2 * Davicom DM9000 Fast Ethernet driver for Linux.
3 * Copyright (C) 1997 Sten Wang
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
17 * Additional updates, Copyright:
18 * Ben Dooks <ben@simtec.co.uk>
19 * Sascha Hauer <s.hauer@pengutronix.de>
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/interrupt.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/crc32.h>
30 #include <linux/mii.h>
32 #include <linux/of_net.h>
33 #include <linux/ethtool.h>
34 #include <linux/dm9000.h>
35 #include <linux/delay.h>
36 #include <linux/platform_device.h>
37 #include <linux/irq.h>
38 #include <linux/slab.h>
39 #include <linux/regulator/consumer.h>
40 #include <linux/gpio.h>
41 #include <linux/of_gpio.h>
43 #include <asm/delay.h>
49 /* Board/System/Debug information/definition ---------------- */
51 #define DM9000_PHY 0x40 /* PHY address 0x01 */
53 #define CARDNAME "dm9000"
54 #define DRV_VERSION "1.31"
57 * Transmit timeout, default 5 seconds.
59 static int watchdog
= 5000;
60 module_param(watchdog
, int, 0400);
61 MODULE_PARM_DESC(watchdog
, "transmit timeout in milliseconds");
64 * Debug messages level
67 module_param(debug
, int, 0644);
68 MODULE_PARM_DESC(debug
, "dm9000 debug level (0-4)");
70 /* DM9000 register address locking.
72 * The DM9000 uses an address register to control where data written
73 * to the data register goes. This means that the address register
74 * must be preserved over interrupts or similar calls.
76 * During interrupt and other critical calls, a spinlock is used to
77 * protect the system, but the calls themselves save the address
78 * in the address register in case they are interrupting another
79 * access to the device.
81 * For general accesses a lock is provided so that calls which are
82 * allowed to sleep are serialised so that the address register does
83 * not need to be saved. This lock also serves to serialise access
84 * to the EEPROM and PHY access registers which are shared between
88 /* The driver supports the original DM9000E, and now the two newer
89 * devices, DM9000A and DM9000B.
93 TYPE_DM9000E
, /* original DM9000 */
98 /* Structure/enum declaration ------------------------------- */
101 void __iomem
*io_addr
; /* Register I/O base address */
102 void __iomem
*io_data
; /* Data I/O address */
107 u16 queue_start_addr
;
110 u8 io_mode
; /* 0:word, 2:byte */
115 unsigned int in_timeout
:1;
116 unsigned int in_suspend
:1;
117 unsigned int wake_supported
:1;
119 enum dm9000_type type
;
121 void (*inblk
)(void __iomem
*port
, void *data
, int length
);
122 void (*outblk
)(void __iomem
*port
, void *data
, int length
);
123 void (*dumpblk
)(void __iomem
*port
, int length
);
125 struct device
*dev
; /* parent device */
127 struct resource
*addr_res
; /* resources found */
128 struct resource
*data_res
;
129 struct resource
*addr_req
; /* resources requested */
130 struct resource
*data_req
;
131 struct resource
*irq_res
;
135 struct mutex addr_lock
; /* phy and eeprom access lock */
137 struct delayed_work phy_poll
;
138 struct net_device
*ndev
;
142 struct mii_if_info mii
;
151 #define dm9000_dbg(db, lev, msg...) do { \
152 if ((lev) < debug) { \
153 dev_dbg(db->dev, msg); \
157 static inline struct board_info
*to_dm9000_board(struct net_device
*dev
)
159 return netdev_priv(dev
);
162 /* DM9000 network board routine ---------------------------- */
165 * Read a byte from I/O port
168 ior(struct board_info
*db
, int reg
)
170 writeb(reg
, db
->io_addr
);
171 return readb(db
->io_data
);
175 * Write a byte to I/O port
179 iow(struct board_info
*db
, int reg
, int value
)
181 writeb(reg
, db
->io_addr
);
182 writeb(value
, db
->io_data
);
186 dm9000_reset(struct board_info
*db
)
188 dev_dbg(db
->dev
, "resetting device\n");
190 /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
191 * The essential point is that we have to do a double reset, and the
192 * instruction is to set LBK into MAC internal loopback mode.
194 iow(db
, DM9000_NCR
, NCR_RST
| NCR_MAC_LBK
);
195 udelay(100); /* Application note says at least 20 us */
196 if (ior(db
, DM9000_NCR
) & 1)
197 dev_err(db
->dev
, "dm9000 did not respond to first reset\n");
199 iow(db
, DM9000_NCR
, 0);
200 iow(db
, DM9000_NCR
, NCR_RST
| NCR_MAC_LBK
);
202 if (ior(db
, DM9000_NCR
) & 1)
203 dev_err(db
->dev
, "dm9000 did not respond to second reset\n");
206 /* routines for sending block to chip */
208 static void dm9000_outblk_8bit(void __iomem
*reg
, void *data
, int count
)
210 iowrite8_rep(reg
, data
, count
);
213 static void dm9000_outblk_16bit(void __iomem
*reg
, void *data
, int count
)
215 iowrite16_rep(reg
, data
, (count
+1) >> 1);
218 static void dm9000_outblk_32bit(void __iomem
*reg
, void *data
, int count
)
220 iowrite32_rep(reg
, data
, (count
+3) >> 2);
223 /* input block from chip to memory */
225 static void dm9000_inblk_8bit(void __iomem
*reg
, void *data
, int count
)
227 ioread8_rep(reg
, data
, count
);
231 static void dm9000_inblk_16bit(void __iomem
*reg
, void *data
, int count
)
233 ioread16_rep(reg
, data
, (count
+1) >> 1);
236 static void dm9000_inblk_32bit(void __iomem
*reg
, void *data
, int count
)
238 ioread32_rep(reg
, data
, (count
+3) >> 2);
241 /* dump block from chip to null */
243 static void dm9000_dumpblk_8bit(void __iomem
*reg
, int count
)
248 for (i
= 0; i
< count
; i
++)
252 static void dm9000_dumpblk_16bit(void __iomem
*reg
, int count
)
257 count
= (count
+ 1) >> 1;
259 for (i
= 0; i
< count
; i
++)
263 static void dm9000_dumpblk_32bit(void __iomem
*reg
, int count
)
268 count
= (count
+ 3) >> 2;
270 for (i
= 0; i
< count
; i
++)
275 * Sleep, either by using msleep() or if we are suspending, then
276 * use mdelay() to sleep.
278 static void dm9000_msleep(struct board_info
*db
, unsigned int ms
)
280 if (db
->in_suspend
|| db
->in_timeout
)
286 /* Read a word from phyxcer */
288 dm9000_phy_read(struct net_device
*dev
, int phy_reg_unused
, int reg
)
290 struct board_info
*db
= netdev_priv(dev
);
292 unsigned int reg_save
;
295 mutex_lock(&db
->addr_lock
);
297 spin_lock_irqsave(&db
->lock
, flags
);
299 /* Save previous register address */
300 reg_save
= readb(db
->io_addr
);
302 /* Fill the phyxcer register into REG_0C */
303 iow(db
, DM9000_EPAR
, DM9000_PHY
| reg
);
305 /* Issue phyxcer read command */
306 iow(db
, DM9000_EPCR
, EPCR_ERPRR
| EPCR_EPOS
);
308 writeb(reg_save
, db
->io_addr
);
309 spin_unlock_irqrestore(&db
->lock
, flags
);
311 dm9000_msleep(db
, 1); /* Wait read complete */
313 spin_lock_irqsave(&db
->lock
, flags
);
314 reg_save
= readb(db
->io_addr
);
316 iow(db
, DM9000_EPCR
, 0x0); /* Clear phyxcer read command */
318 /* The read data keeps on REG_0D & REG_0E */
319 ret
= (ior(db
, DM9000_EPDRH
) << 8) | ior(db
, DM9000_EPDRL
);
321 /* restore the previous address */
322 writeb(reg_save
, db
->io_addr
);
323 spin_unlock_irqrestore(&db
->lock
, flags
);
325 mutex_unlock(&db
->addr_lock
);
327 dm9000_dbg(db
, 5, "phy_read[%02x] -> %04x\n", reg
, ret
);
331 /* Write a word to phyxcer */
333 dm9000_phy_write(struct net_device
*dev
,
334 int phyaddr_unused
, int reg
, int value
)
336 struct board_info
*db
= netdev_priv(dev
);
338 unsigned long reg_save
;
340 dm9000_dbg(db
, 5, "phy_write[%02x] = %04x\n", reg
, value
);
342 mutex_lock(&db
->addr_lock
);
344 spin_lock_irqsave(&db
->lock
, flags
);
346 /* Save previous register address */
347 reg_save
= readb(db
->io_addr
);
349 /* Fill the phyxcer register into REG_0C */
350 iow(db
, DM9000_EPAR
, DM9000_PHY
| reg
);
352 /* Fill the written data into REG_0D & REG_0E */
353 iow(db
, DM9000_EPDRL
, value
);
354 iow(db
, DM9000_EPDRH
, value
>> 8);
356 /* Issue phyxcer write command */
357 iow(db
, DM9000_EPCR
, EPCR_EPOS
| EPCR_ERPRW
);
359 writeb(reg_save
, db
->io_addr
);
360 spin_unlock_irqrestore(&db
->lock
, flags
);
362 dm9000_msleep(db
, 1); /* Wait write complete */
364 spin_lock_irqsave(&db
->lock
, flags
);
365 reg_save
= readb(db
->io_addr
);
367 iow(db
, DM9000_EPCR
, 0x0); /* Clear phyxcer write command */
369 /* restore the previous address */
370 writeb(reg_save
, db
->io_addr
);
372 spin_unlock_irqrestore(&db
->lock
, flags
);
374 mutex_unlock(&db
->addr_lock
);
379 * select the specified set of io routines to use with the
383 static void dm9000_set_io(struct board_info
*db
, int byte_width
)
385 /* use the size of the data resource to work out what IO
386 * routines we want to use
389 switch (byte_width
) {
391 db
->dumpblk
= dm9000_dumpblk_8bit
;
392 db
->outblk
= dm9000_outblk_8bit
;
393 db
->inblk
= dm9000_inblk_8bit
;
398 dev_dbg(db
->dev
, ": 3 byte IO, falling back to 16bit\n");
400 db
->dumpblk
= dm9000_dumpblk_16bit
;
401 db
->outblk
= dm9000_outblk_16bit
;
402 db
->inblk
= dm9000_inblk_16bit
;
407 db
->dumpblk
= dm9000_dumpblk_32bit
;
408 db
->outblk
= dm9000_outblk_32bit
;
409 db
->inblk
= dm9000_inblk_32bit
;
414 static void dm9000_schedule_poll(struct board_info
*db
)
416 if (db
->type
== TYPE_DM9000E
)
417 schedule_delayed_work(&db
->phy_poll
, HZ
* 2);
420 static int dm9000_ioctl(struct net_device
*dev
, struct ifreq
*req
, int cmd
)
422 struct board_info
*dm
= to_dm9000_board(dev
);
424 if (!netif_running(dev
))
427 return generic_mii_ioctl(&dm
->mii
, if_mii(req
), cmd
, NULL
);
431 dm9000_read_locked(struct board_info
*db
, int reg
)
436 spin_lock_irqsave(&db
->lock
, flags
);
438 spin_unlock_irqrestore(&db
->lock
, flags
);
443 static int dm9000_wait_eeprom(struct board_info
*db
)
446 int timeout
= 8; /* wait max 8msec */
448 /* The DM9000 data sheets say we should be able to
449 * poll the ERRE bit in EPCR to wait for the EEPROM
450 * operation. From testing several chips, this bit
451 * does not seem to work.
453 * We attempt to use the bit, but fall back to the
454 * timeout (which is why we do not return an error
455 * on expiry) to say that the EEPROM operation has
460 status
= dm9000_read_locked(db
, DM9000_EPCR
);
462 if ((status
& EPCR_ERRE
) == 0)
468 dev_dbg(db
->dev
, "timeout waiting EEPROM\n");
477 * Read a word data from EEPROM
480 dm9000_read_eeprom(struct board_info
*db
, int offset
, u8
*to
)
484 if (db
->flags
& DM9000_PLATF_NO_EEPROM
) {
490 mutex_lock(&db
->addr_lock
);
492 spin_lock_irqsave(&db
->lock
, flags
);
494 iow(db
, DM9000_EPAR
, offset
);
495 iow(db
, DM9000_EPCR
, EPCR_ERPRR
);
497 spin_unlock_irqrestore(&db
->lock
, flags
);
499 dm9000_wait_eeprom(db
);
501 /* delay for at-least 150uS */
504 spin_lock_irqsave(&db
->lock
, flags
);
506 iow(db
, DM9000_EPCR
, 0x0);
508 to
[0] = ior(db
, DM9000_EPDRL
);
509 to
[1] = ior(db
, DM9000_EPDRH
);
511 spin_unlock_irqrestore(&db
->lock
, flags
);
513 mutex_unlock(&db
->addr_lock
);
517 * Write a word data to SROM
520 dm9000_write_eeprom(struct board_info
*db
, int offset
, u8
*data
)
524 if (db
->flags
& DM9000_PLATF_NO_EEPROM
)
527 mutex_lock(&db
->addr_lock
);
529 spin_lock_irqsave(&db
->lock
, flags
);
530 iow(db
, DM9000_EPAR
, offset
);
531 iow(db
, DM9000_EPDRH
, data
[1]);
532 iow(db
, DM9000_EPDRL
, data
[0]);
533 iow(db
, DM9000_EPCR
, EPCR_WEP
| EPCR_ERPRW
);
534 spin_unlock_irqrestore(&db
->lock
, flags
);
536 dm9000_wait_eeprom(db
);
538 mdelay(1); /* wait at least 150uS to clear */
540 spin_lock_irqsave(&db
->lock
, flags
);
541 iow(db
, DM9000_EPCR
, 0);
542 spin_unlock_irqrestore(&db
->lock
, flags
);
544 mutex_unlock(&db
->addr_lock
);
549 static void dm9000_get_drvinfo(struct net_device
*dev
,
550 struct ethtool_drvinfo
*info
)
552 struct board_info
*dm
= to_dm9000_board(dev
);
554 strlcpy(info
->driver
, CARDNAME
, sizeof(info
->driver
));
555 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
556 strlcpy(info
->bus_info
, to_platform_device(dm
->dev
)->name
,
557 sizeof(info
->bus_info
));
560 static u32
dm9000_get_msglevel(struct net_device
*dev
)
562 struct board_info
*dm
= to_dm9000_board(dev
);
564 return dm
->msg_enable
;
567 static void dm9000_set_msglevel(struct net_device
*dev
, u32 value
)
569 struct board_info
*dm
= to_dm9000_board(dev
);
571 dm
->msg_enable
= value
;
574 static int dm9000_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
576 struct board_info
*dm
= to_dm9000_board(dev
);
578 mii_ethtool_gset(&dm
->mii
, cmd
);
582 static int dm9000_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
584 struct board_info
*dm
= to_dm9000_board(dev
);
586 return mii_ethtool_sset(&dm
->mii
, cmd
);
589 static int dm9000_nway_reset(struct net_device
*dev
)
591 struct board_info
*dm
= to_dm9000_board(dev
);
592 return mii_nway_restart(&dm
->mii
);
595 static int dm9000_set_features(struct net_device
*dev
,
596 netdev_features_t features
)
598 struct board_info
*dm
= to_dm9000_board(dev
);
599 netdev_features_t changed
= dev
->features
^ features
;
602 if (!(changed
& NETIF_F_RXCSUM
))
605 spin_lock_irqsave(&dm
->lock
, flags
);
606 iow(dm
, DM9000_RCSR
, (features
& NETIF_F_RXCSUM
) ? RCSR_CSUM
: 0);
607 spin_unlock_irqrestore(&dm
->lock
, flags
);
612 static u32
dm9000_get_link(struct net_device
*dev
)
614 struct board_info
*dm
= to_dm9000_board(dev
);
617 if (dm
->flags
& DM9000_PLATF_EXT_PHY
)
618 ret
= mii_link_ok(&dm
->mii
);
620 ret
= dm9000_read_locked(dm
, DM9000_NSR
) & NSR_LINKST
? 1 : 0;
625 #define DM_EEPROM_MAGIC (0x444D394B)
627 static int dm9000_get_eeprom_len(struct net_device
*dev
)
632 static int dm9000_get_eeprom(struct net_device
*dev
,
633 struct ethtool_eeprom
*ee
, u8
*data
)
635 struct board_info
*dm
= to_dm9000_board(dev
);
636 int offset
= ee
->offset
;
640 /* EEPROM access is aligned to two bytes */
642 if ((len
& 1) != 0 || (offset
& 1) != 0)
645 if (dm
->flags
& DM9000_PLATF_NO_EEPROM
)
648 ee
->magic
= DM_EEPROM_MAGIC
;
650 for (i
= 0; i
< len
; i
+= 2)
651 dm9000_read_eeprom(dm
, (offset
+ i
) / 2, data
+ i
);
656 static int dm9000_set_eeprom(struct net_device
*dev
,
657 struct ethtool_eeprom
*ee
, u8
*data
)
659 struct board_info
*dm
= to_dm9000_board(dev
);
660 int offset
= ee
->offset
;
664 /* EEPROM access is aligned to two bytes */
666 if (dm
->flags
& DM9000_PLATF_NO_EEPROM
)
669 if (ee
->magic
!= DM_EEPROM_MAGIC
)
673 if (len
& 1 || offset
& 1) {
674 int which
= offset
& 1;
677 dm9000_read_eeprom(dm
, offset
/ 2, tmp
);
679 dm9000_write_eeprom(dm
, offset
/ 2, tmp
);
683 dm9000_write_eeprom(dm
, offset
/ 2, data
);
695 static void dm9000_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*w
)
697 struct board_info
*dm
= to_dm9000_board(dev
);
699 memset(w
, 0, sizeof(struct ethtool_wolinfo
));
701 /* note, we could probably support wake-phy too */
702 w
->supported
= dm
->wake_supported
? WAKE_MAGIC
: 0;
703 w
->wolopts
= dm
->wake_state
;
706 static int dm9000_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*w
)
708 struct board_info
*dm
= to_dm9000_board(dev
);
710 u32 opts
= w
->wolopts
;
713 if (!dm
->wake_supported
)
716 if (opts
& ~WAKE_MAGIC
)
719 if (opts
& WAKE_MAGIC
)
722 mutex_lock(&dm
->addr_lock
);
724 spin_lock_irqsave(&dm
->lock
, flags
);
725 iow(dm
, DM9000_WCR
, wcr
);
726 spin_unlock_irqrestore(&dm
->lock
, flags
);
728 mutex_unlock(&dm
->addr_lock
);
730 if (dm
->wake_state
!= opts
) {
731 /* change in wol state, update IRQ state */
734 irq_set_irq_wake(dm
->irq_wake
, 1);
735 else if (dm
->wake_state
&& !opts
)
736 irq_set_irq_wake(dm
->irq_wake
, 0);
739 dm
->wake_state
= opts
;
743 static const struct ethtool_ops dm9000_ethtool_ops
= {
744 .get_drvinfo
= dm9000_get_drvinfo
,
745 .get_settings
= dm9000_get_settings
,
746 .set_settings
= dm9000_set_settings
,
747 .get_msglevel
= dm9000_get_msglevel
,
748 .set_msglevel
= dm9000_set_msglevel
,
749 .nway_reset
= dm9000_nway_reset
,
750 .get_link
= dm9000_get_link
,
751 .get_wol
= dm9000_get_wol
,
752 .set_wol
= dm9000_set_wol
,
753 .get_eeprom_len
= dm9000_get_eeprom_len
,
754 .get_eeprom
= dm9000_get_eeprom
,
755 .set_eeprom
= dm9000_set_eeprom
,
758 static void dm9000_show_carrier(struct board_info
*db
,
759 unsigned carrier
, unsigned nsr
)
762 struct net_device
*ndev
= db
->ndev
;
763 struct mii_if_info
*mii
= &db
->mii
;
764 unsigned ncr
= dm9000_read_locked(db
, DM9000_NCR
);
767 lpa
= mii
->mdio_read(mii
->dev
, mii
->phy_id
, MII_LPA
);
769 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
770 ndev
->name
, (nsr
& NSR_SPEED
) ? 10 : 100,
771 (ncr
& NCR_FDX
) ? "full" : "half", lpa
);
773 dev_info(db
->dev
, "%s: link down\n", ndev
->name
);
778 dm9000_poll_work(struct work_struct
*w
)
780 struct delayed_work
*dw
= to_delayed_work(w
);
781 struct board_info
*db
= container_of(dw
, struct board_info
, phy_poll
);
782 struct net_device
*ndev
= db
->ndev
;
784 if (db
->flags
& DM9000_PLATF_SIMPLE_PHY
&&
785 !(db
->flags
& DM9000_PLATF_EXT_PHY
)) {
786 unsigned nsr
= dm9000_read_locked(db
, DM9000_NSR
);
787 unsigned old_carrier
= netif_carrier_ok(ndev
) ? 1 : 0;
788 unsigned new_carrier
;
790 new_carrier
= (nsr
& NSR_LINKST
) ? 1 : 0;
792 if (old_carrier
!= new_carrier
) {
793 if (netif_msg_link(db
))
794 dm9000_show_carrier(db
, new_carrier
, nsr
);
797 netif_carrier_off(ndev
);
799 netif_carrier_on(ndev
);
802 mii_check_media(&db
->mii
, netif_msg_link(db
), 0);
804 if (netif_running(ndev
))
805 dm9000_schedule_poll(db
);
808 /* dm9000_release_board
810 * release a board, and any mapped resources
814 dm9000_release_board(struct platform_device
*pdev
, struct board_info
*db
)
816 /* unmap our resources */
818 iounmap(db
->io_addr
);
819 iounmap(db
->io_data
);
821 /* release the resources */
824 release_resource(db
->data_req
);
828 release_resource(db
->addr_req
);
832 static unsigned char dm9000_type_to_char(enum dm9000_type type
)
835 case TYPE_DM9000E
: return 'e';
836 case TYPE_DM9000A
: return 'a';
837 case TYPE_DM9000B
: return 'b';
844 * Set DM9000 multicast address
847 dm9000_hash_table_unlocked(struct net_device
*dev
)
849 struct board_info
*db
= netdev_priv(dev
);
850 struct netdev_hw_addr
*ha
;
853 u16 hash_table
[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
854 u8 rcr
= RCR_DIS_LONG
| RCR_DIS_CRC
| RCR_RXEN
;
856 dm9000_dbg(db
, 1, "entering %s\n", __func__
);
858 for (i
= 0, oft
= DM9000_PAR
; i
< 6; i
++, oft
++)
859 iow(db
, oft
, dev
->dev_addr
[i
]);
861 if (dev
->flags
& IFF_PROMISC
)
864 if (dev
->flags
& IFF_ALLMULTI
)
867 /* the multicast address in Hash Table : 64 bits */
868 netdev_for_each_mc_addr(ha
, dev
) {
869 hash_val
= ether_crc_le(6, ha
->addr
) & 0x3f;
870 hash_table
[hash_val
/ 16] |= (u16
) 1 << (hash_val
% 16);
873 /* Write the hash table to MAC MD table */
874 for (i
= 0, oft
= DM9000_MAR
; i
< 4; i
++) {
875 iow(db
, oft
++, hash_table
[i
]);
876 iow(db
, oft
++, hash_table
[i
] >> 8);
879 iow(db
, DM9000_RCR
, rcr
);
883 dm9000_hash_table(struct net_device
*dev
)
885 struct board_info
*db
= netdev_priv(dev
);
888 spin_lock_irqsave(&db
->lock
, flags
);
889 dm9000_hash_table_unlocked(dev
);
890 spin_unlock_irqrestore(&db
->lock
, flags
);
894 dm9000_mask_interrupts(struct board_info
*db
)
896 iow(db
, DM9000_IMR
, IMR_PAR
);
900 dm9000_unmask_interrupts(struct board_info
*db
)
902 iow(db
, DM9000_IMR
, db
->imr_all
);
906 * Initialize dm9000 board
909 dm9000_init_dm9000(struct net_device
*dev
)
911 struct board_info
*db
= netdev_priv(dev
);
915 dm9000_dbg(db
, 1, "entering %s\n", __func__
);
918 dm9000_mask_interrupts(db
);
921 db
->io_mode
= ior(db
, DM9000_ISR
) >> 6; /* ISR bit7:6 keeps I/O mode */
924 if (dev
->hw_features
& NETIF_F_RXCSUM
)
926 (dev
->features
& NETIF_F_RXCSUM
) ? RCSR_CSUM
: 0);
928 iow(db
, DM9000_GPCR
, GPCR_GEP_CNTL
); /* Let GPIO0 output */
929 iow(db
, DM9000_GPR
, 0);
931 /* If we are dealing with DM9000B, some extra steps are required: a
932 * manual phy reset, and setting init params.
934 if (db
->type
== TYPE_DM9000B
) {
935 dm9000_phy_write(dev
, 0, MII_BMCR
, BMCR_RESET
);
936 dm9000_phy_write(dev
, 0, MII_DM_DSPCR
, DSPCR_INIT_PARAM
);
939 ncr
= (db
->flags
& DM9000_PLATF_EXT_PHY
) ? NCR_EXT_PHY
: 0;
941 /* if wol is needed, then always set NCR_WAKEEN otherwise we end
942 * up dumping the wake events if we disable this. There is already
943 * a wake-mask in DM9000_WCR */
944 if (db
->wake_supported
)
947 iow(db
, DM9000_NCR
, ncr
);
949 /* Program operating register */
950 iow(db
, DM9000_TCR
, 0); /* TX Polling clear */
951 iow(db
, DM9000_BPTR
, 0x3f); /* Less 3Kb, 200us */
952 iow(db
, DM9000_FCR
, 0xff); /* Flow Control */
953 iow(db
, DM9000_SMCR
, 0); /* Special Mode */
954 /* clear TX status */
955 iow(db
, DM9000_NSR
, NSR_WAKEST
| NSR_TX2END
| NSR_TX1END
);
956 iow(db
, DM9000_ISR
, ISR_CLR_STATUS
); /* Clear interrupt status */
958 /* Set address filter table */
959 dm9000_hash_table_unlocked(dev
);
961 imr
= IMR_PAR
| IMR_PTM
| IMR_PRM
;
962 if (db
->type
!= TYPE_DM9000E
)
967 /* Init Driver variable */
969 db
->queue_pkt_len
= 0;
970 dev
->trans_start
= jiffies
;
973 /* Our watchdog timed out. Called by the networking layer */
974 static void dm9000_timeout(struct net_device
*dev
)
976 struct board_info
*db
= netdev_priv(dev
);
980 /* Save previous register address */
981 spin_lock_irqsave(&db
->lock
, flags
);
983 reg_save
= readb(db
->io_addr
);
985 netif_stop_queue(dev
);
986 dm9000_init_dm9000(dev
);
987 dm9000_unmask_interrupts(db
);
988 /* We can accept TX packets again */
989 dev
->trans_start
= jiffies
; /* prevent tx timeout */
990 netif_wake_queue(dev
);
992 /* Restore previous register address */
993 writeb(reg_save
, db
->io_addr
);
995 spin_unlock_irqrestore(&db
->lock
, flags
);
998 static void dm9000_send_packet(struct net_device
*dev
,
1002 struct board_info
*dm
= to_dm9000_board(dev
);
1004 /* The DM9000 is not smart enough to leave fragmented packets alone. */
1005 if (dm
->ip_summed
!= ip_summed
) {
1006 if (ip_summed
== CHECKSUM_NONE
)
1007 iow(dm
, DM9000_TCCR
, 0);
1009 iow(dm
, DM9000_TCCR
, TCCR_IP
| TCCR_UDP
| TCCR_TCP
);
1010 dm
->ip_summed
= ip_summed
;
1013 /* Set TX length to DM9000 */
1014 iow(dm
, DM9000_TXPLL
, pkt_len
);
1015 iow(dm
, DM9000_TXPLH
, pkt_len
>> 8);
1017 /* Issue TX polling command */
1018 iow(dm
, DM9000_TCR
, TCR_TXREQ
); /* Cleared after TX complete */
1022 * Hardware start transmission.
1023 * Send a packet to media from the upper layer.
1026 dm9000_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1028 unsigned long flags
;
1029 struct board_info
*db
= netdev_priv(dev
);
1031 dm9000_dbg(db
, 3, "%s:\n", __func__
);
1033 if (db
->tx_pkt_cnt
> 1)
1034 return NETDEV_TX_BUSY
;
1036 spin_lock_irqsave(&db
->lock
, flags
);
1038 /* Move data to DM9000 TX RAM */
1039 writeb(DM9000_MWCMD
, db
->io_addr
);
1041 (db
->outblk
)(db
->io_data
, skb
->data
, skb
->len
);
1042 dev
->stats
.tx_bytes
+= skb
->len
;
1045 /* TX control: First packet immediately send, second packet queue */
1046 if (db
->tx_pkt_cnt
== 1) {
1047 dm9000_send_packet(dev
, skb
->ip_summed
, skb
->len
);
1050 db
->queue_pkt_len
= skb
->len
;
1051 db
->queue_ip_summed
= skb
->ip_summed
;
1052 netif_stop_queue(dev
);
1055 spin_unlock_irqrestore(&db
->lock
, flags
);
1058 dev_consume_skb_any(skb
);
1060 return NETDEV_TX_OK
;
1064 * DM9000 interrupt handler
1065 * receive the packet to upper layer, free the transmitted packet
1068 static void dm9000_tx_done(struct net_device
*dev
, struct board_info
*db
)
1070 int tx_status
= ior(db
, DM9000_NSR
); /* Got TX status */
1072 if (tx_status
& (NSR_TX2END
| NSR_TX1END
)) {
1073 /* One packet sent complete */
1075 dev
->stats
.tx_packets
++;
1077 if (netif_msg_tx_done(db
))
1078 dev_dbg(db
->dev
, "tx done, NSR %02x\n", tx_status
);
1080 /* Queue packet check & send */
1081 if (db
->tx_pkt_cnt
> 0)
1082 dm9000_send_packet(dev
, db
->queue_ip_summed
,
1084 netif_wake_queue(dev
);
1088 struct dm9000_rxhdr
{
1095 * Received a packet and pass to upper layer
1098 dm9000_rx(struct net_device
*dev
)
1100 struct board_info
*db
= netdev_priv(dev
);
1101 struct dm9000_rxhdr rxhdr
;
1102 struct sk_buff
*skb
;
1107 /* Check packet ready or not */
1109 ior(db
, DM9000_MRCMDX
); /* Dummy read */
1111 /* Get most updated data */
1112 rxbyte
= readb(db
->io_data
);
1114 /* Status check: this byte must be 0 or 1 */
1115 if (rxbyte
& DM9000_PKT_ERR
) {
1116 dev_warn(db
->dev
, "status check fail: %d\n", rxbyte
);
1117 iow(db
, DM9000_RCR
, 0x00); /* Stop Device */
1121 if (!(rxbyte
& DM9000_PKT_RDY
))
1124 /* A packet ready now & Get status/length */
1126 writeb(DM9000_MRCMD
, db
->io_addr
);
1128 (db
->inblk
)(db
->io_data
, &rxhdr
, sizeof(rxhdr
));
1130 RxLen
= le16_to_cpu(rxhdr
.RxLen
);
1132 if (netif_msg_rx_status(db
))
1133 dev_dbg(db
->dev
, "RX: status %02x, length %04x\n",
1134 rxhdr
.RxStatus
, RxLen
);
1136 /* Packet Status check */
1139 if (netif_msg_rx_err(db
))
1140 dev_dbg(db
->dev
, "RX: Bad Packet (runt)\n");
1143 if (RxLen
> DM9000_PKT_MAX
) {
1144 dev_dbg(db
->dev
, "RST: RX Len:%x\n", RxLen
);
1147 /* rxhdr.RxStatus is identical to RSR register. */
1148 if (rxhdr
.RxStatus
& (RSR_FOE
| RSR_CE
| RSR_AE
|
1149 RSR_PLE
| RSR_RWTO
|
1150 RSR_LCS
| RSR_RF
)) {
1152 if (rxhdr
.RxStatus
& RSR_FOE
) {
1153 if (netif_msg_rx_err(db
))
1154 dev_dbg(db
->dev
, "fifo error\n");
1155 dev
->stats
.rx_fifo_errors
++;
1157 if (rxhdr
.RxStatus
& RSR_CE
) {
1158 if (netif_msg_rx_err(db
))
1159 dev_dbg(db
->dev
, "crc error\n");
1160 dev
->stats
.rx_crc_errors
++;
1162 if (rxhdr
.RxStatus
& RSR_RF
) {
1163 if (netif_msg_rx_err(db
))
1164 dev_dbg(db
->dev
, "length error\n");
1165 dev
->stats
.rx_length_errors
++;
1169 /* Move data from DM9000 */
1171 ((skb
= netdev_alloc_skb(dev
, RxLen
+ 4)) != NULL
)) {
1172 skb_reserve(skb
, 2);
1173 rdptr
= (u8
*) skb_put(skb
, RxLen
- 4);
1175 /* Read received packet from RX SRAM */
1177 (db
->inblk
)(db
->io_data
, rdptr
, RxLen
);
1178 dev
->stats
.rx_bytes
+= RxLen
;
1180 /* Pass to upper layer */
1181 skb
->protocol
= eth_type_trans(skb
, dev
);
1182 if (dev
->features
& NETIF_F_RXCSUM
) {
1183 if ((((rxbyte
& 0x1c) << 3) & rxbyte
) == 0)
1184 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1186 skb_checksum_none_assert(skb
);
1189 dev
->stats
.rx_packets
++;
1192 /* need to dump the packet's data */
1194 (db
->dumpblk
)(db
->io_data
, RxLen
);
1196 } while (rxbyte
& DM9000_PKT_RDY
);
1199 static irqreturn_t
dm9000_interrupt(int irq
, void *dev_id
)
1201 struct net_device
*dev
= dev_id
;
1202 struct board_info
*db
= netdev_priv(dev
);
1204 unsigned long flags
;
1207 dm9000_dbg(db
, 3, "entering %s\n", __func__
);
1209 /* A real interrupt coming */
1211 /* holders of db->lock must always block IRQs */
1212 spin_lock_irqsave(&db
->lock
, flags
);
1214 /* Save previous register address */
1215 reg_save
= readb(db
->io_addr
);
1217 dm9000_mask_interrupts(db
);
1218 /* Got DM9000 interrupt status */
1219 int_status
= ior(db
, DM9000_ISR
); /* Got ISR */
1220 iow(db
, DM9000_ISR
, int_status
); /* Clear ISR status */
1222 if (netif_msg_intr(db
))
1223 dev_dbg(db
->dev
, "interrupt status %02x\n", int_status
);
1225 /* Received the coming packet */
1226 if (int_status
& ISR_PRS
)
1229 /* Transmit Interrupt check */
1230 if (int_status
& ISR_PTS
)
1231 dm9000_tx_done(dev
, db
);
1233 if (db
->type
!= TYPE_DM9000E
) {
1234 if (int_status
& ISR_LNKCHNG
) {
1235 /* fire a link-change request */
1236 schedule_delayed_work(&db
->phy_poll
, 1);
1240 dm9000_unmask_interrupts(db
);
1241 /* Restore previous register address */
1242 writeb(reg_save
, db
->io_addr
);
1244 spin_unlock_irqrestore(&db
->lock
, flags
);
1249 static irqreturn_t
dm9000_wol_interrupt(int irq
, void *dev_id
)
1251 struct net_device
*dev
= dev_id
;
1252 struct board_info
*db
= netdev_priv(dev
);
1253 unsigned long flags
;
1256 spin_lock_irqsave(&db
->lock
, flags
);
1258 nsr
= ior(db
, DM9000_NSR
);
1259 wcr
= ior(db
, DM9000_WCR
);
1261 dev_dbg(db
->dev
, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__
, nsr
, wcr
);
1263 if (nsr
& NSR_WAKEST
) {
1264 /* clear, so we can avoid */
1265 iow(db
, DM9000_NSR
, NSR_WAKEST
);
1267 if (wcr
& WCR_LINKST
)
1268 dev_info(db
->dev
, "wake by link status change\n");
1269 if (wcr
& WCR_SAMPLEST
)
1270 dev_info(db
->dev
, "wake by sample packet\n");
1271 if (wcr
& WCR_MAGICST
)
1272 dev_info(db
->dev
, "wake by magic packet\n");
1273 if (!(wcr
& (WCR_LINKST
| WCR_SAMPLEST
| WCR_MAGICST
)))
1274 dev_err(db
->dev
, "wake signalled with no reason? "
1275 "NSR=0x%02x, WSR=0x%02x\n", nsr
, wcr
);
1278 spin_unlock_irqrestore(&db
->lock
, flags
);
1280 return (nsr
& NSR_WAKEST
) ? IRQ_HANDLED
: IRQ_NONE
;
1283 #ifdef CONFIG_NET_POLL_CONTROLLER
1287 static void dm9000_poll_controller(struct net_device
*dev
)
1289 disable_irq(dev
->irq
);
1290 dm9000_interrupt(dev
->irq
, dev
);
1291 enable_irq(dev
->irq
);
1296 * Open the interface.
1297 * The interface is opened whenever "ifconfig" actives it.
1300 dm9000_open(struct net_device
*dev
)
1302 struct board_info
*db
= netdev_priv(dev
);
1303 unsigned long irqflags
= db
->irq_res
->flags
& IRQF_TRIGGER_MASK
;
1305 if (netif_msg_ifup(db
))
1306 dev_dbg(db
->dev
, "enabling %s\n", dev
->name
);
1308 /* If there is no IRQ type specified, default to something that
1309 * may work, and tell the user that this is a problem */
1311 if (irqflags
== IRQF_TRIGGER_NONE
)
1312 irqflags
= irq_get_trigger_type(dev
->irq
);
1314 if (irqflags
== IRQF_TRIGGER_NONE
)
1315 dev_warn(db
->dev
, "WARNING: no IRQ resource flags set.\n");
1317 irqflags
|= IRQF_SHARED
;
1319 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1320 iow(db
, DM9000_GPR
, 0); /* REG_1F bit0 activate phyxcer */
1321 mdelay(1); /* delay needs by DM9000B */
1323 /* Initialize DM9000 board */
1324 dm9000_init_dm9000(dev
);
1326 if (request_irq(dev
->irq
, dm9000_interrupt
, irqflags
, dev
->name
, dev
))
1328 /* Now that we have an interrupt handler hooked up we can unmask
1331 dm9000_unmask_interrupts(db
);
1333 /* Init driver variable */
1336 mii_check_media(&db
->mii
, netif_msg_link(db
), 1);
1337 netif_start_queue(dev
);
1339 /* Poll initial link status */
1340 schedule_delayed_work(&db
->phy_poll
, 1);
1346 dm9000_shutdown(struct net_device
*dev
)
1348 struct board_info
*db
= netdev_priv(dev
);
1351 dm9000_phy_write(dev
, 0, MII_BMCR
, BMCR_RESET
); /* PHY RESET */
1352 iow(db
, DM9000_GPR
, 0x01); /* Power-Down PHY */
1353 dm9000_mask_interrupts(db
);
1354 iow(db
, DM9000_RCR
, 0x00); /* Disable RX */
1358 * Stop the interface.
1359 * The interface is stopped when it is brought.
1362 dm9000_stop(struct net_device
*ndev
)
1364 struct board_info
*db
= netdev_priv(ndev
);
1366 if (netif_msg_ifdown(db
))
1367 dev_dbg(db
->dev
, "shutting down %s\n", ndev
->name
);
1369 cancel_delayed_work_sync(&db
->phy_poll
);
1371 netif_stop_queue(ndev
);
1372 netif_carrier_off(ndev
);
1374 /* free interrupt */
1375 free_irq(ndev
->irq
, ndev
);
1377 dm9000_shutdown(ndev
);
1382 static const struct net_device_ops dm9000_netdev_ops
= {
1383 .ndo_open
= dm9000_open
,
1384 .ndo_stop
= dm9000_stop
,
1385 .ndo_start_xmit
= dm9000_start_xmit
,
1386 .ndo_tx_timeout
= dm9000_timeout
,
1387 .ndo_set_rx_mode
= dm9000_hash_table
,
1388 .ndo_do_ioctl
= dm9000_ioctl
,
1389 .ndo_change_mtu
= eth_change_mtu
,
1390 .ndo_set_features
= dm9000_set_features
,
1391 .ndo_validate_addr
= eth_validate_addr
,
1392 .ndo_set_mac_address
= eth_mac_addr
,
1393 #ifdef CONFIG_NET_POLL_CONTROLLER
1394 .ndo_poll_controller
= dm9000_poll_controller
,
1398 static struct dm9000_plat_data
*dm9000_parse_dt(struct device
*dev
)
1400 struct dm9000_plat_data
*pdata
;
1401 struct device_node
*np
= dev
->of_node
;
1402 const void *mac_addr
;
1404 if (!IS_ENABLED(CONFIG_OF
) || !np
)
1405 return ERR_PTR(-ENXIO
);
1407 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
1409 return ERR_PTR(-ENOMEM
);
1411 if (of_find_property(np
, "davicom,ext-phy", NULL
))
1412 pdata
->flags
|= DM9000_PLATF_EXT_PHY
;
1413 if (of_find_property(np
, "davicom,no-eeprom", NULL
))
1414 pdata
->flags
|= DM9000_PLATF_NO_EEPROM
;
1416 mac_addr
= of_get_mac_address(np
);
1418 memcpy(pdata
->dev_addr
, mac_addr
, sizeof(pdata
->dev_addr
));
1424 * Search DM9000 board, allocate space and register it
1427 dm9000_probe(struct platform_device
*pdev
)
1429 struct dm9000_plat_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1430 struct board_info
*db
; /* Point a board information structure */
1431 struct net_device
*ndev
;
1432 struct device
*dev
= &pdev
->dev
;
1433 const unsigned char *mac_src
;
1439 enum of_gpio_flags flags
;
1440 struct regulator
*power
;
1442 power
= devm_regulator_get(dev
, "vcc");
1443 if (IS_ERR(power
)) {
1444 if (PTR_ERR(power
) == -EPROBE_DEFER
)
1445 return -EPROBE_DEFER
;
1446 dev_dbg(dev
, "no regulator provided\n");
1448 ret
= regulator_enable(power
);
1451 "Failed to enable power regulator: %d\n", ret
);
1454 dev_dbg(dev
, "regulator enabled\n");
1457 reset_gpios
= of_get_named_gpio_flags(dev
->of_node
, "reset-gpios", 0,
1459 if (gpio_is_valid(reset_gpios
)) {
1460 ret
= devm_gpio_request_one(dev
, reset_gpios
, flags
,
1463 dev_err(dev
, "failed to request reset gpio %d: %d\n",
1468 /* According to manual PWRST# Low Period Min 1ms */
1470 gpio_set_value(reset_gpios
, 1);
1471 /* Needs 3ms to read eeprom when PWRST is deasserted */
1476 pdata
= dm9000_parse_dt(&pdev
->dev
);
1478 return PTR_ERR(pdata
);
1481 /* Init network device */
1482 ndev
= alloc_etherdev(sizeof(struct board_info
));
1486 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1488 dev_dbg(&pdev
->dev
, "dm9000_probe()\n");
1490 /* setup board info structure */
1491 db
= netdev_priv(ndev
);
1493 db
->dev
= &pdev
->dev
;
1496 spin_lock_init(&db
->lock
);
1497 mutex_init(&db
->addr_lock
);
1499 INIT_DELAYED_WORK(&db
->phy_poll
, dm9000_poll_work
);
1501 db
->addr_res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1502 db
->data_res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1503 db
->irq_res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
1505 if (db
->addr_res
== NULL
|| db
->data_res
== NULL
||
1506 db
->irq_res
== NULL
) {
1507 dev_err(db
->dev
, "insufficient resources\n");
1512 db
->irq_wake
= platform_get_irq(pdev
, 1);
1513 if (db
->irq_wake
>= 0) {
1514 dev_dbg(db
->dev
, "wakeup irq %d\n", db
->irq_wake
);
1516 ret
= request_irq(db
->irq_wake
, dm9000_wol_interrupt
,
1517 IRQF_SHARED
, dev_name(db
->dev
), ndev
);
1519 dev_err(db
->dev
, "cannot get wakeup irq (%d)\n", ret
);
1522 /* test to see if irq is really wakeup capable */
1523 ret
= irq_set_irq_wake(db
->irq_wake
, 1);
1525 dev_err(db
->dev
, "irq %d cannot set wakeup (%d)\n",
1529 irq_set_irq_wake(db
->irq_wake
, 0);
1530 db
->wake_supported
= 1;
1535 iosize
= resource_size(db
->addr_res
);
1536 db
->addr_req
= request_mem_region(db
->addr_res
->start
, iosize
,
1539 if (db
->addr_req
== NULL
) {
1540 dev_err(db
->dev
, "cannot claim address reg area\n");
1545 db
->io_addr
= ioremap(db
->addr_res
->start
, iosize
);
1547 if (db
->io_addr
== NULL
) {
1548 dev_err(db
->dev
, "failed to ioremap address reg\n");
1553 iosize
= resource_size(db
->data_res
);
1554 db
->data_req
= request_mem_region(db
->data_res
->start
, iosize
,
1557 if (db
->data_req
== NULL
) {
1558 dev_err(db
->dev
, "cannot claim data reg area\n");
1563 db
->io_data
= ioremap(db
->data_res
->start
, iosize
);
1565 if (db
->io_data
== NULL
) {
1566 dev_err(db
->dev
, "failed to ioremap data reg\n");
1571 /* fill in parameters for net-dev structure */
1572 ndev
->base_addr
= (unsigned long)db
->io_addr
;
1573 ndev
->irq
= db
->irq_res
->start
;
1575 /* ensure at least we have a default set of IO routines */
1576 dm9000_set_io(db
, iosize
);
1578 /* check to see if anything is being over-ridden */
1579 if (pdata
!= NULL
) {
1580 /* check to see if the driver wants to over-ride the
1581 * default IO width */
1583 if (pdata
->flags
& DM9000_PLATF_8BITONLY
)
1584 dm9000_set_io(db
, 1);
1586 if (pdata
->flags
& DM9000_PLATF_16BITONLY
)
1587 dm9000_set_io(db
, 2);
1589 if (pdata
->flags
& DM9000_PLATF_32BITONLY
)
1590 dm9000_set_io(db
, 4);
1592 /* check to see if there are any IO routine
1595 if (pdata
->inblk
!= NULL
)
1596 db
->inblk
= pdata
->inblk
;
1598 if (pdata
->outblk
!= NULL
)
1599 db
->outblk
= pdata
->outblk
;
1601 if (pdata
->dumpblk
!= NULL
)
1602 db
->dumpblk
= pdata
->dumpblk
;
1604 db
->flags
= pdata
->flags
;
1607 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1608 db
->flags
|= DM9000_PLATF_SIMPLE_PHY
;
1613 /* try multiple times, DM9000 sometimes gets the read wrong */
1614 for (i
= 0; i
< 8; i
++) {
1615 id_val
= ior(db
, DM9000_VIDL
);
1616 id_val
|= (u32
)ior(db
, DM9000_VIDH
) << 8;
1617 id_val
|= (u32
)ior(db
, DM9000_PIDL
) << 16;
1618 id_val
|= (u32
)ior(db
, DM9000_PIDH
) << 24;
1620 if (id_val
== DM9000_ID
)
1622 dev_err(db
->dev
, "read wrong id 0x%08x\n", id_val
);
1625 if (id_val
!= DM9000_ID
) {
1626 dev_err(db
->dev
, "wrong id: 0x%08x\n", id_val
);
1631 /* Identify what type of DM9000 we are working on */
1633 id_val
= ior(db
, DM9000_CHIPR
);
1634 dev_dbg(db
->dev
, "dm9000 revision 0x%02x\n", id_val
);
1638 db
->type
= TYPE_DM9000A
;
1641 db
->type
= TYPE_DM9000B
;
1644 dev_dbg(db
->dev
, "ID %02x => defaulting to DM9000E\n", id_val
);
1645 db
->type
= TYPE_DM9000E
;
1648 /* dm9000a/b are capable of hardware checksum offload */
1649 if (db
->type
== TYPE_DM9000A
|| db
->type
== TYPE_DM9000B
) {
1650 ndev
->hw_features
= NETIF_F_RXCSUM
| NETIF_F_IP_CSUM
;
1651 ndev
->features
|= ndev
->hw_features
;
1654 /* from this point we assume that we have found a DM9000 */
1656 ndev
->netdev_ops
= &dm9000_netdev_ops
;
1657 ndev
->watchdog_timeo
= msecs_to_jiffies(watchdog
);
1658 ndev
->ethtool_ops
= &dm9000_ethtool_ops
;
1660 db
->msg_enable
= NETIF_MSG_LINK
;
1661 db
->mii
.phy_id_mask
= 0x1f;
1662 db
->mii
.reg_num_mask
= 0x1f;
1663 db
->mii
.force_media
= 0;
1664 db
->mii
.full_duplex
= 0;
1666 db
->mii
.mdio_read
= dm9000_phy_read
;
1667 db
->mii
.mdio_write
= dm9000_phy_write
;
1671 /* try reading the node address from the attached EEPROM */
1672 for (i
= 0; i
< 6; i
+= 2)
1673 dm9000_read_eeprom(db
, i
/ 2, ndev
->dev_addr
+i
);
1675 if (!is_valid_ether_addr(ndev
->dev_addr
) && pdata
!= NULL
) {
1676 mac_src
= "platform data";
1677 memcpy(ndev
->dev_addr
, pdata
->dev_addr
, ETH_ALEN
);
1680 if (!is_valid_ether_addr(ndev
->dev_addr
)) {
1681 /* try reading from mac */
1684 for (i
= 0; i
< 6; i
++)
1685 ndev
->dev_addr
[i
] = ior(db
, i
+DM9000_PAR
);
1688 if (!is_valid_ether_addr(ndev
->dev_addr
)) {
1689 dev_warn(db
->dev
, "%s: Invalid ethernet MAC address. Please "
1690 "set using ifconfig\n", ndev
->name
);
1692 eth_hw_addr_random(ndev
);
1697 platform_set_drvdata(pdev
, ndev
);
1698 ret
= register_netdev(ndev
);
1701 printk(KERN_INFO
"%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1702 ndev
->name
, dm9000_type_to_char(db
->type
),
1703 db
->io_addr
, db
->io_data
, ndev
->irq
,
1704 ndev
->dev_addr
, mac_src
);
1708 dev_err(db
->dev
, "not found (%d).\n", ret
);
1710 dm9000_release_board(pdev
, db
);
1717 dm9000_drv_suspend(struct device
*dev
)
1719 struct platform_device
*pdev
= to_platform_device(dev
);
1720 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1721 struct board_info
*db
;
1724 db
= netdev_priv(ndev
);
1727 if (!netif_running(ndev
))
1730 netif_device_detach(ndev
);
1732 /* only shutdown if not using WoL */
1733 if (!db
->wake_state
)
1734 dm9000_shutdown(ndev
);
1740 dm9000_drv_resume(struct device
*dev
)
1742 struct platform_device
*pdev
= to_platform_device(dev
);
1743 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1744 struct board_info
*db
= netdev_priv(ndev
);
1747 if (netif_running(ndev
)) {
1748 /* reset if we were not in wake mode to ensure if
1749 * the device was powered off it is in a known state */
1750 if (!db
->wake_state
) {
1751 dm9000_init_dm9000(ndev
);
1752 dm9000_unmask_interrupts(db
);
1755 netif_device_attach(ndev
);
1763 static const struct dev_pm_ops dm9000_drv_pm_ops
= {
1764 .suspend
= dm9000_drv_suspend
,
1765 .resume
= dm9000_drv_resume
,
1769 dm9000_drv_remove(struct platform_device
*pdev
)
1771 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1773 unregister_netdev(ndev
);
1774 dm9000_release_board(pdev
, netdev_priv(ndev
));
1775 free_netdev(ndev
); /* free device structure */
1777 dev_dbg(&pdev
->dev
, "released and freed device\n");
1782 static const struct of_device_id dm9000_of_matches
[] = {
1783 { .compatible
= "davicom,dm9000", },
1786 MODULE_DEVICE_TABLE(of
, dm9000_of_matches
);
1789 static struct platform_driver dm9000_driver
= {
1792 .pm
= &dm9000_drv_pm_ops
,
1793 .of_match_table
= of_match_ptr(dm9000_of_matches
),
1795 .probe
= dm9000_probe
,
1796 .remove
= dm9000_drv_remove
,
1799 module_platform_driver(dm9000_driver
);
1801 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1802 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1803 MODULE_LICENSE("GPL");
1804 MODULE_ALIAS("platform:dm9000");