ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / mm / page_alloc.c
blob947a7e96f91da90097442e6989f342dd121b2f23
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 #include "internal.h"
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node);
67 EXPORT_PER_CPU_SYMBOL(numa_node);
68 #endif
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
77 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79 #endif
82 * Array of node states.
84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 [N_POSSIBLE] = NODE_MASK_ALL,
86 [N_ONLINE] = { { [0] = 1UL } },
87 #ifndef CONFIG_NUMA
88 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
89 #ifdef CONFIG_HIGHMEM
90 [N_HIGH_MEMORY] = { { [0] = 1UL } },
91 #endif
92 [N_CPU] = { { [0] = 1UL } },
93 #endif /* NUMA */
95 EXPORT_SYMBOL(node_states);
97 unsigned long totalram_pages __read_mostly;
98 unsigned long totalreserve_pages __read_mostly;
99 int percpu_pagelist_fraction;
100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
102 #ifdef CONFIG_PM_SLEEP
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
112 static gfp_t saved_gfp_mask;
114 void pm_restore_gfp_mask(void)
116 WARN_ON(!mutex_is_locked(&pm_mutex));
117 if (saved_gfp_mask) {
118 gfp_allowed_mask = saved_gfp_mask;
119 saved_gfp_mask = 0;
123 void pm_restrict_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 WARN_ON(saved_gfp_mask);
127 saved_gfp_mask = gfp_allowed_mask;
128 gfp_allowed_mask &= ~GFP_IOFS;
130 #endif /* CONFIG_PM_SLEEP */
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly;
134 #endif
136 static void __free_pages_ok(struct page *page, unsigned int order);
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
149 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
150 #ifdef CONFIG_ZONE_DMA
151 256,
152 #endif
153 #ifdef CONFIG_ZONE_DMA32
154 256,
155 #endif
156 #ifdef CONFIG_HIGHMEM
158 #endif
162 EXPORT_SYMBOL(totalram_pages);
164 static char * const zone_names[MAX_NR_ZONES] = {
165 #ifdef CONFIG_ZONE_DMA
166 "DMA",
167 #endif
168 #ifdef CONFIG_ZONE_DMA32
169 "DMA32",
170 #endif
171 "Normal",
172 #ifdef CONFIG_HIGHMEM
173 "HighMem",
174 #endif
175 "Movable",
178 int min_free_kbytes = 1024;
180 static unsigned long __meminitdata nr_kernel_pages;
181 static unsigned long __meminitdata nr_all_pages;
182 static unsigned long __meminitdata dma_reserve;
184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
195 #else
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
199 #else
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
202 #endif
203 #endif
205 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206 static int __meminitdata nr_nodemap_entries;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
209 static unsigned long __initdata required_kernelcore;
210 static unsigned long __initdata required_movablecore;
211 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214 int movable_zone;
215 EXPORT_SYMBOL(movable_zone);
216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
218 #if MAX_NUMNODES > 1
219 int nr_node_ids __read_mostly = MAX_NUMNODES;
220 int nr_online_nodes __read_mostly = 1;
221 EXPORT_SYMBOL(nr_node_ids);
222 EXPORT_SYMBOL(nr_online_nodes);
223 #endif
225 int page_group_by_mobility_disabled __read_mostly;
227 static void set_pageblock_migratetype(struct page *page, int migratetype)
230 if (unlikely(page_group_by_mobility_disabled))
231 migratetype = MIGRATE_UNMOVABLE;
233 set_pageblock_flags_group(page, (unsigned long)migratetype,
234 PB_migrate, PB_migrate_end);
237 bool oom_killer_disabled __read_mostly;
239 #ifdef CONFIG_DEBUG_VM
240 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
242 int ret = 0;
243 unsigned seq;
244 unsigned long pfn = page_to_pfn(page);
246 do {
247 seq = zone_span_seqbegin(zone);
248 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249 ret = 1;
250 else if (pfn < zone->zone_start_pfn)
251 ret = 1;
252 } while (zone_span_seqretry(zone, seq));
254 return ret;
257 static int page_is_consistent(struct zone *zone, struct page *page)
259 if (!pfn_valid_within(page_to_pfn(page)))
260 return 0;
261 if (zone != page_zone(page))
262 return 0;
264 return 1;
267 * Temporary debugging check for pages not lying within a given zone.
269 static int bad_range(struct zone *zone, struct page *page)
271 if (page_outside_zone_boundaries(zone, page))
272 return 1;
273 if (!page_is_consistent(zone, page))
274 return 1;
276 return 0;
278 #else
279 static inline int bad_range(struct zone *zone, struct page *page)
281 return 0;
283 #endif
285 static void bad_page(struct page *page)
287 static unsigned long resume;
288 static unsigned long nr_shown;
289 static unsigned long nr_unshown;
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page)) {
293 reset_page_mapcount(page); /* remove PageBuddy */
294 return;
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
301 if (nr_shown == 60) {
302 if (time_before(jiffies, resume)) {
303 nr_unshown++;
304 goto out;
306 if (nr_unshown) {
307 printk(KERN_ALERT
308 "BUG: Bad page state: %lu messages suppressed\n",
309 nr_unshown);
310 nr_unshown = 0;
312 nr_shown = 0;
314 if (nr_shown++ == 0)
315 resume = jiffies + 60 * HZ;
317 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
318 current->comm, page_to_pfn(page));
319 dump_page(page);
321 dump_stack();
322 out:
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
329 * Higher-order pages are called "compound pages". They are structured thusly:
331 * The first PAGE_SIZE page is called the "head page".
333 * The remaining PAGE_SIZE pages are called "tail pages".
335 * All pages have PG_compound set. All pages have their ->private pointing at
336 * the head page (even the head page has this).
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
343 static void free_compound_page(struct page *page)
345 __free_pages_ok(page, compound_order(page));
348 void prep_compound_page(struct page *page, unsigned long order)
350 int i;
351 int nr_pages = 1 << order;
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358 __SetPageTail(p);
359 set_page_count(p, 0);
360 p->first_page = page;
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
377 __ClearPageHead(page);
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 bad_page(page);
384 bad++;
386 __ClearPageTail(p);
389 return bad;
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
394 int i;
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
405 static inline void set_page_order(struct page *page, int order)
407 set_page_private(page, order);
408 __SetPageBuddy(page);
411 static inline void rmv_page_order(struct page *page)
413 __ClearPageBuddy(page);
414 set_page_private(page, 0);
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
423 * B2 = B1 ^ (1 << O)
424 * For example, if the starting buddy (buddy2) is #8 its order
425 * 1 buddy is #10:
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
430 * P = B & ~(1 << O)
432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
434 static inline unsigned long
435 __find_buddy_index(unsigned long page_idx, unsigned int order)
437 return page_idx ^ (1 << order);
441 * This function checks whether a page is free && is the buddy
442 * we can do coalesce a page and its buddy if
443 * (a) the buddy is not in a hole &&
444 * (b) the buddy is in the buddy system &&
445 * (c) a page and its buddy have the same order &&
446 * (d) a page and its buddy are in the same zone.
448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
451 * For recording page's order, we use page_private(page).
453 static inline int page_is_buddy(struct page *page, struct page *buddy,
454 int order)
456 if (!pfn_valid_within(page_to_pfn(buddy)))
457 return 0;
459 if (page_zone_id(page) != page_zone_id(buddy))
460 return 0;
462 if (PageBuddy(buddy) && page_order(buddy) == order) {
463 VM_BUG_ON(page_count(buddy) != 0);
464 return 1;
466 return 0;
470 * Freeing function for a buddy system allocator.
472 * The concept of a buddy system is to maintain direct-mapped table
473 * (containing bit values) for memory blocks of various "orders".
474 * The bottom level table contains the map for the smallest allocatable
475 * units of memory (here, pages), and each level above it describes
476 * pairs of units from the levels below, hence, "buddies".
477 * At a high level, all that happens here is marking the table entry
478 * at the bottom level available, and propagating the changes upward
479 * as necessary, plus some accounting needed to play nicely with other
480 * parts of the VM system.
481 * At each level, we keep a list of pages, which are heads of continuous
482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
483 * order is recorded in page_private(page) field.
484 * So when we are allocating or freeing one, we can derive the state of the
485 * other. That is, if we allocate a small block, and both were
486 * free, the remainder of the region must be split into blocks.
487 * If a block is freed, and its buddy is also free, then this
488 * triggers coalescing into a block of larger size.
490 * -- wli
493 static inline void __free_one_page(struct page *page,
494 struct zone *zone, unsigned int order,
495 int migratetype)
497 unsigned long page_idx;
498 unsigned long combined_idx;
499 unsigned long uninitialized_var(buddy_idx);
500 struct page *buddy;
502 if (unlikely(PageCompound(page)))
503 if (unlikely(destroy_compound_page(page, order)))
504 return;
506 VM_BUG_ON(migratetype == -1);
508 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
510 VM_BUG_ON(page_idx & ((1 << order) - 1));
511 VM_BUG_ON(bad_range(zone, page));
513 while (order < MAX_ORDER-1) {
514 buddy_idx = __find_buddy_index(page_idx, order);
515 buddy = page + (buddy_idx - page_idx);
516 if (!page_is_buddy(page, buddy, order))
517 break;
519 /* Our buddy is free, merge with it and move up one order. */
520 list_del(&buddy->lru);
521 zone->free_area[order].nr_free--;
522 rmv_page_order(buddy);
523 combined_idx = buddy_idx & page_idx;
524 page = page + (combined_idx - page_idx);
525 page_idx = combined_idx;
526 order++;
528 set_page_order(page, order);
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
538 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
539 struct page *higher_page, *higher_buddy;
540 combined_idx = buddy_idx & page_idx;
541 higher_page = page + (combined_idx - page_idx);
542 buddy_idx = __find_buddy_index(combined_idx, order + 1);
543 higher_buddy = page + (buddy_idx - combined_idx);
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
547 goto out;
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552 out:
553 zone->free_area[order].nr_free++;
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
561 static inline void free_page_mlock(struct page *page)
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
567 static inline int free_pages_check(struct page *page)
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
571 (atomic_read(&page->_count) != 0) |
572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
573 (mem_cgroup_bad_page_check(page)))) {
574 bad_page(page);
575 return 1;
577 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
578 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
579 return 0;
583 * Frees a number of pages from the PCP lists
584 * Assumes all pages on list are in same zone, and of same order.
585 * count is the number of pages to free.
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
593 static void free_pcppages_bulk(struct zone *zone, int count,
594 struct per_cpu_pages *pcp)
596 int migratetype = 0;
597 int batch_free = 0;
598 int to_free = count;
600 spin_lock(&zone->lock);
601 zone->all_unreclaimable = 0;
602 zone->pages_scanned = 0;
604 while (to_free) {
605 struct page *page;
606 struct list_head *list;
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
613 * lists
615 do {
616 batch_free++;
617 if (++migratetype == MIGRATE_PCPTYPES)
618 migratetype = 0;
619 list = &pcp->lists[migratetype];
620 } while (list_empty(list));
622 /* This is the only non-empty list. Free them all. */
623 if (batch_free == MIGRATE_PCPTYPES)
624 batch_free = to_free;
626 do {
627 page = list_entry(list->prev, struct page, lru);
628 /* must delete as __free_one_page list manipulates */
629 list_del(&page->lru);
630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631 __free_one_page(page, zone, 0, page_private(page));
632 trace_mm_page_pcpu_drain(page, 0, page_private(page));
633 } while (--to_free && --batch_free && !list_empty(list));
635 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
636 spin_unlock(&zone->lock);
639 static void free_one_page(struct zone *zone, struct page *page, int order,
640 int migratetype)
642 spin_lock(&zone->lock);
643 zone->all_unreclaimable = 0;
644 zone->pages_scanned = 0;
646 __free_one_page(page, zone, order, migratetype);
647 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
648 spin_unlock(&zone->lock);
651 static bool free_pages_prepare(struct page *page, unsigned int order)
653 int i;
654 int bad = 0;
656 trace_mm_page_free_direct(page, order);
657 kmemcheck_free_shadow(page, order);
659 if (PageAnon(page))
660 page->mapping = NULL;
661 for (i = 0; i < (1 << order); i++)
662 bad += free_pages_check(page + i);
663 if (bad)
664 return false;
666 if (!PageHighMem(page)) {
667 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
668 debug_check_no_obj_freed(page_address(page),
669 PAGE_SIZE << order);
671 arch_free_page(page, order);
672 kernel_map_pages(page, 1 << order, 0);
674 return true;
677 static void __free_pages_ok(struct page *page, unsigned int order)
679 unsigned long flags;
680 int wasMlocked = __TestClearPageMlocked(page);
682 if (!free_pages_prepare(page, order))
683 return;
685 local_irq_save(flags);
686 if (unlikely(wasMlocked))
687 free_page_mlock(page);
688 __count_vm_events(PGFREE, 1 << order);
689 free_one_page(page_zone(page), page, order,
690 get_pageblock_migratetype(page));
691 local_irq_restore(flags);
695 * permit the bootmem allocator to evade page validation on high-order frees
697 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
699 if (order == 0) {
700 __ClearPageReserved(page);
701 set_page_count(page, 0);
702 set_page_refcounted(page);
703 __free_page(page);
704 } else {
705 int loop;
707 prefetchw(page);
708 for (loop = 0; loop < BITS_PER_LONG; loop++) {
709 struct page *p = &page[loop];
711 if (loop + 1 < BITS_PER_LONG)
712 prefetchw(p + 1);
713 __ClearPageReserved(p);
714 set_page_count(p, 0);
717 set_page_refcounted(page);
718 __free_pages(page, order);
724 * The order of subdivision here is critical for the IO subsystem.
725 * Please do not alter this order without good reasons and regression
726 * testing. Specifically, as large blocks of memory are subdivided,
727 * the order in which smaller blocks are delivered depends on the order
728 * they're subdivided in this function. This is the primary factor
729 * influencing the order in which pages are delivered to the IO
730 * subsystem according to empirical testing, and this is also justified
731 * by considering the behavior of a buddy system containing a single
732 * large block of memory acted on by a series of small allocations.
733 * This behavior is a critical factor in sglist merging's success.
735 * -- wli
737 static inline void expand(struct zone *zone, struct page *page,
738 int low, int high, struct free_area *area,
739 int migratetype)
741 unsigned long size = 1 << high;
743 while (high > low) {
744 area--;
745 high--;
746 size >>= 1;
747 VM_BUG_ON(bad_range(zone, &page[size]));
748 list_add(&page[size].lru, &area->free_list[migratetype]);
749 area->nr_free++;
750 set_page_order(&page[size], high);
755 * This page is about to be returned from the page allocator
757 static inline int check_new_page(struct page *page)
759 if (unlikely(page_mapcount(page) |
760 (page->mapping != NULL) |
761 (atomic_read(&page->_count) != 0) |
762 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
763 (mem_cgroup_bad_page_check(page)))) {
764 bad_page(page);
765 return 1;
767 return 0;
770 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
772 int i;
774 for (i = 0; i < (1 << order); i++) {
775 struct page *p = page + i;
776 if (unlikely(check_new_page(p)))
777 return 1;
780 set_page_private(page, 0);
781 set_page_refcounted(page);
783 arch_alloc_page(page, order);
784 kernel_map_pages(page, 1 << order, 1);
786 if (gfp_flags & __GFP_ZERO)
787 prep_zero_page(page, order, gfp_flags);
789 if (order && (gfp_flags & __GFP_COMP))
790 prep_compound_page(page, order);
792 return 0;
796 * Go through the free lists for the given migratetype and remove
797 * the smallest available page from the freelists
799 static inline
800 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
801 int migratetype)
803 unsigned int current_order;
804 struct free_area * area;
805 struct page *page;
807 /* Find a page of the appropriate size in the preferred list */
808 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
809 area = &(zone->free_area[current_order]);
810 if (list_empty(&area->free_list[migratetype]))
811 continue;
813 page = list_entry(area->free_list[migratetype].next,
814 struct page, lru);
815 list_del(&page->lru);
816 rmv_page_order(page);
817 area->nr_free--;
818 expand(zone, page, order, current_order, area, migratetype);
819 return page;
822 return NULL;
827 * This array describes the order lists are fallen back to when
828 * the free lists for the desirable migrate type are depleted
830 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
831 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
832 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
833 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
834 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
838 * Move the free pages in a range to the free lists of the requested type.
839 * Note that start_page and end_pages are not aligned on a pageblock
840 * boundary. If alignment is required, use move_freepages_block()
842 static int move_freepages(struct zone *zone,
843 struct page *start_page, struct page *end_page,
844 int migratetype)
846 struct page *page;
847 unsigned long order;
848 int pages_moved = 0;
850 #ifndef CONFIG_HOLES_IN_ZONE
852 * page_zone is not safe to call in this context when
853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854 * anyway as we check zone boundaries in move_freepages_block().
855 * Remove at a later date when no bug reports exist related to
856 * grouping pages by mobility
858 BUG_ON(page_zone(start_page) != page_zone(end_page));
859 #endif
861 for (page = start_page; page <= end_page;) {
862 /* Make sure we are not inadvertently changing nodes */
863 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
865 if (!pfn_valid_within(page_to_pfn(page))) {
866 page++;
867 continue;
870 if (!PageBuddy(page)) {
871 page++;
872 continue;
875 order = page_order(page);
876 list_move(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 page += 1 << order;
879 pages_moved += 1 << order;
882 return pages_moved;
885 static int move_freepages_block(struct zone *zone, struct page *page,
886 int migratetype)
888 unsigned long start_pfn, end_pfn;
889 struct page *start_page, *end_page;
891 start_pfn = page_to_pfn(page);
892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
893 start_page = pfn_to_page(start_pfn);
894 end_page = start_page + pageblock_nr_pages - 1;
895 end_pfn = start_pfn + pageblock_nr_pages - 1;
897 /* Do not cross zone boundaries */
898 if (start_pfn < zone->zone_start_pfn)
899 start_page = page;
900 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
901 return 0;
903 return move_freepages(zone, start_page, end_page, migratetype);
906 static void change_pageblock_range(struct page *pageblock_page,
907 int start_order, int migratetype)
909 int nr_pageblocks = 1 << (start_order - pageblock_order);
911 while (nr_pageblocks--) {
912 set_pageblock_migratetype(pageblock_page, migratetype);
913 pageblock_page += pageblock_nr_pages;
917 /* Remove an element from the buddy allocator from the fallback list */
918 static inline struct page *
919 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
921 struct free_area * area;
922 int current_order;
923 struct page *page;
924 int migratetype, i;
926 /* Find the largest possible block of pages in the other list */
927 for (current_order = MAX_ORDER-1; current_order >= order;
928 --current_order) {
929 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
930 migratetype = fallbacks[start_migratetype][i];
932 /* MIGRATE_RESERVE handled later if necessary */
933 if (migratetype == MIGRATE_RESERVE)
934 continue;
936 area = &(zone->free_area[current_order]);
937 if (list_empty(&area->free_list[migratetype]))
938 continue;
940 page = list_entry(area->free_list[migratetype].next,
941 struct page, lru);
942 area->nr_free--;
945 * If breaking a large block of pages, move all free
946 * pages to the preferred allocation list. If falling
947 * back for a reclaimable kernel allocation, be more
948 * aggressive about taking ownership of free pages
950 if (unlikely(current_order >= (pageblock_order >> 1)) ||
951 start_migratetype == MIGRATE_RECLAIMABLE ||
952 page_group_by_mobility_disabled) {
953 unsigned long pages;
954 pages = move_freepages_block(zone, page,
955 start_migratetype);
957 /* Claim the whole block if over half of it is free */
958 if (pages >= (1 << (pageblock_order-1)) ||
959 page_group_by_mobility_disabled)
960 set_pageblock_migratetype(page,
961 start_migratetype);
963 migratetype = start_migratetype;
966 /* Remove the page from the freelists */
967 list_del(&page->lru);
968 rmv_page_order(page);
970 /* Take ownership for orders >= pageblock_order */
971 if (current_order >= pageblock_order)
972 change_pageblock_range(page, current_order,
973 start_migratetype);
975 expand(zone, page, order, current_order, area, migratetype);
977 trace_mm_page_alloc_extfrag(page, order, current_order,
978 start_migratetype, migratetype);
980 return page;
984 return NULL;
988 * Do the hard work of removing an element from the buddy allocator.
989 * Call me with the zone->lock already held.
991 static struct page *__rmqueue(struct zone *zone, unsigned int order,
992 int migratetype)
994 struct page *page;
996 retry_reserve:
997 page = __rmqueue_smallest(zone, order, migratetype);
999 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1000 page = __rmqueue_fallback(zone, order, migratetype);
1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004 * is used because __rmqueue_smallest is an inline function
1005 * and we want just one call site
1007 if (!page) {
1008 migratetype = MIGRATE_RESERVE;
1009 goto retry_reserve;
1013 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1014 return page;
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency. Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1022 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1023 unsigned long count, struct list_head *list,
1024 int migratetype, int cold)
1026 int i;
1028 spin_lock(&zone->lock);
1029 for (i = 0; i < count; ++i) {
1030 struct page *page = __rmqueue(zone, order, migratetype);
1031 if (unlikely(page == NULL))
1032 break;
1035 * Split buddy pages returned by expand() are received here
1036 * in physical page order. The page is added to the callers and
1037 * list and the list head then moves forward. From the callers
1038 * perspective, the linked list is ordered by page number in
1039 * some conditions. This is useful for IO devices that can
1040 * merge IO requests if the physical pages are ordered
1041 * properly.
1043 if (likely(cold == 0))
1044 list_add(&page->lru, list);
1045 else
1046 list_add_tail(&page->lru, list);
1047 set_page_private(page, migratetype);
1048 list = &page->lru;
1050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1051 spin_unlock(&zone->lock);
1052 return i;
1055 #ifdef CONFIG_NUMA
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1059 * expired.
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
1064 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1066 unsigned long flags;
1067 int to_drain;
1069 local_irq_save(flags);
1070 if (pcp->count >= pcp->batch)
1071 to_drain = pcp->batch;
1072 else
1073 to_drain = pcp->count;
1074 free_pcppages_bulk(zone, to_drain, pcp);
1075 pcp->count -= to_drain;
1076 local_irq_restore(flags);
1078 #endif
1081 * Drain pages of the indicated processor.
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1085 * is not online.
1087 static void drain_pages(unsigned int cpu)
1089 unsigned long flags;
1090 struct zone *zone;
1092 for_each_populated_zone(zone) {
1093 struct per_cpu_pageset *pset;
1094 struct per_cpu_pages *pcp;
1096 local_irq_save(flags);
1097 pset = per_cpu_ptr(zone->pageset, cpu);
1099 pcp = &pset->pcp;
1100 if (pcp->count) {
1101 free_pcppages_bulk(zone, pcp->count, pcp);
1102 pcp->count = 0;
1104 local_irq_restore(flags);
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1111 void drain_local_pages(void *arg)
1113 drain_pages(smp_processor_id());
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1119 void drain_all_pages(void)
1121 on_each_cpu(drain_local_pages, NULL, 1);
1124 #ifdef CONFIG_HIBERNATION
1126 void mark_free_pages(struct zone *zone)
1128 unsigned long pfn, max_zone_pfn;
1129 unsigned long flags;
1130 int order, t;
1131 struct list_head *curr;
1133 if (!zone->spanned_pages)
1134 return;
1136 spin_lock_irqsave(&zone->lock, flags);
1138 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1139 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1140 if (pfn_valid(pfn)) {
1141 struct page *page = pfn_to_page(pfn);
1143 if (!swsusp_page_is_forbidden(page))
1144 swsusp_unset_page_free(page);
1147 for_each_migratetype_order(order, t) {
1148 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1149 unsigned long i;
1151 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1152 for (i = 0; i < (1UL << order); i++)
1153 swsusp_set_page_free(pfn_to_page(pfn + i));
1156 spin_unlock_irqrestore(&zone->lock, flags);
1158 #endif /* CONFIG_PM */
1161 * Free a 0-order page
1162 * cold == 1 ? free a cold page : free a hot page
1164 void free_hot_cold_page(struct page *page, int cold)
1166 struct zone *zone = page_zone(page);
1167 struct per_cpu_pages *pcp;
1168 unsigned long flags;
1169 int migratetype;
1170 int wasMlocked = __TestClearPageMlocked(page);
1172 if (!free_pages_prepare(page, 0))
1173 return;
1175 migratetype = get_pageblock_migratetype(page);
1176 set_page_private(page, migratetype);
1177 local_irq_save(flags);
1178 if (unlikely(wasMlocked))
1179 free_page_mlock(page);
1180 __count_vm_event(PGFREE);
1183 * We only track unmovable, reclaimable and movable on pcp lists.
1184 * Free ISOLATE pages back to the allocator because they are being
1185 * offlined but treat RESERVE as movable pages so we can get those
1186 * areas back if necessary. Otherwise, we may have to free
1187 * excessively into the page allocator
1189 if (migratetype >= MIGRATE_PCPTYPES) {
1190 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1191 free_one_page(zone, page, 0, migratetype);
1192 goto out;
1194 migratetype = MIGRATE_MOVABLE;
1197 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1198 if (cold)
1199 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1200 else
1201 list_add(&page->lru, &pcp->lists[migratetype]);
1202 pcp->count++;
1203 if (pcp->count >= pcp->high) {
1204 free_pcppages_bulk(zone, pcp->batch, pcp);
1205 pcp->count -= pcp->batch;
1208 out:
1209 local_irq_restore(flags);
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1220 void split_page(struct page *page, unsigned int order)
1222 int i;
1224 VM_BUG_ON(PageCompound(page));
1225 VM_BUG_ON(!page_count(page));
1227 #ifdef CONFIG_KMEMCHECK
1229 * Split shadow pages too, because free(page[0]) would
1230 * otherwise free the whole shadow.
1232 if (kmemcheck_page_is_tracked(page))
1233 split_page(virt_to_page(page[0].shadow), order);
1234 #endif
1236 for (i = 1; i < (1 << order); i++)
1237 set_page_refcounted(page + i);
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1245 * are enabled.
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1250 int split_free_page(struct page *page)
1252 unsigned int order;
1253 unsigned long watermark;
1254 struct zone *zone;
1256 BUG_ON(!PageBuddy(page));
1258 zone = page_zone(page);
1259 order = page_order(page);
1261 /* Obey watermarks as if the page was being allocated */
1262 watermark = low_wmark_pages(zone) + (1 << order);
1263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1264 return 0;
1266 /* Remove page from free list */
1267 list_del(&page->lru);
1268 zone->free_area[order].nr_free--;
1269 rmv_page_order(page);
1270 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1272 /* Split into individual pages */
1273 set_page_refcounted(page);
1274 split_page(page, order);
1276 if (order >= pageblock_order - 1) {
1277 struct page *endpage = page + (1 << order) - 1;
1278 for (; page < endpage; page += pageblock_nr_pages)
1279 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1282 return 1 << order;
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1288 * or two.
1290 static inline
1291 struct page *buffered_rmqueue(struct zone *preferred_zone,
1292 struct zone *zone, int order, gfp_t gfp_flags,
1293 int migratetype)
1295 unsigned long flags;
1296 struct page *page;
1297 int cold = !!(gfp_flags & __GFP_COLD);
1299 again:
1300 if (likely(order == 0)) {
1301 struct per_cpu_pages *pcp;
1302 struct list_head *list;
1304 local_irq_save(flags);
1305 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1306 list = &pcp->lists[migratetype];
1307 if (list_empty(list)) {
1308 pcp->count += rmqueue_bulk(zone, 0,
1309 pcp->batch, list,
1310 migratetype, cold);
1311 if (unlikely(list_empty(list)))
1312 goto failed;
1315 if (cold)
1316 page = list_entry(list->prev, struct page, lru);
1317 else
1318 page = list_entry(list->next, struct page, lru);
1320 list_del(&page->lru);
1321 pcp->count--;
1322 } else {
1323 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1325 * __GFP_NOFAIL is not to be used in new code.
1327 * All __GFP_NOFAIL callers should be fixed so that they
1328 * properly detect and handle allocation failures.
1330 * We most definitely don't want callers attempting to
1331 * allocate greater than order-1 page units with
1332 * __GFP_NOFAIL.
1334 WARN_ON_ONCE(order > 1);
1336 spin_lock_irqsave(&zone->lock, flags);
1337 page = __rmqueue(zone, order, migratetype);
1338 spin_unlock(&zone->lock);
1339 if (!page)
1340 goto failed;
1341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1344 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1345 zone_statistics(preferred_zone, zone, gfp_flags);
1346 local_irq_restore(flags);
1348 VM_BUG_ON(bad_range(zone, page));
1349 if (prep_new_page(page, order, gfp_flags))
1350 goto again;
1351 return page;
1353 failed:
1354 local_irq_restore(flags);
1355 return NULL;
1358 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359 #define ALLOC_WMARK_MIN WMARK_MIN
1360 #define ALLOC_WMARK_LOW WMARK_LOW
1361 #define ALLOC_WMARK_HIGH WMARK_HIGH
1362 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1364 /* Mask to get the watermark bits */
1365 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1367 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1368 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1369 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1371 #ifdef CONFIG_FAIL_PAGE_ALLOC
1373 static struct fail_page_alloc_attr {
1374 struct fault_attr attr;
1376 u32 ignore_gfp_highmem;
1377 u32 ignore_gfp_wait;
1378 u32 min_order;
1380 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1382 struct dentry *ignore_gfp_highmem_file;
1383 struct dentry *ignore_gfp_wait_file;
1384 struct dentry *min_order_file;
1386 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1388 } fail_page_alloc = {
1389 .attr = FAULT_ATTR_INITIALIZER,
1390 .ignore_gfp_wait = 1,
1391 .ignore_gfp_highmem = 1,
1392 .min_order = 1,
1395 static int __init setup_fail_page_alloc(char *str)
1397 return setup_fault_attr(&fail_page_alloc.attr, str);
1399 __setup("fail_page_alloc=", setup_fail_page_alloc);
1401 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1403 if (order < fail_page_alloc.min_order)
1404 return 0;
1405 if (gfp_mask & __GFP_NOFAIL)
1406 return 0;
1407 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1408 return 0;
1409 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1410 return 0;
1412 return should_fail(&fail_page_alloc.attr, 1 << order);
1415 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1417 static int __init fail_page_alloc_debugfs(void)
1419 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1420 struct dentry *dir;
1421 int err;
1423 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1424 "fail_page_alloc");
1425 if (err)
1426 return err;
1427 dir = fail_page_alloc.attr.dentries.dir;
1429 fail_page_alloc.ignore_gfp_wait_file =
1430 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1431 &fail_page_alloc.ignore_gfp_wait);
1433 fail_page_alloc.ignore_gfp_highmem_file =
1434 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1435 &fail_page_alloc.ignore_gfp_highmem);
1436 fail_page_alloc.min_order_file =
1437 debugfs_create_u32("min-order", mode, dir,
1438 &fail_page_alloc.min_order);
1440 if (!fail_page_alloc.ignore_gfp_wait_file ||
1441 !fail_page_alloc.ignore_gfp_highmem_file ||
1442 !fail_page_alloc.min_order_file) {
1443 err = -ENOMEM;
1444 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1445 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1446 debugfs_remove(fail_page_alloc.min_order_file);
1447 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1450 return err;
1453 late_initcall(fail_page_alloc_debugfs);
1455 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1457 #else /* CONFIG_FAIL_PAGE_ALLOC */
1459 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1461 return 0;
1464 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1467 * Return true if free pages are above 'mark'. This takes into account the order
1468 * of the allocation.
1470 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1471 int classzone_idx, int alloc_flags, long free_pages)
1473 /* free_pages my go negative - that's OK */
1474 long min = mark;
1475 int o;
1477 free_pages -= (1 << order) + 1;
1478 if (alloc_flags & ALLOC_HIGH)
1479 min -= min / 2;
1480 if (alloc_flags & ALLOC_HARDER)
1481 min -= min / 4;
1483 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1484 return false;
1485 for (o = 0; o < order; o++) {
1486 /* At the next order, this order's pages become unavailable */
1487 free_pages -= z->free_area[o].nr_free << o;
1489 /* Require fewer higher order pages to be free */
1490 min >>= 1;
1492 if (free_pages <= min)
1493 return false;
1495 return true;
1498 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1499 int classzone_idx, int alloc_flags)
1501 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1502 zone_page_state(z, NR_FREE_PAGES));
1505 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1506 int classzone_idx, int alloc_flags)
1508 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1510 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1511 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1513 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1514 free_pages);
1517 #ifdef CONFIG_NUMA
1519 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1520 * skip over zones that are not allowed by the cpuset, or that have
1521 * been recently (in last second) found to be nearly full. See further
1522 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1523 * that have to skip over a lot of full or unallowed zones.
1525 * If the zonelist cache is present in the passed in zonelist, then
1526 * returns a pointer to the allowed node mask (either the current
1527 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1529 * If the zonelist cache is not available for this zonelist, does
1530 * nothing and returns NULL.
1532 * If the fullzones BITMAP in the zonelist cache is stale (more than
1533 * a second since last zap'd) then we zap it out (clear its bits.)
1535 * We hold off even calling zlc_setup, until after we've checked the
1536 * first zone in the zonelist, on the theory that most allocations will
1537 * be satisfied from that first zone, so best to examine that zone as
1538 * quickly as we can.
1540 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1542 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1543 nodemask_t *allowednodes; /* zonelist_cache approximation */
1545 zlc = zonelist->zlcache_ptr;
1546 if (!zlc)
1547 return NULL;
1549 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1550 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1551 zlc->last_full_zap = jiffies;
1554 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1555 &cpuset_current_mems_allowed :
1556 &node_states[N_HIGH_MEMORY];
1557 return allowednodes;
1561 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1562 * if it is worth looking at further for free memory:
1563 * 1) Check that the zone isn't thought to be full (doesn't have its
1564 * bit set in the zonelist_cache fullzones BITMAP).
1565 * 2) Check that the zones node (obtained from the zonelist_cache
1566 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1567 * Return true (non-zero) if zone is worth looking at further, or
1568 * else return false (zero) if it is not.
1570 * This check -ignores- the distinction between various watermarks,
1571 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1572 * found to be full for any variation of these watermarks, it will
1573 * be considered full for up to one second by all requests, unless
1574 * we are so low on memory on all allowed nodes that we are forced
1575 * into the second scan of the zonelist.
1577 * In the second scan we ignore this zonelist cache and exactly
1578 * apply the watermarks to all zones, even it is slower to do so.
1579 * We are low on memory in the second scan, and should leave no stone
1580 * unturned looking for a free page.
1582 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1583 nodemask_t *allowednodes)
1585 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1586 int i; /* index of *z in zonelist zones */
1587 int n; /* node that zone *z is on */
1589 zlc = zonelist->zlcache_ptr;
1590 if (!zlc)
1591 return 1;
1593 i = z - zonelist->_zonerefs;
1594 n = zlc->z_to_n[i];
1596 /* This zone is worth trying if it is allowed but not full */
1597 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1601 * Given 'z' scanning a zonelist, set the corresponding bit in
1602 * zlc->fullzones, so that subsequent attempts to allocate a page
1603 * from that zone don't waste time re-examining it.
1605 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1607 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1608 int i; /* index of *z in zonelist zones */
1610 zlc = zonelist->zlcache_ptr;
1611 if (!zlc)
1612 return;
1614 i = z - zonelist->_zonerefs;
1616 set_bit(i, zlc->fullzones);
1620 * clear all zones full, called after direct reclaim makes progress so that
1621 * a zone that was recently full is not skipped over for up to a second
1623 static void zlc_clear_zones_full(struct zonelist *zonelist)
1625 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1627 zlc = zonelist->zlcache_ptr;
1628 if (!zlc)
1629 return;
1631 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1634 #else /* CONFIG_NUMA */
1636 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1638 return NULL;
1641 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1642 nodemask_t *allowednodes)
1644 return 1;
1647 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1651 static void zlc_clear_zones_full(struct zonelist *zonelist)
1654 #endif /* CONFIG_NUMA */
1657 * get_page_from_freelist goes through the zonelist trying to allocate
1658 * a page.
1660 static struct page *
1661 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1662 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1663 struct zone *preferred_zone, int migratetype)
1665 struct zoneref *z;
1666 struct page *page = NULL;
1667 int classzone_idx;
1668 struct zone *zone;
1669 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1670 int zlc_active = 0; /* set if using zonelist_cache */
1671 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1673 classzone_idx = zone_idx(preferred_zone);
1674 zonelist_scan:
1676 * Scan zonelist, looking for a zone with enough free.
1677 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1679 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1680 high_zoneidx, nodemask) {
1681 if (NUMA_BUILD && zlc_active &&
1682 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1683 continue;
1684 if ((alloc_flags & ALLOC_CPUSET) &&
1685 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1686 continue;
1688 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1689 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1690 unsigned long mark;
1691 int ret;
1693 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1694 if (zone_watermark_ok(zone, order, mark,
1695 classzone_idx, alloc_flags))
1696 goto try_this_zone;
1698 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1700 * we do zlc_setup if there are multiple nodes
1701 * and before considering the first zone allowed
1702 * by the cpuset.
1704 allowednodes = zlc_setup(zonelist, alloc_flags);
1705 zlc_active = 1;
1706 did_zlc_setup = 1;
1709 if (zone_reclaim_mode == 0)
1710 goto this_zone_full;
1713 * As we may have just activated ZLC, check if the first
1714 * eligible zone has failed zone_reclaim recently.
1716 if (NUMA_BUILD && zlc_active &&
1717 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1718 continue;
1720 ret = zone_reclaim(zone, gfp_mask, order);
1721 switch (ret) {
1722 case ZONE_RECLAIM_NOSCAN:
1723 /* did not scan */
1724 continue;
1725 case ZONE_RECLAIM_FULL:
1726 /* scanned but unreclaimable */
1727 continue;
1728 default:
1729 /* did we reclaim enough */
1730 if (!zone_watermark_ok(zone, order, mark,
1731 classzone_idx, alloc_flags))
1732 goto this_zone_full;
1736 try_this_zone:
1737 page = buffered_rmqueue(preferred_zone, zone, order,
1738 gfp_mask, migratetype);
1739 if (page)
1740 break;
1741 this_zone_full:
1742 if (NUMA_BUILD)
1743 zlc_mark_zone_full(zonelist, z);
1746 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1747 /* Disable zlc cache for second zonelist scan */
1748 zlc_active = 0;
1749 goto zonelist_scan;
1751 return page;
1755 * Large machines with many possible nodes should not always dump per-node
1756 * meminfo in irq context.
1758 static inline bool should_suppress_show_mem(void)
1760 bool ret = false;
1762 #if NODES_SHIFT > 8
1763 ret = in_interrupt();
1764 #endif
1765 return ret;
1768 static DEFINE_RATELIMIT_STATE(nopage_rs,
1769 DEFAULT_RATELIMIT_INTERVAL,
1770 DEFAULT_RATELIMIT_BURST);
1772 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1774 va_list args;
1775 unsigned int filter = SHOW_MEM_FILTER_NODES;
1777 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1778 return;
1781 * This documents exceptions given to allocations in certain
1782 * contexts that are allowed to allocate outside current's set
1783 * of allowed nodes.
1785 if (!(gfp_mask & __GFP_NOMEMALLOC))
1786 if (test_thread_flag(TIF_MEMDIE) ||
1787 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1788 filter &= ~SHOW_MEM_FILTER_NODES;
1789 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1790 filter &= ~SHOW_MEM_FILTER_NODES;
1792 if (fmt) {
1793 printk(KERN_WARNING);
1794 va_start(args, fmt);
1795 vprintk(fmt, args);
1796 va_end(args);
1799 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1800 current->comm, order, gfp_mask);
1802 dump_stack();
1803 if (!should_suppress_show_mem())
1804 show_mem(filter);
1807 static inline int
1808 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1809 unsigned long pages_reclaimed)
1811 /* Do not loop if specifically requested */
1812 if (gfp_mask & __GFP_NORETRY)
1813 return 0;
1816 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1817 * means __GFP_NOFAIL, but that may not be true in other
1818 * implementations.
1820 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1821 return 1;
1824 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1825 * specified, then we retry until we no longer reclaim any pages
1826 * (above), or we've reclaimed an order of pages at least as
1827 * large as the allocation's order. In both cases, if the
1828 * allocation still fails, we stop retrying.
1830 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1831 return 1;
1834 * Don't let big-order allocations loop unless the caller
1835 * explicitly requests that.
1837 if (gfp_mask & __GFP_NOFAIL)
1838 return 1;
1840 return 0;
1843 static inline struct page *
1844 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1845 struct zonelist *zonelist, enum zone_type high_zoneidx,
1846 nodemask_t *nodemask, struct zone *preferred_zone,
1847 int migratetype)
1849 struct page *page;
1851 /* Acquire the OOM killer lock for the zones in zonelist */
1852 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1853 schedule_timeout_uninterruptible(1);
1854 return NULL;
1858 * Go through the zonelist yet one more time, keep very high watermark
1859 * here, this is only to catch a parallel oom killing, we must fail if
1860 * we're still under heavy pressure.
1862 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1863 order, zonelist, high_zoneidx,
1864 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1865 preferred_zone, migratetype);
1866 if (page)
1867 goto out;
1869 if (!(gfp_mask & __GFP_NOFAIL)) {
1870 /* The OOM killer will not help higher order allocs */
1871 if (order > PAGE_ALLOC_COSTLY_ORDER)
1872 goto out;
1873 /* The OOM killer does not needlessly kill tasks for lowmem */
1874 if (high_zoneidx < ZONE_NORMAL)
1875 goto out;
1877 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1878 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1879 * The caller should handle page allocation failure by itself if
1880 * it specifies __GFP_THISNODE.
1881 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1883 if (gfp_mask & __GFP_THISNODE)
1884 goto out;
1886 /* Exhausted what can be done so it's blamo time */
1887 out_of_memory(zonelist, gfp_mask, order, nodemask);
1889 out:
1890 clear_zonelist_oom(zonelist, gfp_mask);
1891 return page;
1894 #ifdef CONFIG_COMPACTION
1895 /* Try memory compaction for high-order allocations before reclaim */
1896 static struct page *
1897 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1898 struct zonelist *zonelist, enum zone_type high_zoneidx,
1899 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1900 int migratetype, unsigned long *did_some_progress,
1901 bool sync_migration)
1903 struct page *page;
1905 if (!order || compaction_deferred(preferred_zone))
1906 return NULL;
1908 current->flags |= PF_MEMALLOC;
1909 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1910 nodemask, sync_migration);
1911 current->flags &= ~PF_MEMALLOC;
1912 if (*did_some_progress != COMPACT_SKIPPED) {
1914 /* Page migration frees to the PCP lists but we want merging */
1915 drain_pages(get_cpu());
1916 put_cpu();
1918 page = get_page_from_freelist(gfp_mask, nodemask,
1919 order, zonelist, high_zoneidx,
1920 alloc_flags, preferred_zone,
1921 migratetype);
1922 if (page) {
1923 preferred_zone->compact_considered = 0;
1924 preferred_zone->compact_defer_shift = 0;
1925 count_vm_event(COMPACTSUCCESS);
1926 return page;
1930 * It's bad if compaction run occurs and fails.
1931 * The most likely reason is that pages exist,
1932 * but not enough to satisfy watermarks.
1934 count_vm_event(COMPACTFAIL);
1935 defer_compaction(preferred_zone);
1937 cond_resched();
1940 return NULL;
1942 #else
1943 static inline struct page *
1944 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1945 struct zonelist *zonelist, enum zone_type high_zoneidx,
1946 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1947 int migratetype, unsigned long *did_some_progress,
1948 bool sync_migration)
1950 return NULL;
1952 #endif /* CONFIG_COMPACTION */
1954 /* The really slow allocator path where we enter direct reclaim */
1955 static inline struct page *
1956 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1957 struct zonelist *zonelist, enum zone_type high_zoneidx,
1958 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1959 int migratetype, unsigned long *did_some_progress)
1961 struct page *page = NULL;
1962 struct reclaim_state reclaim_state;
1963 bool drained = false;
1965 cond_resched();
1967 /* We now go into synchronous reclaim */
1968 cpuset_memory_pressure_bump();
1969 current->flags |= PF_MEMALLOC;
1970 lockdep_set_current_reclaim_state(gfp_mask);
1971 reclaim_state.reclaimed_slab = 0;
1972 current->reclaim_state = &reclaim_state;
1974 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1976 current->reclaim_state = NULL;
1977 lockdep_clear_current_reclaim_state();
1978 current->flags &= ~PF_MEMALLOC;
1980 cond_resched();
1982 if (unlikely(!(*did_some_progress)))
1983 return NULL;
1985 /* After successful reclaim, reconsider all zones for allocation */
1986 if (NUMA_BUILD)
1987 zlc_clear_zones_full(zonelist);
1989 retry:
1990 page = get_page_from_freelist(gfp_mask, nodemask, order,
1991 zonelist, high_zoneidx,
1992 alloc_flags, preferred_zone,
1993 migratetype);
1996 * If an allocation failed after direct reclaim, it could be because
1997 * pages are pinned on the per-cpu lists. Drain them and try again
1999 if (!page && !drained) {
2000 drain_all_pages();
2001 drained = true;
2002 goto retry;
2005 return page;
2009 * This is called in the allocator slow-path if the allocation request is of
2010 * sufficient urgency to ignore watermarks and take other desperate measures
2012 static inline struct page *
2013 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2014 struct zonelist *zonelist, enum zone_type high_zoneidx,
2015 nodemask_t *nodemask, struct zone *preferred_zone,
2016 int migratetype)
2018 struct page *page;
2020 do {
2021 page = get_page_from_freelist(gfp_mask, nodemask, order,
2022 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2023 preferred_zone, migratetype);
2025 if (!page && gfp_mask & __GFP_NOFAIL)
2026 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2027 } while (!page && (gfp_mask & __GFP_NOFAIL));
2029 return page;
2032 static inline
2033 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2034 enum zone_type high_zoneidx,
2035 enum zone_type classzone_idx)
2037 struct zoneref *z;
2038 struct zone *zone;
2040 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2041 wakeup_kswapd(zone, order, classzone_idx);
2044 static inline int
2045 gfp_to_alloc_flags(gfp_t gfp_mask)
2047 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2048 const gfp_t wait = gfp_mask & __GFP_WAIT;
2050 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2051 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2054 * The caller may dip into page reserves a bit more if the caller
2055 * cannot run direct reclaim, or if the caller has realtime scheduling
2056 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2057 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2059 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2061 if (!wait) {
2063 * Not worth trying to allocate harder for
2064 * __GFP_NOMEMALLOC even if it can't schedule.
2066 if (!(gfp_mask & __GFP_NOMEMALLOC))
2067 alloc_flags |= ALLOC_HARDER;
2069 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2070 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2072 alloc_flags &= ~ALLOC_CPUSET;
2073 } else if (unlikely(rt_task(current)) && !in_interrupt())
2074 alloc_flags |= ALLOC_HARDER;
2076 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2077 if (!in_interrupt() &&
2078 ((current->flags & PF_MEMALLOC) ||
2079 unlikely(test_thread_flag(TIF_MEMDIE))))
2080 alloc_flags |= ALLOC_NO_WATERMARKS;
2083 return alloc_flags;
2086 static inline struct page *
2087 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2088 struct zonelist *zonelist, enum zone_type high_zoneidx,
2089 nodemask_t *nodemask, struct zone *preferred_zone,
2090 int migratetype)
2092 const gfp_t wait = gfp_mask & __GFP_WAIT;
2093 struct page *page = NULL;
2094 int alloc_flags;
2095 unsigned long pages_reclaimed = 0;
2096 unsigned long did_some_progress;
2097 bool sync_migration = false;
2100 * In the slowpath, we sanity check order to avoid ever trying to
2101 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2102 * be using allocators in order of preference for an area that is
2103 * too large.
2105 if (order >= MAX_ORDER) {
2106 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2107 return NULL;
2111 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2112 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2113 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2114 * using a larger set of nodes after it has established that the
2115 * allowed per node queues are empty and that nodes are
2116 * over allocated.
2118 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2119 goto nopage;
2121 restart:
2122 if (!(gfp_mask & __GFP_NO_KSWAPD))
2123 wake_all_kswapd(order, zonelist, high_zoneidx,
2124 zone_idx(preferred_zone));
2127 * OK, we're below the kswapd watermark and have kicked background
2128 * reclaim. Now things get more complex, so set up alloc_flags according
2129 * to how we want to proceed.
2131 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2134 * Find the true preferred zone if the allocation is unconstrained by
2135 * cpusets.
2137 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2138 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2139 &preferred_zone);
2141 rebalance:
2142 /* This is the last chance, in general, before the goto nopage. */
2143 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2144 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2145 preferred_zone, migratetype);
2146 if (page)
2147 goto got_pg;
2149 /* Allocate without watermarks if the context allows */
2150 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2151 page = __alloc_pages_high_priority(gfp_mask, order,
2152 zonelist, high_zoneidx, nodemask,
2153 preferred_zone, migratetype);
2154 if (page)
2155 goto got_pg;
2158 /* Atomic allocations - we can't balance anything */
2159 if (!wait)
2160 goto nopage;
2162 /* Avoid recursion of direct reclaim */
2163 if (current->flags & PF_MEMALLOC)
2164 goto nopage;
2166 /* Avoid allocations with no watermarks from looping endlessly */
2167 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2168 goto nopage;
2171 * Try direct compaction. The first pass is asynchronous. Subsequent
2172 * attempts after direct reclaim are synchronous
2174 page = __alloc_pages_direct_compact(gfp_mask, order,
2175 zonelist, high_zoneidx,
2176 nodemask,
2177 alloc_flags, preferred_zone,
2178 migratetype, &did_some_progress,
2179 sync_migration);
2180 if (page)
2181 goto got_pg;
2182 sync_migration = true;
2184 /* Try direct reclaim and then allocating */
2185 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2186 zonelist, high_zoneidx,
2187 nodemask,
2188 alloc_flags, preferred_zone,
2189 migratetype, &did_some_progress);
2190 if (page)
2191 goto got_pg;
2194 * If we failed to make any progress reclaiming, then we are
2195 * running out of options and have to consider going OOM
2197 if (!did_some_progress) {
2198 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2199 if (oom_killer_disabled)
2200 goto nopage;
2201 page = __alloc_pages_may_oom(gfp_mask, order,
2202 zonelist, high_zoneidx,
2203 nodemask, preferred_zone,
2204 migratetype);
2205 if (page)
2206 goto got_pg;
2208 if (!(gfp_mask & __GFP_NOFAIL)) {
2210 * The oom killer is not called for high-order
2211 * allocations that may fail, so if no progress
2212 * is being made, there are no other options and
2213 * retrying is unlikely to help.
2215 if (order > PAGE_ALLOC_COSTLY_ORDER)
2216 goto nopage;
2218 * The oom killer is not called for lowmem
2219 * allocations to prevent needlessly killing
2220 * innocent tasks.
2222 if (high_zoneidx < ZONE_NORMAL)
2223 goto nopage;
2226 goto restart;
2230 /* Check if we should retry the allocation */
2231 pages_reclaimed += did_some_progress;
2232 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2233 /* Wait for some write requests to complete then retry */
2234 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2235 goto rebalance;
2236 } else {
2238 * High-order allocations do not necessarily loop after
2239 * direct reclaim and reclaim/compaction depends on compaction
2240 * being called after reclaim so call directly if necessary
2242 page = __alloc_pages_direct_compact(gfp_mask, order,
2243 zonelist, high_zoneidx,
2244 nodemask,
2245 alloc_flags, preferred_zone,
2246 migratetype, &did_some_progress,
2247 sync_migration);
2248 if (page)
2249 goto got_pg;
2252 nopage:
2253 warn_alloc_failed(gfp_mask, order, NULL);
2254 return page;
2255 got_pg:
2256 if (kmemcheck_enabled)
2257 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2258 return page;
2263 * This is the 'heart' of the zoned buddy allocator.
2265 struct page *
2266 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2267 struct zonelist *zonelist, nodemask_t *nodemask)
2269 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2270 struct zone *preferred_zone;
2271 struct page *page;
2272 int migratetype = allocflags_to_migratetype(gfp_mask);
2274 gfp_mask &= gfp_allowed_mask;
2276 lockdep_trace_alloc(gfp_mask);
2278 might_sleep_if(gfp_mask & __GFP_WAIT);
2280 if (should_fail_alloc_page(gfp_mask, order))
2281 return NULL;
2284 * Check the zones suitable for the gfp_mask contain at least one
2285 * valid zone. It's possible to have an empty zonelist as a result
2286 * of GFP_THISNODE and a memoryless node
2288 if (unlikely(!zonelist->_zonerefs->zone))
2289 return NULL;
2291 get_mems_allowed();
2292 /* The preferred zone is used for statistics later */
2293 first_zones_zonelist(zonelist, high_zoneidx,
2294 nodemask ? : &cpuset_current_mems_allowed,
2295 &preferred_zone);
2296 if (!preferred_zone) {
2297 put_mems_allowed();
2298 return NULL;
2301 /* First allocation attempt */
2302 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2303 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2304 preferred_zone, migratetype);
2305 if (unlikely(!page))
2306 page = __alloc_pages_slowpath(gfp_mask, order,
2307 zonelist, high_zoneidx, nodemask,
2308 preferred_zone, migratetype);
2309 put_mems_allowed();
2311 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2312 return page;
2314 EXPORT_SYMBOL(__alloc_pages_nodemask);
2317 * Common helper functions.
2319 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2321 struct page *page;
2324 * __get_free_pages() returns a 32-bit address, which cannot represent
2325 * a highmem page
2327 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2329 page = alloc_pages(gfp_mask, order);
2330 if (!page)
2331 return 0;
2332 return (unsigned long) page_address(page);
2334 EXPORT_SYMBOL(__get_free_pages);
2336 unsigned long get_zeroed_page(gfp_t gfp_mask)
2338 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2340 EXPORT_SYMBOL(get_zeroed_page);
2342 void __pagevec_free(struct pagevec *pvec)
2344 int i = pagevec_count(pvec);
2346 while (--i >= 0) {
2347 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2348 free_hot_cold_page(pvec->pages[i], pvec->cold);
2352 void __free_pages(struct page *page, unsigned int order)
2354 if (put_page_testzero(page)) {
2355 if (order == 0)
2356 free_hot_cold_page(page, 0);
2357 else
2358 __free_pages_ok(page, order);
2362 EXPORT_SYMBOL(__free_pages);
2364 void free_pages(unsigned long addr, unsigned int order)
2366 if (addr != 0) {
2367 VM_BUG_ON(!virt_addr_valid((void *)addr));
2368 __free_pages(virt_to_page((void *)addr), order);
2372 EXPORT_SYMBOL(free_pages);
2374 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2376 if (addr) {
2377 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2378 unsigned long used = addr + PAGE_ALIGN(size);
2380 split_page(virt_to_page((void *)addr), order);
2381 while (used < alloc_end) {
2382 free_page(used);
2383 used += PAGE_SIZE;
2386 return (void *)addr;
2390 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2391 * @size: the number of bytes to allocate
2392 * @gfp_mask: GFP flags for the allocation
2394 * This function is similar to alloc_pages(), except that it allocates the
2395 * minimum number of pages to satisfy the request. alloc_pages() can only
2396 * allocate memory in power-of-two pages.
2398 * This function is also limited by MAX_ORDER.
2400 * Memory allocated by this function must be released by free_pages_exact().
2402 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2404 unsigned int order = get_order(size);
2405 unsigned long addr;
2407 addr = __get_free_pages(gfp_mask, order);
2408 return make_alloc_exact(addr, order, size);
2410 EXPORT_SYMBOL(alloc_pages_exact);
2413 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2414 * pages on a node.
2415 * @nid: the preferred node ID where memory should be allocated
2416 * @size: the number of bytes to allocate
2417 * @gfp_mask: GFP flags for the allocation
2419 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2420 * back.
2421 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2422 * but is not exact.
2424 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2426 unsigned order = get_order(size);
2427 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2428 if (!p)
2429 return NULL;
2430 return make_alloc_exact((unsigned long)page_address(p), order, size);
2432 EXPORT_SYMBOL(alloc_pages_exact_nid);
2435 * free_pages_exact - release memory allocated via alloc_pages_exact()
2436 * @virt: the value returned by alloc_pages_exact.
2437 * @size: size of allocation, same value as passed to alloc_pages_exact().
2439 * Release the memory allocated by a previous call to alloc_pages_exact.
2441 void free_pages_exact(void *virt, size_t size)
2443 unsigned long addr = (unsigned long)virt;
2444 unsigned long end = addr + PAGE_ALIGN(size);
2446 while (addr < end) {
2447 free_page(addr);
2448 addr += PAGE_SIZE;
2451 EXPORT_SYMBOL(free_pages_exact);
2453 static unsigned int nr_free_zone_pages(int offset)
2455 struct zoneref *z;
2456 struct zone *zone;
2458 /* Just pick one node, since fallback list is circular */
2459 unsigned int sum = 0;
2461 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2463 for_each_zone_zonelist(zone, z, zonelist, offset) {
2464 unsigned long size = zone->present_pages;
2465 unsigned long high = high_wmark_pages(zone);
2466 if (size > high)
2467 sum += size - high;
2470 return sum;
2474 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2476 unsigned int nr_free_buffer_pages(void)
2478 return nr_free_zone_pages(gfp_zone(GFP_USER));
2480 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2483 * Amount of free RAM allocatable within all zones
2485 unsigned int nr_free_pagecache_pages(void)
2487 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2490 static inline void show_node(struct zone *zone)
2492 if (NUMA_BUILD)
2493 printk("Node %d ", zone_to_nid(zone));
2496 void si_meminfo(struct sysinfo *val)
2498 val->totalram = totalram_pages;
2499 val->sharedram = 0;
2500 val->freeram = global_page_state(NR_FREE_PAGES);
2501 val->bufferram = nr_blockdev_pages();
2502 val->totalhigh = totalhigh_pages;
2503 val->freehigh = nr_free_highpages();
2504 val->mem_unit = PAGE_SIZE;
2507 EXPORT_SYMBOL(si_meminfo);
2509 #ifdef CONFIG_NUMA
2510 void si_meminfo_node(struct sysinfo *val, int nid)
2512 pg_data_t *pgdat = NODE_DATA(nid);
2514 val->totalram = pgdat->node_present_pages;
2515 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2516 #ifdef CONFIG_HIGHMEM
2517 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2518 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2519 NR_FREE_PAGES);
2520 #else
2521 val->totalhigh = 0;
2522 val->freehigh = 0;
2523 #endif
2524 val->mem_unit = PAGE_SIZE;
2526 #endif
2529 * Determine whether the node should be displayed or not, depending on whether
2530 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2532 bool skip_free_areas_node(unsigned int flags, int nid)
2534 bool ret = false;
2536 if (!(flags & SHOW_MEM_FILTER_NODES))
2537 goto out;
2539 get_mems_allowed();
2540 ret = !node_isset(nid, cpuset_current_mems_allowed);
2541 put_mems_allowed();
2542 out:
2543 return ret;
2546 #define K(x) ((x) << (PAGE_SHIFT-10))
2549 * Show free area list (used inside shift_scroll-lock stuff)
2550 * We also calculate the percentage fragmentation. We do this by counting the
2551 * memory on each free list with the exception of the first item on the list.
2552 * Suppresses nodes that are not allowed by current's cpuset if
2553 * SHOW_MEM_FILTER_NODES is passed.
2555 void show_free_areas(unsigned int filter)
2557 int cpu;
2558 struct zone *zone;
2560 for_each_populated_zone(zone) {
2561 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2562 continue;
2563 show_node(zone);
2564 printk("%s per-cpu:\n", zone->name);
2566 for_each_online_cpu(cpu) {
2567 struct per_cpu_pageset *pageset;
2569 pageset = per_cpu_ptr(zone->pageset, cpu);
2571 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2572 cpu, pageset->pcp.high,
2573 pageset->pcp.batch, pageset->pcp.count);
2577 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2578 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2579 " unevictable:%lu"
2580 " dirty:%lu writeback:%lu unstable:%lu\n"
2581 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2582 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2583 global_page_state(NR_ACTIVE_ANON),
2584 global_page_state(NR_INACTIVE_ANON),
2585 global_page_state(NR_ISOLATED_ANON),
2586 global_page_state(NR_ACTIVE_FILE),
2587 global_page_state(NR_INACTIVE_FILE),
2588 global_page_state(NR_ISOLATED_FILE),
2589 global_page_state(NR_UNEVICTABLE),
2590 global_page_state(NR_FILE_DIRTY),
2591 global_page_state(NR_WRITEBACK),
2592 global_page_state(NR_UNSTABLE_NFS),
2593 global_page_state(NR_FREE_PAGES),
2594 global_page_state(NR_SLAB_RECLAIMABLE),
2595 global_page_state(NR_SLAB_UNRECLAIMABLE),
2596 global_page_state(NR_FILE_MAPPED),
2597 global_page_state(NR_SHMEM),
2598 global_page_state(NR_PAGETABLE),
2599 global_page_state(NR_BOUNCE));
2601 for_each_populated_zone(zone) {
2602 int i;
2604 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2605 continue;
2606 show_node(zone);
2607 printk("%s"
2608 " free:%lukB"
2609 " min:%lukB"
2610 " low:%lukB"
2611 " high:%lukB"
2612 " active_anon:%lukB"
2613 " inactive_anon:%lukB"
2614 " active_file:%lukB"
2615 " inactive_file:%lukB"
2616 " unevictable:%lukB"
2617 " isolated(anon):%lukB"
2618 " isolated(file):%lukB"
2619 " present:%lukB"
2620 " mlocked:%lukB"
2621 " dirty:%lukB"
2622 " writeback:%lukB"
2623 " mapped:%lukB"
2624 " shmem:%lukB"
2625 " slab_reclaimable:%lukB"
2626 " slab_unreclaimable:%lukB"
2627 " kernel_stack:%lukB"
2628 " pagetables:%lukB"
2629 " unstable:%lukB"
2630 " bounce:%lukB"
2631 " writeback_tmp:%lukB"
2632 " pages_scanned:%lu"
2633 " all_unreclaimable? %s"
2634 "\n",
2635 zone->name,
2636 K(zone_page_state(zone, NR_FREE_PAGES)),
2637 K(min_wmark_pages(zone)),
2638 K(low_wmark_pages(zone)),
2639 K(high_wmark_pages(zone)),
2640 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2641 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2642 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2643 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2644 K(zone_page_state(zone, NR_UNEVICTABLE)),
2645 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2646 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2647 K(zone->present_pages),
2648 K(zone_page_state(zone, NR_MLOCK)),
2649 K(zone_page_state(zone, NR_FILE_DIRTY)),
2650 K(zone_page_state(zone, NR_WRITEBACK)),
2651 K(zone_page_state(zone, NR_FILE_MAPPED)),
2652 K(zone_page_state(zone, NR_SHMEM)),
2653 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2654 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2655 zone_page_state(zone, NR_KERNEL_STACK) *
2656 THREAD_SIZE / 1024,
2657 K(zone_page_state(zone, NR_PAGETABLE)),
2658 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2659 K(zone_page_state(zone, NR_BOUNCE)),
2660 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2661 zone->pages_scanned,
2662 (zone->all_unreclaimable ? "yes" : "no")
2664 printk("lowmem_reserve[]:");
2665 for (i = 0; i < MAX_NR_ZONES; i++)
2666 printk(" %lu", zone->lowmem_reserve[i]);
2667 printk("\n");
2670 for_each_populated_zone(zone) {
2671 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2673 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2674 continue;
2675 show_node(zone);
2676 printk("%s: ", zone->name);
2678 spin_lock_irqsave(&zone->lock, flags);
2679 for (order = 0; order < MAX_ORDER; order++) {
2680 nr[order] = zone->free_area[order].nr_free;
2681 total += nr[order] << order;
2683 spin_unlock_irqrestore(&zone->lock, flags);
2684 for (order = 0; order < MAX_ORDER; order++)
2685 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2686 printk("= %lukB\n", K(total));
2689 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2691 show_swap_cache_info();
2694 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2696 zoneref->zone = zone;
2697 zoneref->zone_idx = zone_idx(zone);
2701 * Builds allocation fallback zone lists.
2703 * Add all populated zones of a node to the zonelist.
2705 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2706 int nr_zones, enum zone_type zone_type)
2708 struct zone *zone;
2710 BUG_ON(zone_type >= MAX_NR_ZONES);
2711 zone_type++;
2713 do {
2714 zone_type--;
2715 zone = pgdat->node_zones + zone_type;
2716 if (populated_zone(zone)) {
2717 zoneref_set_zone(zone,
2718 &zonelist->_zonerefs[nr_zones++]);
2719 check_highest_zone(zone_type);
2722 } while (zone_type);
2723 return nr_zones;
2728 * zonelist_order:
2729 * 0 = automatic detection of better ordering.
2730 * 1 = order by ([node] distance, -zonetype)
2731 * 2 = order by (-zonetype, [node] distance)
2733 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2734 * the same zonelist. So only NUMA can configure this param.
2736 #define ZONELIST_ORDER_DEFAULT 0
2737 #define ZONELIST_ORDER_NODE 1
2738 #define ZONELIST_ORDER_ZONE 2
2740 /* zonelist order in the kernel.
2741 * set_zonelist_order() will set this to NODE or ZONE.
2743 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2744 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2747 #ifdef CONFIG_NUMA
2748 /* The value user specified ....changed by config */
2749 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2750 /* string for sysctl */
2751 #define NUMA_ZONELIST_ORDER_LEN 16
2752 char numa_zonelist_order[16] = "default";
2755 * interface for configure zonelist ordering.
2756 * command line option "numa_zonelist_order"
2757 * = "[dD]efault - default, automatic configuration.
2758 * = "[nN]ode - order by node locality, then by zone within node
2759 * = "[zZ]one - order by zone, then by locality within zone
2762 static int __parse_numa_zonelist_order(char *s)
2764 if (*s == 'd' || *s == 'D') {
2765 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2766 } else if (*s == 'n' || *s == 'N') {
2767 user_zonelist_order = ZONELIST_ORDER_NODE;
2768 } else if (*s == 'z' || *s == 'Z') {
2769 user_zonelist_order = ZONELIST_ORDER_ZONE;
2770 } else {
2771 printk(KERN_WARNING
2772 "Ignoring invalid numa_zonelist_order value: "
2773 "%s\n", s);
2774 return -EINVAL;
2776 return 0;
2779 static __init int setup_numa_zonelist_order(char *s)
2781 int ret;
2783 if (!s)
2784 return 0;
2786 ret = __parse_numa_zonelist_order(s);
2787 if (ret == 0)
2788 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2790 return ret;
2792 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2795 * sysctl handler for numa_zonelist_order
2797 int numa_zonelist_order_handler(ctl_table *table, int write,
2798 void __user *buffer, size_t *length,
2799 loff_t *ppos)
2801 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2802 int ret;
2803 static DEFINE_MUTEX(zl_order_mutex);
2805 mutex_lock(&zl_order_mutex);
2806 if (write)
2807 strcpy(saved_string, (char*)table->data);
2808 ret = proc_dostring(table, write, buffer, length, ppos);
2809 if (ret)
2810 goto out;
2811 if (write) {
2812 int oldval = user_zonelist_order;
2813 if (__parse_numa_zonelist_order((char*)table->data)) {
2815 * bogus value. restore saved string
2817 strncpy((char*)table->data, saved_string,
2818 NUMA_ZONELIST_ORDER_LEN);
2819 user_zonelist_order = oldval;
2820 } else if (oldval != user_zonelist_order) {
2821 mutex_lock(&zonelists_mutex);
2822 build_all_zonelists(NULL);
2823 mutex_unlock(&zonelists_mutex);
2826 out:
2827 mutex_unlock(&zl_order_mutex);
2828 return ret;
2832 #define MAX_NODE_LOAD (nr_online_nodes)
2833 static int node_load[MAX_NUMNODES];
2836 * find_next_best_node - find the next node that should appear in a given node's fallback list
2837 * @node: node whose fallback list we're appending
2838 * @used_node_mask: nodemask_t of already used nodes
2840 * We use a number of factors to determine which is the next node that should
2841 * appear on a given node's fallback list. The node should not have appeared
2842 * already in @node's fallback list, and it should be the next closest node
2843 * according to the distance array (which contains arbitrary distance values
2844 * from each node to each node in the system), and should also prefer nodes
2845 * with no CPUs, since presumably they'll have very little allocation pressure
2846 * on them otherwise.
2847 * It returns -1 if no node is found.
2849 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2851 int n, val;
2852 int min_val = INT_MAX;
2853 int best_node = -1;
2854 const struct cpumask *tmp = cpumask_of_node(0);
2856 /* Use the local node if we haven't already */
2857 if (!node_isset(node, *used_node_mask)) {
2858 node_set(node, *used_node_mask);
2859 return node;
2862 for_each_node_state(n, N_HIGH_MEMORY) {
2864 /* Don't want a node to appear more than once */
2865 if (node_isset(n, *used_node_mask))
2866 continue;
2868 /* Use the distance array to find the distance */
2869 val = node_distance(node, n);
2871 /* Penalize nodes under us ("prefer the next node") */
2872 val += (n < node);
2874 /* Give preference to headless and unused nodes */
2875 tmp = cpumask_of_node(n);
2876 if (!cpumask_empty(tmp))
2877 val += PENALTY_FOR_NODE_WITH_CPUS;
2879 /* Slight preference for less loaded node */
2880 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2881 val += node_load[n];
2883 if (val < min_val) {
2884 min_val = val;
2885 best_node = n;
2889 if (best_node >= 0)
2890 node_set(best_node, *used_node_mask);
2892 return best_node;
2897 * Build zonelists ordered by node and zones within node.
2898 * This results in maximum locality--normal zone overflows into local
2899 * DMA zone, if any--but risks exhausting DMA zone.
2901 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2903 int j;
2904 struct zonelist *zonelist;
2906 zonelist = &pgdat->node_zonelists[0];
2907 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2909 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2910 MAX_NR_ZONES - 1);
2911 zonelist->_zonerefs[j].zone = NULL;
2912 zonelist->_zonerefs[j].zone_idx = 0;
2916 * Build gfp_thisnode zonelists
2918 static void build_thisnode_zonelists(pg_data_t *pgdat)
2920 int j;
2921 struct zonelist *zonelist;
2923 zonelist = &pgdat->node_zonelists[1];
2924 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2925 zonelist->_zonerefs[j].zone = NULL;
2926 zonelist->_zonerefs[j].zone_idx = 0;
2930 * Build zonelists ordered by zone and nodes within zones.
2931 * This results in conserving DMA zone[s] until all Normal memory is
2932 * exhausted, but results in overflowing to remote node while memory
2933 * may still exist in local DMA zone.
2935 static int node_order[MAX_NUMNODES];
2937 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2939 int pos, j, node;
2940 int zone_type; /* needs to be signed */
2941 struct zone *z;
2942 struct zonelist *zonelist;
2944 zonelist = &pgdat->node_zonelists[0];
2945 pos = 0;
2946 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2947 for (j = 0; j < nr_nodes; j++) {
2948 node = node_order[j];
2949 z = &NODE_DATA(node)->node_zones[zone_type];
2950 if (populated_zone(z)) {
2951 zoneref_set_zone(z,
2952 &zonelist->_zonerefs[pos++]);
2953 check_highest_zone(zone_type);
2957 zonelist->_zonerefs[pos].zone = NULL;
2958 zonelist->_zonerefs[pos].zone_idx = 0;
2961 static int default_zonelist_order(void)
2963 int nid, zone_type;
2964 unsigned long low_kmem_size,total_size;
2965 struct zone *z;
2966 int average_size;
2968 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2969 * If they are really small and used heavily, the system can fall
2970 * into OOM very easily.
2971 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2973 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2974 low_kmem_size = 0;
2975 total_size = 0;
2976 for_each_online_node(nid) {
2977 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2978 z = &NODE_DATA(nid)->node_zones[zone_type];
2979 if (populated_zone(z)) {
2980 if (zone_type < ZONE_NORMAL)
2981 low_kmem_size += z->present_pages;
2982 total_size += z->present_pages;
2983 } else if (zone_type == ZONE_NORMAL) {
2985 * If any node has only lowmem, then node order
2986 * is preferred to allow kernel allocations
2987 * locally; otherwise, they can easily infringe
2988 * on other nodes when there is an abundance of
2989 * lowmem available to allocate from.
2991 return ZONELIST_ORDER_NODE;
2995 if (!low_kmem_size || /* there are no DMA area. */
2996 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2997 return ZONELIST_ORDER_NODE;
2999 * look into each node's config.
3000 * If there is a node whose DMA/DMA32 memory is very big area on
3001 * local memory, NODE_ORDER may be suitable.
3003 average_size = total_size /
3004 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3005 for_each_online_node(nid) {
3006 low_kmem_size = 0;
3007 total_size = 0;
3008 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3009 z = &NODE_DATA(nid)->node_zones[zone_type];
3010 if (populated_zone(z)) {
3011 if (zone_type < ZONE_NORMAL)
3012 low_kmem_size += z->present_pages;
3013 total_size += z->present_pages;
3016 if (low_kmem_size &&
3017 total_size > average_size && /* ignore small node */
3018 low_kmem_size > total_size * 70/100)
3019 return ZONELIST_ORDER_NODE;
3021 return ZONELIST_ORDER_ZONE;
3024 static void set_zonelist_order(void)
3026 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3027 current_zonelist_order = default_zonelist_order();
3028 else
3029 current_zonelist_order = user_zonelist_order;
3032 static void build_zonelists(pg_data_t *pgdat)
3034 int j, node, load;
3035 enum zone_type i;
3036 nodemask_t used_mask;
3037 int local_node, prev_node;
3038 struct zonelist *zonelist;
3039 int order = current_zonelist_order;
3041 /* initialize zonelists */
3042 for (i = 0; i < MAX_ZONELISTS; i++) {
3043 zonelist = pgdat->node_zonelists + i;
3044 zonelist->_zonerefs[0].zone = NULL;
3045 zonelist->_zonerefs[0].zone_idx = 0;
3048 /* NUMA-aware ordering of nodes */
3049 local_node = pgdat->node_id;
3050 load = nr_online_nodes;
3051 prev_node = local_node;
3052 nodes_clear(used_mask);
3054 memset(node_order, 0, sizeof(node_order));
3055 j = 0;
3057 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3058 int distance = node_distance(local_node, node);
3061 * If another node is sufficiently far away then it is better
3062 * to reclaim pages in a zone before going off node.
3064 if (distance > RECLAIM_DISTANCE)
3065 zone_reclaim_mode = 1;
3068 * We don't want to pressure a particular node.
3069 * So adding penalty to the first node in same
3070 * distance group to make it round-robin.
3072 if (distance != node_distance(local_node, prev_node))
3073 node_load[node] = load;
3075 prev_node = node;
3076 load--;
3077 if (order == ZONELIST_ORDER_NODE)
3078 build_zonelists_in_node_order(pgdat, node);
3079 else
3080 node_order[j++] = node; /* remember order */
3083 if (order == ZONELIST_ORDER_ZONE) {
3084 /* calculate node order -- i.e., DMA last! */
3085 build_zonelists_in_zone_order(pgdat, j);
3088 build_thisnode_zonelists(pgdat);
3091 /* Construct the zonelist performance cache - see further mmzone.h */
3092 static void build_zonelist_cache(pg_data_t *pgdat)
3094 struct zonelist *zonelist;
3095 struct zonelist_cache *zlc;
3096 struct zoneref *z;
3098 zonelist = &pgdat->node_zonelists[0];
3099 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3100 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3101 for (z = zonelist->_zonerefs; z->zone; z++)
3102 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3105 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3107 * Return node id of node used for "local" allocations.
3108 * I.e., first node id of first zone in arg node's generic zonelist.
3109 * Used for initializing percpu 'numa_mem', which is used primarily
3110 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3112 int local_memory_node(int node)
3114 struct zone *zone;
3116 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3117 gfp_zone(GFP_KERNEL),
3118 NULL,
3119 &zone);
3120 return zone->node;
3122 #endif
3124 #else /* CONFIG_NUMA */
3126 static void set_zonelist_order(void)
3128 current_zonelist_order = ZONELIST_ORDER_ZONE;
3131 static void build_zonelists(pg_data_t *pgdat)
3133 int node, local_node;
3134 enum zone_type j;
3135 struct zonelist *zonelist;
3137 local_node = pgdat->node_id;
3139 zonelist = &pgdat->node_zonelists[0];
3140 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3143 * Now we build the zonelist so that it contains the zones
3144 * of all the other nodes.
3145 * We don't want to pressure a particular node, so when
3146 * building the zones for node N, we make sure that the
3147 * zones coming right after the local ones are those from
3148 * node N+1 (modulo N)
3150 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3151 if (!node_online(node))
3152 continue;
3153 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3154 MAX_NR_ZONES - 1);
3156 for (node = 0; node < local_node; node++) {
3157 if (!node_online(node))
3158 continue;
3159 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3160 MAX_NR_ZONES - 1);
3163 zonelist->_zonerefs[j].zone = NULL;
3164 zonelist->_zonerefs[j].zone_idx = 0;
3167 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3168 static void build_zonelist_cache(pg_data_t *pgdat)
3170 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3173 #endif /* CONFIG_NUMA */
3176 * Boot pageset table. One per cpu which is going to be used for all
3177 * zones and all nodes. The parameters will be set in such a way
3178 * that an item put on a list will immediately be handed over to
3179 * the buddy list. This is safe since pageset manipulation is done
3180 * with interrupts disabled.
3182 * The boot_pagesets must be kept even after bootup is complete for
3183 * unused processors and/or zones. They do play a role for bootstrapping
3184 * hotplugged processors.
3186 * zoneinfo_show() and maybe other functions do
3187 * not check if the processor is online before following the pageset pointer.
3188 * Other parts of the kernel may not check if the zone is available.
3190 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3191 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3192 static void setup_zone_pageset(struct zone *zone);
3195 * Global mutex to protect against size modification of zonelists
3196 * as well as to serialize pageset setup for the new populated zone.
3198 DEFINE_MUTEX(zonelists_mutex);
3200 /* return values int ....just for stop_machine() */
3201 static __init_refok int __build_all_zonelists(void *data)
3203 int nid;
3204 int cpu;
3206 #ifdef CONFIG_NUMA
3207 memset(node_load, 0, sizeof(node_load));
3208 #endif
3209 for_each_online_node(nid) {
3210 pg_data_t *pgdat = NODE_DATA(nid);
3212 build_zonelists(pgdat);
3213 build_zonelist_cache(pgdat);
3217 * Initialize the boot_pagesets that are going to be used
3218 * for bootstrapping processors. The real pagesets for
3219 * each zone will be allocated later when the per cpu
3220 * allocator is available.
3222 * boot_pagesets are used also for bootstrapping offline
3223 * cpus if the system is already booted because the pagesets
3224 * are needed to initialize allocators on a specific cpu too.
3225 * F.e. the percpu allocator needs the page allocator which
3226 * needs the percpu allocator in order to allocate its pagesets
3227 * (a chicken-egg dilemma).
3229 for_each_possible_cpu(cpu) {
3230 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3232 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3234 * We now know the "local memory node" for each node--
3235 * i.e., the node of the first zone in the generic zonelist.
3236 * Set up numa_mem percpu variable for on-line cpus. During
3237 * boot, only the boot cpu should be on-line; we'll init the
3238 * secondary cpus' numa_mem as they come on-line. During
3239 * node/memory hotplug, we'll fixup all on-line cpus.
3241 if (cpu_online(cpu))
3242 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3243 #endif
3246 return 0;
3250 * Called with zonelists_mutex held always
3251 * unless system_state == SYSTEM_BOOTING.
3253 void __ref build_all_zonelists(void *data)
3255 set_zonelist_order();
3257 if (system_state == SYSTEM_BOOTING) {
3258 __build_all_zonelists(NULL);
3259 mminit_verify_zonelist();
3260 cpuset_init_current_mems_allowed();
3261 } else {
3262 /* we have to stop all cpus to guarantee there is no user
3263 of zonelist */
3264 #ifdef CONFIG_MEMORY_HOTPLUG
3265 if (data)
3266 setup_zone_pageset((struct zone *)data);
3267 #endif
3268 stop_machine(__build_all_zonelists, NULL, NULL);
3269 /* cpuset refresh routine should be here */
3271 vm_total_pages = nr_free_pagecache_pages();
3273 * Disable grouping by mobility if the number of pages in the
3274 * system is too low to allow the mechanism to work. It would be
3275 * more accurate, but expensive to check per-zone. This check is
3276 * made on memory-hotadd so a system can start with mobility
3277 * disabled and enable it later
3279 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3280 page_group_by_mobility_disabled = 1;
3281 else
3282 page_group_by_mobility_disabled = 0;
3284 printk("Built %i zonelists in %s order, mobility grouping %s. "
3285 "Total pages: %ld\n",
3286 nr_online_nodes,
3287 zonelist_order_name[current_zonelist_order],
3288 page_group_by_mobility_disabled ? "off" : "on",
3289 vm_total_pages);
3290 #ifdef CONFIG_NUMA
3291 printk("Policy zone: %s\n", zone_names[policy_zone]);
3292 #endif
3296 * Helper functions to size the waitqueue hash table.
3297 * Essentially these want to choose hash table sizes sufficiently
3298 * large so that collisions trying to wait on pages are rare.
3299 * But in fact, the number of active page waitqueues on typical
3300 * systems is ridiculously low, less than 200. So this is even
3301 * conservative, even though it seems large.
3303 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3304 * waitqueues, i.e. the size of the waitq table given the number of pages.
3306 #define PAGES_PER_WAITQUEUE 256
3308 #ifndef CONFIG_MEMORY_HOTPLUG
3309 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3311 unsigned long size = 1;
3313 pages /= PAGES_PER_WAITQUEUE;
3315 while (size < pages)
3316 size <<= 1;
3319 * Once we have dozens or even hundreds of threads sleeping
3320 * on IO we've got bigger problems than wait queue collision.
3321 * Limit the size of the wait table to a reasonable size.
3323 size = min(size, 4096UL);
3325 return max(size, 4UL);
3327 #else
3329 * A zone's size might be changed by hot-add, so it is not possible to determine
3330 * a suitable size for its wait_table. So we use the maximum size now.
3332 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3334 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3335 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3336 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3338 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3339 * or more by the traditional way. (See above). It equals:
3341 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3342 * ia64(16K page size) : = ( 8G + 4M)byte.
3343 * powerpc (64K page size) : = (32G +16M)byte.
3345 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3347 return 4096UL;
3349 #endif
3352 * This is an integer logarithm so that shifts can be used later
3353 * to extract the more random high bits from the multiplicative
3354 * hash function before the remainder is taken.
3356 static inline unsigned long wait_table_bits(unsigned long size)
3358 return ffz(~size);
3361 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3364 * Check if a pageblock contains reserved pages
3366 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3368 unsigned long pfn;
3370 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3371 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3372 return 1;
3374 return 0;
3378 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3379 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3380 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3381 * higher will lead to a bigger reserve which will get freed as contiguous
3382 * blocks as reclaim kicks in
3384 static void setup_zone_migrate_reserve(struct zone *zone)
3386 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3387 struct page *page;
3388 unsigned long block_migratetype;
3389 int reserve;
3392 * Get the start pfn, end pfn and the number of blocks to reserve
3393 * We have to be careful to be aligned to pageblock_nr_pages to
3394 * make sure that we always check pfn_valid for the first page in
3395 * the block.
3397 start_pfn = zone->zone_start_pfn;
3398 end_pfn = start_pfn + zone->spanned_pages;
3399 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3400 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3401 pageblock_order;
3404 * Reserve blocks are generally in place to help high-order atomic
3405 * allocations that are short-lived. A min_free_kbytes value that
3406 * would result in more than 2 reserve blocks for atomic allocations
3407 * is assumed to be in place to help anti-fragmentation for the
3408 * future allocation of hugepages at runtime.
3410 reserve = min(2, reserve);
3412 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3413 if (!pfn_valid(pfn))
3414 continue;
3415 page = pfn_to_page(pfn);
3417 /* Watch out for overlapping nodes */
3418 if (page_to_nid(page) != zone_to_nid(zone))
3419 continue;
3421 /* Blocks with reserved pages will never free, skip them. */
3422 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3423 if (pageblock_is_reserved(pfn, block_end_pfn))
3424 continue;
3426 block_migratetype = get_pageblock_migratetype(page);
3428 /* If this block is reserved, account for it */
3429 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3430 reserve--;
3431 continue;
3434 /* Suitable for reserving if this block is movable */
3435 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3436 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3437 move_freepages_block(zone, page, MIGRATE_RESERVE);
3438 reserve--;
3439 continue;
3443 * If the reserve is met and this is a previous reserved block,
3444 * take it back
3446 if (block_migratetype == MIGRATE_RESERVE) {
3447 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3448 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3454 * Initially all pages are reserved - free ones are freed
3455 * up by free_all_bootmem() once the early boot process is
3456 * done. Non-atomic initialization, single-pass.
3458 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3459 unsigned long start_pfn, enum memmap_context context)
3461 struct page *page;
3462 unsigned long end_pfn = start_pfn + size;
3463 unsigned long pfn;
3464 struct zone *z;
3466 if (highest_memmap_pfn < end_pfn - 1)
3467 highest_memmap_pfn = end_pfn - 1;
3469 z = &NODE_DATA(nid)->node_zones[zone];
3470 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3472 * There can be holes in boot-time mem_map[]s
3473 * handed to this function. They do not
3474 * exist on hotplugged memory.
3476 if (context == MEMMAP_EARLY) {
3477 if (!early_pfn_valid(pfn))
3478 continue;
3479 if (!early_pfn_in_nid(pfn, nid))
3480 continue;
3482 page = pfn_to_page(pfn);
3483 set_page_links(page, zone, nid, pfn);
3484 mminit_verify_page_links(page, zone, nid, pfn);
3485 init_page_count(page);
3486 reset_page_mapcount(page);
3487 SetPageReserved(page);
3489 * Mark the block movable so that blocks are reserved for
3490 * movable at startup. This will force kernel allocations
3491 * to reserve their blocks rather than leaking throughout
3492 * the address space during boot when many long-lived
3493 * kernel allocations are made. Later some blocks near
3494 * the start are marked MIGRATE_RESERVE by
3495 * setup_zone_migrate_reserve()
3497 * bitmap is created for zone's valid pfn range. but memmap
3498 * can be created for invalid pages (for alignment)
3499 * check here not to call set_pageblock_migratetype() against
3500 * pfn out of zone.
3502 if ((z->zone_start_pfn <= pfn)
3503 && (pfn < z->zone_start_pfn + z->spanned_pages)
3504 && !(pfn & (pageblock_nr_pages - 1)))
3505 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3507 INIT_LIST_HEAD(&page->lru);
3508 #ifdef WANT_PAGE_VIRTUAL
3509 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3510 if (!is_highmem_idx(zone))
3511 set_page_address(page, __va(pfn << PAGE_SHIFT));
3512 #endif
3516 static void __meminit zone_init_free_lists(struct zone *zone)
3518 int order, t;
3519 for_each_migratetype_order(order, t) {
3520 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3521 zone->free_area[order].nr_free = 0;
3525 #ifndef __HAVE_ARCH_MEMMAP_INIT
3526 #define memmap_init(size, nid, zone, start_pfn) \
3527 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3528 #endif
3530 static int zone_batchsize(struct zone *zone)
3532 #ifdef CONFIG_MMU
3533 int batch;
3536 * The per-cpu-pages pools are set to around 1000th of the
3537 * size of the zone. But no more than 1/2 of a meg.
3539 * OK, so we don't know how big the cache is. So guess.
3541 batch = zone->present_pages / 1024;
3542 if (batch * PAGE_SIZE > 512 * 1024)
3543 batch = (512 * 1024) / PAGE_SIZE;
3544 batch /= 4; /* We effectively *= 4 below */
3545 if (batch < 1)
3546 batch = 1;
3549 * Clamp the batch to a 2^n - 1 value. Having a power
3550 * of 2 value was found to be more likely to have
3551 * suboptimal cache aliasing properties in some cases.
3553 * For example if 2 tasks are alternately allocating
3554 * batches of pages, one task can end up with a lot
3555 * of pages of one half of the possible page colors
3556 * and the other with pages of the other colors.
3558 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3560 return batch;
3562 #else
3563 /* The deferral and batching of frees should be suppressed under NOMMU
3564 * conditions.
3566 * The problem is that NOMMU needs to be able to allocate large chunks
3567 * of contiguous memory as there's no hardware page translation to
3568 * assemble apparent contiguous memory from discontiguous pages.
3570 * Queueing large contiguous runs of pages for batching, however,
3571 * causes the pages to actually be freed in smaller chunks. As there
3572 * can be a significant delay between the individual batches being
3573 * recycled, this leads to the once large chunks of space being
3574 * fragmented and becoming unavailable for high-order allocations.
3576 return 0;
3577 #endif
3580 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3582 struct per_cpu_pages *pcp;
3583 int migratetype;
3585 memset(p, 0, sizeof(*p));
3587 pcp = &p->pcp;
3588 pcp->count = 0;
3589 pcp->high = 6 * batch;
3590 pcp->batch = max(1UL, 1 * batch);
3591 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3592 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3596 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3597 * to the value high for the pageset p.
3600 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3601 unsigned long high)
3603 struct per_cpu_pages *pcp;
3605 pcp = &p->pcp;
3606 pcp->high = high;
3607 pcp->batch = max(1UL, high/4);
3608 if ((high/4) > (PAGE_SHIFT * 8))
3609 pcp->batch = PAGE_SHIFT * 8;
3612 static void setup_zone_pageset(struct zone *zone)
3614 int cpu;
3616 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3618 for_each_possible_cpu(cpu) {
3619 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3621 setup_pageset(pcp, zone_batchsize(zone));
3623 if (percpu_pagelist_fraction)
3624 setup_pagelist_highmark(pcp,
3625 (zone->present_pages /
3626 percpu_pagelist_fraction));
3631 * Allocate per cpu pagesets and initialize them.
3632 * Before this call only boot pagesets were available.
3634 void __init setup_per_cpu_pageset(void)
3636 struct zone *zone;
3638 for_each_populated_zone(zone)
3639 setup_zone_pageset(zone);
3642 static noinline __init_refok
3643 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3645 int i;
3646 struct pglist_data *pgdat = zone->zone_pgdat;
3647 size_t alloc_size;
3650 * The per-page waitqueue mechanism uses hashed waitqueues
3651 * per zone.
3653 zone->wait_table_hash_nr_entries =
3654 wait_table_hash_nr_entries(zone_size_pages);
3655 zone->wait_table_bits =
3656 wait_table_bits(zone->wait_table_hash_nr_entries);
3657 alloc_size = zone->wait_table_hash_nr_entries
3658 * sizeof(wait_queue_head_t);
3660 if (!slab_is_available()) {
3661 zone->wait_table = (wait_queue_head_t *)
3662 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3663 } else {
3665 * This case means that a zone whose size was 0 gets new memory
3666 * via memory hot-add.
3667 * But it may be the case that a new node was hot-added. In
3668 * this case vmalloc() will not be able to use this new node's
3669 * memory - this wait_table must be initialized to use this new
3670 * node itself as well.
3671 * To use this new node's memory, further consideration will be
3672 * necessary.
3674 zone->wait_table = vmalloc(alloc_size);
3676 if (!zone->wait_table)
3677 return -ENOMEM;
3679 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3680 init_waitqueue_head(zone->wait_table + i);
3682 return 0;
3685 static int __zone_pcp_update(void *data)
3687 struct zone *zone = data;
3688 int cpu;
3689 unsigned long batch = zone_batchsize(zone), flags;
3691 for_each_possible_cpu(cpu) {
3692 struct per_cpu_pageset *pset;
3693 struct per_cpu_pages *pcp;
3695 pset = per_cpu_ptr(zone->pageset, cpu);
3696 pcp = &pset->pcp;
3698 local_irq_save(flags);
3699 free_pcppages_bulk(zone, pcp->count, pcp);
3700 setup_pageset(pset, batch);
3701 local_irq_restore(flags);
3703 return 0;
3706 void zone_pcp_update(struct zone *zone)
3708 stop_machine(__zone_pcp_update, zone, NULL);
3711 static __meminit void zone_pcp_init(struct zone *zone)
3714 * per cpu subsystem is not up at this point. The following code
3715 * relies on the ability of the linker to provide the
3716 * offset of a (static) per cpu variable into the per cpu area.
3718 zone->pageset = &boot_pageset;
3720 if (zone->present_pages)
3721 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3722 zone->name, zone->present_pages,
3723 zone_batchsize(zone));
3726 __meminit int init_currently_empty_zone(struct zone *zone,
3727 unsigned long zone_start_pfn,
3728 unsigned long size,
3729 enum memmap_context context)
3731 struct pglist_data *pgdat = zone->zone_pgdat;
3732 int ret;
3733 ret = zone_wait_table_init(zone, size);
3734 if (ret)
3735 return ret;
3736 pgdat->nr_zones = zone_idx(zone) + 1;
3738 zone->zone_start_pfn = zone_start_pfn;
3740 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3741 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3742 pgdat->node_id,
3743 (unsigned long)zone_idx(zone),
3744 zone_start_pfn, (zone_start_pfn + size));
3746 zone_init_free_lists(zone);
3748 return 0;
3751 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3753 * Basic iterator support. Return the first range of PFNs for a node
3754 * Note: nid == MAX_NUMNODES returns first region regardless of node
3756 static int __meminit first_active_region_index_in_nid(int nid)
3758 int i;
3760 for (i = 0; i < nr_nodemap_entries; i++)
3761 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3762 return i;
3764 return -1;
3768 * Basic iterator support. Return the next active range of PFNs for a node
3769 * Note: nid == MAX_NUMNODES returns next region regardless of node
3771 static int __meminit next_active_region_index_in_nid(int index, int nid)
3773 for (index = index + 1; index < nr_nodemap_entries; index++)
3774 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3775 return index;
3777 return -1;
3780 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3782 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3783 * Architectures may implement their own version but if add_active_range()
3784 * was used and there are no special requirements, this is a convenient
3785 * alternative
3787 int __meminit __early_pfn_to_nid(unsigned long pfn)
3789 int i;
3791 for (i = 0; i < nr_nodemap_entries; i++) {
3792 unsigned long start_pfn = early_node_map[i].start_pfn;
3793 unsigned long end_pfn = early_node_map[i].end_pfn;
3795 if (start_pfn <= pfn && pfn < end_pfn)
3796 return early_node_map[i].nid;
3798 /* This is a memory hole */
3799 return -1;
3801 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3803 int __meminit early_pfn_to_nid(unsigned long pfn)
3805 int nid;
3807 nid = __early_pfn_to_nid(pfn);
3808 if (nid >= 0)
3809 return nid;
3810 /* just returns 0 */
3811 return 0;
3814 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3815 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3817 int nid;
3819 nid = __early_pfn_to_nid(pfn);
3820 if (nid >= 0 && nid != node)
3821 return false;
3822 return true;
3824 #endif
3826 /* Basic iterator support to walk early_node_map[] */
3827 #define for_each_active_range_index_in_nid(i, nid) \
3828 for (i = first_active_region_index_in_nid(nid); i != -1; \
3829 i = next_active_region_index_in_nid(i, nid))
3832 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3833 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3834 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3836 * If an architecture guarantees that all ranges registered with
3837 * add_active_ranges() contain no holes and may be freed, this
3838 * this function may be used instead of calling free_bootmem() manually.
3840 void __init free_bootmem_with_active_regions(int nid,
3841 unsigned long max_low_pfn)
3843 int i;
3845 for_each_active_range_index_in_nid(i, nid) {
3846 unsigned long size_pages = 0;
3847 unsigned long end_pfn = early_node_map[i].end_pfn;
3849 if (early_node_map[i].start_pfn >= max_low_pfn)
3850 continue;
3852 if (end_pfn > max_low_pfn)
3853 end_pfn = max_low_pfn;
3855 size_pages = end_pfn - early_node_map[i].start_pfn;
3856 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3857 PFN_PHYS(early_node_map[i].start_pfn),
3858 size_pages << PAGE_SHIFT);
3862 #ifdef CONFIG_HAVE_MEMBLOCK
3864 * Basic iterator support. Return the last range of PFNs for a node
3865 * Note: nid == MAX_NUMNODES returns last region regardless of node
3867 static int __meminit last_active_region_index_in_nid(int nid)
3869 int i;
3871 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3872 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3873 return i;
3875 return -1;
3879 * Basic iterator support. Return the previous active range of PFNs for a node
3880 * Note: nid == MAX_NUMNODES returns next region regardless of node
3882 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3884 for (index = index - 1; index >= 0; index--)
3885 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3886 return index;
3888 return -1;
3891 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3892 for (i = last_active_region_index_in_nid(nid); i != -1; \
3893 i = previous_active_region_index_in_nid(i, nid))
3895 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3896 u64 goal, u64 limit)
3898 int i;
3900 /* Need to go over early_node_map to find out good range for node */
3901 for_each_active_range_index_in_nid_reverse(i, nid) {
3902 u64 addr;
3903 u64 ei_start, ei_last;
3904 u64 final_start, final_end;
3906 ei_last = early_node_map[i].end_pfn;
3907 ei_last <<= PAGE_SHIFT;
3908 ei_start = early_node_map[i].start_pfn;
3909 ei_start <<= PAGE_SHIFT;
3911 final_start = max(ei_start, goal);
3912 final_end = min(ei_last, limit);
3914 if (final_start >= final_end)
3915 continue;
3917 addr = memblock_find_in_range(final_start, final_end, size, align);
3919 if (addr == MEMBLOCK_ERROR)
3920 continue;
3922 return addr;
3925 return MEMBLOCK_ERROR;
3927 #endif
3929 int __init add_from_early_node_map(struct range *range, int az,
3930 int nr_range, int nid)
3932 int i;
3933 u64 start, end;
3935 /* need to go over early_node_map to find out good range for node */
3936 for_each_active_range_index_in_nid(i, nid) {
3937 start = early_node_map[i].start_pfn;
3938 end = early_node_map[i].end_pfn;
3939 nr_range = add_range(range, az, nr_range, start, end);
3941 return nr_range;
3944 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3946 int i;
3947 int ret;
3949 for_each_active_range_index_in_nid(i, nid) {
3950 ret = work_fn(early_node_map[i].start_pfn,
3951 early_node_map[i].end_pfn, data);
3952 if (ret)
3953 break;
3957 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3958 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3960 * If an architecture guarantees that all ranges registered with
3961 * add_active_ranges() contain no holes and may be freed, this
3962 * function may be used instead of calling memory_present() manually.
3964 void __init sparse_memory_present_with_active_regions(int nid)
3966 int i;
3968 for_each_active_range_index_in_nid(i, nid)
3969 memory_present(early_node_map[i].nid,
3970 early_node_map[i].start_pfn,
3971 early_node_map[i].end_pfn);
3975 * get_pfn_range_for_nid - Return the start and end page frames for a node
3976 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3977 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3978 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3980 * It returns the start and end page frame of a node based on information
3981 * provided by an arch calling add_active_range(). If called for a node
3982 * with no available memory, a warning is printed and the start and end
3983 * PFNs will be 0.
3985 void __meminit get_pfn_range_for_nid(unsigned int nid,
3986 unsigned long *start_pfn, unsigned long *end_pfn)
3988 int i;
3989 *start_pfn = -1UL;
3990 *end_pfn = 0;
3992 for_each_active_range_index_in_nid(i, nid) {
3993 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3994 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3997 if (*start_pfn == -1UL)
3998 *start_pfn = 0;
4002 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4003 * assumption is made that zones within a node are ordered in monotonic
4004 * increasing memory addresses so that the "highest" populated zone is used
4006 static void __init find_usable_zone_for_movable(void)
4008 int zone_index;
4009 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4010 if (zone_index == ZONE_MOVABLE)
4011 continue;
4013 if (arch_zone_highest_possible_pfn[zone_index] >
4014 arch_zone_lowest_possible_pfn[zone_index])
4015 break;
4018 VM_BUG_ON(zone_index == -1);
4019 movable_zone = zone_index;
4023 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4024 * because it is sized independent of architecture. Unlike the other zones,
4025 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4026 * in each node depending on the size of each node and how evenly kernelcore
4027 * is distributed. This helper function adjusts the zone ranges
4028 * provided by the architecture for a given node by using the end of the
4029 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4030 * zones within a node are in order of monotonic increases memory addresses
4032 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4033 unsigned long zone_type,
4034 unsigned long node_start_pfn,
4035 unsigned long node_end_pfn,
4036 unsigned long *zone_start_pfn,
4037 unsigned long *zone_end_pfn)
4039 /* Only adjust if ZONE_MOVABLE is on this node */
4040 if (zone_movable_pfn[nid]) {
4041 /* Size ZONE_MOVABLE */
4042 if (zone_type == ZONE_MOVABLE) {
4043 *zone_start_pfn = zone_movable_pfn[nid];
4044 *zone_end_pfn = min(node_end_pfn,
4045 arch_zone_highest_possible_pfn[movable_zone]);
4047 /* Adjust for ZONE_MOVABLE starting within this range */
4048 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4049 *zone_end_pfn > zone_movable_pfn[nid]) {
4050 *zone_end_pfn = zone_movable_pfn[nid];
4052 /* Check if this whole range is within ZONE_MOVABLE */
4053 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4054 *zone_start_pfn = *zone_end_pfn;
4059 * Return the number of pages a zone spans in a node, including holes
4060 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4062 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4063 unsigned long zone_type,
4064 unsigned long *ignored)
4066 unsigned long node_start_pfn, node_end_pfn;
4067 unsigned long zone_start_pfn, zone_end_pfn;
4069 /* Get the start and end of the node and zone */
4070 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4071 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4072 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4073 adjust_zone_range_for_zone_movable(nid, zone_type,
4074 node_start_pfn, node_end_pfn,
4075 &zone_start_pfn, &zone_end_pfn);
4077 /* Check that this node has pages within the zone's required range */
4078 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4079 return 0;
4081 /* Move the zone boundaries inside the node if necessary */
4082 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4083 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4085 /* Return the spanned pages */
4086 return zone_end_pfn - zone_start_pfn;
4090 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4091 * then all holes in the requested range will be accounted for.
4093 unsigned long __meminit __absent_pages_in_range(int nid,
4094 unsigned long range_start_pfn,
4095 unsigned long range_end_pfn)
4097 int i = 0;
4098 unsigned long prev_end_pfn = 0, hole_pages = 0;
4099 unsigned long start_pfn;
4101 /* Find the end_pfn of the first active range of pfns in the node */
4102 i = first_active_region_index_in_nid(nid);
4103 if (i == -1)
4104 return 0;
4106 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4108 /* Account for ranges before physical memory on this node */
4109 if (early_node_map[i].start_pfn > range_start_pfn)
4110 hole_pages = prev_end_pfn - range_start_pfn;
4112 /* Find all holes for the zone within the node */
4113 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4115 /* No need to continue if prev_end_pfn is outside the zone */
4116 if (prev_end_pfn >= range_end_pfn)
4117 break;
4119 /* Make sure the end of the zone is not within the hole */
4120 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4121 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4123 /* Update the hole size cound and move on */
4124 if (start_pfn > range_start_pfn) {
4125 BUG_ON(prev_end_pfn > start_pfn);
4126 hole_pages += start_pfn - prev_end_pfn;
4128 prev_end_pfn = early_node_map[i].end_pfn;
4131 /* Account for ranges past physical memory on this node */
4132 if (range_end_pfn > prev_end_pfn)
4133 hole_pages += range_end_pfn -
4134 max(range_start_pfn, prev_end_pfn);
4136 return hole_pages;
4140 * absent_pages_in_range - Return number of page frames in holes within a range
4141 * @start_pfn: The start PFN to start searching for holes
4142 * @end_pfn: The end PFN to stop searching for holes
4144 * It returns the number of pages frames in memory holes within a range.
4146 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4147 unsigned long end_pfn)
4149 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4152 /* Return the number of page frames in holes in a zone on a node */
4153 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4154 unsigned long zone_type,
4155 unsigned long *ignored)
4157 unsigned long node_start_pfn, node_end_pfn;
4158 unsigned long zone_start_pfn, zone_end_pfn;
4160 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4161 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4162 node_start_pfn);
4163 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4164 node_end_pfn);
4166 adjust_zone_range_for_zone_movable(nid, zone_type,
4167 node_start_pfn, node_end_pfn,
4168 &zone_start_pfn, &zone_end_pfn);
4169 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4172 #else
4173 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4174 unsigned long zone_type,
4175 unsigned long *zones_size)
4177 return zones_size[zone_type];
4180 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4181 unsigned long zone_type,
4182 unsigned long *zholes_size)
4184 if (!zholes_size)
4185 return 0;
4187 return zholes_size[zone_type];
4190 #endif
4192 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4193 unsigned long *zones_size, unsigned long *zholes_size)
4195 unsigned long realtotalpages, totalpages = 0;
4196 enum zone_type i;
4198 for (i = 0; i < MAX_NR_ZONES; i++)
4199 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4200 zones_size);
4201 pgdat->node_spanned_pages = totalpages;
4203 realtotalpages = totalpages;
4204 for (i = 0; i < MAX_NR_ZONES; i++)
4205 realtotalpages -=
4206 zone_absent_pages_in_node(pgdat->node_id, i,
4207 zholes_size);
4208 pgdat->node_present_pages = realtotalpages;
4209 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4210 realtotalpages);
4213 #ifndef CONFIG_SPARSEMEM
4215 * Calculate the size of the zone->blockflags rounded to an unsigned long
4216 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4217 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4218 * round what is now in bits to nearest long in bits, then return it in
4219 * bytes.
4221 static unsigned long __init usemap_size(unsigned long zonesize)
4223 unsigned long usemapsize;
4225 usemapsize = roundup(zonesize, pageblock_nr_pages);
4226 usemapsize = usemapsize >> pageblock_order;
4227 usemapsize *= NR_PAGEBLOCK_BITS;
4228 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4230 return usemapsize / 8;
4233 static void __init setup_usemap(struct pglist_data *pgdat,
4234 struct zone *zone, unsigned long zonesize)
4236 unsigned long usemapsize = usemap_size(zonesize);
4237 zone->pageblock_flags = NULL;
4238 if (usemapsize)
4239 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4240 usemapsize);
4242 #else
4243 static inline void setup_usemap(struct pglist_data *pgdat,
4244 struct zone *zone, unsigned long zonesize) {}
4245 #endif /* CONFIG_SPARSEMEM */
4247 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4249 /* Return a sensible default order for the pageblock size. */
4250 static inline int pageblock_default_order(void)
4252 if (HPAGE_SHIFT > PAGE_SHIFT)
4253 return HUGETLB_PAGE_ORDER;
4255 return MAX_ORDER-1;
4258 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4259 static inline void __init set_pageblock_order(unsigned int order)
4261 /* Check that pageblock_nr_pages has not already been setup */
4262 if (pageblock_order)
4263 return;
4266 * Assume the largest contiguous order of interest is a huge page.
4267 * This value may be variable depending on boot parameters on IA64
4269 pageblock_order = order;
4271 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4274 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4275 * and pageblock_default_order() are unused as pageblock_order is set
4276 * at compile-time. See include/linux/pageblock-flags.h for the values of
4277 * pageblock_order based on the kernel config
4279 static inline int pageblock_default_order(unsigned int order)
4281 return MAX_ORDER-1;
4283 #define set_pageblock_order(x) do {} while (0)
4285 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4288 * Set up the zone data structures:
4289 * - mark all pages reserved
4290 * - mark all memory queues empty
4291 * - clear the memory bitmaps
4293 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4294 unsigned long *zones_size, unsigned long *zholes_size)
4296 enum zone_type j;
4297 int nid = pgdat->node_id;
4298 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4299 int ret;
4301 pgdat_resize_init(pgdat);
4302 pgdat->nr_zones = 0;
4303 init_waitqueue_head(&pgdat->kswapd_wait);
4304 pgdat->kswapd_max_order = 0;
4305 pgdat_page_cgroup_init(pgdat);
4307 for (j = 0; j < MAX_NR_ZONES; j++) {
4308 struct zone *zone = pgdat->node_zones + j;
4309 unsigned long size, realsize, memmap_pages;
4310 enum lru_list l;
4312 size = zone_spanned_pages_in_node(nid, j, zones_size);
4313 realsize = size - zone_absent_pages_in_node(nid, j,
4314 zholes_size);
4317 * Adjust realsize so that it accounts for how much memory
4318 * is used by this zone for memmap. This affects the watermark
4319 * and per-cpu initialisations
4321 memmap_pages =
4322 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4323 if (realsize >= memmap_pages) {
4324 realsize -= memmap_pages;
4325 if (memmap_pages)
4326 printk(KERN_DEBUG
4327 " %s zone: %lu pages used for memmap\n",
4328 zone_names[j], memmap_pages);
4329 } else
4330 printk(KERN_WARNING
4331 " %s zone: %lu pages exceeds realsize %lu\n",
4332 zone_names[j], memmap_pages, realsize);
4334 /* Account for reserved pages */
4335 if (j == 0 && realsize > dma_reserve) {
4336 realsize -= dma_reserve;
4337 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4338 zone_names[0], dma_reserve);
4341 if (!is_highmem_idx(j))
4342 nr_kernel_pages += realsize;
4343 nr_all_pages += realsize;
4345 zone->spanned_pages = size;
4346 zone->present_pages = realsize;
4347 #ifdef CONFIG_NUMA
4348 zone->node = nid;
4349 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4350 / 100;
4351 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4352 #endif
4353 zone->name = zone_names[j];
4354 spin_lock_init(&zone->lock);
4355 spin_lock_init(&zone->lru_lock);
4356 zone_seqlock_init(zone);
4357 zone->zone_pgdat = pgdat;
4359 zone_pcp_init(zone);
4360 for_each_lru(l)
4361 INIT_LIST_HEAD(&zone->lru[l].list);
4362 zone->reclaim_stat.recent_rotated[0] = 0;
4363 zone->reclaim_stat.recent_rotated[1] = 0;
4364 zone->reclaim_stat.recent_scanned[0] = 0;
4365 zone->reclaim_stat.recent_scanned[1] = 0;
4366 zap_zone_vm_stats(zone);
4367 zone->flags = 0;
4368 if (!size)
4369 continue;
4371 set_pageblock_order(pageblock_default_order());
4372 setup_usemap(pgdat, zone, size);
4373 ret = init_currently_empty_zone(zone, zone_start_pfn,
4374 size, MEMMAP_EARLY);
4375 BUG_ON(ret);
4376 memmap_init(size, nid, j, zone_start_pfn);
4377 zone_start_pfn += size;
4381 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4383 /* Skip empty nodes */
4384 if (!pgdat->node_spanned_pages)
4385 return;
4387 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4388 /* ia64 gets its own node_mem_map, before this, without bootmem */
4389 if (!pgdat->node_mem_map) {
4390 unsigned long size, start, end;
4391 struct page *map;
4394 * The zone's endpoints aren't required to be MAX_ORDER
4395 * aligned but the node_mem_map endpoints must be in order
4396 * for the buddy allocator to function correctly.
4398 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4399 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4400 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4401 size = (end - start) * sizeof(struct page);
4402 map = alloc_remap(pgdat->node_id, size);
4403 if (!map)
4404 map = alloc_bootmem_node_nopanic(pgdat, size);
4405 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4407 #ifndef CONFIG_NEED_MULTIPLE_NODES
4409 * With no DISCONTIG, the global mem_map is just set as node 0's
4411 if (pgdat == NODE_DATA(0)) {
4412 mem_map = NODE_DATA(0)->node_mem_map;
4413 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4414 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4415 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4416 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4418 #endif
4419 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4422 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4423 unsigned long node_start_pfn, unsigned long *zholes_size)
4425 pg_data_t *pgdat = NODE_DATA(nid);
4427 pgdat->node_id = nid;
4428 pgdat->node_start_pfn = node_start_pfn;
4429 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4431 alloc_node_mem_map(pgdat);
4432 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4433 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4434 nid, (unsigned long)pgdat,
4435 (unsigned long)pgdat->node_mem_map);
4436 #endif
4438 free_area_init_core(pgdat, zones_size, zholes_size);
4441 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4443 #if MAX_NUMNODES > 1
4445 * Figure out the number of possible node ids.
4447 static void __init setup_nr_node_ids(void)
4449 unsigned int node;
4450 unsigned int highest = 0;
4452 for_each_node_mask(node, node_possible_map)
4453 highest = node;
4454 nr_node_ids = highest + 1;
4456 #else
4457 static inline void setup_nr_node_ids(void)
4460 #endif
4463 * add_active_range - Register a range of PFNs backed by physical memory
4464 * @nid: The node ID the range resides on
4465 * @start_pfn: The start PFN of the available physical memory
4466 * @end_pfn: The end PFN of the available physical memory
4468 * These ranges are stored in an early_node_map[] and later used by
4469 * free_area_init_nodes() to calculate zone sizes and holes. If the
4470 * range spans a memory hole, it is up to the architecture to ensure
4471 * the memory is not freed by the bootmem allocator. If possible
4472 * the range being registered will be merged with existing ranges.
4474 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4475 unsigned long end_pfn)
4477 int i;
4479 mminit_dprintk(MMINIT_TRACE, "memory_register",
4480 "Entering add_active_range(%d, %#lx, %#lx) "
4481 "%d entries of %d used\n",
4482 nid, start_pfn, end_pfn,
4483 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4485 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4487 /* Merge with existing active regions if possible */
4488 for (i = 0; i < nr_nodemap_entries; i++) {
4489 if (early_node_map[i].nid != nid)
4490 continue;
4492 /* Skip if an existing region covers this new one */
4493 if (start_pfn >= early_node_map[i].start_pfn &&
4494 end_pfn <= early_node_map[i].end_pfn)
4495 return;
4497 /* Merge forward if suitable */
4498 if (start_pfn <= early_node_map[i].end_pfn &&
4499 end_pfn > early_node_map[i].end_pfn) {
4500 early_node_map[i].end_pfn = end_pfn;
4501 return;
4504 /* Merge backward if suitable */
4505 if (start_pfn < early_node_map[i].start_pfn &&
4506 end_pfn >= early_node_map[i].start_pfn) {
4507 early_node_map[i].start_pfn = start_pfn;
4508 return;
4512 /* Check that early_node_map is large enough */
4513 if (i >= MAX_ACTIVE_REGIONS) {
4514 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4515 MAX_ACTIVE_REGIONS);
4516 return;
4519 early_node_map[i].nid = nid;
4520 early_node_map[i].start_pfn = start_pfn;
4521 early_node_map[i].end_pfn = end_pfn;
4522 nr_nodemap_entries = i + 1;
4526 * remove_active_range - Shrink an existing registered range of PFNs
4527 * @nid: The node id the range is on that should be shrunk
4528 * @start_pfn: The new PFN of the range
4529 * @end_pfn: The new PFN of the range
4531 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4532 * The map is kept near the end physical page range that has already been
4533 * registered. This function allows an arch to shrink an existing registered
4534 * range.
4536 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4537 unsigned long end_pfn)
4539 int i, j;
4540 int removed = 0;
4542 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4543 nid, start_pfn, end_pfn);
4545 /* Find the old active region end and shrink */
4546 for_each_active_range_index_in_nid(i, nid) {
4547 if (early_node_map[i].start_pfn >= start_pfn &&
4548 early_node_map[i].end_pfn <= end_pfn) {
4549 /* clear it */
4550 early_node_map[i].start_pfn = 0;
4551 early_node_map[i].end_pfn = 0;
4552 removed = 1;
4553 continue;
4555 if (early_node_map[i].start_pfn < start_pfn &&
4556 early_node_map[i].end_pfn > start_pfn) {
4557 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4558 early_node_map[i].end_pfn = start_pfn;
4559 if (temp_end_pfn > end_pfn)
4560 add_active_range(nid, end_pfn, temp_end_pfn);
4561 continue;
4563 if (early_node_map[i].start_pfn >= start_pfn &&
4564 early_node_map[i].end_pfn > end_pfn &&
4565 early_node_map[i].start_pfn < end_pfn) {
4566 early_node_map[i].start_pfn = end_pfn;
4567 continue;
4571 if (!removed)
4572 return;
4574 /* remove the blank ones */
4575 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4576 if (early_node_map[i].nid != nid)
4577 continue;
4578 if (early_node_map[i].end_pfn)
4579 continue;
4580 /* we found it, get rid of it */
4581 for (j = i; j < nr_nodemap_entries - 1; j++)
4582 memcpy(&early_node_map[j], &early_node_map[j+1],
4583 sizeof(early_node_map[j]));
4584 j = nr_nodemap_entries - 1;
4585 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4586 nr_nodemap_entries--;
4591 * remove_all_active_ranges - Remove all currently registered regions
4593 * During discovery, it may be found that a table like SRAT is invalid
4594 * and an alternative discovery method must be used. This function removes
4595 * all currently registered regions.
4597 void __init remove_all_active_ranges(void)
4599 memset(early_node_map, 0, sizeof(early_node_map));
4600 nr_nodemap_entries = 0;
4603 /* Compare two active node_active_regions */
4604 static int __init cmp_node_active_region(const void *a, const void *b)
4606 struct node_active_region *arange = (struct node_active_region *)a;
4607 struct node_active_region *brange = (struct node_active_region *)b;
4609 /* Done this way to avoid overflows */
4610 if (arange->start_pfn > brange->start_pfn)
4611 return 1;
4612 if (arange->start_pfn < brange->start_pfn)
4613 return -1;
4615 return 0;
4618 /* sort the node_map by start_pfn */
4619 void __init sort_node_map(void)
4621 sort(early_node_map, (size_t)nr_nodemap_entries,
4622 sizeof(struct node_active_region),
4623 cmp_node_active_region, NULL);
4626 /* Find the lowest pfn for a node */
4627 static unsigned long __init find_min_pfn_for_node(int nid)
4629 int i;
4630 unsigned long min_pfn = ULONG_MAX;
4632 /* Assuming a sorted map, the first range found has the starting pfn */
4633 for_each_active_range_index_in_nid(i, nid)
4634 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4636 if (min_pfn == ULONG_MAX) {
4637 printk(KERN_WARNING
4638 "Could not find start_pfn for node %d\n", nid);
4639 return 0;
4642 return min_pfn;
4646 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4648 * It returns the minimum PFN based on information provided via
4649 * add_active_range().
4651 unsigned long __init find_min_pfn_with_active_regions(void)
4653 return find_min_pfn_for_node(MAX_NUMNODES);
4657 * early_calculate_totalpages()
4658 * Sum pages in active regions for movable zone.
4659 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4661 static unsigned long __init early_calculate_totalpages(void)
4663 int i;
4664 unsigned long totalpages = 0;
4666 for (i = 0; i < nr_nodemap_entries; i++) {
4667 unsigned long pages = early_node_map[i].end_pfn -
4668 early_node_map[i].start_pfn;
4669 totalpages += pages;
4670 if (pages)
4671 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4673 return totalpages;
4677 * Find the PFN the Movable zone begins in each node. Kernel memory
4678 * is spread evenly between nodes as long as the nodes have enough
4679 * memory. When they don't, some nodes will have more kernelcore than
4680 * others
4682 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4684 int i, nid;
4685 unsigned long usable_startpfn;
4686 unsigned long kernelcore_node, kernelcore_remaining;
4687 /* save the state before borrow the nodemask */
4688 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4689 unsigned long totalpages = early_calculate_totalpages();
4690 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4693 * If movablecore was specified, calculate what size of
4694 * kernelcore that corresponds so that memory usable for
4695 * any allocation type is evenly spread. If both kernelcore
4696 * and movablecore are specified, then the value of kernelcore
4697 * will be used for required_kernelcore if it's greater than
4698 * what movablecore would have allowed.
4700 if (required_movablecore) {
4701 unsigned long corepages;
4704 * Round-up so that ZONE_MOVABLE is at least as large as what
4705 * was requested by the user
4707 required_movablecore =
4708 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4709 corepages = totalpages - required_movablecore;
4711 required_kernelcore = max(required_kernelcore, corepages);
4714 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4715 if (!required_kernelcore)
4716 goto out;
4718 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4719 find_usable_zone_for_movable();
4720 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4722 restart:
4723 /* Spread kernelcore memory as evenly as possible throughout nodes */
4724 kernelcore_node = required_kernelcore / usable_nodes;
4725 for_each_node_state(nid, N_HIGH_MEMORY) {
4727 * Recalculate kernelcore_node if the division per node
4728 * now exceeds what is necessary to satisfy the requested
4729 * amount of memory for the kernel
4731 if (required_kernelcore < kernelcore_node)
4732 kernelcore_node = required_kernelcore / usable_nodes;
4735 * As the map is walked, we track how much memory is usable
4736 * by the kernel using kernelcore_remaining. When it is
4737 * 0, the rest of the node is usable by ZONE_MOVABLE
4739 kernelcore_remaining = kernelcore_node;
4741 /* Go through each range of PFNs within this node */
4742 for_each_active_range_index_in_nid(i, nid) {
4743 unsigned long start_pfn, end_pfn;
4744 unsigned long size_pages;
4746 start_pfn = max(early_node_map[i].start_pfn,
4747 zone_movable_pfn[nid]);
4748 end_pfn = early_node_map[i].end_pfn;
4749 if (start_pfn >= end_pfn)
4750 continue;
4752 /* Account for what is only usable for kernelcore */
4753 if (start_pfn < usable_startpfn) {
4754 unsigned long kernel_pages;
4755 kernel_pages = min(end_pfn, usable_startpfn)
4756 - start_pfn;
4758 kernelcore_remaining -= min(kernel_pages,
4759 kernelcore_remaining);
4760 required_kernelcore -= min(kernel_pages,
4761 required_kernelcore);
4763 /* Continue if range is now fully accounted */
4764 if (end_pfn <= usable_startpfn) {
4767 * Push zone_movable_pfn to the end so
4768 * that if we have to rebalance
4769 * kernelcore across nodes, we will
4770 * not double account here
4772 zone_movable_pfn[nid] = end_pfn;
4773 continue;
4775 start_pfn = usable_startpfn;
4779 * The usable PFN range for ZONE_MOVABLE is from
4780 * start_pfn->end_pfn. Calculate size_pages as the
4781 * number of pages used as kernelcore
4783 size_pages = end_pfn - start_pfn;
4784 if (size_pages > kernelcore_remaining)
4785 size_pages = kernelcore_remaining;
4786 zone_movable_pfn[nid] = start_pfn + size_pages;
4789 * Some kernelcore has been met, update counts and
4790 * break if the kernelcore for this node has been
4791 * satisified
4793 required_kernelcore -= min(required_kernelcore,
4794 size_pages);
4795 kernelcore_remaining -= size_pages;
4796 if (!kernelcore_remaining)
4797 break;
4802 * If there is still required_kernelcore, we do another pass with one
4803 * less node in the count. This will push zone_movable_pfn[nid] further
4804 * along on the nodes that still have memory until kernelcore is
4805 * satisified
4807 usable_nodes--;
4808 if (usable_nodes && required_kernelcore > usable_nodes)
4809 goto restart;
4811 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4812 for (nid = 0; nid < MAX_NUMNODES; nid++)
4813 zone_movable_pfn[nid] =
4814 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4816 out:
4817 /* restore the node_state */
4818 node_states[N_HIGH_MEMORY] = saved_node_state;
4821 /* Any regular memory on that node ? */
4822 static void check_for_regular_memory(pg_data_t *pgdat)
4824 #ifdef CONFIG_HIGHMEM
4825 enum zone_type zone_type;
4827 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4828 struct zone *zone = &pgdat->node_zones[zone_type];
4829 if (zone->present_pages)
4830 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4832 #endif
4836 * free_area_init_nodes - Initialise all pg_data_t and zone data
4837 * @max_zone_pfn: an array of max PFNs for each zone
4839 * This will call free_area_init_node() for each active node in the system.
4840 * Using the page ranges provided by add_active_range(), the size of each
4841 * zone in each node and their holes is calculated. If the maximum PFN
4842 * between two adjacent zones match, it is assumed that the zone is empty.
4843 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4844 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4845 * starts where the previous one ended. For example, ZONE_DMA32 starts
4846 * at arch_max_dma_pfn.
4848 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4850 unsigned long nid;
4851 int i;
4853 /* Sort early_node_map as initialisation assumes it is sorted */
4854 sort_node_map();
4856 /* Record where the zone boundaries are */
4857 memset(arch_zone_lowest_possible_pfn, 0,
4858 sizeof(arch_zone_lowest_possible_pfn));
4859 memset(arch_zone_highest_possible_pfn, 0,
4860 sizeof(arch_zone_highest_possible_pfn));
4861 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4862 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4863 for (i = 1; i < MAX_NR_ZONES; i++) {
4864 if (i == ZONE_MOVABLE)
4865 continue;
4866 arch_zone_lowest_possible_pfn[i] =
4867 arch_zone_highest_possible_pfn[i-1];
4868 arch_zone_highest_possible_pfn[i] =
4869 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4871 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4872 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4874 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4875 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4876 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4878 /* Print out the zone ranges */
4879 printk("Zone PFN ranges:\n");
4880 for (i = 0; i < MAX_NR_ZONES; i++) {
4881 if (i == ZONE_MOVABLE)
4882 continue;
4883 printk(" %-8s ", zone_names[i]);
4884 if (arch_zone_lowest_possible_pfn[i] ==
4885 arch_zone_highest_possible_pfn[i])
4886 printk("empty\n");
4887 else
4888 printk("%0#10lx -> %0#10lx\n",
4889 arch_zone_lowest_possible_pfn[i],
4890 arch_zone_highest_possible_pfn[i]);
4893 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4894 printk("Movable zone start PFN for each node\n");
4895 for (i = 0; i < MAX_NUMNODES; i++) {
4896 if (zone_movable_pfn[i])
4897 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4900 /* Print out the early_node_map[] */
4901 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4902 for (i = 0; i < nr_nodemap_entries; i++)
4903 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4904 early_node_map[i].start_pfn,
4905 early_node_map[i].end_pfn);
4907 /* Initialise every node */
4908 mminit_verify_pageflags_layout();
4909 setup_nr_node_ids();
4910 for_each_online_node(nid) {
4911 pg_data_t *pgdat = NODE_DATA(nid);
4912 free_area_init_node(nid, NULL,
4913 find_min_pfn_for_node(nid), NULL);
4915 /* Any memory on that node */
4916 if (pgdat->node_present_pages)
4917 node_set_state(nid, N_HIGH_MEMORY);
4918 check_for_regular_memory(pgdat);
4922 static int __init cmdline_parse_core(char *p, unsigned long *core)
4924 unsigned long long coremem;
4925 if (!p)
4926 return -EINVAL;
4928 coremem = memparse(p, &p);
4929 *core = coremem >> PAGE_SHIFT;
4931 /* Paranoid check that UL is enough for the coremem value */
4932 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4934 return 0;
4938 * kernelcore=size sets the amount of memory for use for allocations that
4939 * cannot be reclaimed or migrated.
4941 static int __init cmdline_parse_kernelcore(char *p)
4943 return cmdline_parse_core(p, &required_kernelcore);
4947 * movablecore=size sets the amount of memory for use for allocations that
4948 * can be reclaimed or migrated.
4950 static int __init cmdline_parse_movablecore(char *p)
4952 return cmdline_parse_core(p, &required_movablecore);
4955 early_param("kernelcore", cmdline_parse_kernelcore);
4956 early_param("movablecore", cmdline_parse_movablecore);
4958 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4961 * set_dma_reserve - set the specified number of pages reserved in the first zone
4962 * @new_dma_reserve: The number of pages to mark reserved
4964 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4965 * In the DMA zone, a significant percentage may be consumed by kernel image
4966 * and other unfreeable allocations which can skew the watermarks badly. This
4967 * function may optionally be used to account for unfreeable pages in the
4968 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4969 * smaller per-cpu batchsize.
4971 void __init set_dma_reserve(unsigned long new_dma_reserve)
4973 dma_reserve = new_dma_reserve;
4976 void __init free_area_init(unsigned long *zones_size)
4978 free_area_init_node(0, zones_size,
4979 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4982 static int page_alloc_cpu_notify(struct notifier_block *self,
4983 unsigned long action, void *hcpu)
4985 int cpu = (unsigned long)hcpu;
4987 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4988 drain_pages(cpu);
4991 * Spill the event counters of the dead processor
4992 * into the current processors event counters.
4993 * This artificially elevates the count of the current
4994 * processor.
4996 vm_events_fold_cpu(cpu);
4999 * Zero the differential counters of the dead processor
5000 * so that the vm statistics are consistent.
5002 * This is only okay since the processor is dead and cannot
5003 * race with what we are doing.
5005 refresh_cpu_vm_stats(cpu);
5007 return NOTIFY_OK;
5010 void __init page_alloc_init(void)
5012 hotcpu_notifier(page_alloc_cpu_notify, 0);
5016 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5017 * or min_free_kbytes changes.
5019 static void calculate_totalreserve_pages(void)
5021 struct pglist_data *pgdat;
5022 unsigned long reserve_pages = 0;
5023 enum zone_type i, j;
5025 for_each_online_pgdat(pgdat) {
5026 for (i = 0; i < MAX_NR_ZONES; i++) {
5027 struct zone *zone = pgdat->node_zones + i;
5028 unsigned long max = 0;
5030 /* Find valid and maximum lowmem_reserve in the zone */
5031 for (j = i; j < MAX_NR_ZONES; j++) {
5032 if (zone->lowmem_reserve[j] > max)
5033 max = zone->lowmem_reserve[j];
5036 /* we treat the high watermark as reserved pages. */
5037 max += high_wmark_pages(zone);
5039 if (max > zone->present_pages)
5040 max = zone->present_pages;
5041 reserve_pages += max;
5044 totalreserve_pages = reserve_pages;
5048 * setup_per_zone_lowmem_reserve - called whenever
5049 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5050 * has a correct pages reserved value, so an adequate number of
5051 * pages are left in the zone after a successful __alloc_pages().
5053 static void setup_per_zone_lowmem_reserve(void)
5055 struct pglist_data *pgdat;
5056 enum zone_type j, idx;
5058 for_each_online_pgdat(pgdat) {
5059 for (j = 0; j < MAX_NR_ZONES; j++) {
5060 struct zone *zone = pgdat->node_zones + j;
5061 unsigned long present_pages = zone->present_pages;
5063 zone->lowmem_reserve[j] = 0;
5065 idx = j;
5066 while (idx) {
5067 struct zone *lower_zone;
5069 idx--;
5071 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5072 sysctl_lowmem_reserve_ratio[idx] = 1;
5074 lower_zone = pgdat->node_zones + idx;
5075 lower_zone->lowmem_reserve[j] = present_pages /
5076 sysctl_lowmem_reserve_ratio[idx];
5077 present_pages += lower_zone->present_pages;
5082 /* update totalreserve_pages */
5083 calculate_totalreserve_pages();
5087 * setup_per_zone_wmarks - called when min_free_kbytes changes
5088 * or when memory is hot-{added|removed}
5090 * Ensures that the watermark[min,low,high] values for each zone are set
5091 * correctly with respect to min_free_kbytes.
5093 void setup_per_zone_wmarks(void)
5095 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5096 unsigned long lowmem_pages = 0;
5097 struct zone *zone;
5098 unsigned long flags;
5100 /* Calculate total number of !ZONE_HIGHMEM pages */
5101 for_each_zone(zone) {
5102 if (!is_highmem(zone))
5103 lowmem_pages += zone->present_pages;
5106 for_each_zone(zone) {
5107 u64 tmp;
5109 spin_lock_irqsave(&zone->lock, flags);
5110 tmp = (u64)pages_min * zone->present_pages;
5111 do_div(tmp, lowmem_pages);
5112 if (is_highmem(zone)) {
5114 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5115 * need highmem pages, so cap pages_min to a small
5116 * value here.
5118 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5119 * deltas controls asynch page reclaim, and so should
5120 * not be capped for highmem.
5122 int min_pages;
5124 min_pages = zone->present_pages / 1024;
5125 if (min_pages < SWAP_CLUSTER_MAX)
5126 min_pages = SWAP_CLUSTER_MAX;
5127 if (min_pages > 128)
5128 min_pages = 128;
5129 zone->watermark[WMARK_MIN] = min_pages;
5130 } else {
5132 * If it's a lowmem zone, reserve a number of pages
5133 * proportionate to the zone's size.
5135 zone->watermark[WMARK_MIN] = tmp;
5138 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5139 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5140 setup_zone_migrate_reserve(zone);
5141 spin_unlock_irqrestore(&zone->lock, flags);
5144 /* update totalreserve_pages */
5145 calculate_totalreserve_pages();
5149 * The inactive anon list should be small enough that the VM never has to
5150 * do too much work, but large enough that each inactive page has a chance
5151 * to be referenced again before it is swapped out.
5153 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5154 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5155 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5156 * the anonymous pages are kept on the inactive list.
5158 * total target max
5159 * memory ratio inactive anon
5160 * -------------------------------------
5161 * 10MB 1 5MB
5162 * 100MB 1 50MB
5163 * 1GB 3 250MB
5164 * 10GB 10 0.9GB
5165 * 100GB 31 3GB
5166 * 1TB 101 10GB
5167 * 10TB 320 32GB
5169 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5171 unsigned int gb, ratio;
5173 /* Zone size in gigabytes */
5174 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5175 if (gb)
5176 ratio = int_sqrt(10 * gb);
5177 else
5178 ratio = 1;
5180 zone->inactive_ratio = ratio;
5183 static void __meminit setup_per_zone_inactive_ratio(void)
5185 struct zone *zone;
5187 for_each_zone(zone)
5188 calculate_zone_inactive_ratio(zone);
5192 * Initialise min_free_kbytes.
5194 * For small machines we want it small (128k min). For large machines
5195 * we want it large (64MB max). But it is not linear, because network
5196 * bandwidth does not increase linearly with machine size. We use
5198 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5199 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5201 * which yields
5203 * 16MB: 512k
5204 * 32MB: 724k
5205 * 64MB: 1024k
5206 * 128MB: 1448k
5207 * 256MB: 2048k
5208 * 512MB: 2896k
5209 * 1024MB: 4096k
5210 * 2048MB: 5792k
5211 * 4096MB: 8192k
5212 * 8192MB: 11584k
5213 * 16384MB: 16384k
5215 int __meminit init_per_zone_wmark_min(void)
5217 unsigned long lowmem_kbytes;
5219 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5221 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5222 if (min_free_kbytes < 128)
5223 min_free_kbytes = 128;
5224 if (min_free_kbytes > 65536)
5225 min_free_kbytes = 65536;
5226 setup_per_zone_wmarks();
5227 refresh_zone_stat_thresholds();
5228 setup_per_zone_lowmem_reserve();
5229 setup_per_zone_inactive_ratio();
5230 return 0;
5232 module_init(init_per_zone_wmark_min)
5235 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5236 * that we can call two helper functions whenever min_free_kbytes
5237 * changes.
5239 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5240 void __user *buffer, size_t *length, loff_t *ppos)
5242 proc_dointvec(table, write, buffer, length, ppos);
5243 if (write)
5244 setup_per_zone_wmarks();
5245 return 0;
5248 #ifdef CONFIG_NUMA
5249 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5250 void __user *buffer, size_t *length, loff_t *ppos)
5252 struct zone *zone;
5253 int rc;
5255 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5256 if (rc)
5257 return rc;
5259 for_each_zone(zone)
5260 zone->min_unmapped_pages = (zone->present_pages *
5261 sysctl_min_unmapped_ratio) / 100;
5262 return 0;
5265 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5266 void __user *buffer, size_t *length, loff_t *ppos)
5268 struct zone *zone;
5269 int rc;
5271 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5272 if (rc)
5273 return rc;
5275 for_each_zone(zone)
5276 zone->min_slab_pages = (zone->present_pages *
5277 sysctl_min_slab_ratio) / 100;
5278 return 0;
5280 #endif
5283 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5284 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5285 * whenever sysctl_lowmem_reserve_ratio changes.
5287 * The reserve ratio obviously has absolutely no relation with the
5288 * minimum watermarks. The lowmem reserve ratio can only make sense
5289 * if in function of the boot time zone sizes.
5291 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5292 void __user *buffer, size_t *length, loff_t *ppos)
5294 proc_dointvec_minmax(table, write, buffer, length, ppos);
5295 setup_per_zone_lowmem_reserve();
5296 return 0;
5300 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5301 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5302 * can have before it gets flushed back to buddy allocator.
5305 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5306 void __user *buffer, size_t *length, loff_t *ppos)
5308 struct zone *zone;
5309 unsigned int cpu;
5310 int ret;
5312 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5313 if (!write || (ret == -EINVAL))
5314 return ret;
5315 for_each_populated_zone(zone) {
5316 for_each_possible_cpu(cpu) {
5317 unsigned long high;
5318 high = zone->present_pages / percpu_pagelist_fraction;
5319 setup_pagelist_highmark(
5320 per_cpu_ptr(zone->pageset, cpu), high);
5323 return 0;
5326 int hashdist = HASHDIST_DEFAULT;
5328 #ifdef CONFIG_NUMA
5329 static int __init set_hashdist(char *str)
5331 if (!str)
5332 return 0;
5333 hashdist = simple_strtoul(str, &str, 0);
5334 return 1;
5336 __setup("hashdist=", set_hashdist);
5337 #endif
5340 * allocate a large system hash table from bootmem
5341 * - it is assumed that the hash table must contain an exact power-of-2
5342 * quantity of entries
5343 * - limit is the number of hash buckets, not the total allocation size
5345 void *__init alloc_large_system_hash(const char *tablename,
5346 unsigned long bucketsize,
5347 unsigned long numentries,
5348 int scale,
5349 int flags,
5350 unsigned int *_hash_shift,
5351 unsigned int *_hash_mask,
5352 unsigned long limit)
5354 unsigned long long max = limit;
5355 unsigned long log2qty, size;
5356 void *table = NULL;
5358 /* allow the kernel cmdline to have a say */
5359 if (!numentries) {
5360 /* round applicable memory size up to nearest megabyte */
5361 numentries = nr_kernel_pages;
5362 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5363 numentries >>= 20 - PAGE_SHIFT;
5364 numentries <<= 20 - PAGE_SHIFT;
5366 /* limit to 1 bucket per 2^scale bytes of low memory */
5367 if (scale > PAGE_SHIFT)
5368 numentries >>= (scale - PAGE_SHIFT);
5369 else
5370 numentries <<= (PAGE_SHIFT - scale);
5372 /* Make sure we've got at least a 0-order allocation.. */
5373 if (unlikely(flags & HASH_SMALL)) {
5374 /* Makes no sense without HASH_EARLY */
5375 WARN_ON(!(flags & HASH_EARLY));
5376 if (!(numentries >> *_hash_shift)) {
5377 numentries = 1UL << *_hash_shift;
5378 BUG_ON(!numentries);
5380 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5381 numentries = PAGE_SIZE / bucketsize;
5383 numentries = roundup_pow_of_two(numentries);
5385 /* limit allocation size to 1/16 total memory by default */
5386 if (max == 0) {
5387 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5388 do_div(max, bucketsize);
5391 if (numentries > max)
5392 numentries = max;
5394 log2qty = ilog2(numentries);
5396 do {
5397 size = bucketsize << log2qty;
5398 if (flags & HASH_EARLY)
5399 table = alloc_bootmem_nopanic(size);
5400 else if (hashdist)
5401 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5402 else {
5404 * If bucketsize is not a power-of-two, we may free
5405 * some pages at the end of hash table which
5406 * alloc_pages_exact() automatically does
5408 if (get_order(size) < MAX_ORDER) {
5409 table = alloc_pages_exact(size, GFP_ATOMIC);
5410 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5413 } while (!table && size > PAGE_SIZE && --log2qty);
5415 if (!table)
5416 panic("Failed to allocate %s hash table\n", tablename);
5418 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5419 tablename,
5420 (1UL << log2qty),
5421 ilog2(size) - PAGE_SHIFT,
5422 size);
5424 if (_hash_shift)
5425 *_hash_shift = log2qty;
5426 if (_hash_mask)
5427 *_hash_mask = (1 << log2qty) - 1;
5429 return table;
5432 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5433 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5434 unsigned long pfn)
5436 #ifdef CONFIG_SPARSEMEM
5437 return __pfn_to_section(pfn)->pageblock_flags;
5438 #else
5439 return zone->pageblock_flags;
5440 #endif /* CONFIG_SPARSEMEM */
5443 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5445 #ifdef CONFIG_SPARSEMEM
5446 pfn &= (PAGES_PER_SECTION-1);
5447 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5448 #else
5449 pfn = pfn - zone->zone_start_pfn;
5450 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5451 #endif /* CONFIG_SPARSEMEM */
5455 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5456 * @page: The page within the block of interest
5457 * @start_bitidx: The first bit of interest to retrieve
5458 * @end_bitidx: The last bit of interest
5459 * returns pageblock_bits flags
5461 unsigned long get_pageblock_flags_group(struct page *page,
5462 int start_bitidx, int end_bitidx)
5464 struct zone *zone;
5465 unsigned long *bitmap;
5466 unsigned long pfn, bitidx;
5467 unsigned long flags = 0;
5468 unsigned long value = 1;
5470 zone = page_zone(page);
5471 pfn = page_to_pfn(page);
5472 bitmap = get_pageblock_bitmap(zone, pfn);
5473 bitidx = pfn_to_bitidx(zone, pfn);
5475 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5476 if (test_bit(bitidx + start_bitidx, bitmap))
5477 flags |= value;
5479 return flags;
5483 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5484 * @page: The page within the block of interest
5485 * @start_bitidx: The first bit of interest
5486 * @end_bitidx: The last bit of interest
5487 * @flags: The flags to set
5489 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5490 int start_bitidx, int end_bitidx)
5492 struct zone *zone;
5493 unsigned long *bitmap;
5494 unsigned long pfn, bitidx;
5495 unsigned long value = 1;
5497 zone = page_zone(page);
5498 pfn = page_to_pfn(page);
5499 bitmap = get_pageblock_bitmap(zone, pfn);
5500 bitidx = pfn_to_bitidx(zone, pfn);
5501 VM_BUG_ON(pfn < zone->zone_start_pfn);
5502 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5504 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5505 if (flags & value)
5506 __set_bit(bitidx + start_bitidx, bitmap);
5507 else
5508 __clear_bit(bitidx + start_bitidx, bitmap);
5512 * This is designed as sub function...plz see page_isolation.c also.
5513 * set/clear page block's type to be ISOLATE.
5514 * page allocater never alloc memory from ISOLATE block.
5517 static int
5518 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5520 unsigned long pfn, iter, found;
5522 * For avoiding noise data, lru_add_drain_all() should be called
5523 * If ZONE_MOVABLE, the zone never contains immobile pages
5525 if (zone_idx(zone) == ZONE_MOVABLE)
5526 return true;
5528 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5529 return true;
5531 pfn = page_to_pfn(page);
5532 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5533 unsigned long check = pfn + iter;
5535 if (!pfn_valid_within(check))
5536 continue;
5538 page = pfn_to_page(check);
5539 if (!page_count(page)) {
5540 if (PageBuddy(page))
5541 iter += (1 << page_order(page)) - 1;
5542 continue;
5544 if (!PageLRU(page))
5545 found++;
5547 * If there are RECLAIMABLE pages, we need to check it.
5548 * But now, memory offline itself doesn't call shrink_slab()
5549 * and it still to be fixed.
5552 * If the page is not RAM, page_count()should be 0.
5553 * we don't need more check. This is an _used_ not-movable page.
5555 * The problematic thing here is PG_reserved pages. PG_reserved
5556 * is set to both of a memory hole page and a _used_ kernel
5557 * page at boot.
5559 if (found > count)
5560 return false;
5562 return true;
5565 bool is_pageblock_removable_nolock(struct page *page)
5567 struct zone *zone = page_zone(page);
5568 unsigned long pfn = page_to_pfn(page);
5571 * We have to be careful here because we are iterating over memory
5572 * sections which are not zone aware so we might end up outside of
5573 * the zone but still within the section.
5575 if (!zone || zone->zone_start_pfn > pfn ||
5576 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5577 return false;
5579 return __count_immobile_pages(zone, page, 0);
5582 int set_migratetype_isolate(struct page *page)
5584 struct zone *zone;
5585 unsigned long flags, pfn;
5586 struct memory_isolate_notify arg;
5587 int notifier_ret;
5588 int ret = -EBUSY;
5590 zone = page_zone(page);
5592 spin_lock_irqsave(&zone->lock, flags);
5594 pfn = page_to_pfn(page);
5595 arg.start_pfn = pfn;
5596 arg.nr_pages = pageblock_nr_pages;
5597 arg.pages_found = 0;
5600 * It may be possible to isolate a pageblock even if the
5601 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5602 * notifier chain is used by balloon drivers to return the
5603 * number of pages in a range that are held by the balloon
5604 * driver to shrink memory. If all the pages are accounted for
5605 * by balloons, are free, or on the LRU, isolation can continue.
5606 * Later, for example, when memory hotplug notifier runs, these
5607 * pages reported as "can be isolated" should be isolated(freed)
5608 * by the balloon driver through the memory notifier chain.
5610 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5611 notifier_ret = notifier_to_errno(notifier_ret);
5612 if (notifier_ret)
5613 goto out;
5615 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5616 * We just check MOVABLE pages.
5618 if (__count_immobile_pages(zone, page, arg.pages_found))
5619 ret = 0;
5622 * immobile means "not-on-lru" paes. If immobile is larger than
5623 * removable-by-driver pages reported by notifier, we'll fail.
5626 out:
5627 if (!ret) {
5628 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5629 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5632 spin_unlock_irqrestore(&zone->lock, flags);
5633 if (!ret)
5634 drain_all_pages();
5635 return ret;
5638 void unset_migratetype_isolate(struct page *page)
5640 struct zone *zone;
5641 unsigned long flags;
5642 zone = page_zone(page);
5643 spin_lock_irqsave(&zone->lock, flags);
5644 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5645 goto out;
5646 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5647 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5648 out:
5649 spin_unlock_irqrestore(&zone->lock, flags);
5652 #ifdef CONFIG_MEMORY_HOTREMOVE
5654 * All pages in the range must be isolated before calling this.
5656 void
5657 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5659 struct page *page;
5660 struct zone *zone;
5661 int order, i;
5662 unsigned long pfn;
5663 unsigned long flags;
5664 /* find the first valid pfn */
5665 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5666 if (pfn_valid(pfn))
5667 break;
5668 if (pfn == end_pfn)
5669 return;
5670 zone = page_zone(pfn_to_page(pfn));
5671 spin_lock_irqsave(&zone->lock, flags);
5672 pfn = start_pfn;
5673 while (pfn < end_pfn) {
5674 if (!pfn_valid(pfn)) {
5675 pfn++;
5676 continue;
5678 page = pfn_to_page(pfn);
5679 BUG_ON(page_count(page));
5680 BUG_ON(!PageBuddy(page));
5681 order = page_order(page);
5682 #ifdef CONFIG_DEBUG_VM
5683 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5684 pfn, 1 << order, end_pfn);
5685 #endif
5686 list_del(&page->lru);
5687 rmv_page_order(page);
5688 zone->free_area[order].nr_free--;
5689 __mod_zone_page_state(zone, NR_FREE_PAGES,
5690 - (1UL << order));
5691 for (i = 0; i < (1 << order); i++)
5692 SetPageReserved((page+i));
5693 pfn += (1 << order);
5695 spin_unlock_irqrestore(&zone->lock, flags);
5697 #endif
5699 #ifdef CONFIG_MEMORY_FAILURE
5700 bool is_free_buddy_page(struct page *page)
5702 struct zone *zone = page_zone(page);
5703 unsigned long pfn = page_to_pfn(page);
5704 unsigned long flags;
5705 int order;
5707 spin_lock_irqsave(&zone->lock, flags);
5708 for (order = 0; order < MAX_ORDER; order++) {
5709 struct page *page_head = page - (pfn & ((1 << order) - 1));
5711 if (PageBuddy(page_head) && page_order(page_head) >= order)
5712 break;
5714 spin_unlock_irqrestore(&zone->lock, flags);
5716 return order < MAX_ORDER;
5718 #endif
5720 static struct trace_print_flags pageflag_names[] = {
5721 {1UL << PG_locked, "locked" },
5722 {1UL << PG_error, "error" },
5723 {1UL << PG_referenced, "referenced" },
5724 {1UL << PG_uptodate, "uptodate" },
5725 {1UL << PG_dirty, "dirty" },
5726 {1UL << PG_lru, "lru" },
5727 {1UL << PG_active, "active" },
5728 {1UL << PG_slab, "slab" },
5729 {1UL << PG_owner_priv_1, "owner_priv_1" },
5730 {1UL << PG_arch_1, "arch_1" },
5731 {1UL << PG_reserved, "reserved" },
5732 {1UL << PG_private, "private" },
5733 {1UL << PG_private_2, "private_2" },
5734 {1UL << PG_writeback, "writeback" },
5735 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5736 {1UL << PG_head, "head" },
5737 {1UL << PG_tail, "tail" },
5738 #else
5739 {1UL << PG_compound, "compound" },
5740 #endif
5741 {1UL << PG_swapcache, "swapcache" },
5742 {1UL << PG_mappedtodisk, "mappedtodisk" },
5743 {1UL << PG_reclaim, "reclaim" },
5744 {1UL << PG_swapbacked, "swapbacked" },
5745 {1UL << PG_unevictable, "unevictable" },
5746 #ifdef CONFIG_MMU
5747 {1UL << PG_mlocked, "mlocked" },
5748 #endif
5749 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5750 {1UL << PG_uncached, "uncached" },
5751 #endif
5752 #ifdef CONFIG_MEMORY_FAILURE
5753 {1UL << PG_hwpoison, "hwpoison" },
5754 #endif
5755 {-1UL, NULL },
5758 static void dump_page_flags(unsigned long flags)
5760 const char *delim = "";
5761 unsigned long mask;
5762 int i;
5764 printk(KERN_ALERT "page flags: %#lx(", flags);
5766 /* remove zone id */
5767 flags &= (1UL << NR_PAGEFLAGS) - 1;
5769 for (i = 0; pageflag_names[i].name && flags; i++) {
5771 mask = pageflag_names[i].mask;
5772 if ((flags & mask) != mask)
5773 continue;
5775 flags &= ~mask;
5776 printk("%s%s", delim, pageflag_names[i].name);
5777 delim = "|";
5780 /* check for left over flags */
5781 if (flags)
5782 printk("%s%#lx", delim, flags);
5784 printk(")\n");
5787 void dump_page(struct page *page)
5789 printk(KERN_ALERT
5790 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5791 page, atomic_read(&page->_count), page_mapcount(page),
5792 page->mapping, page->index);
5793 dump_page_flags(page->flags);
5794 mem_cgroup_print_bad_page(page);