime
)) {
923 rt_rq
->rt_throttled
= 1;
924 printk_deferred_once("sched: RT throttling activated\n");
927 * In case we did anyway, make it go away,
928 * replenishment is a joke, since it will replenish us
934 if (rt_rq_throttled(rt_rq
)) {
935 sched_rt_rq_dequeue(rt_rq
);
944 * Update the current task's runtime statistics. Skip current tasks that
945 * are not in our scheduling class.
947 static void update_curr_rt(struct rq
*rq
)
949 struct task_struct
*curr
= rq
->curr
;
950 struct sched_rt_entity
*rt_se
= &curr
->rt
;
953 if (curr
->sched_class
!= &rt_sched_class
)
956 delta_exec
= rq_clock_task(rq
) - curr
->se
.exec_start
;
957 if (unlikely((s64
)delta_exec
<= 0))
960 /* Kick cpufreq (see the comment in linux/cpufreq.h). */
961 if (cpu_of(rq
) == smp_processor_id())
962 cpufreq_trigger_update(rq_clock(rq
));
964 schedstat_set(curr
->se
.statistics
.exec_max
,
965 max(curr
->se
.statistics
.exec_max
, delta_exec
));
967 curr
->se
.sum_exec_runtime
+= delta_exec
;
968 account_group_exec_runtime(curr
, delta_exec
);
970 curr
->se
.exec_start
= rq_clock_task(rq
);
971 cpuacct_charge(curr
, delta_exec
);
973 sched_rt_avg_update(rq
, delta_exec
);
975 if (!rt_bandwidth_enabled())
978 for_each_sched_rt_entity(rt_se
) {
979 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
981 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
982 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
983 rt_rq
->rt_time
+= delta_exec
;
984 if (sched_rt_runtime_exceeded(rt_rq
))
986 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
992 dequeue_top_rt_rq(struct rt_rq
*rt_rq
)
994 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
996 BUG_ON(&rq
->rt
!= rt_rq
);
998 if (!rt_rq
->rt_queued
)
1001 BUG_ON(!rq
->nr_running
);
1003 sub_nr_running(rq
, rt_rq
->rt_nr_running
);
1004 rt_rq
->rt_queued
= 0;
1008 enqueue_top_rt_rq(struct rt_rq
*rt_rq
)
1010 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1012 BUG_ON(&rq
->rt
!= rt_rq
);
1014 if (rt_rq
->rt_queued
)
1016 if (rt_rq_throttled(rt_rq
) || !rt_rq
->rt_nr_running
)
1019 add_nr_running(rq
, rt_rq
->rt_nr_running
);
1020 rt_rq
->rt_queued
= 1;
1023 #if defined CONFIG_SMP
1026 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1028 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1030 #ifdef CONFIG_RT_GROUP_SCHED
1032 * Change rq's cpupri only if rt_rq is the top queue.
1034 if (&rq
->rt
!= rt_rq
)
1037 if (rq
->online
&& prio
< prev_prio
)
1038 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
1042 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1044 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1046 #ifdef CONFIG_RT_GROUP_SCHED
1048 * Change rq's cpupri only if rt_rq is the top queue.
1050 if (&rq
->rt
!= rt_rq
)
1053 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
1054 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
1057 #else /* CONFIG_SMP */
1060 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1062 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1064 #endif /* CONFIG_SMP */
1066 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1068 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1070 int prev_prio
= rt_rq
->highest_prio
.curr
;
1072 if (prio
< prev_prio
)
1073 rt_rq
->highest_prio
.curr
= prio
;
1075 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1079 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1081 int prev_prio
= rt_rq
->highest_prio
.curr
;
1083 if (rt_rq
->rt_nr_running
) {
1085 WARN_ON(prio
< prev_prio
);
1088 * This may have been our highest task, and therefore
1089 * we may have some recomputation to do
1091 if (prio
== prev_prio
) {
1092 struct rt_prio_array
*array
= &rt_rq
->active
;
1094 rt_rq
->highest_prio
.curr
=
1095 sched_find_first_bit(array
->bitmap
);
1099 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
1101 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1106 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1107 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1109 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1111 #ifdef CONFIG_RT_GROUP_SCHED
1114 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1116 if (rt_se_boosted(rt_se
))
1117 rt_rq
->rt_nr_boosted
++;
1120 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
1124 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1126 if (rt_se_boosted(rt_se
))
1127 rt_rq
->rt_nr_boosted
--;
1129 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
1132 #else /* CONFIG_RT_GROUP_SCHED */
1135 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1137 start_rt_bandwidth(&def_rt_bandwidth
);
1141 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
1143 #endif /* CONFIG_RT_GROUP_SCHED */
1146 unsigned int rt_se_nr_running(struct sched_rt_entity
*rt_se
)
1148 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1151 return group_rq
->rt_nr_running
;
1157 unsigned int rt_se_rr_nr_running(struct sched_rt_entity
*rt_se
)
1159 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1160 struct task_struct
*tsk
;
1163 return group_rq
->rr_nr_running
;
1165 tsk
= rt_task_of(rt_se
);
1167 return (tsk
->policy
== SCHED_RR
) ? 1 : 0;
1171 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1173 int prio
= rt_se_prio(rt_se
);
1175 WARN_ON(!rt_prio(prio
));
1176 rt_rq
->rt_nr_running
+= rt_se_nr_running(rt_se
);
1177 rt_rq
->rr_nr_running
+= rt_se_rr_nr_running(rt_se
);
1179 inc_rt_prio(rt_rq
, prio
);
1180 inc_rt_migration(rt_se
, rt_rq
);
1181 inc_rt_group(rt_se
, rt_rq
);
1185 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1187 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
1188 WARN_ON(!rt_rq
->rt_nr_running
);
1189 rt_rq
->rt_nr_running
-= rt_se_nr_running(rt_se
);
1190 rt_rq
->rr_nr_running
-= rt_se_rr_nr_running(rt_se
);
1192 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
1193 dec_rt_migration(rt_se
, rt_rq
);
1194 dec_rt_group(rt_se
, rt_rq
);
1198 * Change rt_se->run_list location unless SAVE && !MOVE
1200 * assumes ENQUEUE/DEQUEUE flags match
1202 static inline bool move_entity(unsigned int flags
)
1204 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) == DEQUEUE_SAVE
)
1210 static void __delist_rt_entity(struct sched_rt_entity
*rt_se
, struct rt_prio_array
*array
)
1212 list_del_init(&rt_se
->run_list
);
1214 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
1215 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
1220 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1222 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1223 struct rt_prio_array
*array
= &rt_rq
->active
;
1224 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1225 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1228 * Don't enqueue the group if its throttled, or when empty.
1229 * The latter is a consequence of the former when a child group
1230 * get throttled and the current group doesn't have any other
1233 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
)) {
1235 __delist_rt_entity(rt_se
, array
);
1239 if (move_entity(flags
)) {
1240 WARN_ON_ONCE(rt_se
->on_list
);
1241 if (flags
& ENQUEUE_HEAD
)
1242 list_add(&rt_se
->run_list
, queue
);
1244 list_add_tail(&rt_se
->run_list
, queue
);
1246 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
1251 inc_rt_tasks(rt_se
, rt_rq
);
1254 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1256 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1257 struct rt_prio_array
*array
= &rt_rq
->active
;
1259 if (move_entity(flags
)) {
1260 WARN_ON_ONCE(!rt_se
->on_list
);
1261 __delist_rt_entity(rt_se
, array
);
1265 dec_rt_tasks(rt_se
, rt_rq
);
1269 * Because the prio of an upper entry depends on the lower
1270 * entries, we must remove entries top - down.
1272 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1274 struct sched_rt_entity
*back
= NULL
;
1276 for_each_sched_rt_entity(rt_se
) {
1281 dequeue_top_rt_rq(rt_rq_of_se(back
));
1283 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
1284 if (on_rt_rq(rt_se
))
1285 __dequeue_rt_entity(rt_se
, flags
);
1289 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1291 struct rq
*rq
= rq_of_rt_se(rt_se
);
1293 dequeue_rt_stack(rt_se
, flags
);
1294 for_each_sched_rt_entity(rt_se
)
1295 __enqueue_rt_entity(rt_se
, flags
);
1296 enqueue_top_rt_rq(&rq
->rt
);
1299 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1301 struct rq
*rq
= rq_of_rt_se(rt_se
);
1303 dequeue_rt_stack(rt_se
, flags
);
1305 for_each_sched_rt_entity(rt_se
) {
1306 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
1308 if (rt_rq
&& rt_rq
->rt_nr_running
)
1309 __enqueue_rt_entity(rt_se
, flags
);
1311 enqueue_top_rt_rq(&rq
->rt
);
1315 * Adding/removing a task to/from a priority array:
1318 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1320 struct sched_rt_entity
*rt_se
= &p
->rt
;
1322 if (flags
& ENQUEUE_WAKEUP
)
1325 enqueue_rt_entity(rt_se
, flags
);
1327 if (!task_current(rq
, p
) && tsk_nr_cpus_allowed(p
) > 1)
1328 enqueue_pushable_task(rq
, p
);
1331 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1333 struct sched_rt_entity
*rt_se
= &p
->rt
;
1336 dequeue_rt_entity(rt_se
, flags
);
1338 dequeue_pushable_task(rq
, p
);
1342 * Put task to the head or the end of the run list without the overhead of
1343 * dequeue followed by enqueue.
1346 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
1348 if (on_rt_rq(rt_se
)) {
1349 struct rt_prio_array
*array
= &rt_rq
->active
;
1350 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1353 list_move(&rt_se
->run_list
, queue
);
1355 list_move_tail(&rt_se
->run_list
, queue
);
1359 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
1361 struct sched_rt_entity
*rt_se
= &p
->rt
;
1362 struct rt_rq
*rt_rq
;
1364 for_each_sched_rt_entity(rt_se
) {
1365 rt_rq
= rt_rq_of_se(rt_se
);
1366 requeue_rt_entity(rt_rq
, rt_se
, head
);
1370 static void yield_task_rt(struct rq
*rq
)
1372 requeue_task_rt(rq
, rq
->curr
, 0);
1376 static int find_lowest_rq(struct task_struct
*task
);
1379 select_task_rq_rt(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1381 struct task_struct
*curr
;
1384 /* For anything but wake ups, just return the task_cpu */
1385 if (sd_flag
!= SD_BALANCE_WAKE
&& sd_flag
!= SD_BALANCE_FORK
)
1391 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1394 * If the current task on @p's runqueue is an RT task, then
1395 * try to see if we can wake this RT task up on another
1396 * runqueue. Otherwise simply start this RT task
1397 * on its current runqueue.
1399 * We want to avoid overloading runqueues. If the woken
1400 * task is a higher priority, then it will stay on this CPU
1401 * and the lower prio task should be moved to another CPU.
1402 * Even though this will probably make the lower prio task
1403 * lose its cache, we do not want to bounce a higher task
1404 * around just because it gave up its CPU, perhaps for a
1407 * For equal prio tasks, we just let the scheduler sort it out.
1409 * Otherwise, just let it ride on the affined RQ and the
1410 * post-schedule router will push the preempted task away
1412 * This test is optimistic, if we get it wrong the load-balancer
1413 * will have to sort it out.
1415 if (curr
&& unlikely(rt_task(curr
)) &&
1416 (tsk_nr_cpus_allowed(curr
) < 2 ||
1417 curr
->prio
<= p
->prio
)) {
1418 int target
= find_lowest_rq(p
);
1421 * Don't bother moving it if the destination CPU is
1422 * not running a lower priority task.
1425 p
->prio
< cpu_rq(target
)->rt
.highest_prio
.curr
)
1434 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1437 * Current can't be migrated, useless to reschedule,
1438 * let's hope p can move out.
1440 if (tsk_nr_cpus_allowed(rq
->curr
) == 1 ||
1441 !cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1445 * p is migratable, so let's not schedule it and
1446 * see if it is pushed or pulled somewhere else.
1448 if (tsk_nr_cpus_allowed(p
) != 1
1449 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1453 * There appears to be other cpus that can accept
1454 * current and none to run 'p', so lets reschedule
1455 * to try and push current away:
1457 requeue_task_rt(rq
, p
, 1);
1461 #endif /* CONFIG_SMP */
1464 * Preempt the current task with a newly woken task if needed:
1466 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1468 if (p
->prio
< rq
->curr
->prio
) {
1477 * - the newly woken task is of equal priority to the current task
1478 * - the newly woken task is non-migratable while current is migratable
1479 * - current will be preempted on the next reschedule
1481 * we should check to see if current can readily move to a different
1482 * cpu. If so, we will reschedule to allow the push logic to try
1483 * to move current somewhere else, making room for our non-migratable
1486 if (p
->prio
== rq
->curr
->prio
&& !test_tsk_need_resched(rq
->curr
))
1487 check_preempt_equal_prio(rq
, p
);
1491 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1492 struct rt_rq
*rt_rq
)
1494 struct rt_prio_array
*array
= &rt_rq
->active
;
1495 struct sched_rt_entity
*next
= NULL
;
1496 struct list_head
*queue
;
1499 idx
= sched_find_first_bit(array
->bitmap
);
1500 BUG_ON(idx
>= MAX_RT_PRIO
);
1502 queue
= array
->queue
+ idx
;
1503 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1508 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1510 struct sched_rt_entity
*rt_se
;
1511 struct task_struct
*p
;
1512 struct rt_rq
*rt_rq
= &rq
->rt
;
1515 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1517 rt_rq
= group_rt_rq(rt_se
);
1520 p
= rt_task_of(rt_se
);
1521 p
->se
.exec_start
= rq_clock_task(rq
);
1526 static struct task_struct
*
1527 pick_next_task_rt(struct rq
*rq
, struct task_struct
*prev
, struct pin_cookie cookie
)
1529 struct task_struct
*p
;
1530 struct rt_rq
*rt_rq
= &rq
->rt
;
1532 if (need_pull_rt_task(rq
, prev
)) {
1534 * This is OK, because current is on_cpu, which avoids it being
1535 * picked for load-balance and preemption/IRQs are still
1536 * disabled avoiding further scheduler activity on it and we're
1537 * being very careful to re-start the picking loop.
1539 lockdep_unpin_lock(&rq
->lock
, cookie
);
1541 lockdep_repin_lock(&rq
->lock
, cookie
);
1543 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1544 * means a dl or stop task can slip in, in which case we need
1545 * to re-start task selection.
1547 if (unlikely((rq
->stop
&& task_on_rq_queued(rq
->stop
)) ||
1548 rq
->dl
.dl_nr_running
))
1553 * We may dequeue prev's rt_rq in put_prev_task().
1554 * So, we update time before rt_nr_running check.
1556 if (prev
->sched_class
== &rt_sched_class
)
1559 if (!rt_rq
->rt_queued
)
1562 put_prev_task(rq
, prev
);
1564 p
= _pick_next_task_rt(rq
);
1566 /* The running task is never eligible for pushing */
1567 dequeue_pushable_task(rq
, p
);
1569 queue_push_tasks(rq
);
1574 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1579 * The previous task needs to be made eligible for pushing
1580 * if it is still active
1582 if (on_rt_rq(&p
->rt
) && tsk_nr_cpus_allowed(p
) > 1)
1583 enqueue_pushable_task(rq
, p
);
1588 /* Only try algorithms three times */
1589 #define RT_MAX_TRIES 3
1591 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1593 if (!task_running(rq
, p
) &&
1594 cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
1600 * Return the highest pushable rq's task, which is suitable to be executed
1601 * on the cpu, NULL otherwise
1603 static struct task_struct
*pick_highest_pushable_task(struct rq
*rq
, int cpu
)
1605 struct plist_head
*head
= &rq
->rt
.pushable_tasks
;
1606 struct task_struct
*p
;
1608 if (!has_pushable_tasks(rq
))
1611 plist_for_each_entry(p
, head
, pushable_tasks
) {
1612 if (pick_rt_task(rq
, p
, cpu
))
1619 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1621 static int find_lowest_rq(struct task_struct
*task
)
1623 struct sched_domain
*sd
;
1624 struct cpumask
*lowest_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask
);
1625 int this_cpu
= smp_processor_id();
1626 int cpu
= task_cpu(task
);
1628 /* Make sure the mask is initialized first */
1629 if (unlikely(!lowest_mask
))
1632 if (tsk_nr_cpus_allowed(task
) == 1)
1633 return -1; /* No other targets possible */
1635 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1636 return -1; /* No targets found */
1639 * At this point we have built a mask of cpus representing the
1640 * lowest priority tasks in the system. Now we want to elect
1641 * the best one based on our affinity and topology.
1643 * We prioritize the last cpu that the task executed on since
1644 * it is most likely cache-hot in that location.
1646 if (cpumask_test_cpu(cpu
, lowest_mask
))
1650 * Otherwise, we consult the sched_domains span maps to figure
1651 * out which cpu is logically closest to our hot cache data.
1653 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1654 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1657 for_each_domain(cpu
, sd
) {
1658 if (sd
->flags
& SD_WAKE_AFFINE
) {
1662 * "this_cpu" is cheaper to preempt than a
1665 if (this_cpu
!= -1 &&
1666 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1671 best_cpu
= cpumask_first_and(lowest_mask
,
1672 sched_domain_span(sd
));
1673 if (best_cpu
< nr_cpu_ids
) {
1682 * And finally, if there were no matches within the domains
1683 * just give the caller *something* to work with from the compatible
1689 cpu
= cpumask_any(lowest_mask
);
1690 if (cpu
< nr_cpu_ids
)
1695 /* Will lock the rq it finds */
1696 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1698 struct rq
*lowest_rq
= NULL
;
1702 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1703 cpu
= find_lowest_rq(task
);
1705 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1708 lowest_rq
= cpu_rq(cpu
);
1710 if (lowest_rq
->rt
.highest_prio
.curr
<= task
->prio
) {
1712 * Target rq has tasks of equal or higher priority,
1713 * retrying does not release any lock and is unlikely
1714 * to yield a different result.
1720 /* if the prio of this runqueue changed, try again */
1721 if (double_lock_balance(rq
, lowest_rq
)) {
1723 * We had to unlock the run queue. In
1724 * the mean time, task could have
1725 * migrated already or had its affinity changed.
1726 * Also make sure that it wasn't scheduled on its rq.
1728 if (unlikely(task_rq(task
) != rq
||
1729 !cpumask_test_cpu(lowest_rq
->cpu
,
1730 tsk_cpus_allowed(task
)) ||
1731 task_running(rq
, task
) ||
1733 !task_on_rq_queued(task
))) {
1735 double_unlock_balance(rq
, lowest_rq
);
1741 /* If this rq is still suitable use it. */
1742 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1746 double_unlock_balance(rq
, lowest_rq
);
1753 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1755 struct task_struct
*p
;
1757 if (!has_pushable_tasks(rq
))
1760 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1761 struct task_struct
, pushable_tasks
);
1763 BUG_ON(rq
->cpu
!= task_cpu(p
));
1764 BUG_ON(task_current(rq
, p
));
1765 BUG_ON(tsk_nr_cpus_allowed(p
) <= 1);
1767 BUG_ON(!task_on_rq_queued(p
));
1768 BUG_ON(!rt_task(p
));
1774 * If the current CPU has more than one RT task, see if the non
1775 * running task can migrate over to a CPU that is running a task
1776 * of lesser priority.
1778 static int push_rt_task(struct rq
*rq
)
1780 struct task_struct
*next_task
;
1781 struct rq
*lowest_rq
;
1784 if (!rq
->rt
.overloaded
)
1787 next_task
= pick_next_pushable_task(rq
);
1792 if (unlikely(next_task
== rq
->curr
)) {
1798 * It's possible that the next_task slipped in of
1799 * higher priority than current. If that's the case
1800 * just reschedule current.
1802 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1807 /* We might release rq lock */
1808 get_task_struct(next_task
);
1810 /* find_lock_lowest_rq locks the rq if found */
1811 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1813 struct task_struct
*task
;
1815 * find_lock_lowest_rq releases rq->lock
1816 * so it is possible that next_task has migrated.
1818 * We need to make sure that the task is still on the same
1819 * run-queue and is also still the next task eligible for
1822 task
= pick_next_pushable_task(rq
);
1823 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1825 * The task hasn't migrated, and is still the next
1826 * eligible task, but we failed to find a run-queue
1827 * to push it to. Do not retry in this case, since
1828 * other cpus will pull from us when ready.
1834 /* No more tasks, just exit */
1838 * Something has shifted, try again.
1840 put_task_struct(next_task
);
1845 deactivate_task(rq
, next_task
, 0);
1846 set_task_cpu(next_task
, lowest_rq
->cpu
);
1847 activate_task(lowest_rq
, next_task
, 0);
1850 resched_curr(lowest_rq
);
1852 double_unlock_balance(rq
, lowest_rq
);
1855 put_task_struct(next_task
);
1860 static void push_rt_tasks(struct rq
*rq
)
1862 /* push_rt_task will return true if it moved an RT */
1863 while (push_rt_task(rq
))
1867 #ifdef HAVE_RT_PUSH_IPI
1869 * The search for the next cpu always starts at rq->cpu and ends
1870 * when we reach rq->cpu again. It will never return rq->cpu.
1871 * This returns the next cpu to check, or nr_cpu_ids if the loop
1874 * rq->rt.push_cpu holds the last cpu returned by this function,
1875 * or if this is the first instance, it must hold rq->cpu.
1877 static int rto_next_cpu(struct rq
*rq
)
1879 int prev_cpu
= rq
->rt
.push_cpu
;
1882 cpu
= cpumask_next(prev_cpu
, rq
->rd
->rto_mask
);
1885 * If the previous cpu is less than the rq's CPU, then it already
1886 * passed the end of the mask, and has started from the beginning.
1887 * We end if the next CPU is greater or equal to rq's CPU.
1889 if (prev_cpu
< rq
->cpu
) {
1893 } else if (cpu
>= nr_cpu_ids
) {
1895 * We passed the end of the mask, start at the beginning.
1896 * If the result is greater or equal to the rq's CPU, then
1897 * the loop is finished.
1899 cpu
= cpumask_first(rq
->rd
->rto_mask
);
1903 rq
->rt
.push_cpu
= cpu
;
1905 /* Return cpu to let the caller know if the loop is finished or not */
1909 static int find_next_push_cpu(struct rq
*rq
)
1915 cpu
= rto_next_cpu(rq
);
1916 if (cpu
>= nr_cpu_ids
)
1918 next_rq
= cpu_rq(cpu
);
1920 /* Make sure the next rq can push to this rq */
1921 if (next_rq
->rt
.highest_prio
.next
< rq
->rt
.highest_prio
.curr
)
1928 #define RT_PUSH_IPI_EXECUTING 1
1929 #define RT_PUSH_IPI_RESTART 2
1931 static void tell_cpu_to_push(struct rq
*rq
)
1935 if (rq
->rt
.push_flags
& RT_PUSH_IPI_EXECUTING
) {
1936 raw_spin_lock(&rq
->rt
.push_lock
);
1937 /* Make sure it's still executing */
1938 if (rq
->rt
.push_flags
& RT_PUSH_IPI_EXECUTING
) {
1940 * Tell the IPI to restart the loop as things have
1941 * changed since it started.
1943 rq
->rt
.push_flags
|= RT_PUSH_IPI_RESTART
;
1944 raw_spin_unlock(&rq
->rt
.push_lock
);
1947 raw_spin_unlock(&rq
->rt
.push_lock
);
1950 /* When here, there's no IPI going around */
1952 rq
->rt
.push_cpu
= rq
->cpu
;
1953 cpu
= find_next_push_cpu(rq
);
1954 if (cpu
>= nr_cpu_ids
)
1957 rq
->rt
.push_flags
= RT_PUSH_IPI_EXECUTING
;
1959 irq_work_queue_on(&rq
->rt
.push_work
, cpu
);
1962 /* Called from hardirq context */
1963 static void try_to_push_tasks(void *arg
)
1965 struct rt_rq
*rt_rq
= arg
;
1966 struct rq
*rq
, *src_rq
;
1970 this_cpu
= rt_rq
->push_cpu
;
1972 /* Paranoid check */
1973 BUG_ON(this_cpu
!= smp_processor_id());
1975 rq
= cpu_rq(this_cpu
);
1976 src_rq
= rq_of_rt_rq(rt_rq
);
1979 if (has_pushable_tasks(rq
)) {
1980 raw_spin_lock(&rq
->lock
);
1982 raw_spin_unlock(&rq
->lock
);
1985 /* Pass the IPI to the next rt overloaded queue */
1986 raw_spin_lock(&rt_rq
->push_lock
);
1988 * If the source queue changed since the IPI went out,
1989 * we need to restart the search from that CPU again.
1991 if (rt_rq
->push_flags
& RT_PUSH_IPI_RESTART
) {
1992 rt_rq
->push_flags
&= ~RT_PUSH_IPI_RESTART
;
1993 rt_rq
->push_cpu
= src_rq
->cpu
;
1996 cpu
= find_next_push_cpu(src_rq
);
1998 if (cpu
>= nr_cpu_ids
)
1999 rt_rq
->push_flags
&= ~RT_PUSH_IPI_EXECUTING
;
2000 raw_spin_unlock(&rt_rq
->push_lock
);
2002 if (cpu
>= nr_cpu_ids
)
2006 * It is possible that a restart caused this CPU to be
2007 * chosen again. Don't bother with an IPI, just see if we
2008 * have more to push.
2010 if (unlikely(cpu
== rq
->cpu
))
2013 /* Try the next RT overloaded CPU */
2014 irq_work_queue_on(&rt_rq
->push_work
, cpu
);
2017 static void push_irq_work_func(struct irq_work
*work
)
2019 struct rt_rq
*rt_rq
= container_of(work
, struct rt_rq
, push_work
);
2021 try_to_push_tasks(rt_rq
);
2023 #endif /* HAVE_RT_PUSH_IPI */
2025 static void pull_rt_task(struct rq
*this_rq
)
2027 int this_cpu
= this_rq
->cpu
, cpu
;
2028 bool resched
= false;
2029 struct task_struct
*p
;
2032 if (likely(!rt_overloaded(this_rq
)))
2036 * Match the barrier from rt_set_overloaded; this guarantees that if we
2037 * see overloaded we must also see the rto_mask bit.
2041 #ifdef HAVE_RT_PUSH_IPI
2042 if (sched_feat(RT_PUSH_IPI
)) {
2043 tell_cpu_to_push(this_rq
);
2048 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
2049 if (this_cpu
== cpu
)
2052 src_rq
= cpu_rq(cpu
);
2055 * Don't bother taking the src_rq->lock if the next highest
2056 * task is known to be lower-priority than our current task.
2057 * This may look racy, but if this value is about to go
2058 * logically higher, the src_rq will push this task away.
2059 * And if its going logically lower, we do not care
2061 if (src_rq
->rt
.highest_prio
.next
>=
2062 this_rq
->rt
.highest_prio
.curr
)
2066 * We can potentially drop this_rq's lock in
2067 * double_lock_balance, and another CPU could
2070 double_lock_balance(this_rq
, src_rq
);
2073 * We can pull only a task, which is pushable
2074 * on its rq, and no others.
2076 p
= pick_highest_pushable_task(src_rq
, this_cpu
);
2079 * Do we have an RT task that preempts
2080 * the to-be-scheduled task?
2082 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
2083 WARN_ON(p
== src_rq
->curr
);
2084 WARN_ON(!task_on_rq_queued(p
));
2087 * There's a chance that p is higher in priority
2088 * than what's currently running on its cpu.
2089 * This is just that p is wakeing up and hasn't
2090 * had a chance to schedule. We only pull
2091 * p if it is lower in priority than the
2092 * current task on the run queue
2094 if (p
->prio
< src_rq
->curr
->prio
)
2099 deactivate_task(src_rq
, p
, 0);
2100 set_task_cpu(p
, this_cpu
);
2101 activate_task(this_rq
, p
, 0);
2103 * We continue with the search, just in
2104 * case there's an even higher prio task
2105 * in another runqueue. (low likelihood
2110 double_unlock_balance(this_rq
, src_rq
);
2114 resched_curr(this_rq
);
2118 * If we are not running and we are not going to reschedule soon, we should
2119 * try to push tasks away now
2121 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
2123 if (!task_running(rq
, p
) &&
2124 !test_tsk_need_resched(rq
->curr
) &&
2125 tsk_nr_cpus_allowed(p
) > 1 &&
2126 (dl_task(rq
->curr
) || rt_task(rq
->curr
)) &&
2127 (tsk_nr_cpus_allowed(rq
->curr
) < 2 ||
2128 rq
->curr
->prio
<= p
->prio
))
2132 /* Assumes rq->lock is held */
2133 static void rq_online_rt(struct rq
*rq
)
2135 if (rq
->rt
.overloaded
)
2136 rt_set_overload(rq
);
2138 __enable_runtime(rq
);
2140 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
2143 /* Assumes rq->lock is held */
2144 static void rq_offline_rt(struct rq
*rq
)
2146 if (rq
->rt
.overloaded
)
2147 rt_clear_overload(rq
);
2149 __disable_runtime(rq
);
2151 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
2155 * When switch from the rt queue, we bring ourselves to a position
2156 * that we might want to pull RT tasks from other runqueues.
2158 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
2161 * If there are other RT tasks then we will reschedule
2162 * and the scheduling of the other RT tasks will handle
2163 * the balancing. But if we are the last RT task
2164 * we may need to handle the pulling of RT tasks
2167 if (!task_on_rq_queued(p
) || rq
->rt
.rt_nr_running
)
2170 queue_pull_task(rq
);
2173 void __init
init_sched_rt_class(void)
2177 for_each_possible_cpu(i
) {
2178 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
2179 GFP_KERNEL
, cpu_to_node(i
));
2182 #endif /* CONFIG_SMP */
2185 * When switching a task to RT, we may overload the runqueue
2186 * with RT tasks. In this case we try to push them off to
2189 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
2192 * If we are already running, then there's nothing
2193 * that needs to be done. But if we are not running
2194 * we may need to preempt the current running task.
2195 * If that current running task is also an RT task
2196 * then see if we can move to another run queue.
2198 if (task_on_rq_queued(p
) && rq
->curr
!= p
) {
2200 if (tsk_nr_cpus_allowed(p
) > 1 && rq
->rt
.overloaded
)
2201 queue_push_tasks(rq
);
2203 if (p
->prio
< rq
->curr
->prio
)
2205 #endif /* CONFIG_SMP */
2210 * Priority of the task has changed. This may cause
2211 * us to initiate a push or pull.
2214 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
2216 if (!task_on_rq_queued(p
))
2219 if (rq
->curr
== p
) {
2222 * If our priority decreases while running, we
2223 * may need to pull tasks to this runqueue.
2225 if (oldprio
< p
->prio
)
2226 queue_pull_task(rq
);
2229 * If there's a higher priority task waiting to run
2232 if (p
->prio
> rq
->rt
.highest_prio
.curr
)
2235 /* For UP simply resched on drop of prio */
2236 if (oldprio
< p
->prio
)
2238 #endif /* CONFIG_SMP */
2241 * This task is not running, but if it is
2242 * greater than the current running task
2245 if (p
->prio
< rq
->curr
->prio
)
2250 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
2252 unsigned long soft
, hard
;
2254 /* max may change after cur was read, this will be fixed next tick */
2255 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
2256 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
2258 if (soft
!= RLIM_INFINITY
) {
2261 if (p
->rt
.watchdog_stamp
!= jiffies
) {
2263 p
->rt
.watchdog_stamp
= jiffies
;
2266 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
2267 if (p
->rt
.timeout
> next
)
2268 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
2272 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
2274 struct sched_rt_entity
*rt_se
= &p
->rt
;
2281 * RR tasks need a special form of timeslice management.
2282 * FIFO tasks have no timeslices.
2284 if (p
->policy
!= SCHED_RR
)
2287 if (--p
->rt
.time_slice
)
2290 p
->rt
.time_slice
= sched_rr_timeslice
;
2293 * Requeue to the end of queue if we (and all of our ancestors) are not
2294 * the only element on the queue
2296 for_each_sched_rt_entity(rt_se
) {
2297 if (rt_se
->run_list
.prev
!= rt_se
->run_list
.next
) {
2298 requeue_task_rt(rq
, p
, 0);
2305 static void set_curr_task_rt(struct rq
*rq
)
2307 struct task_struct
*p
= rq
->curr
;
2309 p
->se
.exec_start
= rq_clock_task(rq
);
2311 /* The running task is never eligible for pushing */
2312 dequeue_pushable_task(rq
, p
);
2315 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
2318 * Time slice is 0 for SCHED_FIFO tasks
2320 if (task
->policy
== SCHED_RR
)
2321 return sched_rr_timeslice
;
2326 const struct sched_class rt_sched_class
= {
2327 .next
= &fair_sched_class
,
2328 .enqueue_task
= enqueue_task_rt
,
2329 .dequeue_task
= dequeue_task_rt
,
2330 .yield_task
= yield_task_rt
,
2332 .check_preempt_curr
= check_preempt_curr_rt
,
2334 .pick_next_task
= pick_next_task_rt
,
2335 .put_prev_task
= put_prev_task_rt
,
2338 .select_task_rq
= select_task_rq_rt
,
2340 .set_cpus_allowed
= set_cpus_allowed_common
,
2341 .rq_online
= rq_online_rt
,
2342 .rq_offline
= rq_offline_rt
,
2343 .task_woken
= task_woken_rt
,
2344 .switched_from
= switched_from_rt
,
2347 .set_curr_task
= set_curr_task_rt
,
2348 .task_tick
= task_tick_rt
,
2350 .get_rr_interval
= get_rr_interval_rt
,
2352 .prio_changed
= prio_changed_rt
,
2353 .switched_to
= switched_to_rt
,
2355 .update_curr
= update_curr_rt
,
2358 #ifdef CONFIG_SCHED_DEBUG
2359 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
2361 void print_rt_stats(struct seq_file
*m
, int cpu
)
2364 struct rt_rq
*rt_rq
;
2367 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
2368 print_rt_rq(m
, cpu
, rt_rq
);
2371 #endif /* CONFIG_SCHED_DEBUG */