2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
26 #include <linux/gpio.h>
27 #include <linux/of_gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
31 /* SPI register offsets */
34 #define SPI_RDR 0x0008
35 #define SPI_TDR 0x000c
37 #define SPI_IER 0x0014
38 #define SPI_IDR 0x0018
39 #define SPI_IMR 0x001c
40 #define SPI_CSR0 0x0030
41 #define SPI_CSR1 0x0034
42 #define SPI_CSR2 0x0038
43 #define SPI_CSR3 0x003c
44 #define SPI_FMR 0x0040
45 #define SPI_FLR 0x0044
46 #define SPI_VERSION 0x00fc
47 #define SPI_RPR 0x0100
48 #define SPI_RCR 0x0104
49 #define SPI_TPR 0x0108
50 #define SPI_TCR 0x010c
51 #define SPI_RNPR 0x0110
52 #define SPI_RNCR 0x0114
53 #define SPI_TNPR 0x0118
54 #define SPI_TNCR 0x011c
55 #define SPI_PTCR 0x0120
56 #define SPI_PTSR 0x0124
59 #define SPI_SPIEN_OFFSET 0
60 #define SPI_SPIEN_SIZE 1
61 #define SPI_SPIDIS_OFFSET 1
62 #define SPI_SPIDIS_SIZE 1
63 #define SPI_SWRST_OFFSET 7
64 #define SPI_SWRST_SIZE 1
65 #define SPI_LASTXFER_OFFSET 24
66 #define SPI_LASTXFER_SIZE 1
67 #define SPI_TXFCLR_OFFSET 16
68 #define SPI_TXFCLR_SIZE 1
69 #define SPI_RXFCLR_OFFSET 17
70 #define SPI_RXFCLR_SIZE 1
71 #define SPI_FIFOEN_OFFSET 30
72 #define SPI_FIFOEN_SIZE 1
73 #define SPI_FIFODIS_OFFSET 31
74 #define SPI_FIFODIS_SIZE 1
77 #define SPI_MSTR_OFFSET 0
78 #define SPI_MSTR_SIZE 1
79 #define SPI_PS_OFFSET 1
81 #define SPI_PCSDEC_OFFSET 2
82 #define SPI_PCSDEC_SIZE 1
83 #define SPI_FDIV_OFFSET 3
84 #define SPI_FDIV_SIZE 1
85 #define SPI_MODFDIS_OFFSET 4
86 #define SPI_MODFDIS_SIZE 1
87 #define SPI_WDRBT_OFFSET 5
88 #define SPI_WDRBT_SIZE 1
89 #define SPI_LLB_OFFSET 7
90 #define SPI_LLB_SIZE 1
91 #define SPI_PCS_OFFSET 16
92 #define SPI_PCS_SIZE 4
93 #define SPI_DLYBCS_OFFSET 24
94 #define SPI_DLYBCS_SIZE 8
96 /* Bitfields in RDR */
97 #define SPI_RD_OFFSET 0
98 #define SPI_RD_SIZE 16
100 /* Bitfields in TDR */
101 #define SPI_TD_OFFSET 0
102 #define SPI_TD_SIZE 16
104 /* Bitfields in SR */
105 #define SPI_RDRF_OFFSET 0
106 #define SPI_RDRF_SIZE 1
107 #define SPI_TDRE_OFFSET 1
108 #define SPI_TDRE_SIZE 1
109 #define SPI_MODF_OFFSET 2
110 #define SPI_MODF_SIZE 1
111 #define SPI_OVRES_OFFSET 3
112 #define SPI_OVRES_SIZE 1
113 #define SPI_ENDRX_OFFSET 4
114 #define SPI_ENDRX_SIZE 1
115 #define SPI_ENDTX_OFFSET 5
116 #define SPI_ENDTX_SIZE 1
117 #define SPI_RXBUFF_OFFSET 6
118 #define SPI_RXBUFF_SIZE 1
119 #define SPI_TXBUFE_OFFSET 7
120 #define SPI_TXBUFE_SIZE 1
121 #define SPI_NSSR_OFFSET 8
122 #define SPI_NSSR_SIZE 1
123 #define SPI_TXEMPTY_OFFSET 9
124 #define SPI_TXEMPTY_SIZE 1
125 #define SPI_SPIENS_OFFSET 16
126 #define SPI_SPIENS_SIZE 1
127 #define SPI_TXFEF_OFFSET 24
128 #define SPI_TXFEF_SIZE 1
129 #define SPI_TXFFF_OFFSET 25
130 #define SPI_TXFFF_SIZE 1
131 #define SPI_TXFTHF_OFFSET 26
132 #define SPI_TXFTHF_SIZE 1
133 #define SPI_RXFEF_OFFSET 27
134 #define SPI_RXFEF_SIZE 1
135 #define SPI_RXFFF_OFFSET 28
136 #define SPI_RXFFF_SIZE 1
137 #define SPI_RXFTHF_OFFSET 29
138 #define SPI_RXFTHF_SIZE 1
139 #define SPI_TXFPTEF_OFFSET 30
140 #define SPI_TXFPTEF_SIZE 1
141 #define SPI_RXFPTEF_OFFSET 31
142 #define SPI_RXFPTEF_SIZE 1
144 /* Bitfields in CSR0 */
145 #define SPI_CPOL_OFFSET 0
146 #define SPI_CPOL_SIZE 1
147 #define SPI_NCPHA_OFFSET 1
148 #define SPI_NCPHA_SIZE 1
149 #define SPI_CSAAT_OFFSET 3
150 #define SPI_CSAAT_SIZE 1
151 #define SPI_BITS_OFFSET 4
152 #define SPI_BITS_SIZE 4
153 #define SPI_SCBR_OFFSET 8
154 #define SPI_SCBR_SIZE 8
155 #define SPI_DLYBS_OFFSET 16
156 #define SPI_DLYBS_SIZE 8
157 #define SPI_DLYBCT_OFFSET 24
158 #define SPI_DLYBCT_SIZE 8
160 /* Bitfields in RCR */
161 #define SPI_RXCTR_OFFSET 0
162 #define SPI_RXCTR_SIZE 16
164 /* Bitfields in TCR */
165 #define SPI_TXCTR_OFFSET 0
166 #define SPI_TXCTR_SIZE 16
168 /* Bitfields in RNCR */
169 #define SPI_RXNCR_OFFSET 0
170 #define SPI_RXNCR_SIZE 16
172 /* Bitfields in TNCR */
173 #define SPI_TXNCR_OFFSET 0
174 #define SPI_TXNCR_SIZE 16
176 /* Bitfields in PTCR */
177 #define SPI_RXTEN_OFFSET 0
178 #define SPI_RXTEN_SIZE 1
179 #define SPI_RXTDIS_OFFSET 1
180 #define SPI_RXTDIS_SIZE 1
181 #define SPI_TXTEN_OFFSET 8
182 #define SPI_TXTEN_SIZE 1
183 #define SPI_TXTDIS_OFFSET 9
184 #define SPI_TXTDIS_SIZE 1
186 /* Bitfields in FMR */
187 #define SPI_TXRDYM_OFFSET 0
188 #define SPI_TXRDYM_SIZE 2
189 #define SPI_RXRDYM_OFFSET 4
190 #define SPI_RXRDYM_SIZE 2
191 #define SPI_TXFTHRES_OFFSET 16
192 #define SPI_TXFTHRES_SIZE 6
193 #define SPI_RXFTHRES_OFFSET 24
194 #define SPI_RXFTHRES_SIZE 6
196 /* Bitfields in FLR */
197 #define SPI_TXFL_OFFSET 0
198 #define SPI_TXFL_SIZE 6
199 #define SPI_RXFL_OFFSET 16
200 #define SPI_RXFL_SIZE 6
202 /* Constants for BITS */
203 #define SPI_BITS_8_BPT 0
204 #define SPI_BITS_9_BPT 1
205 #define SPI_BITS_10_BPT 2
206 #define SPI_BITS_11_BPT 3
207 #define SPI_BITS_12_BPT 4
208 #define SPI_BITS_13_BPT 5
209 #define SPI_BITS_14_BPT 6
210 #define SPI_BITS_15_BPT 7
211 #define SPI_BITS_16_BPT 8
212 #define SPI_ONE_DATA 0
213 #define SPI_TWO_DATA 1
214 #define SPI_FOUR_DATA 2
216 /* Bit manipulation macros */
217 #define SPI_BIT(name) \
218 (1 << SPI_##name##_OFFSET)
219 #define SPI_BF(name, value) \
220 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
221 #define SPI_BFEXT(name, value) \
222 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
223 #define SPI_BFINS(name, value, old) \
224 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
225 | SPI_BF(name, value))
227 /* Register access macros */
229 #define spi_readl(port, reg) \
230 __raw_readl((port)->regs + SPI_##reg)
231 #define spi_writel(port, reg, value) \
232 __raw_writel((value), (port)->regs + SPI_##reg)
234 #define spi_readw(port, reg) \
235 __raw_readw((port)->regs + SPI_##reg)
236 #define spi_writew(port, reg, value) \
237 __raw_writew((value), (port)->regs + SPI_##reg)
239 #define spi_readb(port, reg) \
240 __raw_readb((port)->regs + SPI_##reg)
241 #define spi_writeb(port, reg, value) \
242 __raw_writeb((value), (port)->regs + SPI_##reg)
244 #define spi_readl(port, reg) \
245 readl_relaxed((port)->regs + SPI_##reg)
246 #define spi_writel(port, reg, value) \
247 writel_relaxed((value), (port)->regs + SPI_##reg)
249 #define spi_readw(port, reg) \
250 readw_relaxed((port)->regs + SPI_##reg)
251 #define spi_writew(port, reg, value) \
252 writew_relaxed((value), (port)->regs + SPI_##reg)
254 #define spi_readb(port, reg) \
255 readb_relaxed((port)->regs + SPI_##reg)
256 #define spi_writeb(port, reg, value) \
257 writeb_relaxed((value), (port)->regs + SPI_##reg)
259 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
260 * cache operations; better heuristics consider wordsize and bitrate.
262 #define DMA_MIN_BYTES 16
264 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
266 #define AUTOSUSPEND_TIMEOUT 2000
268 struct atmel_spi_caps
{
271 bool has_dma_support
;
272 bool has_pdc_support
;
276 * The core SPI transfer engine just talks to a register bank to set up
277 * DMA transfers; transfer queue progress is driven by IRQs. The clock
278 * framework provides the base clock, subdivided for each spi_device.
288 struct platform_device
*pdev
;
289 unsigned long spi_clk
;
291 struct spi_transfer
*current_transfer
;
292 int current_remaining_bytes
;
295 struct completion xfer_completion
;
297 struct atmel_spi_caps caps
;
309 /* Controller-specific per-slave state */
310 struct atmel_spi_device
{
311 unsigned int npcs_pin
;
315 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
316 #define INVALID_DMA_ADDRESS 0xffffffff
319 * Version 2 of the SPI controller has
321 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
322 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
324 * - SPI_CSRx.SBCR allows faster clocking
326 static bool atmel_spi_is_v2(struct atmel_spi
*as
)
328 return as
->caps
.is_spi2
;
332 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
333 * they assume that spi slave device state will not change on deselect, so
334 * that automagic deselection is OK. ("NPCSx rises if no data is to be
335 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
336 * controllers have CSAAT and friends.
338 * Since the CSAAT functionality is a bit weird on newer controllers as
339 * well, we use GPIO to control nCSx pins on all controllers, updating
340 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
341 * support active-high chipselects despite the controller's belief that
342 * only active-low devices/systems exists.
344 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
345 * right when driven with GPIO. ("Mode Fault does not allow more than one
346 * Master on Chip Select 0.") No workaround exists for that ... so for
347 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
348 * and (c) will trigger that first erratum in some cases.
351 static void cs_activate(struct atmel_spi
*as
, struct spi_device
*spi
)
353 struct atmel_spi_device
*asd
= spi
->controller_state
;
354 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
357 if (atmel_spi_is_v2(as
)) {
358 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, asd
->csr
);
359 /* For the low SPI version, there is a issue that PDC transfer
360 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
362 spi_writel(as
, CSR0
, asd
->csr
);
363 if (as
->caps
.has_wdrbt
) {
365 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
371 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
376 mr
= spi_readl(as
, MR
);
377 if (as
->use_cs_gpios
)
378 gpio_set_value(asd
->npcs_pin
, active
);
380 u32 cpol
= (spi
->mode
& SPI_CPOL
) ? SPI_BIT(CPOL
) : 0;
384 /* Make sure clock polarity is correct */
385 for (i
= 0; i
< spi
->master
->num_chipselect
; i
++) {
386 csr
= spi_readl(as
, CSR0
+ 4 * i
);
387 if ((csr
^ cpol
) & SPI_BIT(CPOL
))
388 spi_writel(as
, CSR0
+ 4 * i
,
389 csr
^ SPI_BIT(CPOL
));
392 mr
= spi_readl(as
, MR
);
393 mr
= SPI_BFINS(PCS
, ~(1 << spi
->chip_select
), mr
);
394 if (as
->use_cs_gpios
&& spi
->chip_select
!= 0)
395 gpio_set_value(asd
->npcs_pin
, active
);
396 spi_writel(as
, MR
, mr
);
399 dev_dbg(&spi
->dev
, "activate %u%s, mr %08x\n",
400 asd
->npcs_pin
, active
? " (high)" : "",
404 static void cs_deactivate(struct atmel_spi
*as
, struct spi_device
*spi
)
406 struct atmel_spi_device
*asd
= spi
->controller_state
;
407 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
410 /* only deactivate *this* device; sometimes transfers to
411 * another device may be active when this routine is called.
413 mr
= spi_readl(as
, MR
);
414 if (~SPI_BFEXT(PCS
, mr
) & (1 << spi
->chip_select
)) {
415 mr
= SPI_BFINS(PCS
, 0xf, mr
);
416 spi_writel(as
, MR
, mr
);
419 dev_dbg(&spi
->dev
, "DEactivate %u%s, mr %08x\n",
420 asd
->npcs_pin
, active
? " (low)" : "",
423 if (!as
->use_cs_gpios
)
424 spi_writel(as
, CR
, SPI_BIT(LASTXFER
));
425 else if (atmel_spi_is_v2(as
) || spi
->chip_select
!= 0)
426 gpio_set_value(asd
->npcs_pin
, !active
);
429 static void atmel_spi_lock(struct atmel_spi
*as
) __acquires(&as
->lock
)
431 spin_lock_irqsave(&as
->lock
, as
->flags
);
434 static void atmel_spi_unlock(struct atmel_spi
*as
) __releases(&as
->lock
)
436 spin_unlock_irqrestore(&as
->lock
, as
->flags
);
439 static inline bool atmel_spi_use_dma(struct atmel_spi
*as
,
440 struct spi_transfer
*xfer
)
442 return as
->use_dma
&& xfer
->len
>= DMA_MIN_BYTES
;
445 static bool atmel_spi_can_dma(struct spi_master
*master
,
446 struct spi_device
*spi
,
447 struct spi_transfer
*xfer
)
449 struct atmel_spi
*as
= spi_master_get_devdata(master
);
451 return atmel_spi_use_dma(as
, xfer
);
454 static int atmel_spi_dma_slave_config(struct atmel_spi
*as
,
455 struct dma_slave_config
*slave_config
,
458 struct spi_master
*master
= platform_get_drvdata(as
->pdev
);
461 if (bits_per_word
> 8) {
462 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
463 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
465 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
466 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
469 slave_config
->dst_addr
= (dma_addr_t
)as
->phybase
+ SPI_TDR
;
470 slave_config
->src_addr
= (dma_addr_t
)as
->phybase
+ SPI_RDR
;
471 slave_config
->src_maxburst
= 1;
472 slave_config
->dst_maxburst
= 1;
473 slave_config
->device_fc
= false;
476 * This driver uses fixed peripheral select mode (PS bit set to '0' in
477 * the Mode Register).
478 * So according to the datasheet, when FIFOs are available (and
479 * enabled), the Transmit FIFO operates in Multiple Data Mode.
480 * In this mode, up to 2 data, not 4, can be written into the Transmit
481 * Data Register in a single access.
482 * However, the first data has to be written into the lowest 16 bits and
483 * the second data into the highest 16 bits of the Transmit
484 * Data Register. For 8bit data (the most frequent case), it would
485 * require to rework tx_buf so each data would actualy fit 16 bits.
486 * So we'd rather write only one data at the time. Hence the transmit
487 * path works the same whether FIFOs are available (and enabled) or not.
489 slave_config
->direction
= DMA_MEM_TO_DEV
;
490 if (dmaengine_slave_config(master
->dma_tx
, slave_config
)) {
491 dev_err(&as
->pdev
->dev
,
492 "failed to configure tx dma channel\n");
497 * This driver configures the spi controller for master mode (MSTR bit
498 * set to '1' in the Mode Register).
499 * So according to the datasheet, when FIFOs are available (and
500 * enabled), the Receive FIFO operates in Single Data Mode.
501 * So the receive path works the same whether FIFOs are available (and
504 slave_config
->direction
= DMA_DEV_TO_MEM
;
505 if (dmaengine_slave_config(master
->dma_rx
, slave_config
)) {
506 dev_err(&as
->pdev
->dev
,
507 "failed to configure rx dma channel\n");
514 static int atmel_spi_configure_dma(struct spi_master
*master
,
515 struct atmel_spi
*as
)
517 struct dma_slave_config slave_config
;
518 struct device
*dev
= &as
->pdev
->dev
;
523 dma_cap_set(DMA_SLAVE
, mask
);
525 master
->dma_tx
= dma_request_slave_channel_reason(dev
, "tx");
526 if (IS_ERR(master
->dma_tx
)) {
527 err
= PTR_ERR(master
->dma_tx
);
528 if (err
== -EPROBE_DEFER
) {
529 dev_warn(dev
, "no DMA channel available at the moment\n");
533 "DMA TX channel not available, SPI unable to use DMA\n");
539 * No reason to check EPROBE_DEFER here since we have already requested
540 * tx channel. If it fails here, it's for another reason.
542 master
->dma_rx
= dma_request_slave_channel(dev
, "rx");
544 if (!master
->dma_rx
) {
546 "DMA RX channel not available, SPI unable to use DMA\n");
551 err
= atmel_spi_dma_slave_config(as
, &slave_config
, 8);
555 dev_info(&as
->pdev
->dev
,
556 "Using %s (tx) and %s (rx) for DMA transfers\n",
557 dma_chan_name(master
->dma_tx
),
558 dma_chan_name(master
->dma_rx
));
563 dma_release_channel(master
->dma_rx
);
564 if (!IS_ERR(master
->dma_tx
))
565 dma_release_channel(master
->dma_tx
);
567 master
->dma_tx
= master
->dma_rx
= NULL
;
571 static void atmel_spi_stop_dma(struct spi_master
*master
)
574 dmaengine_terminate_all(master
->dma_rx
);
576 dmaengine_terminate_all(master
->dma_tx
);
579 static void atmel_spi_release_dma(struct spi_master
*master
)
581 if (master
->dma_rx
) {
582 dma_release_channel(master
->dma_rx
);
583 master
->dma_rx
= NULL
;
585 if (master
->dma_tx
) {
586 dma_release_channel(master
->dma_tx
);
587 master
->dma_tx
= NULL
;
591 /* This function is called by the DMA driver from tasklet context */
592 static void dma_callback(void *data
)
594 struct spi_master
*master
= data
;
595 struct atmel_spi
*as
= spi_master_get_devdata(master
);
597 complete(&as
->xfer_completion
);
601 * Next transfer using PIO without FIFO.
603 static void atmel_spi_next_xfer_single(struct spi_master
*master
,
604 struct spi_transfer
*xfer
)
606 struct atmel_spi
*as
= spi_master_get_devdata(master
);
607 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
609 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_pio\n");
611 /* Make sure data is not remaining in RDR */
613 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
)) {
618 if (xfer
->bits_per_word
> 8)
619 spi_writel(as
, TDR
, *(u16
*)(xfer
->tx_buf
+ xfer_pos
));
621 spi_writel(as
, TDR
, *(u8
*)(xfer
->tx_buf
+ xfer_pos
));
623 dev_dbg(master
->dev
.parent
,
624 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
625 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
626 xfer
->bits_per_word
);
628 /* Enable relevant interrupts */
629 spi_writel(as
, IER
, SPI_BIT(RDRF
) | SPI_BIT(OVRES
));
633 * Next transfer using PIO with FIFO.
635 static void atmel_spi_next_xfer_fifo(struct spi_master
*master
,
636 struct spi_transfer
*xfer
)
638 struct atmel_spi
*as
= spi_master_get_devdata(master
);
639 u32 current_remaining_data
, num_data
;
640 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
641 const u16
*words
= (const u16
*)((u8
*)xfer
->tx_buf
+ offset
);
642 const u8
*bytes
= (const u8
*)((u8
*)xfer
->tx_buf
+ offset
);
646 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_fifo\n");
648 /* Compute the number of data to transfer in the current iteration */
649 current_remaining_data
= ((xfer
->bits_per_word
> 8) ?
650 ((u32
)as
->current_remaining_bytes
>> 1) :
651 (u32
)as
->current_remaining_bytes
);
652 num_data
= min(current_remaining_data
, as
->fifo_size
);
654 /* Flush RX and TX FIFOs */
655 spi_writel(as
, CR
, SPI_BIT(RXFCLR
) | SPI_BIT(TXFCLR
));
656 while (spi_readl(as
, FLR
))
659 /* Set RX FIFO Threshold to the number of data to transfer */
660 fifomr
= spi_readl(as
, FMR
);
661 spi_writel(as
, FMR
, SPI_BFINS(RXFTHRES
, num_data
, fifomr
));
663 /* Clear FIFO flags in the Status Register, especially RXFTHF */
664 (void)spi_readl(as
, SR
);
667 while (num_data
>= 2) {
668 if (xfer
->bits_per_word
> 8) {
676 spi_writel(as
, TDR
, (td1
<< 16) | td0
);
681 if (xfer
->bits_per_word
> 8)
686 spi_writew(as
, TDR
, td0
);
690 dev_dbg(master
->dev
.parent
,
691 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
692 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
693 xfer
->bits_per_word
);
696 * Enable RX FIFO Threshold Flag interrupt to be notified about
697 * transfer completion.
699 spi_writel(as
, IER
, SPI_BIT(RXFTHF
) | SPI_BIT(OVRES
));
703 * Next transfer using PIO.
705 static void atmel_spi_next_xfer_pio(struct spi_master
*master
,
706 struct spi_transfer
*xfer
)
708 struct atmel_spi
*as
= spi_master_get_devdata(master
);
711 atmel_spi_next_xfer_fifo(master
, xfer
);
713 atmel_spi_next_xfer_single(master
, xfer
);
717 * Submit next transfer for DMA.
719 static int atmel_spi_next_xfer_dma_submit(struct spi_master
*master
,
720 struct spi_transfer
*xfer
,
723 struct atmel_spi
*as
= spi_master_get_devdata(master
);
724 struct dma_chan
*rxchan
= master
->dma_rx
;
725 struct dma_chan
*txchan
= master
->dma_tx
;
726 struct dma_async_tx_descriptor
*rxdesc
;
727 struct dma_async_tx_descriptor
*txdesc
;
728 struct dma_slave_config slave_config
;
731 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_dma_submit\n");
733 /* Check that the channels are available */
734 if (!rxchan
|| !txchan
)
737 /* release lock for DMA operations */
738 atmel_spi_unlock(as
);
742 if (atmel_spi_dma_slave_config(as
, &slave_config
,
743 xfer
->bits_per_word
))
746 /* Send both scatterlists */
747 rxdesc
= dmaengine_prep_slave_sg(rxchan
,
748 xfer
->rx_sg
.sgl
, xfer
->rx_sg
.nents
,
750 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
754 txdesc
= dmaengine_prep_slave_sg(txchan
,
755 xfer
->tx_sg
.sgl
, xfer
->tx_sg
.nents
,
757 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
761 dev_dbg(master
->dev
.parent
,
762 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
763 xfer
, xfer
->len
, xfer
->tx_buf
, (unsigned long long)xfer
->tx_dma
,
764 xfer
->rx_buf
, (unsigned long long)xfer
->rx_dma
);
766 /* Enable relevant interrupts */
767 spi_writel(as
, IER
, SPI_BIT(OVRES
));
769 /* Put the callback on the RX transfer only, that should finish last */
770 rxdesc
->callback
= dma_callback
;
771 rxdesc
->callback_param
= master
;
773 /* Submit and fire RX and TX with TX last so we're ready to read! */
774 cookie
= rxdesc
->tx_submit(rxdesc
);
775 if (dma_submit_error(cookie
))
777 cookie
= txdesc
->tx_submit(txdesc
);
778 if (dma_submit_error(cookie
))
780 rxchan
->device
->device_issue_pending(rxchan
);
781 txchan
->device
->device_issue_pending(txchan
);
788 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
789 atmel_spi_stop_dma(master
);
795 static void atmel_spi_next_xfer_data(struct spi_master
*master
,
796 struct spi_transfer
*xfer
,
801 *rx_dma
= xfer
->rx_dma
+ xfer
->len
- *plen
;
802 *tx_dma
= xfer
->tx_dma
+ xfer
->len
- *plen
;
803 if (*plen
> master
->max_dma_len
)
804 *plen
= master
->max_dma_len
;
807 static int atmel_spi_set_xfer_speed(struct atmel_spi
*as
,
808 struct spi_device
*spi
,
809 struct spi_transfer
*xfer
)
812 unsigned long bus_hz
;
814 /* v1 chips start out at half the peripheral bus speed. */
815 bus_hz
= as
->spi_clk
;
816 if (!atmel_spi_is_v2(as
))
820 * Calculate the lowest divider that satisfies the
821 * constraint, assuming div32/fdiv/mbz == 0.
823 scbr
= DIV_ROUND_UP(bus_hz
, xfer
->speed_hz
);
826 * If the resulting divider doesn't fit into the
827 * register bitfield, we can't satisfy the constraint.
829 if (scbr
>= (1 << SPI_SCBR_SIZE
)) {
831 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
832 xfer
->speed_hz
, scbr
, bus_hz
/255);
837 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
838 xfer
->speed_hz
, scbr
, bus_hz
);
841 csr
= spi_readl(as
, CSR0
+ 4 * spi
->chip_select
);
842 csr
= SPI_BFINS(SCBR
, scbr
, csr
);
843 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
849 * Submit next transfer for PDC.
850 * lock is held, spi irq is blocked
852 static void atmel_spi_pdc_next_xfer(struct spi_master
*master
,
853 struct spi_message
*msg
,
854 struct spi_transfer
*xfer
)
856 struct atmel_spi
*as
= spi_master_get_devdata(master
);
858 dma_addr_t tx_dma
, rx_dma
;
860 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
862 len
= as
->current_remaining_bytes
;
863 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
864 as
->current_remaining_bytes
-= len
;
866 spi_writel(as
, RPR
, rx_dma
);
867 spi_writel(as
, TPR
, tx_dma
);
869 if (msg
->spi
->bits_per_word
> 8)
871 spi_writel(as
, RCR
, len
);
872 spi_writel(as
, TCR
, len
);
874 dev_dbg(&msg
->spi
->dev
,
875 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
876 xfer
, xfer
->len
, xfer
->tx_buf
,
877 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
878 (unsigned long long)xfer
->rx_dma
);
880 if (as
->current_remaining_bytes
) {
881 len
= as
->current_remaining_bytes
;
882 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
883 as
->current_remaining_bytes
-= len
;
885 spi_writel(as
, RNPR
, rx_dma
);
886 spi_writel(as
, TNPR
, tx_dma
);
888 if (msg
->spi
->bits_per_word
> 8)
890 spi_writel(as
, RNCR
, len
);
891 spi_writel(as
, TNCR
, len
);
893 dev_dbg(&msg
->spi
->dev
,
894 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
895 xfer
, xfer
->len
, xfer
->tx_buf
,
896 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
897 (unsigned long long)xfer
->rx_dma
);
900 /* REVISIT: We're waiting for RXBUFF before we start the next
901 * transfer because we need to handle some difficult timing
902 * issues otherwise. If we wait for TXBUFE in one transfer and
903 * then starts waiting for RXBUFF in the next, it's difficult
904 * to tell the difference between the RXBUFF interrupt we're
905 * actually waiting for and the RXBUFF interrupt of the
908 * It should be doable, though. Just not now...
910 spi_writel(as
, IER
, SPI_BIT(RXBUFF
) | SPI_BIT(OVRES
));
911 spi_writel(as
, PTCR
, SPI_BIT(TXTEN
) | SPI_BIT(RXTEN
));
915 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
916 * - The buffer is either valid for CPU access, else NULL
917 * - If the buffer is valid, so is its DMA address
919 * This driver manages the dma address unless message->is_dma_mapped.
922 atmel_spi_dma_map_xfer(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
924 struct device
*dev
= &as
->pdev
->dev
;
926 xfer
->tx_dma
= xfer
->rx_dma
= INVALID_DMA_ADDRESS
;
928 /* tx_buf is a const void* where we need a void * for the dma
930 void *nonconst_tx
= (void *)xfer
->tx_buf
;
932 xfer
->tx_dma
= dma_map_single(dev
,
933 nonconst_tx
, xfer
->len
,
935 if (dma_mapping_error(dev
, xfer
->tx_dma
))
939 xfer
->rx_dma
= dma_map_single(dev
,
940 xfer
->rx_buf
, xfer
->len
,
942 if (dma_mapping_error(dev
, xfer
->rx_dma
)) {
944 dma_unmap_single(dev
,
945 xfer
->tx_dma
, xfer
->len
,
953 static void atmel_spi_dma_unmap_xfer(struct spi_master
*master
,
954 struct spi_transfer
*xfer
)
956 if (xfer
->tx_dma
!= INVALID_DMA_ADDRESS
)
957 dma_unmap_single(master
->dev
.parent
, xfer
->tx_dma
,
958 xfer
->len
, DMA_TO_DEVICE
);
959 if (xfer
->rx_dma
!= INVALID_DMA_ADDRESS
)
960 dma_unmap_single(master
->dev
.parent
, xfer
->rx_dma
,
961 xfer
->len
, DMA_FROM_DEVICE
);
964 static void atmel_spi_disable_pdc_transfer(struct atmel_spi
*as
)
966 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
970 atmel_spi_pump_single_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
974 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
976 if (xfer
->bits_per_word
> 8) {
977 rxp16
= (u16
*)(((u8
*)xfer
->rx_buf
) + xfer_pos
);
978 *rxp16
= spi_readl(as
, RDR
);
980 rxp
= ((u8
*)xfer
->rx_buf
) + xfer_pos
;
981 *rxp
= spi_readl(as
, RDR
);
983 if (xfer
->bits_per_word
> 8) {
984 if (as
->current_remaining_bytes
> 2)
985 as
->current_remaining_bytes
-= 2;
987 as
->current_remaining_bytes
= 0;
989 as
->current_remaining_bytes
--;
994 atmel_spi_pump_fifo_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
996 u32 fifolr
= spi_readl(as
, FLR
);
997 u32 num_bytes
, num_data
= SPI_BFEXT(RXFL
, fifolr
);
998 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
999 u16
*words
= (u16
*)((u8
*)xfer
->rx_buf
+ offset
);
1000 u8
*bytes
= (u8
*)((u8
*)xfer
->rx_buf
+ offset
);
1001 u16 rd
; /* RD field is the lowest 16 bits of RDR */
1003 /* Update the number of remaining bytes to transfer */
1004 num_bytes
= ((xfer
->bits_per_word
> 8) ?
1008 if (as
->current_remaining_bytes
> num_bytes
)
1009 as
->current_remaining_bytes
-= num_bytes
;
1011 as
->current_remaining_bytes
= 0;
1013 /* Handle odd number of bytes when data are more than 8bit width */
1014 if (xfer
->bits_per_word
> 8)
1015 as
->current_remaining_bytes
&= ~0x1;
1019 rd
= spi_readl(as
, RDR
);
1020 if (xfer
->bits_per_word
> 8)
1030 * Must update "current_remaining_bytes" to keep track of data
1034 atmel_spi_pump_pio_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1037 atmel_spi_pump_fifo_data(as
, xfer
);
1039 atmel_spi_pump_single_data(as
, xfer
);
1044 * No need for locking in this Interrupt handler: done_status is the
1045 * only information modified.
1048 atmel_spi_pio_interrupt(int irq
, void *dev_id
)
1050 struct spi_master
*master
= dev_id
;
1051 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1052 u32 status
, pending
, imr
;
1053 struct spi_transfer
*xfer
;
1056 imr
= spi_readl(as
, IMR
);
1057 status
= spi_readl(as
, SR
);
1058 pending
= status
& imr
;
1060 if (pending
& SPI_BIT(OVRES
)) {
1062 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
1063 dev_warn(master
->dev
.parent
, "overrun\n");
1066 * When we get an overrun, we disregard the current
1067 * transfer. Data will not be copied back from any
1068 * bounce buffer and msg->actual_len will not be
1069 * updated with the last xfer.
1071 * We will also not process any remaning transfers in
1074 as
->done_status
= -EIO
;
1077 /* Clear any overrun happening while cleaning up */
1080 complete(&as
->xfer_completion
);
1082 } else if (pending
& (SPI_BIT(RDRF
) | SPI_BIT(RXFTHF
))) {
1085 if (as
->current_remaining_bytes
) {
1087 xfer
= as
->current_transfer
;
1088 atmel_spi_pump_pio_data(as
, xfer
);
1089 if (!as
->current_remaining_bytes
)
1090 spi_writel(as
, IDR
, pending
);
1092 complete(&as
->xfer_completion
);
1095 atmel_spi_unlock(as
);
1097 WARN_ONCE(pending
, "IRQ not handled, pending = %x\n", pending
);
1099 spi_writel(as
, IDR
, pending
);
1106 atmel_spi_pdc_interrupt(int irq
, void *dev_id
)
1108 struct spi_master
*master
= dev_id
;
1109 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1110 u32 status
, pending
, imr
;
1113 imr
= spi_readl(as
, IMR
);
1114 status
= spi_readl(as
, SR
);
1115 pending
= status
& imr
;
1117 if (pending
& SPI_BIT(OVRES
)) {
1121 spi_writel(as
, IDR
, (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
)
1124 /* Clear any overrun happening while cleaning up */
1127 as
->done_status
= -EIO
;
1129 complete(&as
->xfer_completion
);
1131 } else if (pending
& (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
))) {
1134 spi_writel(as
, IDR
, pending
);
1136 complete(&as
->xfer_completion
);
1142 static int atmel_spi_setup(struct spi_device
*spi
)
1144 struct atmel_spi
*as
;
1145 struct atmel_spi_device
*asd
;
1147 unsigned int bits
= spi
->bits_per_word
;
1148 unsigned int npcs_pin
;
1150 as
= spi_master_get_devdata(spi
->master
);
1152 /* see notes above re chipselect */
1153 if (!atmel_spi_is_v2(as
)
1154 && spi
->chip_select
== 0
1155 && (spi
->mode
& SPI_CS_HIGH
)) {
1156 dev_dbg(&spi
->dev
, "setup: can't be active-high\n");
1160 csr
= SPI_BF(BITS
, bits
- 8);
1161 if (spi
->mode
& SPI_CPOL
)
1162 csr
|= SPI_BIT(CPOL
);
1163 if (!(spi
->mode
& SPI_CPHA
))
1164 csr
|= SPI_BIT(NCPHA
);
1165 if (!as
->use_cs_gpios
)
1166 csr
|= SPI_BIT(CSAAT
);
1168 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1170 * DLYBCT would add delays between words, slowing down transfers.
1171 * It could potentially be useful to cope with DMA bottlenecks, but
1172 * in those cases it's probably best to just use a lower bitrate.
1174 csr
|= SPI_BF(DLYBS
, 0);
1175 csr
|= SPI_BF(DLYBCT
, 0);
1177 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1178 npcs_pin
= (unsigned long)spi
->controller_data
;
1180 if (!as
->use_cs_gpios
)
1181 npcs_pin
= spi
->chip_select
;
1182 else if (gpio_is_valid(spi
->cs_gpio
))
1183 npcs_pin
= spi
->cs_gpio
;
1185 asd
= spi
->controller_state
;
1187 asd
= kzalloc(sizeof(struct atmel_spi_device
), GFP_KERNEL
);
1191 if (as
->use_cs_gpios
)
1192 gpio_direction_output(npcs_pin
,
1193 !(spi
->mode
& SPI_CS_HIGH
));
1195 asd
->npcs_pin
= npcs_pin
;
1196 spi
->controller_state
= asd
;
1202 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1203 bits
, spi
->mode
, spi
->chip_select
, csr
);
1205 if (!atmel_spi_is_v2(as
))
1206 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
1211 static int atmel_spi_one_transfer(struct spi_master
*master
,
1212 struct spi_message
*msg
,
1213 struct spi_transfer
*xfer
)
1215 struct atmel_spi
*as
;
1216 struct spi_device
*spi
= msg
->spi
;
1219 struct atmel_spi_device
*asd
;
1222 unsigned long dma_timeout
;
1224 as
= spi_master_get_devdata(master
);
1226 if (!(xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
1227 dev_dbg(&spi
->dev
, "missing rx or tx buf\n");
1231 asd
= spi
->controller_state
;
1232 bits
= (asd
->csr
>> 4) & 0xf;
1233 if (bits
!= xfer
->bits_per_word
- 8) {
1235 "you can't yet change bits_per_word in transfers\n");
1236 return -ENOPROTOOPT
;
1240 * DMA map early, for performance (empties dcache ASAP) and
1241 * better fault reporting.
1243 if ((!msg
->is_dma_mapped
)
1245 if (atmel_spi_dma_map_xfer(as
, xfer
) < 0)
1249 atmel_spi_set_xfer_speed(as
, msg
->spi
, xfer
);
1251 as
->done_status
= 0;
1252 as
->current_transfer
= xfer
;
1253 as
->current_remaining_bytes
= xfer
->len
;
1254 while (as
->current_remaining_bytes
) {
1255 reinit_completion(&as
->xfer_completion
);
1258 atmel_spi_pdc_next_xfer(master
, msg
, xfer
);
1259 } else if (atmel_spi_use_dma(as
, xfer
)) {
1260 len
= as
->current_remaining_bytes
;
1261 ret
= atmel_spi_next_xfer_dma_submit(master
,
1265 "unable to use DMA, fallback to PIO\n");
1266 atmel_spi_next_xfer_pio(master
, xfer
);
1268 as
->current_remaining_bytes
-= len
;
1269 if (as
->current_remaining_bytes
< 0)
1270 as
->current_remaining_bytes
= 0;
1273 atmel_spi_next_xfer_pio(master
, xfer
);
1276 /* interrupts are disabled, so free the lock for schedule */
1277 atmel_spi_unlock(as
);
1278 dma_timeout
= wait_for_completion_timeout(&as
->xfer_completion
,
1281 if (WARN_ON(dma_timeout
== 0)) {
1282 dev_err(&spi
->dev
, "spi transfer timeout\n");
1283 as
->done_status
= -EIO
;
1286 if (as
->done_status
)
1290 if (as
->done_status
) {
1292 dev_warn(master
->dev
.parent
,
1293 "overrun (%u/%u remaining)\n",
1294 spi_readl(as
, TCR
), spi_readl(as
, RCR
));
1297 * Clean up DMA registers and make sure the data
1298 * registers are empty.
1300 spi_writel(as
, RNCR
, 0);
1301 spi_writel(as
, TNCR
, 0);
1302 spi_writel(as
, RCR
, 0);
1303 spi_writel(as
, TCR
, 0);
1304 for (timeout
= 1000; timeout
; timeout
--)
1305 if (spi_readl(as
, SR
) & SPI_BIT(TXEMPTY
))
1308 dev_warn(master
->dev
.parent
,
1309 "timeout waiting for TXEMPTY");
1310 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
))
1313 /* Clear any overrun happening while cleaning up */
1316 } else if (atmel_spi_use_dma(as
, xfer
)) {
1317 atmel_spi_stop_dma(master
);
1320 if (!msg
->is_dma_mapped
1322 atmel_spi_dma_unmap_xfer(master
, xfer
);
1327 /* only update length if no error */
1328 msg
->actual_length
+= xfer
->len
;
1331 if (!msg
->is_dma_mapped
1333 atmel_spi_dma_unmap_xfer(master
, xfer
);
1335 if (xfer
->delay_usecs
)
1336 udelay(xfer
->delay_usecs
);
1338 if (xfer
->cs_change
) {
1339 if (list_is_last(&xfer
->transfer_list
,
1343 as
->cs_active
= !as
->cs_active
;
1345 cs_activate(as
, msg
->spi
);
1347 cs_deactivate(as
, msg
->spi
);
1354 static int atmel_spi_transfer_one_message(struct spi_master
*master
,
1355 struct spi_message
*msg
)
1357 struct atmel_spi
*as
;
1358 struct spi_transfer
*xfer
;
1359 struct spi_device
*spi
= msg
->spi
;
1362 as
= spi_master_get_devdata(master
);
1364 dev_dbg(&spi
->dev
, "new message %p submitted for %s\n",
1365 msg
, dev_name(&spi
->dev
));
1368 cs_activate(as
, spi
);
1370 as
->cs_active
= true;
1371 as
->keep_cs
= false;
1374 msg
->actual_length
= 0;
1376 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1377 ret
= atmel_spi_one_transfer(master
, msg
, xfer
);
1383 atmel_spi_disable_pdc_transfer(as
);
1385 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1387 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1389 xfer
->tx_buf
, &xfer
->tx_dma
,
1390 xfer
->rx_buf
, &xfer
->rx_dma
);
1395 cs_deactivate(as
, msg
->spi
);
1397 atmel_spi_unlock(as
);
1399 msg
->status
= as
->done_status
;
1400 spi_finalize_current_message(spi
->master
);
1405 static void atmel_spi_cleanup(struct spi_device
*spi
)
1407 struct atmel_spi_device
*asd
= spi
->controller_state
;
1412 spi
->controller_state
= NULL
;
1416 static inline unsigned int atmel_get_version(struct atmel_spi
*as
)
1418 return spi_readl(as
, VERSION
) & 0x00000fff;
1421 static void atmel_get_caps(struct atmel_spi
*as
)
1423 unsigned int version
;
1425 version
= atmel_get_version(as
);
1427 as
->caps
.is_spi2
= version
> 0x121;
1428 as
->caps
.has_wdrbt
= version
>= 0x210;
1429 #ifdef CONFIG_SOC_SAM_V4_V5
1431 * Atmel SoCs based on ARM9 (SAM9x) cores should not use spi_map_buf()
1432 * since this later function tries to map buffers with dma_map_sg()
1433 * even if they have not been allocated inside DMA-safe areas.
1434 * On SoCs based on Cortex A5 (SAMA5Dx), it works anyway because for
1435 * those ARM cores, the data cache follows the PIPT model.
1436 * Also the L2 cache controller of SAMA5D2 uses the PIPT model too.
1437 * In case of PIPT caches, there cannot be cache aliases.
1438 * However on ARM9 cores, the data cache follows the VIVT model, hence
1439 * the cache aliases issue can occur when buffers are allocated from
1440 * DMA-unsafe areas, by vmalloc() for instance, where cache coherency is
1441 * not taken into account or at least not handled completely (cache
1442 * lines of aliases are not invalidated).
1443 * This is not a theorical issue: it was reproduced when trying to mount
1444 * a UBI file-system on a at91sam9g35ek board.
1446 as
->caps
.has_dma_support
= false;
1448 as
->caps
.has_dma_support
= version
>= 0x212;
1450 as
->caps
.has_pdc_support
= version
< 0x212;
1453 /*-------------------------------------------------------------------------*/
1454 static int atmel_spi_gpio_cs(struct platform_device
*pdev
)
1456 struct spi_master
*master
= platform_get_drvdata(pdev
);
1457 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1458 struct device_node
*np
= master
->dev
.of_node
;
1463 if (!as
->use_cs_gpios
)
1469 nb
= of_gpio_named_count(np
, "cs-gpios");
1470 for (i
= 0; i
< nb
; i
++) {
1471 int cs_gpio
= of_get_named_gpio(pdev
->dev
.of_node
,
1474 if (cs_gpio
== -EPROBE_DEFER
)
1477 if (gpio_is_valid(cs_gpio
)) {
1478 ret
= devm_gpio_request(&pdev
->dev
, cs_gpio
,
1479 dev_name(&pdev
->dev
));
1488 static void atmel_spi_init(struct atmel_spi
*as
)
1490 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1491 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1493 /* It is recommended to enable FIFOs first thing after reset */
1495 spi_writel(as
, CR
, SPI_BIT(FIFOEN
));
1497 if (as
->caps
.has_wdrbt
) {
1498 spi_writel(as
, MR
, SPI_BIT(WDRBT
) | SPI_BIT(MODFDIS
)
1501 spi_writel(as
, MR
, SPI_BIT(MSTR
) | SPI_BIT(MODFDIS
));
1505 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1506 spi_writel(as
, CR
, SPI_BIT(SPIEN
));
1509 static int atmel_spi_probe(struct platform_device
*pdev
)
1511 struct resource
*regs
;
1515 struct spi_master
*master
;
1516 struct atmel_spi
*as
;
1518 /* Select default pin state */
1519 pinctrl_pm_select_default_state(&pdev
->dev
);
1521 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1525 irq
= platform_get_irq(pdev
, 0);
1529 clk
= devm_clk_get(&pdev
->dev
, "spi_clk");
1531 return PTR_ERR(clk
);
1533 /* setup spi core then atmel-specific driver state */
1535 master
= spi_alloc_master(&pdev
->dev
, sizeof(*as
));
1539 /* the spi->mode bits understood by this driver: */
1540 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1541 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(8, 16);
1542 master
->dev
.of_node
= pdev
->dev
.of_node
;
1543 master
->bus_num
= pdev
->id
;
1544 master
->num_chipselect
= master
->dev
.of_node
? 0 : 4;
1545 master
->setup
= atmel_spi_setup
;
1546 master
->flags
= (SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
);
1547 master
->transfer_one_message
= atmel_spi_transfer_one_message
;
1548 master
->cleanup
= atmel_spi_cleanup
;
1549 master
->auto_runtime_pm
= true;
1550 master
->max_dma_len
= SPI_MAX_DMA_XFER
;
1551 master
->can_dma
= atmel_spi_can_dma
;
1552 platform_set_drvdata(pdev
, master
);
1554 as
= spi_master_get_devdata(master
);
1556 spin_lock_init(&as
->lock
);
1559 as
->regs
= devm_ioremap_resource(&pdev
->dev
, regs
);
1560 if (IS_ERR(as
->regs
)) {
1561 ret
= PTR_ERR(as
->regs
);
1562 goto out_unmap_regs
;
1564 as
->phybase
= regs
->start
;
1568 init_completion(&as
->xfer_completion
);
1572 as
->use_cs_gpios
= true;
1573 if (atmel_spi_is_v2(as
) &&
1574 pdev
->dev
.of_node
&&
1575 !of_get_property(pdev
->dev
.of_node
, "cs-gpios", NULL
)) {
1576 as
->use_cs_gpios
= false;
1577 master
->num_chipselect
= 4;
1580 ret
= atmel_spi_gpio_cs(pdev
);
1582 goto out_unmap_regs
;
1584 as
->use_dma
= false;
1585 as
->use_pdc
= false;
1586 if (as
->caps
.has_dma_support
) {
1587 ret
= atmel_spi_configure_dma(master
, as
);
1590 } else if (ret
== -EPROBE_DEFER
) {
1593 } else if (as
->caps
.has_pdc_support
) {
1597 if (as
->caps
.has_dma_support
&& !as
->use_dma
)
1598 dev_info(&pdev
->dev
, "Atmel SPI Controller using PIO only\n");
1601 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pdc_interrupt
,
1602 0, dev_name(&pdev
->dev
), master
);
1604 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pio_interrupt
,
1605 0, dev_name(&pdev
->dev
), master
);
1608 goto out_unmap_regs
;
1610 /* Initialize the hardware */
1611 ret
= clk_prepare_enable(clk
);
1615 as
->spi_clk
= clk_get_rate(clk
);
1618 if (!of_property_read_u32(pdev
->dev
.of_node
, "atmel,fifo-size",
1620 dev_info(&pdev
->dev
, "Using FIFO (%u data)\n", as
->fifo_size
);
1625 pm_runtime_set_autosuspend_delay(&pdev
->dev
, AUTOSUSPEND_TIMEOUT
);
1626 pm_runtime_use_autosuspend(&pdev
->dev
);
1627 pm_runtime_set_active(&pdev
->dev
);
1628 pm_runtime_enable(&pdev
->dev
);
1630 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1635 dev_info(&pdev
->dev
, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1636 atmel_get_version(as
), (unsigned long)regs
->start
,
1642 pm_runtime_disable(&pdev
->dev
);
1643 pm_runtime_set_suspended(&pdev
->dev
);
1646 atmel_spi_release_dma(master
);
1648 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1649 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1650 clk_disable_unprepare(clk
);
1654 spi_master_put(master
);
1658 static int atmel_spi_remove(struct platform_device
*pdev
)
1660 struct spi_master
*master
= platform_get_drvdata(pdev
);
1661 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1663 pm_runtime_get_sync(&pdev
->dev
);
1665 /* reset the hardware and block queue progress */
1667 atmel_spi_stop_dma(master
);
1668 atmel_spi_release_dma(master
);
1671 spin_lock_irq(&as
->lock
);
1672 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1673 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1675 spin_unlock_irq(&as
->lock
);
1677 clk_disable_unprepare(as
->clk
);
1679 pm_runtime_put_noidle(&pdev
->dev
);
1680 pm_runtime_disable(&pdev
->dev
);
1686 static int atmel_spi_runtime_suspend(struct device
*dev
)
1688 struct spi_master
*master
= dev_get_drvdata(dev
);
1689 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1691 clk_disable_unprepare(as
->clk
);
1692 pinctrl_pm_select_sleep_state(dev
);
1697 static int atmel_spi_runtime_resume(struct device
*dev
)
1699 struct spi_master
*master
= dev_get_drvdata(dev
);
1700 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1702 pinctrl_pm_select_default_state(dev
);
1704 return clk_prepare_enable(as
->clk
);
1707 #ifdef CONFIG_PM_SLEEP
1708 static int atmel_spi_suspend(struct device
*dev
)
1710 struct spi_master
*master
= dev_get_drvdata(dev
);
1713 /* Stop the queue running */
1714 ret
= spi_master_suspend(master
);
1716 dev_warn(dev
, "cannot suspend master\n");
1720 if (!pm_runtime_suspended(dev
))
1721 atmel_spi_runtime_suspend(dev
);
1726 static int atmel_spi_resume(struct device
*dev
)
1728 struct spi_master
*master
= dev_get_drvdata(dev
);
1729 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1732 ret
= clk_prepare_enable(as
->clk
);
1738 clk_disable_unprepare(as
->clk
);
1740 if (!pm_runtime_suspended(dev
)) {
1741 ret
= atmel_spi_runtime_resume(dev
);
1746 /* Start the queue running */
1747 ret
= spi_master_resume(master
);
1749 dev_err(dev
, "problem starting queue (%d)\n", ret
);
1755 static const struct dev_pm_ops atmel_spi_pm_ops
= {
1756 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend
, atmel_spi_resume
)
1757 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend
,
1758 atmel_spi_runtime_resume
, NULL
)
1760 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1762 #define ATMEL_SPI_PM_OPS NULL
1765 #if defined(CONFIG_OF)
1766 static const struct of_device_id atmel_spi_dt_ids
[] = {
1767 { .compatible
= "atmel,at91rm9200-spi" },
1771 MODULE_DEVICE_TABLE(of
, atmel_spi_dt_ids
);
1774 static struct platform_driver atmel_spi_driver
= {
1776 .name
= "atmel_spi",
1777 .pm
= ATMEL_SPI_PM_OPS
,
1778 .of_match_table
= of_match_ptr(atmel_spi_dt_ids
),
1780 .probe
= atmel_spi_probe
,
1781 .remove
= atmel_spi_remove
,
1783 module_platform_driver(atmel_spi_driver
);
1785 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1786 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1787 MODULE_LICENSE("GPL");
1788 MODULE_ALIAS("platform:atmel_spi");