ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / fs / ocfs2 / aops.c
blobac97bca282d25ebb5943c41ac05fef385d93abf1
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #include <cluster/masklog.h>
34 #include "ocfs2.h"
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
79 fe = (struct ocfs2_dinode *) bh->b_data;
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr, KM_USER0);
114 set_buffer_uptodate(bh_result);
116 brelse(buffer_cache_bh);
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
122 err = 0;
124 bail:
125 brelse(bh);
127 return err;
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
161 if (max_blocks < count)
162 count = max_blocks;
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
185 bh_result->b_size = count << inode->i_blkbits;
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
208 bail:
209 if (err < 0)
210 err = -EIO;
212 return err;
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
228 size = i_size_read(inode);
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
247 SetPageUptodate(page);
249 return 0;
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254 int ret;
255 struct buffer_head *di_bh = NULL;
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 unlock_page(page);
270 brelse(di_bh);
271 return ret;
274 static int ocfs2_readpage(struct file *file, struct page *page)
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 ret = AOP_TRUNCATED_PAGE;
294 goto out_inode_unlock;
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 * and notice that the page they just read isn't needed.
305 * XXX sys_readahead() seems to get that wrong?
307 if (start >= i_size_read(inode)) {
308 zero_user(page, 0, PAGE_SIZE);
309 SetPageUptodate(page);
310 ret = 0;
311 goto out_alloc;
314 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 ret = ocfs2_readpage_inline(inode, page);
316 else
317 ret = block_read_full_page(page, ocfs2_get_block);
318 unlock = 0;
320 out_alloc:
321 up_read(&OCFS2_I(inode)->ip_alloc_sem);
322 out_inode_unlock:
323 ocfs2_inode_unlock(inode, 0);
324 out:
325 if (unlock)
326 unlock_page(page);
327 return ret;
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
379 out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
383 return err;
386 /* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
399 trace_ocfs2_writepage(
400 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
401 page->index);
403 return block_write_full_page(page, ocfs2_get_block, wbc);
406 /* Taken from ext3. We don't necessarily need the full blown
407 * functionality yet, but IMHO it's better to cut and paste the whole
408 * thing so we can avoid introducing our own bugs (and easily pick up
409 * their fixes when they happen) --Mark */
410 int walk_page_buffers( handle_t *handle,
411 struct buffer_head *head,
412 unsigned from,
413 unsigned to,
414 int *partial,
415 int (*fn)( handle_t *handle,
416 struct buffer_head *bh))
418 struct buffer_head *bh;
419 unsigned block_start, block_end;
420 unsigned blocksize = head->b_size;
421 int err, ret = 0;
422 struct buffer_head *next;
424 for ( bh = head, block_start = 0;
425 ret == 0 && (bh != head || !block_start);
426 block_start = block_end, bh = next)
428 next = bh->b_this_page;
429 block_end = block_start + blocksize;
430 if (block_end <= from || block_start >= to) {
431 if (partial && !buffer_uptodate(bh))
432 *partial = 1;
433 continue;
435 err = (*fn)(handle, bh);
436 if (!ret)
437 ret = err;
439 return ret;
442 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
444 sector_t status;
445 u64 p_blkno = 0;
446 int err = 0;
447 struct inode *inode = mapping->host;
449 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
450 (unsigned long long)block);
452 /* We don't need to lock journal system files, since they aren't
453 * accessed concurrently from multiple nodes.
455 if (!INODE_JOURNAL(inode)) {
456 err = ocfs2_inode_lock(inode, NULL, 0);
457 if (err) {
458 if (err != -ENOENT)
459 mlog_errno(err);
460 goto bail;
462 down_read(&OCFS2_I(inode)->ip_alloc_sem);
465 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
466 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
467 NULL);
469 if (!INODE_JOURNAL(inode)) {
470 up_read(&OCFS2_I(inode)->ip_alloc_sem);
471 ocfs2_inode_unlock(inode, 0);
474 if (err) {
475 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
476 (unsigned long long)block);
477 mlog_errno(err);
478 goto bail;
481 bail:
482 status = err ? 0 : p_blkno;
484 return status;
488 * TODO: Make this into a generic get_blocks function.
490 * From do_direct_io in direct-io.c:
491 * "So what we do is to permit the ->get_blocks function to populate
492 * bh.b_size with the size of IO which is permitted at this offset and
493 * this i_blkbits."
495 * This function is called directly from get_more_blocks in direct-io.c.
497 * called like this: dio->get_blocks(dio->inode, fs_startblk,
498 * fs_count, map_bh, dio->rw == WRITE);
500 * Note that we never bother to allocate blocks here, and thus ignore the
501 * create argument.
503 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
504 struct buffer_head *bh_result, int create)
506 int ret;
507 u64 p_blkno, inode_blocks, contig_blocks;
508 unsigned int ext_flags;
509 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
510 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
512 /* This function won't even be called if the request isn't all
513 * nicely aligned and of the right size, so there's no need
514 * for us to check any of that. */
516 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
518 /* This figures out the size of the next contiguous block, and
519 * our logical offset */
520 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
521 &contig_blocks, &ext_flags);
522 if (ret) {
523 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
524 (unsigned long long)iblock);
525 ret = -EIO;
526 goto bail;
529 /* We should already CoW the refcounted extent in case of create. */
530 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
533 * get_more_blocks() expects us to describe a hole by clearing
534 * the mapped bit on bh_result().
536 * Consider an unwritten extent as a hole.
538 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
539 map_bh(bh_result, inode->i_sb, p_blkno);
540 else
541 clear_buffer_mapped(bh_result);
543 /* make sure we don't map more than max_blocks blocks here as
544 that's all the kernel will handle at this point. */
545 if (max_blocks < contig_blocks)
546 contig_blocks = max_blocks;
547 bh_result->b_size = contig_blocks << blocksize_bits;
548 bail:
549 return ret;
553 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
554 * particularly interested in the aio/dio case. Like the core uses
555 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
556 * truncation on another.
558 static void ocfs2_dio_end_io(struct kiocb *iocb,
559 loff_t offset,
560 ssize_t bytes,
561 void *private,
562 int ret,
563 bool is_async)
565 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
566 int level;
568 /* this io's submitter should not have unlocked this before we could */
569 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
571 if (ocfs2_iocb_is_sem_locked(iocb)) {
572 up_read(&inode->i_alloc_sem);
573 ocfs2_iocb_clear_sem_locked(iocb);
576 ocfs2_iocb_clear_rw_locked(iocb);
578 level = ocfs2_iocb_rw_locked_level(iocb);
579 ocfs2_rw_unlock(inode, level);
581 if (is_async)
582 aio_complete(iocb, ret, 0);
586 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
587 * from ext3. PageChecked() bits have been removed as OCFS2 does not
588 * do journalled data.
590 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
592 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
594 jbd2_journal_invalidatepage(journal, page, offset);
597 static int ocfs2_releasepage(struct page *page, gfp_t wait)
599 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
601 if (!page_has_buffers(page))
602 return 0;
603 return jbd2_journal_try_to_free_buffers(journal, page, wait);
606 static ssize_t ocfs2_direct_IO(int rw,
607 struct kiocb *iocb,
608 const struct iovec *iov,
609 loff_t offset,
610 unsigned long nr_segs)
612 struct file *file = iocb->ki_filp;
613 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
616 * Fallback to buffered I/O if we see an inode without
617 * extents.
619 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
620 return 0;
622 /* Fallback to buffered I/O if we are appending. */
623 if (i_size_read(inode) <= offset)
624 return 0;
626 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
627 iov, offset, nr_segs,
628 ocfs2_direct_IO_get_blocks,
629 ocfs2_dio_end_io, NULL, 0);
632 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
633 u32 cpos,
634 unsigned int *start,
635 unsigned int *end)
637 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
639 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
640 unsigned int cpp;
642 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
644 cluster_start = cpos % cpp;
645 cluster_start = cluster_start << osb->s_clustersize_bits;
647 cluster_end = cluster_start + osb->s_clustersize;
650 BUG_ON(cluster_start > PAGE_SIZE);
651 BUG_ON(cluster_end > PAGE_SIZE);
653 if (start)
654 *start = cluster_start;
655 if (end)
656 *end = cluster_end;
660 * 'from' and 'to' are the region in the page to avoid zeroing.
662 * If pagesize > clustersize, this function will avoid zeroing outside
663 * of the cluster boundary.
665 * from == to == 0 is code for "zero the entire cluster region"
667 static void ocfs2_clear_page_regions(struct page *page,
668 struct ocfs2_super *osb, u32 cpos,
669 unsigned from, unsigned to)
671 void *kaddr;
672 unsigned int cluster_start, cluster_end;
674 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
676 kaddr = kmap_atomic(page, KM_USER0);
678 if (from || to) {
679 if (from > cluster_start)
680 memset(kaddr + cluster_start, 0, from - cluster_start);
681 if (to < cluster_end)
682 memset(kaddr + to, 0, cluster_end - to);
683 } else {
684 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
687 kunmap_atomic(kaddr, KM_USER0);
691 * Nonsparse file systems fully allocate before we get to the write
692 * code. This prevents ocfs2_write() from tagging the write as an
693 * allocating one, which means ocfs2_map_page_blocks() might try to
694 * read-in the blocks at the tail of our file. Avoid reading them by
695 * testing i_size against each block offset.
697 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
698 unsigned int block_start)
700 u64 offset = page_offset(page) + block_start;
702 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
703 return 1;
705 if (i_size_read(inode) > offset)
706 return 1;
708 return 0;
712 * Some of this taken from __block_write_begin(). We already have our
713 * mapping by now though, and the entire write will be allocating or
714 * it won't, so not much need to use BH_New.
716 * This will also skip zeroing, which is handled externally.
718 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
719 struct inode *inode, unsigned int from,
720 unsigned int to, int new)
722 int ret = 0;
723 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
724 unsigned int block_end, block_start;
725 unsigned int bsize = 1 << inode->i_blkbits;
727 if (!page_has_buffers(page))
728 create_empty_buffers(page, bsize, 0);
730 head = page_buffers(page);
731 for (bh = head, block_start = 0; bh != head || !block_start;
732 bh = bh->b_this_page, block_start += bsize) {
733 block_end = block_start + bsize;
735 clear_buffer_new(bh);
738 * Ignore blocks outside of our i/o range -
739 * they may belong to unallocated clusters.
741 if (block_start >= to || block_end <= from) {
742 if (PageUptodate(page))
743 set_buffer_uptodate(bh);
744 continue;
748 * For an allocating write with cluster size >= page
749 * size, we always write the entire page.
751 if (new)
752 set_buffer_new(bh);
754 if (!buffer_mapped(bh)) {
755 map_bh(bh, inode->i_sb, *p_blkno);
756 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
759 if (PageUptodate(page)) {
760 if (!buffer_uptodate(bh))
761 set_buffer_uptodate(bh);
762 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
763 !buffer_new(bh) &&
764 ocfs2_should_read_blk(inode, page, block_start) &&
765 (block_start < from || block_end > to)) {
766 ll_rw_block(READ, 1, &bh);
767 *wait_bh++=bh;
770 *p_blkno = *p_blkno + 1;
774 * If we issued read requests - let them complete.
776 while(wait_bh > wait) {
777 wait_on_buffer(*--wait_bh);
778 if (!buffer_uptodate(*wait_bh))
779 ret = -EIO;
782 if (ret == 0 || !new)
783 return ret;
786 * If we get -EIO above, zero out any newly allocated blocks
787 * to avoid exposing stale data.
789 bh = head;
790 block_start = 0;
791 do {
792 block_end = block_start + bsize;
793 if (block_end <= from)
794 goto next_bh;
795 if (block_start >= to)
796 break;
798 zero_user(page, block_start, bh->b_size);
799 set_buffer_uptodate(bh);
800 mark_buffer_dirty(bh);
802 next_bh:
803 block_start = block_end;
804 bh = bh->b_this_page;
805 } while (bh != head);
807 return ret;
810 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
811 #define OCFS2_MAX_CTXT_PAGES 1
812 #else
813 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
814 #endif
816 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
819 * Describe the state of a single cluster to be written to.
821 struct ocfs2_write_cluster_desc {
822 u32 c_cpos;
823 u32 c_phys;
825 * Give this a unique field because c_phys eventually gets
826 * filled.
828 unsigned c_new;
829 unsigned c_unwritten;
830 unsigned c_needs_zero;
833 struct ocfs2_write_ctxt {
834 /* Logical cluster position / len of write */
835 u32 w_cpos;
836 u32 w_clen;
838 /* First cluster allocated in a nonsparse extend */
839 u32 w_first_new_cpos;
841 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
844 * This is true if page_size > cluster_size.
846 * It triggers a set of special cases during write which might
847 * have to deal with allocating writes to partial pages.
849 unsigned int w_large_pages;
852 * Pages involved in this write.
854 * w_target_page is the page being written to by the user.
856 * w_pages is an array of pages which always contains
857 * w_target_page, and in the case of an allocating write with
858 * page_size < cluster size, it will contain zero'd and mapped
859 * pages adjacent to w_target_page which need to be written
860 * out in so that future reads from that region will get
861 * zero's.
863 unsigned int w_num_pages;
864 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
865 struct page *w_target_page;
868 * ocfs2_write_end() uses this to know what the real range to
869 * write in the target should be.
871 unsigned int w_target_from;
872 unsigned int w_target_to;
875 * We could use journal_current_handle() but this is cleaner,
876 * IMHO -Mark
878 handle_t *w_handle;
880 struct buffer_head *w_di_bh;
882 struct ocfs2_cached_dealloc_ctxt w_dealloc;
885 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
887 int i;
889 for(i = 0; i < num_pages; i++) {
890 if (pages[i]) {
891 unlock_page(pages[i]);
892 mark_page_accessed(pages[i]);
893 page_cache_release(pages[i]);
898 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
900 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
902 brelse(wc->w_di_bh);
903 kfree(wc);
906 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
907 struct ocfs2_super *osb, loff_t pos,
908 unsigned len, struct buffer_head *di_bh)
910 u32 cend;
911 struct ocfs2_write_ctxt *wc;
913 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
914 if (!wc)
915 return -ENOMEM;
917 wc->w_cpos = pos >> osb->s_clustersize_bits;
918 wc->w_first_new_cpos = UINT_MAX;
919 cend = (pos + len - 1) >> osb->s_clustersize_bits;
920 wc->w_clen = cend - wc->w_cpos + 1;
921 get_bh(di_bh);
922 wc->w_di_bh = di_bh;
924 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
925 wc->w_large_pages = 1;
926 else
927 wc->w_large_pages = 0;
929 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
931 *wcp = wc;
933 return 0;
937 * If a page has any new buffers, zero them out here, and mark them uptodate
938 * and dirty so they'll be written out (in order to prevent uninitialised
939 * block data from leaking). And clear the new bit.
941 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
943 unsigned int block_start, block_end;
944 struct buffer_head *head, *bh;
946 BUG_ON(!PageLocked(page));
947 if (!page_has_buffers(page))
948 return;
950 bh = head = page_buffers(page);
951 block_start = 0;
952 do {
953 block_end = block_start + bh->b_size;
955 if (buffer_new(bh)) {
956 if (block_end > from && block_start < to) {
957 if (!PageUptodate(page)) {
958 unsigned start, end;
960 start = max(from, block_start);
961 end = min(to, block_end);
963 zero_user_segment(page, start, end);
964 set_buffer_uptodate(bh);
967 clear_buffer_new(bh);
968 mark_buffer_dirty(bh);
972 block_start = block_end;
973 bh = bh->b_this_page;
974 } while (bh != head);
978 * Only called when we have a failure during allocating write to write
979 * zero's to the newly allocated region.
981 static void ocfs2_write_failure(struct inode *inode,
982 struct ocfs2_write_ctxt *wc,
983 loff_t user_pos, unsigned user_len)
985 int i;
986 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
987 to = user_pos + user_len;
988 struct page *tmppage;
990 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
992 for(i = 0; i < wc->w_num_pages; i++) {
993 tmppage = wc->w_pages[i];
995 if (page_has_buffers(tmppage)) {
996 if (ocfs2_should_order_data(inode))
997 ocfs2_jbd2_file_inode(wc->w_handle, inode);
999 block_commit_write(tmppage, from, to);
1004 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1005 struct ocfs2_write_ctxt *wc,
1006 struct page *page, u32 cpos,
1007 loff_t user_pos, unsigned user_len,
1008 int new)
1010 int ret;
1011 unsigned int map_from = 0, map_to = 0;
1012 unsigned int cluster_start, cluster_end;
1013 unsigned int user_data_from = 0, user_data_to = 0;
1015 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1016 &cluster_start, &cluster_end);
1018 /* treat the write as new if the a hole/lseek spanned across
1019 * the page boundary.
1021 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1022 (page_offset(page) <= user_pos));
1024 if (page == wc->w_target_page) {
1025 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1026 map_to = map_from + user_len;
1028 if (new)
1029 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1030 cluster_start, cluster_end,
1031 new);
1032 else
1033 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1034 map_from, map_to, new);
1035 if (ret) {
1036 mlog_errno(ret);
1037 goto out;
1040 user_data_from = map_from;
1041 user_data_to = map_to;
1042 if (new) {
1043 map_from = cluster_start;
1044 map_to = cluster_end;
1046 } else {
1048 * If we haven't allocated the new page yet, we
1049 * shouldn't be writing it out without copying user
1050 * data. This is likely a math error from the caller.
1052 BUG_ON(!new);
1054 map_from = cluster_start;
1055 map_to = cluster_end;
1057 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1058 cluster_start, cluster_end, new);
1059 if (ret) {
1060 mlog_errno(ret);
1061 goto out;
1066 * Parts of newly allocated pages need to be zero'd.
1068 * Above, we have also rewritten 'to' and 'from' - as far as
1069 * the rest of the function is concerned, the entire cluster
1070 * range inside of a page needs to be written.
1072 * We can skip this if the page is up to date - it's already
1073 * been zero'd from being read in as a hole.
1075 if (new && !PageUptodate(page))
1076 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1077 cpos, user_data_from, user_data_to);
1079 flush_dcache_page(page);
1081 out:
1082 return ret;
1086 * This function will only grab one clusters worth of pages.
1088 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1089 struct ocfs2_write_ctxt *wc,
1090 u32 cpos, loff_t user_pos,
1091 unsigned user_len, int new,
1092 struct page *mmap_page)
1094 int ret = 0, i;
1095 unsigned long start, target_index, end_index, index;
1096 struct inode *inode = mapping->host;
1097 loff_t last_byte;
1099 target_index = user_pos >> PAGE_CACHE_SHIFT;
1102 * Figure out how many pages we'll be manipulating here. For
1103 * non allocating write, we just change the one
1104 * page. Otherwise, we'll need a whole clusters worth. If we're
1105 * writing past i_size, we only need enough pages to cover the
1106 * last page of the write.
1108 if (new) {
1109 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1110 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1112 * We need the index *past* the last page we could possibly
1113 * touch. This is the page past the end of the write or
1114 * i_size, whichever is greater.
1116 last_byte = max(user_pos + user_len, i_size_read(inode));
1117 BUG_ON(last_byte < 1);
1118 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1119 if ((start + wc->w_num_pages) > end_index)
1120 wc->w_num_pages = end_index - start;
1121 } else {
1122 wc->w_num_pages = 1;
1123 start = target_index;
1126 for(i = 0; i < wc->w_num_pages; i++) {
1127 index = start + i;
1129 if (index == target_index && mmap_page) {
1131 * ocfs2_pagemkwrite() is a little different
1132 * and wants us to directly use the page
1133 * passed in.
1135 lock_page(mmap_page);
1137 if (mmap_page->mapping != mapping) {
1138 unlock_page(mmap_page);
1140 * Sanity check - the locking in
1141 * ocfs2_pagemkwrite() should ensure
1142 * that this code doesn't trigger.
1144 ret = -EINVAL;
1145 mlog_errno(ret);
1146 goto out;
1149 page_cache_get(mmap_page);
1150 wc->w_pages[i] = mmap_page;
1151 } else {
1152 wc->w_pages[i] = find_or_create_page(mapping, index,
1153 GFP_NOFS);
1154 if (!wc->w_pages[i]) {
1155 ret = -ENOMEM;
1156 mlog_errno(ret);
1157 goto out;
1161 if (index == target_index)
1162 wc->w_target_page = wc->w_pages[i];
1164 out:
1165 return ret;
1169 * Prepare a single cluster for write one cluster into the file.
1171 static int ocfs2_write_cluster(struct address_space *mapping,
1172 u32 phys, unsigned int unwritten,
1173 unsigned int should_zero,
1174 struct ocfs2_alloc_context *data_ac,
1175 struct ocfs2_alloc_context *meta_ac,
1176 struct ocfs2_write_ctxt *wc, u32 cpos,
1177 loff_t user_pos, unsigned user_len)
1179 int ret, i, new;
1180 u64 v_blkno, p_blkno;
1181 struct inode *inode = mapping->host;
1182 struct ocfs2_extent_tree et;
1184 new = phys == 0 ? 1 : 0;
1185 if (new) {
1186 u32 tmp_pos;
1189 * This is safe to call with the page locks - it won't take
1190 * any additional semaphores or cluster locks.
1192 tmp_pos = cpos;
1193 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1194 &tmp_pos, 1, 0, wc->w_di_bh,
1195 wc->w_handle, data_ac,
1196 meta_ac, NULL);
1198 * This shouldn't happen because we must have already
1199 * calculated the correct meta data allocation required. The
1200 * internal tree allocation code should know how to increase
1201 * transaction credits itself.
1203 * If need be, we could handle -EAGAIN for a
1204 * RESTART_TRANS here.
1206 mlog_bug_on_msg(ret == -EAGAIN,
1207 "Inode %llu: EAGAIN return during allocation.\n",
1208 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1209 if (ret < 0) {
1210 mlog_errno(ret);
1211 goto out;
1213 } else if (unwritten) {
1214 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1215 wc->w_di_bh);
1216 ret = ocfs2_mark_extent_written(inode, &et,
1217 wc->w_handle, cpos, 1, phys,
1218 meta_ac, &wc->w_dealloc);
1219 if (ret < 0) {
1220 mlog_errno(ret);
1221 goto out;
1225 if (should_zero)
1226 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1227 else
1228 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1231 * The only reason this should fail is due to an inability to
1232 * find the extent added.
1234 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1235 NULL);
1236 if (ret < 0) {
1237 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1238 "at logical block %llu",
1239 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1240 (unsigned long long)v_blkno);
1241 goto out;
1244 BUG_ON(p_blkno == 0);
1246 for(i = 0; i < wc->w_num_pages; i++) {
1247 int tmpret;
1249 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1250 wc->w_pages[i], cpos,
1251 user_pos, user_len,
1252 should_zero);
1253 if (tmpret) {
1254 mlog_errno(tmpret);
1255 if (ret == 0)
1256 ret = tmpret;
1261 * We only have cleanup to do in case of allocating write.
1263 if (ret && new)
1264 ocfs2_write_failure(inode, wc, user_pos, user_len);
1266 out:
1268 return ret;
1271 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1272 struct ocfs2_alloc_context *data_ac,
1273 struct ocfs2_alloc_context *meta_ac,
1274 struct ocfs2_write_ctxt *wc,
1275 loff_t pos, unsigned len)
1277 int ret, i;
1278 loff_t cluster_off;
1279 unsigned int local_len = len;
1280 struct ocfs2_write_cluster_desc *desc;
1281 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1283 for (i = 0; i < wc->w_clen; i++) {
1284 desc = &wc->w_desc[i];
1287 * We have to make sure that the total write passed in
1288 * doesn't extend past a single cluster.
1290 local_len = len;
1291 cluster_off = pos & (osb->s_clustersize - 1);
1292 if ((cluster_off + local_len) > osb->s_clustersize)
1293 local_len = osb->s_clustersize - cluster_off;
1295 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1296 desc->c_unwritten,
1297 desc->c_needs_zero,
1298 data_ac, meta_ac,
1299 wc, desc->c_cpos, pos, local_len);
1300 if (ret) {
1301 mlog_errno(ret);
1302 goto out;
1305 len -= local_len;
1306 pos += local_len;
1309 ret = 0;
1310 out:
1311 return ret;
1315 * ocfs2_write_end() wants to know which parts of the target page it
1316 * should complete the write on. It's easiest to compute them ahead of
1317 * time when a more complete view of the write is available.
1319 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1320 struct ocfs2_write_ctxt *wc,
1321 loff_t pos, unsigned len, int alloc)
1323 struct ocfs2_write_cluster_desc *desc;
1325 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1326 wc->w_target_to = wc->w_target_from + len;
1328 if (alloc == 0)
1329 return;
1332 * Allocating write - we may have different boundaries based
1333 * on page size and cluster size.
1335 * NOTE: We can no longer compute one value from the other as
1336 * the actual write length and user provided length may be
1337 * different.
1340 if (wc->w_large_pages) {
1342 * We only care about the 1st and last cluster within
1343 * our range and whether they should be zero'd or not. Either
1344 * value may be extended out to the start/end of a
1345 * newly allocated cluster.
1347 desc = &wc->w_desc[0];
1348 if (desc->c_needs_zero)
1349 ocfs2_figure_cluster_boundaries(osb,
1350 desc->c_cpos,
1351 &wc->w_target_from,
1352 NULL);
1354 desc = &wc->w_desc[wc->w_clen - 1];
1355 if (desc->c_needs_zero)
1356 ocfs2_figure_cluster_boundaries(osb,
1357 desc->c_cpos,
1358 NULL,
1359 &wc->w_target_to);
1360 } else {
1361 wc->w_target_from = 0;
1362 wc->w_target_to = PAGE_CACHE_SIZE;
1367 * Populate each single-cluster write descriptor in the write context
1368 * with information about the i/o to be done.
1370 * Returns the number of clusters that will have to be allocated, as
1371 * well as a worst case estimate of the number of extent records that
1372 * would have to be created during a write to an unwritten region.
1374 static int ocfs2_populate_write_desc(struct inode *inode,
1375 struct ocfs2_write_ctxt *wc,
1376 unsigned int *clusters_to_alloc,
1377 unsigned int *extents_to_split)
1379 int ret;
1380 struct ocfs2_write_cluster_desc *desc;
1381 unsigned int num_clusters = 0;
1382 unsigned int ext_flags = 0;
1383 u32 phys = 0;
1384 int i;
1386 *clusters_to_alloc = 0;
1387 *extents_to_split = 0;
1389 for (i = 0; i < wc->w_clen; i++) {
1390 desc = &wc->w_desc[i];
1391 desc->c_cpos = wc->w_cpos + i;
1393 if (num_clusters == 0) {
1395 * Need to look up the next extent record.
1397 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1398 &num_clusters, &ext_flags);
1399 if (ret) {
1400 mlog_errno(ret);
1401 goto out;
1404 /* We should already CoW the refcountd extent. */
1405 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1408 * Assume worst case - that we're writing in
1409 * the middle of the extent.
1411 * We can assume that the write proceeds from
1412 * left to right, in which case the extent
1413 * insert code is smart enough to coalesce the
1414 * next splits into the previous records created.
1416 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1417 *extents_to_split = *extents_to_split + 2;
1418 } else if (phys) {
1420 * Only increment phys if it doesn't describe
1421 * a hole.
1423 phys++;
1427 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1428 * file that got extended. w_first_new_cpos tells us
1429 * where the newly allocated clusters are so we can
1430 * zero them.
1432 if (desc->c_cpos >= wc->w_first_new_cpos) {
1433 BUG_ON(phys == 0);
1434 desc->c_needs_zero = 1;
1437 desc->c_phys = phys;
1438 if (phys == 0) {
1439 desc->c_new = 1;
1440 desc->c_needs_zero = 1;
1441 *clusters_to_alloc = *clusters_to_alloc + 1;
1444 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1445 desc->c_unwritten = 1;
1446 desc->c_needs_zero = 1;
1449 num_clusters--;
1452 ret = 0;
1453 out:
1454 return ret;
1457 static int ocfs2_write_begin_inline(struct address_space *mapping,
1458 struct inode *inode,
1459 struct ocfs2_write_ctxt *wc)
1461 int ret;
1462 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1463 struct page *page;
1464 handle_t *handle;
1465 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1467 page = find_or_create_page(mapping, 0, GFP_NOFS);
1468 if (!page) {
1469 ret = -ENOMEM;
1470 mlog_errno(ret);
1471 goto out;
1474 * If we don't set w_num_pages then this page won't get unlocked
1475 * and freed on cleanup of the write context.
1477 wc->w_pages[0] = wc->w_target_page = page;
1478 wc->w_num_pages = 1;
1480 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1481 if (IS_ERR(handle)) {
1482 ret = PTR_ERR(handle);
1483 mlog_errno(ret);
1484 goto out;
1487 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1488 OCFS2_JOURNAL_ACCESS_WRITE);
1489 if (ret) {
1490 ocfs2_commit_trans(osb, handle);
1492 mlog_errno(ret);
1493 goto out;
1496 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1497 ocfs2_set_inode_data_inline(inode, di);
1499 if (!PageUptodate(page)) {
1500 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1501 if (ret) {
1502 ocfs2_commit_trans(osb, handle);
1504 goto out;
1508 wc->w_handle = handle;
1509 out:
1510 return ret;
1513 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1515 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1517 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1518 return 1;
1519 return 0;
1522 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1523 struct inode *inode, loff_t pos,
1524 unsigned len, struct page *mmap_page,
1525 struct ocfs2_write_ctxt *wc)
1527 int ret, written = 0;
1528 loff_t end = pos + len;
1529 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1530 struct ocfs2_dinode *di = NULL;
1532 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1533 len, (unsigned long long)pos,
1534 oi->ip_dyn_features);
1537 * Handle inodes which already have inline data 1st.
1539 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1540 if (mmap_page == NULL &&
1541 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1542 goto do_inline_write;
1545 * The write won't fit - we have to give this inode an
1546 * inline extent list now.
1548 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1549 if (ret)
1550 mlog_errno(ret);
1551 goto out;
1555 * Check whether the inode can accept inline data.
1557 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1558 return 0;
1561 * Check whether the write can fit.
1563 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1564 if (mmap_page ||
1565 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1566 return 0;
1568 do_inline_write:
1569 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1570 if (ret) {
1571 mlog_errno(ret);
1572 goto out;
1576 * This signals to the caller that the data can be written
1577 * inline.
1579 written = 1;
1580 out:
1581 return written ? written : ret;
1585 * This function only does anything for file systems which can't
1586 * handle sparse files.
1588 * What we want to do here is fill in any hole between the current end
1589 * of allocation and the end of our write. That way the rest of the
1590 * write path can treat it as an non-allocating write, which has no
1591 * special case code for sparse/nonsparse files.
1593 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1594 struct buffer_head *di_bh,
1595 loff_t pos, unsigned len,
1596 struct ocfs2_write_ctxt *wc)
1598 int ret;
1599 loff_t newsize = pos + len;
1601 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1603 if (newsize <= i_size_read(inode))
1604 return 0;
1606 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1607 if (ret)
1608 mlog_errno(ret);
1610 wc->w_first_new_cpos =
1611 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1613 return ret;
1616 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1617 loff_t pos)
1619 int ret = 0;
1621 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1622 if (pos > i_size_read(inode))
1623 ret = ocfs2_zero_extend(inode, di_bh, pos);
1625 return ret;
1629 * Try to flush truncate logs if we can free enough clusters from it.
1630 * As for return value, "< 0" means error, "0" no space and "1" means
1631 * we have freed enough spaces and let the caller try to allocate again.
1633 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1634 unsigned int needed)
1636 tid_t target;
1637 int ret = 0;
1638 unsigned int truncated_clusters;
1640 mutex_lock(&osb->osb_tl_inode->i_mutex);
1641 truncated_clusters = osb->truncated_clusters;
1642 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1645 * Check whether we can succeed in allocating if we free
1646 * the truncate log.
1648 if (truncated_clusters < needed)
1649 goto out;
1651 ret = ocfs2_flush_truncate_log(osb);
1652 if (ret) {
1653 mlog_errno(ret);
1654 goto out;
1657 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1658 jbd2_log_wait_commit(osb->journal->j_journal, target);
1659 ret = 1;
1661 out:
1662 return ret;
1665 int ocfs2_write_begin_nolock(struct file *filp,
1666 struct address_space *mapping,
1667 loff_t pos, unsigned len, unsigned flags,
1668 struct page **pagep, void **fsdata,
1669 struct buffer_head *di_bh, struct page *mmap_page)
1671 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1672 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1673 struct ocfs2_write_ctxt *wc;
1674 struct inode *inode = mapping->host;
1675 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1676 struct ocfs2_dinode *di;
1677 struct ocfs2_alloc_context *data_ac = NULL;
1678 struct ocfs2_alloc_context *meta_ac = NULL;
1679 handle_t *handle;
1680 struct ocfs2_extent_tree et;
1681 int try_free = 1, ret1;
1683 try_again:
1684 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1685 if (ret) {
1686 mlog_errno(ret);
1687 return ret;
1690 if (ocfs2_supports_inline_data(osb)) {
1691 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1692 mmap_page, wc);
1693 if (ret == 1) {
1694 ret = 0;
1695 goto success;
1697 if (ret < 0) {
1698 mlog_errno(ret);
1699 goto out;
1703 if (ocfs2_sparse_alloc(osb))
1704 ret = ocfs2_zero_tail(inode, di_bh, pos);
1705 else
1706 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1707 wc);
1708 if (ret) {
1709 mlog_errno(ret);
1710 goto out;
1713 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1714 if (ret < 0) {
1715 mlog_errno(ret);
1716 goto out;
1717 } else if (ret == 1) {
1718 clusters_need = wc->w_clen;
1719 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1720 wc->w_cpos, wc->w_clen, UINT_MAX);
1721 if (ret) {
1722 mlog_errno(ret);
1723 goto out;
1727 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1728 &extents_to_split);
1729 if (ret) {
1730 mlog_errno(ret);
1731 goto out;
1733 clusters_need += clusters_to_alloc;
1735 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1737 trace_ocfs2_write_begin_nolock(
1738 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1739 (long long)i_size_read(inode),
1740 le32_to_cpu(di->i_clusters),
1741 pos, len, flags, mmap_page,
1742 clusters_to_alloc, extents_to_split);
1745 * We set w_target_from, w_target_to here so that
1746 * ocfs2_write_end() knows which range in the target page to
1747 * write out. An allocation requires that we write the entire
1748 * cluster range.
1750 if (clusters_to_alloc || extents_to_split) {
1752 * XXX: We are stretching the limits of
1753 * ocfs2_lock_allocators(). It greatly over-estimates
1754 * the work to be done.
1756 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1757 wc->w_di_bh);
1758 ret = ocfs2_lock_allocators(inode, &et,
1759 clusters_to_alloc, extents_to_split,
1760 &data_ac, &meta_ac);
1761 if (ret) {
1762 mlog_errno(ret);
1763 goto out;
1766 if (data_ac)
1767 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1769 credits = ocfs2_calc_extend_credits(inode->i_sb,
1770 &di->id2.i_list,
1771 clusters_to_alloc);
1776 * We have to zero sparse allocated clusters, unwritten extent clusters,
1777 * and non-sparse clusters we just extended. For non-sparse writes,
1778 * we know zeros will only be needed in the first and/or last cluster.
1780 if (clusters_to_alloc || extents_to_split ||
1781 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1782 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1783 cluster_of_pages = 1;
1784 else
1785 cluster_of_pages = 0;
1787 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1789 handle = ocfs2_start_trans(osb, credits);
1790 if (IS_ERR(handle)) {
1791 ret = PTR_ERR(handle);
1792 mlog_errno(ret);
1793 goto out;
1796 wc->w_handle = handle;
1798 if (clusters_to_alloc) {
1799 ret = dquot_alloc_space_nodirty(inode,
1800 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1801 if (ret)
1802 goto out_commit;
1805 * We don't want this to fail in ocfs2_write_end(), so do it
1806 * here.
1808 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1809 OCFS2_JOURNAL_ACCESS_WRITE);
1810 if (ret) {
1811 mlog_errno(ret);
1812 goto out_quota;
1816 * Fill our page array first. That way we've grabbed enough so
1817 * that we can zero and flush if we error after adding the
1818 * extent.
1820 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1821 cluster_of_pages, mmap_page);
1822 if (ret) {
1823 mlog_errno(ret);
1824 goto out_quota;
1827 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1828 len);
1829 if (ret) {
1830 mlog_errno(ret);
1831 goto out_quota;
1834 if (data_ac)
1835 ocfs2_free_alloc_context(data_ac);
1836 if (meta_ac)
1837 ocfs2_free_alloc_context(meta_ac);
1839 success:
1840 *pagep = wc->w_target_page;
1841 *fsdata = wc;
1842 return 0;
1843 out_quota:
1844 if (clusters_to_alloc)
1845 dquot_free_space(inode,
1846 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1847 out_commit:
1848 ocfs2_commit_trans(osb, handle);
1850 out:
1851 ocfs2_free_write_ctxt(wc);
1853 if (data_ac)
1854 ocfs2_free_alloc_context(data_ac);
1855 if (meta_ac)
1856 ocfs2_free_alloc_context(meta_ac);
1858 if (ret == -ENOSPC && try_free) {
1860 * Try to free some truncate log so that we can have enough
1861 * clusters to allocate.
1863 try_free = 0;
1865 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1866 if (ret1 == 1)
1867 goto try_again;
1869 if (ret1 < 0)
1870 mlog_errno(ret1);
1873 return ret;
1876 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1877 loff_t pos, unsigned len, unsigned flags,
1878 struct page **pagep, void **fsdata)
1880 int ret;
1881 struct buffer_head *di_bh = NULL;
1882 struct inode *inode = mapping->host;
1884 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1885 if (ret) {
1886 mlog_errno(ret);
1887 return ret;
1891 * Take alloc sem here to prevent concurrent lookups. That way
1892 * the mapping, zeroing and tree manipulation within
1893 * ocfs2_write() will be safe against ->readpage(). This
1894 * should also serve to lock out allocation from a shared
1895 * writeable region.
1897 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1899 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1900 fsdata, di_bh, NULL);
1901 if (ret) {
1902 mlog_errno(ret);
1903 goto out_fail;
1906 brelse(di_bh);
1908 return 0;
1910 out_fail:
1911 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1913 brelse(di_bh);
1914 ocfs2_inode_unlock(inode, 1);
1916 return ret;
1919 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1920 unsigned len, unsigned *copied,
1921 struct ocfs2_dinode *di,
1922 struct ocfs2_write_ctxt *wc)
1924 void *kaddr;
1926 if (unlikely(*copied < len)) {
1927 if (!PageUptodate(wc->w_target_page)) {
1928 *copied = 0;
1929 return;
1933 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1934 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1935 kunmap_atomic(kaddr, KM_USER0);
1937 trace_ocfs2_write_end_inline(
1938 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1939 (unsigned long long)pos, *copied,
1940 le16_to_cpu(di->id2.i_data.id_count),
1941 le16_to_cpu(di->i_dyn_features));
1944 int ocfs2_write_end_nolock(struct address_space *mapping,
1945 loff_t pos, unsigned len, unsigned copied,
1946 struct page *page, void *fsdata)
1948 int i;
1949 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1950 struct inode *inode = mapping->host;
1951 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1952 struct ocfs2_write_ctxt *wc = fsdata;
1953 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1954 handle_t *handle = wc->w_handle;
1955 struct page *tmppage;
1957 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1958 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1959 goto out_write_size;
1962 if (unlikely(copied < len)) {
1963 if (!PageUptodate(wc->w_target_page))
1964 copied = 0;
1966 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1967 start+len);
1969 flush_dcache_page(wc->w_target_page);
1971 for(i = 0; i < wc->w_num_pages; i++) {
1972 tmppage = wc->w_pages[i];
1974 if (tmppage == wc->w_target_page) {
1975 from = wc->w_target_from;
1976 to = wc->w_target_to;
1978 BUG_ON(from > PAGE_CACHE_SIZE ||
1979 to > PAGE_CACHE_SIZE ||
1980 to < from);
1981 } else {
1983 * Pages adjacent to the target (if any) imply
1984 * a hole-filling write in which case we want
1985 * to flush their entire range.
1987 from = 0;
1988 to = PAGE_CACHE_SIZE;
1991 if (page_has_buffers(tmppage)) {
1992 if (ocfs2_should_order_data(inode))
1993 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1994 block_commit_write(tmppage, from, to);
1998 out_write_size:
1999 pos += copied;
2000 if (pos > inode->i_size) {
2001 i_size_write(inode, pos);
2002 mark_inode_dirty(inode);
2004 inode->i_blocks = ocfs2_inode_sector_count(inode);
2005 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2006 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2007 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2008 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2009 ocfs2_journal_dirty(handle, wc->w_di_bh);
2011 ocfs2_commit_trans(osb, handle);
2013 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2015 ocfs2_free_write_ctxt(wc);
2017 return copied;
2020 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2021 loff_t pos, unsigned len, unsigned copied,
2022 struct page *page, void *fsdata)
2024 int ret;
2025 struct inode *inode = mapping->host;
2027 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2029 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2030 ocfs2_inode_unlock(inode, 1);
2032 return ret;
2035 const struct address_space_operations ocfs2_aops = {
2036 .readpage = ocfs2_readpage,
2037 .readpages = ocfs2_readpages,
2038 .writepage = ocfs2_writepage,
2039 .write_begin = ocfs2_write_begin,
2040 .write_end = ocfs2_write_end,
2041 .bmap = ocfs2_bmap,
2042 .direct_IO = ocfs2_direct_IO,
2043 .invalidatepage = ocfs2_invalidatepage,
2044 .releasepage = ocfs2_releasepage,
2045 .migratepage = buffer_migrate_page,
2046 .is_partially_uptodate = block_is_partially_uptodate,
2047 .error_remove_page = generic_error_remove_page,